Microcash: Efficient Off-Line Small Payments

Chris Pavlovski and Colin Boyd

Information Security Research Centre
School of Data Communications
Queensland University of Technology

Brisbane, Australia

chri pavl @ul.i bmcom boyd@it.qut.edu.au

Abstract. An off-line electronic cash scheme is proposeat th suitable for

small payments. The approach is innovative, int thach coin may be
efficiently verified by the same or different meatits during payment. The
scheme relies on a batch signature technique toiegifly sign and verify

individually spent coins; coins may also be depmaukiin batch manner. The
scheme outlined differs considerably from convermdlo micropayments
schemes by servicing a number of cash-like progmrtsuch as off-line
processing, detection of double spent coins, arnlityatp spend at different

merchants.  Additionally, the scheme eliminates uaniper of processing
overheads that are apparent to some existing nagroent schemes.

1. Introduction

Electronic commerce schemes appear to be carvieg tistinct markets within the
Internet environment.  This includes electronic hgaglectronic payment, and
electronic micropayment schemes. Electronic cadernes are equipped with
tangible objects that are analogous to real woakh¢ by way of notes and coins of
some financial denomination. Some notable schereslescribed in [3, 4, 15] and
exhibit a number of additional properties over ambve their electronic payment
counterparts including transferability, untraceidpiland divisibility.

In the case of electronic payment, or macropaynamgpproval or commitment is
given for a financial amount. Essentially, thetouger offers something which is akin
to a signatory response of their commitment to snpet. Furthermore, the
mechanism for extracting the payment for this commant often forms part of the
overall protocol. A salient list of such schemesludes [2, 6, 22], providing
comprehensive signatory and commitment protocolsenowith an associated
financial collections mechanism, such as vendocifiper credit card accounts. Due
to the associated costs of these schemes, bothcileand computational, a floor
limit to the payment exists, making certain comn@rapplications impractical. As
such, a third breed has emerged offering a solutiorthe costs per transaction
boundary, and addressing a ready market unreactmbiacropayments.

Proceedings of PKC 200Ppster Paper Collection 1



Micropayment schemes have evolved to address teasaiemaining exposed by
macropayments solutions. Given the frequency amahfiial amount associated with
some charging mechanisms, it becomes impracticatddain schemes to deal with
transaction processing and revenue collectionhexfe small amounts. Basically, the
relative financial and computational cost of perforg the transaction, is not worth
the financial gain from the commitment. Secongiigyments must be created and
verified efficiently by the customer and merchaggpectively. General approaches to
solve these problems include a roll-up of the senadimounts into one large amount
for an existing collections method, and to mitigeg¢etain processing requirements to
improve efficiency.

This paper proposes a new off-line payment schéaeprovides an efficient cash
protocol for conducting many small payments. Eaom in our scheme may be
efficiently verified by independent merchants. sAgh, we view the main properties
of our new cash scheme:

» Off-Line cash scheme offering efficient small payments.

» Coins are not restricted by some form of validigyipd, as such there is no need to
perform acoin return protocol for unspent coins.

» No excessive precomputation activities, wastagenofs or sticks as found in other
schemes.

» Coins may not be double spent.

» Coins may not be spent by a false identity claimionbe the withdrawing customer.

* Unlike micropayment schemes, each coin may be igdrilndependently by
different merchants.

» There is no requirement to check for stick or aeiplay.

The following section outlines the general mechasisurrently employed by the
various existing micropayment schemes. This is fiolowed by a review of batch
cryptography how this may be applied to devise w efficient payment scheme.
Microcash is then described in detail, followed dgharacterisation of the security
and efficiency.

2. Micropayment Mechanisms

A number of micropayment protocols have been pregas the literature [1, 2, 5, 9,
10, 14, 19, 17, 18, 23]. Each scheme offers augn&plution that satisfies one or
more requirements common to micropayment transastio This includes
computational efficiency, client responsiveness rfapid successive payments, and
cost-effective commitment conversion. Some key lraaisms employed by these
systems include hash chains, probabilistic inspasti and the avoidance of costly
cryptographic primitives.

Proceedings of PKC 200Ppster Paper Collection 2



2.1 Probabilistic Verification

As the processing of individual transactions maygb#ée expensive, one efficiency
approach is to perform processing on some randosis lihat yields an expected
result, such as lotteries or bets [18, 23]. Thmit based upon the probability that a
valid payment event may occur, in a manner thatmdeumber of transactions are
performed the value of the payment averages toreectonominal amount. For
example, one valid $10 payment over 1000 paymergrages to 1¢ per transaction.
Here the customer forwards to the merchant somdoranpayment, with a certain
probability of being valid. Only on receipt of alid payment does the merchant
perform the normal processing. Of importance thsschemes, is confidence that the
probability of capturing the correct funds, overuanber of transactions, is quite high.

2.2 Redeemable Tokens

Redeemable commitment tokens, such as coins, ievaivne precomputed activity
conducted by some minting firm, such as a bank.e €hins themselves must be
assembled for quick and efficient verification. Sonotable scheme rely on both hash
operations for verification and production of reaheble tokens [1, 9, 19].

In MicroMint [19], an intricate hashing structureémployed to create redeemable
coins. More precisely, a broker creates a coinclwlsatisfies the property that
values all hash to the same result, i.&k-@ay collision. As such, verification is
performed by validating that all tHevalues hash to some resylt h(x,) = h(x,) = ...
h(xJ =Y.

In a similar fashion, Millicent [9] also relies dhe creation of broker redeemable
tokens, referred to a®rip. The scrip tokens comprise two parts: a textpsand a
keyed hash of the scrip using a secret key. Thehmat is able to verify a valid scrip
by recomputing the hash of the scrip, with a miyuatown secret key referred to as
the ‘scrip secret. The distribution of the sesrehowever, requires additional
cryptographic overheads if security is to be maietd.

NetBill [5] provides a comprehensive micropaymeysteam providing an extensive
set of security and product delivery services. T¢wheme uses symmetric
cryptography to perform most operations, howeverehs still the need to perform an
initial authentication using public key cryptogrgpfior obtaining authentication
tickets. This initial authentication is only penfoed once, and its impact mitigated
with a potentially large number of subsequent npegenent transactions verified
using symmetric key cryptography.

2.3 Hash Chains

A number of independently devised schemes hawetdnsic hash chain construction
[1, 10, 17, 19], and some have augmented theszbitiies [14]. These systems are
based upon the chained one-time password schemoglioed by Lamport [13]. In
reference to micropayments, the key notion is fitdtauseries of payments, fori = n

to 0, where thé" payment is related to a previous payment in the f@ = h(p . 1).

Proceedings of PKC 200Ppster Paper Collection 3



The final, or root of the construction is then sdh and becomes the first
commitment forwarded to the merchant. Subsequemindtments, can be derived
from the previous, and hence verified against thgehhor trust) chain to the root of
the construction; and the signed commitment. Tifieiency gained is that only one
signature verification is performed by the merchamt the initial exchange.
Remaining commitments are checked for its relatignso the previous iteration,
using a computationally efficient primitive, theshatransformation.

A generalisation of the hash chain based schemgsesented in [11], where
random numbers form the leaves ok-ary PayTree. The scheme outlined extends
the functionality of PayWord providing the abilitg spend ‘coin certificates’ with
different merchants (under certain security assiomp}. The protocol we present
also uses a tree construction, however we regfigcapproach to a binary tree under a
batch signature paradigm.

24 Toolsfor Signing and Verifying Coins

The concept of batch cryptography was first intth in [7], and was further
developed in [8]. The batch signature scheme ramdli applied RSA by amortising
operations over a number loditched messages under a binary tree. The fundamental
philosophy was that an initial expensive modulapamentiation diminished over
many smaller operations. Hence, this diminishethglexity was the basis of a
performance gain.

In [16] a batch signature scheme is introduced gusin alternative binary tree
construction. The approach outlined did not imptse restriction that different
relatively prime public exponents were requiredira§7]. Moreover, only one full
sized exponentiation was required to sign a batchessages. This paper applies the
general approach of [16] to devise a new schentaldaifor small payments.

Given the frequency and repetitive nature of miesopents, it is important that
verification of commitments or coins be done inefitient manner. Moreover, many
schemes generally avoid the use of exponentiatisetify coins, often at the expense
of weaker signatory commitment. We apply the baighature technique of [16] that
enables a number of small coins to be withdrawrorie batch, each bearing an
individual bank signature. Withdrawn coins may seduently be used as small
payments with the same, or with different merchants particular, when making
payments, after some initial exponentiations ordgh operations are required to
verify the signature on each coin.

To generate a signature fobatch of messages, the hash of each message is placed
at a leaf node of a binary tree. Each parent n@d@med by concatenating each of
its child nodes and hashing the result. This coet$ until the root node T is obtained
where the final value is signed using a digitahatgre scheme. In order to prevent
messages representing the internal nodes from dnaglid signatures, two different
hash functions are employed, to hash the leaves and the functigntd hash the
internal nodes. In forming the batch signaturamyf individual message, we consider

L In the various schemes, the signing entity maghbecustomer or another third party.

Proceedings of PKC 200Ppster Paper Collection 4



the unique path from the node representing the agest® the root of the tree; this is
found by taking the parent node of each node temeer The batch residue for that
message consists of the sibling nodes of all nanldhis path, together with their
direction, which is a single bit denoted L or R.orSidering four messages as an
example {m, m,, m, my}, the residue of mconsists of the two nodeg(imy;),R and
hy(h,(mg)|lh(ms)),R while the residue for gnconsists of the pair ,{fm,),R and
h(hy(my)lihy(my)).L.
For message imthe residue mis the sequence of nodes with their direction){dir
which may be expressed as:
c:=hy (m)
forj:=1toL (D)
fj := sibling(c)
if direction(c) = Left then ¢ :h.(c || §)
else ¢ :=h(r; || ¢)
endfor
My = 1y, dir(ry), rp, dir(r), ..., i, dir(r.)

During verification the root node T must be recobaply using the reside gnto
ensure that purported signature is in fact a sigerain message;nThis is given by:

T':= hy (m)
forj:=1toL 2
fj := sibling(c)

if direction() = Left then ¢ :=h(c || })
else T' :=hy(r; || ¢)

endfor

Output T’

The remainder of this paper now expands upon thasie tools for the withdrawal
and payment of Microcash coins.

3. Microcash

The following section outlines the Microcash schewlgere the bank efficiently signs
a sequence of coins using the binary tree congiruciutlined in [16]. In order to
make a micropayment, the customer must be ablesfond to merchant requests for
incremental payments, or provide a number of sweesand timely payments. In
either case, the merchant must be able to make ragifications of the submitted
payments and the customer must be able to respithguch payments quickly. The
following scheme enables both the merchant andmestto make a series of efficient
payments in a manner comparable to micropaymeeinses.

Proceedings of PKC 200Ppster Paper Collection 5



3.1 Setup and Environment

The bank may employ any signature scheme to signddash coins; a suitable choice
would be the RSA signature scheme [20]. The barfifighes its public key. In fact
different public keys (for example using differdREA public exponents) should be
used by the merchant and bank to represent the ewmb coins within each
Microcash batch. The bank signatures on a messagéllNbe denotedo(M), and
there will be a corresponding verification functiger(M,S) which outputs 1 if S is a
valid signature of M, or O otherwise.

To demonstrate that the customer took part in tithdnawal we employ the
discrete log protocol. Large primes p and q wigethvides (p - 1) are chosen and a
generator d Z;, of order q; for the purpose of Microcash p andogld be set to
1024 and 160 bits respectively. Use is also mddesuitable collision free one way
function h.

In our cash system each coin is identified by aloamtoken;t a proof value b, and
its associated signaturgt;, b) = (S, my). For the purposes of deposit, a batch of
coins is identified by (t... t, b) and signature(t;, ..., {, b). Using algorithm (2) to
recompute the root node, the coins are confirmdéid faver(T’,S) = 1.

The merchant confirms that the customer presertiegcoins took part in the
withdrawal protocol when the customer is able tovprknowledge of the secret value
w with respect to the proof value b.

3.2 Withdrawal Protocol

The customer, after proving his identity to the lbawer an authentication channel,
chooses wilg Z,, computesh = g* mod p, generates a random seehd forms the
commitments that may then be used as cash. Thenoeisthen proceeds to compute
the values t= h(s) and;t= h (. 1), where the initial seed s is used to compute a
sequence of seed values by recursively hashings sHguence of coins is akin to the
chain of commitments generated by other micropayrsehemes reliant upon hash
chains. When the sequence of seed tokens havedseemated the customer then
forms a binary tree structure with the values=rrh(t || b) forming the leaf nodes,
recursively hashing until the root node T is formékhe root node is then forwarded
to the bank for signing.

The bank initially confirms that the root value § unique, (this ensures that each
batch of coins in circulation is unique, and thatidle spent coins may be detected
later during deposit). The bank then signs thescasing one full signature operation
S =0g(T), and returns the signed result to the customer.

Upon receipt of the signed tree S, the customefieesr that the bank has correctly
signed the sequence of coins by verifying thatdbims bear the bank’s signature.
Figure 1 illustrates this efficient two move pratbc Note that the bank effort for
signing an arbitrary number of coins remains cartsta

Customer Bank

Choose s, Wig Z,

Proceedings of PKC 200Ppster Paper Collection 6



b=d modp
Generate chain of coins:

t = h(s)
t=h{.,),fori=2ton
m = h( || b), fori=1to n. T
Compute root node T gooobooo -
Check T is unique.
S =0(T)
Verify Bank Signature: S
Ver(T,S)=? 1 ~0oooooo

Store S, s, and b.
Figure 1 - Withdrawal Protocol

On completion of the withdrawal protocol the custonhas at his disposal a
sequence of Microcash coins, each one defined, ) (vith corresponding signature
o(ti, b) = (S, m). The Microcash may now be spent independentiy, ia off-line
manner, with different merchants or with the saneramant. Coins must be spent
however, from the last the coin, identified by ), first.

3.3 Payment Protocol

The payment protocol consists of a proof phaseitivalves modular exponentiation,

a payment phase that relies only upon efficienhhgserations, and an infrequent
periodic range check. The initial proof phase rakp be used to forward payments
from the customer. Fundamentally, the proof phiasased to confirm the banks

signature on the coins and that the presentereo€dins took part in the withdrawal.

The range check is required to prevent a cheatiegasio whereby two merchants
collude to deposit the same coins, this is desdribveler the security analysis.

The customer initially establishes contact with therchant, identified byl and
agrees to use a service whereby a number of inoitaimemall payments are required.
To commence payment using Microcash coins, theomest identifies the highest
sequencedinused pair (f, b), as the first payment. The associated sigaatithen
selected by identifying the unique residue for %), using algorithm (1). The
customer forwards to the merchant the first coinb(t and corresponding signature
a(t;, b). Note that the formation of the unique signat(t;, b), may be precomputed.
At the same time the customer forwards to the aokmmitment y ='Ymod p, for a
random secret valuellg Z.

The merchant proceeds to verify the bank’s sigeaburthe coin, and confirms that
the customer did in fact take part in the withdrbgratocol as part of the proof phase
of the protocol. To verify the bank signature orM&rocash coin, the merchant
recomputes the root value T’ using algorithm (2}l amecks that Ver(Tg(T)) = 1
using the bank’s public key. To confirm that thestomer took part in withdrawal
protocol the merchant also computes the challengeh¢dt || ), || t || b) using the
current the date-timdt. The customer, to demonstrate knowledge of sealet w,

Proceedings of PKC 200Ppster Paper Collection 7



forwards response r such that and r = w + cu mad the merchant. This is Schnorr’s
protocol for proof of knowledge of a discrete lagan [21].

Customer M er chant
Precompute:
t=h(t.1)
m = h( || b) 4+
Compute g
Choose ulg Z, (t, b),o(t, b),y
y=d mod p oooooo0 -
m = h(t || b)
Compute T’ Proof
c Ver(T', o(T)) =21
~0o0oooggd c=hdt | hltlb)
r=w+cumod(q r
oo0oooog -
continue (yes/no) Check:
~gooooog d=?ybmodp ¢
ti=h(-0)
m, = h(t || b) (t, b),o(t;, b)
Compute g goooog -
m = h( || b)
Compute T
Check: Payments
T,=?T

Figure 2 - Payment Protocol

If both the verification and knowledge check,=® ¥ b mod p, hold during the
proof phase, then the bank accepts the initial g@ynand allows the customer to
continue using the service. However, subsequegyieats do not require any
exponentiations during signature verification. Heat the merchant is only required to
recompute ¥, using the signature residue of the next payméntbj o(t, b).
Specifically, the merchant checks that signatusgdtee (m3;) and coin (¢ b) can be
used to recreate a root nodgthat is equal to T’, (note that T' has been coragut
previously during the proof phase). Thus only ¢hmmall exponentiations are
required during the proof phase, whilst subseqpeayiments are validated using a
number of efficient hash operations. Using thishitégue, the effort expended to
verify the first coin is spread over the total n@nbf coins spent. This procedure is
shown in Figure 2.

The customer may decide to compute the challengdifoself (in which case y
should be included in the hash), or the merchant wish to forward this value with
some additional information. The customer musb amisure that the random
challenge is unique otherwise the ability for cdlhg merchants to reveal the proof
valuew is given. Furthermore, the response value masene together with the next
payment, in anticipation of a favourable resultidigithe proof phase.

Proceedings of PKC 200Ppster Paper Collection 8



During the course of customer payments, it is reargsfor the merchant to obtain
periodic authentication of the range of paymentdenaee Figure 3. This is achieved
by performing, by some periodic instafca similar challenge-response used during
the proof phase. The merchant must verify the eatigeck returned by the customer
to prevent the customer from successfully doubkndjng; see the security analysis
for details of a merchant collusion or customeaicits. When multiple range response
pairs are provided during the course of a payingagament, only the last pair is
required for deposit and need be retained by tiremat.

Customer M er chant

o
0000000 c=h@t]k|t|lb)
Choose ulg Z,

¢’ =h(dt|[ k[l m) (c,ry), (i, b),
y' =g" mod p o, b)
r=w+c'u’mod q O0O0o0ooo0O0 - Check

d =y bmodp
Figure 3 - Range Challenge

3.4 Deposit Protocol

During deposit (Figure 4) the merchant is ablelitaim funds for the Microcash spent
by the customer. Furthermore, the coins spent byséomer may be redeemed in
batch, minimising the processing overheads forbi#wek and merchant during funds
capture.

For each coin to be redeemed a transcript of tigenpat is forwarded to the bank
by the merchant. This includes each coin spgnrb)(of which there may be multiple
instances, the signature associated with the bEtcoinso(t; ... §, b) = (S, m), of
which there is a single instance, two challengeoase values (one each for the proof
phase and last range check), date-time and merithentity associated with the batch
(c,r,y, c,r,y, |, dt). Where multiple coins are being depositedrtterchant is not
required to provide the associated signature foh eain. In fact, the merchant may
provide one bank signature by identifying the noflem each of the batch residues
(i.e. nodes of the binary tree) that are sufficiémt the bank to verify its own
signature, i.e. @). (It may be the case, that the bank may wishedopm this
pruning activity and accept each signature instéirea the merchant).

M er chant Bank

Select signature residue for spent coins:
Compute 1y
Forward payment transcripts:
(t, ... $, b),0(t ... §, b), (y, c, 1, y.C, ', |y, dt)
00000000000000000000 - Foreachjtdo:

2 Perhaps probabalistically; for instance on avemgey 50 payments.

Proceedings of PKC 200Ppster Paper Collection 9



m = h(t || b)

Verify Signature:
Compute T’
Ver(T',o(T)) =? 1

Verify Merchant:
¢ =2 h(dt [l [l t]l b)

Verify Customer:
d=?ybmodp

Check Range:
¢ =2 h(dt || § 1| b)
d=?y° bmodp

Figure 4 - Deposit Protocol

After confirming that each coin instanceg {t) is unique within the database, the
bank will then proceed to verify the validity ofetltoins. This involves checking four
proofs. First the bank’s signature must be vetifieext the bank must confirm that
the original (authentic) customer who withdrew tteens was the entity involved in
the payment transaction; thirdly the bank also ico# that the merchant depositing
the coins was also involved in the payment tramsacand finally the range of coins
spent is checked.

In a similar fashion to the customer and merchémg,signature on the deposited
coins is verified by the bank recomputing the raote T’ and checking that the
following holds T’ = S mod n. The bank confirms that the merchant toak ipathe
payment protocol, by observing that the merchaantity I, is associated with the
challenge c. To authenticate the customer the loankrms that the customer can
prove knowledge of a representation of y with resge i.e. he knows the secret key
w. And finally, the bank confirms that the depeditrange of coins is correct by
checking the range pair supplied by the merchafhis second pair is used to
discourage customer or colluding merchants fromadefing the system.

After a certain time, when all the coins have besraptured, the bank will remove
T as being in circulation, and once again will alla customer to withdraw coins
using this batch value.

4. Security Review

We now review the security of the various conssuobking up Microcash. We do
this by first drawing upon the security analysis [&6], noting that the Merkle
assumptions for authentication trees apply to taetbsignature scheme. It follows
then that each coin may be verified individually blgecking the bank signature
represented aw(t, b). There are however, a number of additionaitqmol
constructions that require a more detailed exarnoinat

Proceedings of PKC 200Ppster Paper Collection 10



4.1 Range Check and a Collusion Attack

The first challenge-response pair confirms to theraimant that the customer is the
owner of the coins. Additionally, this authentEstthe initial coin spent by the
customer, however without some form of final autfeation of the finishing point,
the range of coins spent is not established. @erisig the case that no authentication
of the coin range takes place, there are two ahgatienarios:

1. Customer spends coing.fj with merchant A. Customer then goes to merchant B
and starts with;t where i > j. This means the customer is cheabtinglouble
spending;t..t.

2. Customer spends coins.tt.; with merchant A. Customer then spends coins ffom
down to {with merchant B. Merchant B gives.t to merchant A, who may claim
payment for £..§.

At deposit time both cases are indistinguishablel overcome this the customer
must periodically provide the merchant with a ramgeof. During the course of
payments a number of these range proofs may badedvhowever only the final
proof need be retained by the merchant and supgliedg deposit.

Depending on the frequency of range checking, tbssipility exists for the
customer to cheat a small amount. Considering ¢haheating customer will be
exposed, and that the relative financial gain © $mall, defrauding the system is
unattractive.

4.2 Double Spent Coins

When the bank detects that a cojnlf} has been previously deposited, the bank first
confirms if the coin is within the committed rangéoting that the scheme is not
anonymous, the guilty party may determined by obsgrwhether the challenge
differs - the same challenge implicates the custpraotherwise the merchant. If
however, the coin is beyond the committed range thés either the customer or
colluding merchants who may be guilty. Regardleéshe guilty party in this
instance, it is the second depositing merchantddes not recover the funds.

To a pair of colluding merchants fraud is not attire, as detection of the same
coin is easy and the bank will not supply the fundscustomer however may be able
to cheat successfully, the amount that may be etldatdetermined by the merchant
by the size of the periodic range check. The iraddagain though, will not be worth
being exposed as a potential cheat.

5. Efficiency of Scheme

The efficiency of the new scheme is now analyseyjng particular attention to the
efficiency of the payment transaction, as it is tiggortant that the payment protocol
be performed in a timely and efficient manner. ddslotherwise stated precomputed
values (such as y) are ignored, we also ignore hthgh operations during the
withdrawal and deposit protocols, considering thiesenore detail during payment.

Proceedings of PKC 200Ppster Paper Collection 11



We then compare our scheme to some other well-knmiamopayment schemes,
demonstrating comparable efficiency, whilst Micrsltafields more cash-like
properties.

We assume that the RSA modulus n is 1024 bits,docpare 1024 and 160 bits
respectively, and the hash function produces dgestl60 bits in length. When
considering the exponentiations we note that therdie log exponentiations using the
exponent g are 6.4 (1024/160) times cheaper [12lthough we set the size of
parameters to those required of full cash systemsactice these may be lower given
the nature of the small financial amount of eadh.co

During withdrawal the merchant is only requiredgerform one RSA modular
exponentiation to sign an arbitrary number of coinBhe customer performs one
cheaper (factor of 6.4) modular exponentiationsdmpute b, and the more efficient
RSA verification exponentiation to verify the basisignature on all coins withdrawn.
A total of 148 bytes is transmitted between thetamaer and the merchant. The
customer is only required to provide storage fd® Bytes; for values S, s, and b.

We consider payment by assessing the hash opesabieriormed during each
payment. An initial modular multiplication/additida required during the proof, and
an arbitrary number of additional modular multiplions/additions are required for
range checking (perhaps 1 for every 50 paymeniBje customer is required to
perform at most O(1.5n) hash operations to crdesecoin and its signature for each
payment. This can be reduced to @fmperations if the child node of the root node,
not in the path of the coin, is stored (at a cé&mbytes storage). Furthermore, much
of the work here can be precomputed, and optimsgdificantly further if more
intermediate tree nodes are stored. The mergh@uessing involves one RSA
verification and two discrete log modular exponatitin during the proof phase. In
addition to the proof, the recreation of the bindrge costing O(log n) hash
operation using the supplied coin and signature residueedgsiired for each coin
payment and a probabilistic range verificationaguired. As such, we generalise the
cost of verification to O(log n) hash operationsthwthe effort of three modular
exponentiations amortised over a large number afessive efficient payments. The
additional range verifications contribute an addfisil 2 modular exponentiations for
every 20-50 payments, where the specific frequesaetermined by the merchant.
As such, there is an efficiency versus secutigde-off that is determined by the
merchant.

During the deposit transaction the merchant requiie specific processing other
than a selection process to identify the requirgdadure residue nodes to be supplied
for the coin(s) to be deposited. Similar to therchant, the bank performs four
discrete log exponentiations and one RSA verificatiAdditionally, approximately
O(log n) hash operations are required to buildiimary tree. This of course can be
performed off-line some time after the paymentsehbgen made, perhaps at the end
of each billing day.

3 For example, if the batch consists of 1000 coiny A1 hash operations are required for
verification.

Proceedings of PKC 200Ppster Paper Collection 12



5.1 Comparative Analysis

We now compare Microcash to well known micropaynsaftemes. Specifically, we
shall contrast to the schemes of PayWord [19],is4ifit [9], and MicroMint [19]. In
our comparison we will assume that RSA signaturesuaed for the bank’s signature
on coins. We first briefly noting the propertieshdicrocash:

» Coins do not have an expirary period,

« Coins may be spent at different merchants,

» Microcash is a debit based scheme,

» Microcash is an off-line scheme,

» No wastage of computation activities (e.g. sticlstage),

» No protocol is necessary to redeem unspent coins,

» Coins may not be stolen or replayed, and

» No additional security mechanisms are required.

The PayWord scheme relies on the creation of aeseguof commitments which
are vendor specific (cannot be used with any otlerdor). During commitment
generation (equivalent to withdrawal of our schethe) customer creates a sequence
of commitments and signs the root, one RSA modexgonentiation. When making
payments the merchant verifies the customer’s tigeaon the PayWord sequence,
and verifies the brokers signature on the custorentificate: two RSA verifications.
To confirm each payment only one hash operatiomeguire; furthermore each
payment is 20 bytes in length. Our scheme is repmensive in computation during
payment, however we offer additional functionality:

» PayWord coins are merchant specific, whilst Micgltaoins may be spent with
any merchant.

» PayWords expire at the end of each day.

» PayWord is primarily intended as a credit basecese) a debit based version
would expose signed PayWords to theft.

Millicent [9] relies on the creation of vendor sfiecscrip, obtained from a broker.
The scrip tokens comprise two parts: a text sangh @ keyed hash of the scrip using a
symmetric ‘scrip secret’ key known by the merchamid customer alike. The
distribution of the secret key, requires additiotrgbtographic overheads if security is
to be maintained decreasing the efficiency of tbkeeme. Additionally, Millicent
requires that the broker is on-line during the paghiransaction:

» Millicent coins are only valid for a specific vengdlicrocash coins may be spent
with any merchant.

» Unspent Millicent coins must be presented at thekbia a coin return protocol to
obtain unspent funds.

» Millicent coins have an expiration date, and cugtomust renew or cash in unused
scrip; no such expiration applies to Microcash soin

» Millicent is an on-line protocol.

The MicroMint scheme is similar to Microcash in ttltains are generated which
may be spent at any merchant. MicroMint coins rgresented as a k-way hash
function collision, a 4-way collision is suggestas reasonable. To create coins,
equivalent to our withdrawal, the broker must emgag extensive computation of

Proceedings of PKC 200Ppster Paper Collection 13



hash transformations to find 4-way collisions. Fommple, to create2 coins,

approximately 2 hash computations are required; and 128 gigalftesorage for

2%° coins. Each coin expires at the end of the mastitthe minting process must be

done monthly. Conversely, an arbitrary number oih€amay be signed in each

Microcash withdrawal, hence no lengthy precompaoiais required and no expiry

time need be observed. During payment a MicroMioin is forwarded to the

merchant, who performs k hash operations to chédkd coin is good, i.e. k

collisions; the bank performs similar processingimy deposit. To prevent theft of

MicroMint coins additional encryption primitives du as private and symmetric key

technologies are suggested, or user-specific comsbe introduced; both techniques

serve to decrease efficiency. Summarising theqotms of the scheme:

» MicroMint coins expire at the end of each month.

» Without additional security MicroMint coins may Is¢olen and replayed, whilst
Microcash coins cannot be stolen and used by pidueies.

» MicroMint requires a lengthy precomputation phase.

» MicroMint coins may be stolen, additional cryptogin&c mechanisms are required
to protect the scheme from theft.

» Signatures are not used in MicroMint thus cheatarsiot be pursued in court.

* Unused MicroMint coins are no longer tenable anastitute non-productive
processing.

6. Conclusions

This paper has presented a practical off-line sdaeat cash system for conducting a
number of efficient small payments. The schemereffa number of cash-like
properties, such as off-line coin validation, whiisaintaining the efficiency required
of small successive payments. We apply batch ogypphic techniques in a novel
way to provide this efficiency, in a way that preda a number of coins, each bearing
their own signature from the bank. A comparisorstone micropayment systems
demonstrates that the efficiency of our scheme ewmaipe; this is achieved whilst
providing a number of additional cash-like propesti

6.1 Extensions

Since the merchant may deposit coins in batch manhdollows that a similar
protocol may be adopted by the customer and met¢hahenables the payment of
multiple coins during one transaction. Hence, payts: can be made one coin at a
time, or can be made with multiple coins spent tiana.

6.2 Further Work

Range checking during payment discourages the siofluattack identified. This
mechanism will incur additional computational costsd may become excessive

Proceedings of PKC 200Ppster Paper Collection 14



where greater security requirements prevail - tamahd for a higher probabilistic
frequency check. Therefore, we suggest that tingireltion, or improvement, of the
range check remains as further work on this scheme.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

R. Anderson, C. Manifavas, C. Sutherland, NetCardA Practical Electronic Cash
System, Proceedings of 4th Cambridge Workshop oarg®rotocols, Springer-Verlag,
1996.

M. Bellare, J. A. Garay, R. Hauser, A. HerzberKirawczyk, M. Steiner, G. Tsudik, M.
Waidner,iKP - A Family of Secure Electronic Payment Protscéiirst Usenix Workshop
on Electronic Commerce, pp89-106, 1995.

S. Brands, Off-Line Electronic Cash Based on Sd<egtCertificates, Proceedings of the
Second International Symposium of Latin Americareditetical Informatics - LATIN *
95, April 1995.

D. Chaum, A. Fiat, M. Naor, Untraceable Electco@iash, Advances in Cryptology -
Crypto ‘88, Springer-Verlag, Vol. 403, pp319-327889

B. Cox, J. D. Tygar, M. Sirbu, NetBill Security afichnsaction Protocol, Proceedings of
the First Usenix Workshop on Electronic Commerc®519

D. Eastlake, B. Boesch, S. Crocker, M. Yesil, CybshC@redit Card Protocol, RFC
1898, Version 0.8, February 1996.

A. Fiat, Batch RSA, Proceedings of Crypto ‘89, Bger-Verlag, Vol. 435, ppl175-185,
1990.

A. Fiat, Batch RSA, Journal of Cryptology, Vol p@75-88, 1997.

S. Glassman, M. Manasse, M. Abadi, P. GautRieSobalvarro, The Millicent protocol
for inexpensive electronic commerce, ProceedirfgBonirth International World Wide
Web Conference, pp603-618, O'Reilly, December 1995.

R. Hauser, M. Steiner, M. Waidner, Micro-Payradmsed onkKP, SECURICOM ‘96,
1996.

C. Jutla, M. Yung, Paytree: “amortized signdtufer flexible micropayments,
Proceedings of 2nd USENIX Workshop on Electronic Gmrce, pp213-21,1996.

N. Koblitz, A course in number theory and cography, Graduate Texts in Mathematics,
Springer-Verlag, Vol. 114, 1987.

L. Lamport, Password Authentication with Ingec@ommunication, Communications of
the ACM, Na 24, pp770-772, 1981.

Y. Mu, V. Varadharajan, Y. Lin, New MicropaynieSchemes Based on PayWords,
Proceedings of ACISP '97, Springer Verlag, LNCS, \1@I70, pp283-293, 1997.

T. Okamoto, K. Ohta, Universal Electronic Castlvances in Cryptology - CRYPTO ‘91,
Springer-Verlag, Volume 576, pp324-337, 1991.

C. Pavlovski, C. Boyd, Efficient Batch Signaturen@wmation Using Tree Structures,
Proceedings of CrypTEC ‘99, Hong Kong, 1999.

T. Pedersen, Electronic Payments of Small ArnsuRroceedings of International
Workshop on Security Protocols, pp59-68, 1996.

R. Rivest, Electronic Lottery Tickers as Micropents, Proceedings of Financial
Cryptography ‘97, 1997.

R. Rivest, A. Shamir, Payword and MicroMint: TWimple Micropayment Schemes,
Proceedings of International Workshop on Securittdols, pp69-87, 1996.

Proceedings of PKC 200Ppster Paper Collection 15



20.

21.

22.

23.

R. Rivest, A. Shamir, L. Adleman, A Method fort@hing Digital Signatures and Public-
Key Cryptosystems, Communications of the ACM, Volunie Rumber 2, pp120-126,

February 1978.
C.P. Schnorr, Efficient Signature GenerationSlyart Cards, Journal of Cryptology, 4,

pp.161-174, 1991.
SET Specification, Book 1: Business Descriptidlastercard & Visa, Version 1.0, 31

May 1997.
D. Wheeler, Transactions Using Bets, Securitytd®ols, Lecture Notes In Computer

Science, 1189, pp89-92, 1996.

Proceedings of PKC 200Ppster Paper Collection 16



