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Generating and standardizing elliptic curves to use 
them in a cryptographic context is a hard task. There 
have been several attempts to define public elliptic 
curves for a general cryptographic use, such as NIST 
FIPS 186–2 curves [53], Brainpool curves [47], SECG 
curves [58], ANSSI FRP256v1 [41], Curve25519 [7], 
and OSCCA SM2 [54]. Recent years have seen some 
distrust cast on previously standardized curves and 
the emergence of the need to standardize new curves. 
Different parties have spoken their point of view on 
the (dis)trust they have on previously standardized 
curves whether it is because of the properties they 
satisfy or don’t satisfy or the process used to generate 
them. Such analyses often come with a list of security 
and performance/implementation-related criteria a 
curve should satisfy, and a proposal on how to cor­
rectly generate such a curve in a way that can be 
trusted [10, 17, 18, 48, 2], together with a proposal 
of such a correctly generated curve [7, 17, 2]. 

We believe it is very important that the interna­
tional standards do not a priori restrict practical uses 
of ECC to a single elliptic curve or to a very small fam­
ily of related elliptic curves. Even though no attack 
might currently be known, the discovery of a weak­
ness of this particular family is always a possibility. 
As for the choices of the curves themselves and given 
the current state-of-the-art, some trade-offs between 
speed and security have to be made. For example, 
most of the recently proposed curves [7, 17, 2, 54], and 
in particular the NIST standardized curves, rely on 
the use of special primes or particular forms of curves 
to achieve a very high speed, but don’t attain opti­
mal bit-security. Moreover, secure implementation of 
these particular curves may require some specific pre­
cautions against various attacks, such as side-channel 
attacks. Having at least a less speed-optimized but 
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more general-looking curve, defined over a prime field 
whose characteristic looks random, in general Weier­
straß form, and with a prime number of points seems 
primordial, especially if the former class of curves 
gets broken in the future. For ECC to be trusted and 
widely adopted, diversity is needed. 

Secondly, even when a curve satisfies all common 
security criteria, whether it is completely generic, or 
with a few speed-optimized parameters, another cri­
terion for inclusion in international standards is that 
one should know all the details about how the curve 
was generated, and be able to verify that the gen­
eration process actually ended up with the claimed 
curve and not anoher one in the same family satisfy­
ing the same conditions. Much has been said on this 
matter [10, 17, 48, 2], but as will become clear in the 
next sections, some arbitrary choices always have to 
be made: one has to fix some bounds, find suitable 
speed/security trade-offs, and so on. Therefore, rigid­
ity as sometimes advertized [10] seems illusory to us. 
Nevertheless, transparency is achievable and needed 
for wide adoption of ECC. 

In this note, we don’t make an explicit proposal 
for an elliptic curve, but we deal with the following 
issues. 
Security. We give a list of criteria that should be 
satisfied by a secure elliptic curve. Although a few 
of these criteria are incompatible, we detail what we 
think are the best choices for optimal security. 
Transparency. We sketch a way to generate a 
curve in a fully transparent way so that it can be 
trusted and not suspected to belong to a (not publicly 
known to be) vulnerable class. In particular, since the 
computational cost of verifying the output of such a 
process may be quite high, we sketch out the format 
of a certificate that eases the computations. We think 
that this format might deserve being standardized. 

1	 Criteria for cryptographic el­
liptic curves 

We give here a list of useful criteria for selecting 
elliptic curves for general cryptographic use. We sort 



these conditions in several categories, with different 
importance being granted to each category. The 
first category (1.1) contains the minimal conditions 
under which the discrete logarithm problem may be 
hard in the point group. The second category (1.2) 
describes some properties that may improve security 
for some implementations, particularly in a context 
where side-channel attacks must be considered. The 
third one (1.3) is not related to any known attack; 
instead, it gives condition under which a curve may 
be considered as particular and therefore potentially 
particularly vulnerable to some yet-unknown attack. 
Finally, the last two categories group some properties 
which may be desirable about the curve, either for 
facilitating its implementation (1.4) or for specific 
protocols and algorithms (1.5), without weakening 
(too much) its security. 

Incompatible conditions 

We point out that several of these conditions are 
mutually incompatible. We list these here, in a 
roughly descending order of importance. 

Choice of the cardinality of the base field and 
the curve coefficients. These may either be cho­
sen pseudo-randomly [47, 41], for example as a pre­
caution against some side-channel attacks (1.2.4) or 
against some possible future attacks (1.3.4); or very 
specific values may be chosen instead, in view of faster 
curve arithmetic (1.4.5) [53, 7, 54]. 

Cofactor. While the existence of a very small tor­
sion subgroup may lead to some attacks such as small-
subgroup attack (1.2.1) or side-channel attacks (1.2.2), 
it is a necessary condition for the availability of some 
faster curve coordinates such as Edwards or Mont­
gomery curves (1.4.4). Also note that allowing a 
square cofactor might induce a non-cyclic structure 
on the group of rational points (e.g., if c2 divides the 
number of points and c divides p − 1, then the full 
c-torsion, which is of rank two, might be rational). 

Primality of the order of the quadratic twist. 
In general, we expect that the order of the quadratic 
twist will have at least one large prime divisor, for 
example larger than p1/4 (1.3.3). If this order is itself 
a prime number, then this grants a supplementary 
layer of protection against some side-channel attacks 
(1.2.3). However, this property is relatively rare itself 
(by a factor proportional to log p), which could raise 
concern that curves with a prime twist are themselves 
exceptional in some way. 

Because of all these incompatibilities, each imple­
mentation might select an appropriate curve depend­
ing on the context, such as performance constraints or 
the likelihood of side-channel attacks. In particular, 
we think that international standards should include 
a family of curves where each of these contradictions 
is solved in a way that maximizes security: namely, 
curves with pseudo-random coefficients, defined over 
a pseudo-random base field, with a cofactor equal to 
one, and preferably with a secure quadratic twist. 

Restriction to prime fields 

We limit our discussion to elliptic curves defined 
over a prime field. In the case of extension fields, some 
attacks exist in particular cases [43, 51, 26, 37]. Some 
of these attacks may even be exploited to include 
a trapdoor in an elliptic curve [69]. We also note 
that, over finite fields with small characteristic, an 
index calculus technique related to that of [43] gives 
a quasi-polynomial solution to the multiplicative dis­
crete logarithm problem [5]. For all these reasons, we 
consider elliptic curves over prime fields as probably 
much safer than elliptic curves over extension fields. 

Notation 

In all the remainder of this document, we shall 
use the following notation: p ≥ 5 is a prime number, 
k = Fp is the finite field with p elements, E : y2 = 
x3 + a x + b is an elliptic curve defined over k, N = 
|E(Fp)| is the order of the group of rational points 
of E, t = p + 1 − N is the trace of the Frobenius 
automorphism of E, and q is the largest prime divisor 
of N and c = N/q the cofactor. 

1.1	 Hardness of the discrete loga­
rithm problem 

We give here a list of conditions corresponding to 
known attacks on the discrete logarithm problems. 
We point out that some criteria commonly required 
for generating elliptic curves, such as the criteria 
on the discriminant and class number [47], are not 
known to lead to a direct attack. Therefore, we do 
not include them here, but in Section 1.3 instead. 

1.1.1 Nonsingular curve 

If the discriminant 4 a3 + 27 b2 of the curve E is 
zero, then E is not an elliptic curve: it is a singular 
curve and its group of points is isomorphic to an 
additive or multiplicative group. Such (non-elliptic) 
curves must be excluded. 



1.1.2 Large prime subgroup 

Since discrete logarithms are computable in the 
group E(k) with complexity O(√ 

q), where q is the 
largest prime divisor of N , it is necessary that 

√ 
q 

attains the required security bound. In practice, it 
is advisable to select elliptic curves whose order N 
is the product of a large prime q and a very small 
cofactor c = N/q. A cofactor c = 1 yields an opti­
mal security for a given bitsize whereas a very small 
cofactor might allow performance improvements. 

For a given curve E, checking if this is the case 
requires computing the group order N , which is a 
moderately expensive task. For curves over large 
prime fields, the most efficient algorithms are varia­
tions of the SEA algorithm [61, 62, 20] with complex­
ity O(log4 q). 

The probability that a random elliptic curve over Fp 

has a prime group order is bounded below [34] by 
0.44 . This condition is the most restrictive during log p
the generation of a curve in practice. 

1.1.3 Absence of additive transfer 

If N = p then there exists an additive transfer 
reducing the discrete logarithm in E(k) to that in the 
additive group of Fp. Therefore, elliptic curves with 
trace 1 must be excluded. 

1.1.4 Absence of multiplicative transfer 

The embedding degree is the smallest integer e such 
that q divides pe − 1 (that is the multiplicative order 
of p modulo q). The pairings attached to the elliptic 
curve E give a group homorphism from E(k) to the 
multiplicative group F× 

pe . 
Therefore, elliptic curves with an embedding degree 

small enough that discrete logarithms are computable 
in F× 

pe must be excluded. 
Over the base field Fp, supersingular curves have an 

embedding degree one and must be excluded. They 
are exactly the curves with trace zero and can there­
fore easily be detected. 

1.1.5 Index calculus 

Index calculus techniques developed to compute 
discrete logarithms in multiplicative subgroups of 
finite fields have been extended to elliptic curves in 
a variety of ways. However, in the current state-of­
the-art, when the curve is defined over a prime field, 
it is more expensive to correctly lift the curve and 
the points defining the DLP than to directly solve 
it [66, 63, 44, 64, 65]. Therefore, we do not believe 

that there is any additional check to perform in the 
case of a prime base field. 

1.2	 Implementation-dependent secu­
rity 

While the existence of some attacks, such as side-
channel attacks or attacks against badly designed 
protocols, mainly depends upon the implementation, 
in some circumstances the choice of the curve itself 
might have an impact on the efficiency of these at­
tacks or on the ease of implementation of appropriate 
counter-measures. We give here a list of criteria which 
might improve the security of some implementations. 

1.2.1 Absence of small subgroups 

If the point group contains a small subgroup, then 
it may be possible to trick some implementations into 
revealing information about the secret key [46] or 
compromising the output of a key exchange. If the 
curve does not have a small subgroup (for example if 
it has a prime number of points) then such attacks 
are inoperant. Otherwise, protecting against them 
requires a few more point operations. 

1.2.2 Absence of special points 

The special points of an elliptic curve are the 
points (x, y) such that one of the two coordinates 
is zero. In the presence of such special points, there 
exist side-channel attacks [38] exposing private infor­
mation. 

Several protections against these attacks exist [50]. 
One of them is simply ensuring that the curve does 
not contain any special point. 

Special points of the form (x, 0) exist if the curve 
has an even order. Special points of the form (0, y) 
exist if the coefficient b is a square in Fp. 

1.2.3 Twist security 

The quadratic twist of the elliptic curve E is the 
curve E1 with equation dy2 = x3 + a x + b, where d is 
a non-square element of k. For a given abscissa x0, ex­
actly one of the curves E , E 1 contains a point (x0, y). 

An attacker may manipulate a badly written imple­
mentation into using the quadratic twist E1 in place 
of the original curve E, either through side-channel 
attacks [31], or through attacks on a badly designed 
protocol. 

Such attacks may be easily mitigated by check­
ing that the manipulated points are on the original 
curve E and not on its twist E1. A supplementary 



layer of protection against these attacks can be ob­
tained if the twist E1 satisfy security conditions sim­
ilar to those of the curve E itself. Nevertheless, it 
should be noted that the original curve and its twist 
will never share the same exact behavior against side-
channel attacks, e.g. for exactly one of the two curves 
the coefficient b is a square, which is suboptimal 
against side channel attacks as the curve contains 
a special point of the form (0, y). Moreover twist 
security won’t protect against potential side channel 
attacks where one would detect if the computation 
took place on the curve or its twist and gain informa­
tion on some bits of the secret. 

Using a variant of the technique of Galbraith and 
McKee [34], we find that the probability that a ran­
dom elliptic curve on Fp is both secure and twist-
secure seems bounded below by 0.5 and above log2 p 

by 5 . This estimate means that including twist­log2 p
security in the conditions is particularly expensive, 
since all necessary checks will be performed on a 
quadratic (in log p) number of elliptic curves. In 
particular, in view of the certificates mentioned in 
Section 2, both the size and the cost of validation of 
the certificate increase by a linear factor. Although 
this property of twist-security is quite rare, the curves 
satisfying it are not special in the sense of Section 1.3. 

1.2.4 Non-special base field 

Some common parameter choices, such as the 
NIST [53], Curve25519 [7], and SM2 [54] elliptic 
curves, use as their base field a prime field Fp where 
p is a prime number of a “special form”, such as 
pseudo-Mersenne or generalized Mersenne numbers 
or values of cyclotomic polynomials [39]. While the 
use of such prime numbers speeds up the modular 
arithmetic, they are also more vulnerable to some 
side-channel attacks [25, 59, 6, 70, 60, 30]. The use 
of a non-special, pseudo-random base field prevents 
this class of attacks. 

1.2.5 Unified group law 

Some curve families admit a unified or complete 
addition law: these formulas have no exceptional cases 
such as P +P , P +(−P ) or P +0 for Weierstraß curves. 
When using such formulas, a point multiplication is 
computed in constant time relatively to the scalar, 
which adds a layer of protection against some side-
channel attacks. However, this does not offer an 
absolute protection [30]. Moreover, these families all 
have a non-trivial cofactor, which could be considered 
as a threat in light of 1.2.1 or 1.2.2 above. 

1.3 Normality of the curve 

The criteria we present here do not correspond to 
known attacks on elliptic curves. Rather, they are 
properties that random curves should satisfy with 
overwhelming probability. When generating curves, 
checking for these conditions should reject a negligible 
proportion of curves. If on the other hand a curve 
does not satisfy one of these conditions then, even 
though we do not know any precise attack, this curve 
is slightly more likely to be vulnerable. 

More concretely this means that during the process 
of generating a secure curve, in general, curves will be 
discarded because they don’t satisfy one of the criteria 
of Section 1.1. When a curve passes the checks for 
these criteria, the computations needed for the criteria 
of the current section will be performed and will also 
pass with overwhelming probability. Therefore, these 
computations will only be performed once in general, 
on the final curve. 

Expected smoothness of random numbers. Many 
common number-theoretic computations depend on 
the factorization of a parameter (for example, the 
order of some group), and become easier when this 
parameter is smooth (i.e. when it has only small prime 
divisors). We recall here [19] that the probability that 
a number n be B-smooth is approximately u−u, where 
u : log n/ log B. 

We must determine a threshold at which the factor­
ization of these numbers is considered “too smooth”. 
The first choice for a probability threshold would be 
of the order of 1/ 

√ 
p, corresponding to the complexity 

of the discrete logarithm in the group E(k). For ex­
ample, for a fixed exponent α, a number x ≈ pα has√ log pa probability ≈ 1/ p of being ( )2α-smooth. 2 log log p
However, numeric computations suggest that this 
choice may be too lenient at cryptographic sizes: for 
random numbers of 256 bits, the threshold probabil­
ity of 2−128 corresponds to numbers which are 727­
smooth. In a computational view, this bound is ex­
tremely low: any algorithm involving polynomials or 
matrices of this size would be easy to implement. We 
instead use the smoothness bound B = p1/4, corre­
sponding to a probability of 1/256. This means that 
we expect that only 1/256 of pseudo-random elliptic 
curves will be rejected as “too exceptional”, while 
computations in these groups are likely to involve lin­
ear or polynomial algebra with size about p1/4, which 
will likely remain out of reach for reasonable values 
of p. 



1.3.1	 Discriminant of the endomorphism 
ring 

The endomorphism field of the curve E is the 
field K generated by its Frobenius endomorphism ϕ. 
Since ϕ is a root of the equation ϕ2 − tϕ + p = 0, 
K is an imaginary quadratic number field. The dis­
criminant of ϕ is the value Dϕ = t2 − 4p < 0. It is 
the discriminant of the order Oϕ = Z[ϕ] ⊂ K and is √greater than O(√ 

p) with probability 1 − O(1/ p). 
The discriminant of K is the (fundamental) dis­

criminant DK of its maximal order OK . It is closely 
related to the square-free part of Dϕ: Dϕ = DK f

2 
ϕ 

for fϕ ∈ Z called the conductor of the order Oϕ, and 
DK or DK /4 is a square-free integer. The endomor­
phism ring of the curve E is some order OE in K: 
Oϕ ⊂ OE ⊂ OK . Let us denote its discriminant 
by DE . The best method we know to compute OE 

for an ordinary elliptic curve is of subexponential 
complexity [13]. 

The expected value for DE is DK ≈ DE ≈ Dϕ; 
we know [21] that the square-free part of a random 
integer n is less than 

√ 
n with probability approxi­

mately 1.66/ 
√ 

n. For cryptographic sizes, this means 
that, with overwhelming probability, we should ex-e 
pect DE ≥ DK > Dϕ. 

The best method we know to compute DK requires 
the factorization of Dϕ and is therefore of subexponen­
tial complexity. For cryptographic values of Dϕ, this 
is a possible but quite expensive task. However, since 
almost all curves satisfy the condition DK > 

e 
Dϕ, 

this condition is extremely unlikely to lead to the re­
jection of a curve and the computation will therefore 
in practice be performed only once for the final curve. 
Moreover, once the factorization of Dϕ is known, it 
is very easy to check that the produced factorization 
is correct. 

It should be noted that this criteria automatically 
eliminates the two smallest discriminants DK = −4 
and DK = −3, corresponding to the special curves 
with j-invariant 1728 or 0. 

1.3.2	 Class number and class group 

The class number h(OE ) of the order OE is the 
minimal degree of a number field over which E admits 
a faithful lift. It is also the degree of the Hilbert class 
polynomial used in the theory of complex multipli­
cation. Therefore, a large class number may prevent 
the use of any attacks based on complex multiplica­
tion. Under the generalized Riemann hypothesis, the 
best method we know to compute the class number 
is subexponential [40, 11], and requires at least a few 
days of computation for cryptographic sizes. Since 

this method also computes the group stucture of the 
ideal class group of OE , it can be used to produce 
a small and easily verifiable certificate for the class 
number. Note that the value h(OE ) is easily com­
puted [24, 7.24] as a multiple of the more classical 
class number h(K) of the maximal order OK in K 
which is therefore enough to work with. Another 
justification is that it is possible to transfer the dis­
crete logarithm problem onto a curve with maximal 
endomorphism ring through isogenies. 

The class number has a negligible probability of 
being (log p)O(1)-smooth. While the best known al­
gorithms for computing the class number are sub-
exponential [40, 11], for any bound B, it is possible to 
prove that h(K) is not B-smooth in time O(B log p), 
which is polynomial if B is polynomial. 

On the other hand, the class number of K is mino­
rated [49], under the generalized Riemann hypothesis, √ 

|DK |πby h(K) ≥ .3e log|DK | 

1.3.3	 Cardinality of the quadratic twist 

The order of the quadratic twist of E is 2(p+ 1) −N . 
This number lies in the same interval [p + 1 − 2√ 

p, p + 
1 + 2√ 

p] as the curve order itself. Therefore it has a 
negligible probability of being (log p)O(1)-smooth and 
probability 1/256 of being p1/4-smooth. 

We recall from paragraph 1.2.3 above that the 
smoothness of this number has a direct influence on 
the effectiveness of some side-channel attacks. 

It should be noted that the curve and its quadratic 
twist share the same endomorphism ring. Therefore 
the discriminant and class number criteria are auto­
matically satisfied by the twist if they are satisfied 
by the original curve. This is not true as far as the 
embedding degree is concerned. The original curve 
and its twist have distinct embedding degrees. 

1.3.4	 Non-special base field 

In the case of the multiplicative discrete logarithm 
problem, the Special Number Field Sieve allows faster 
computations of discrete logarithms modulo p when 
p is a special prime number, i.e. when it is a value 
of a polynomial of low degree with small coefficients 
evaluated at a small value. 

It is hard to check whether a given (prime) number 
is special. However, most prime numbers used in 
standard elliptic curves (for example in the FIPS 
186–2 curves [53], in Curve25519 [7], and in the SM2 
curve [54]) are explictly given as special primes as 
these allow faster arithmetic over the base field. Even 
though we don’t know any attack against curves with 



such special parameters, it is legitimate to consider 
them as exceptional. 

A related question would be to detect curves whose 
number of points N is a special number. As noted 
above, this cannot be easily checked. Nonetheless, 
the only way we are aware of which could lead to 
the construction of such a curve would be through 
the use of complex multiplication. Therefore, the 
discriminant of the number field associated to the 
generated curve would be unusually small and this 
would be detected by other checks from this section. 

1.3.5 Embedding degree 

For any bound m, the probability that the em­
bedding degree (1.1.4) of E is at most m is [4]

2 −1O(m · p · (log p)5 · (log log p)2). This implies that, 
with probability 1−1/ 

√ 
p, the embedding degree of E 

1/4−o(1)is at least p . 

1.3.6 Multiplicative group of the base field 

The multiplicative structure of the base field F× 
p

is directly related to the factorization of p − 1. In 
particular, if p−1 is smooth (i.e. all its prime divisors 
are small), then the multiplicative discrete logarithm 
problem is easy; p − 1 has a negligible probability 
of being (log p)O(1)-smooth and probability 1/256 of 
being p1/4-smooth. 

1.4 Convenience of implementation 

We list here a few criteria that may make the im­
plementation of an elliptic curve more convenient 
without weakening the security. We note that some 
of these conditions (namely 1.4.1, 1.4.2, 1.4.3 and 
1.4.4) are satisfied by an asymptotically non-zero pro­
portion of all elliptic curves: in this case, we believe 
it very unlikely that such a wide class of curve would 
be inherently weak against a future attack. However, 
the last two conditions (1.4.5 and 1.4.6) correspond 
to choices that contradict some conditions from sec­
tions 1.2 and 1.3 above. 

1.4.1 Fast Jacobian coordinates 

2Choosing a curve of the form y = x3 − 3x + b (that 
is with a = −3) enables to save 2 out of 10 multipli­
cations [55] required to double a point in Jacobian 
coordinates. A random elliptic curve over Fp is iso­
morphic to a curve with a = −3 with probability 1/2 
if p ≡ 3 (mod 4) and 1/4 if p ≡ 1 (mod 4). 

1.4.2 Number of points at most p 

If the number of points N is greater than p, then it 
might be impossible to represent numbers up to N −1 
in the same memory size as coordinates of points of E. 
Exactly one half of all curves satisfy this. 

1.4.3 Easy computation of square roots 

The point compression method allows representing 
one point (x, y) of E by only its abscissa x and one 
bit discriminating between the two possible values ±y. 
However, recovering y requires computing a square 
root in k. This is easier when p ≡ 3 (mod 4) since in 
this case, c(p+1)/2 is a square root of c if c is a square. 
(Similar formulas exist as soon as p  = 1 (mod 8).) 

1.4.4 Equations other than Weierstraß 

There exist several other representations of ellip­
tic curves than Weierstraß coordinates, such as Ed­
wards curves [27], twisted Edwards curves [8], Jacobi 
curves [12], and Montgomery curves [52]. Only a 
finite proportion of curves are isomorphic to a curve 
in these families. For example, about 35% of all ellip­
tic curves are isomorphic to an Edwards curve, and 
about 40% are isomorphic to a Montgomery curve [57] 
or, equivalently, to a twisted Edwards curve. 

Each of these families requires at least the presence 
of a point of order two on the curve. This is a special 
point in the sense of 1.2.2 above and could introduce a 
weakness in some implementations. The correspond­
ing automorphisms also speed up the Pollard rho 
method for discrete logarithms by a small factor [35]. 
Moreover, in the case of a non-prime base field, there 
exist some attacks [29] against several of these curve 
families which slightly weaken the discrete logarithm 
problem. 

1.4.5 Fast base field arithmetic 

The choice of a base field of a special form, such 
as the field of integers modulo a pseudo-Mersenne [7] 
or generalized Mersenne prime [53], allows the imple­
mentation of a faster, dedicated arithmetic. 

However, taking full advantage of these optimiza­
tions needs restricting the implementation to a par­
ticular, very small family of elliptic curves. Therefore, 
we think that, for optimal security and in view of 
paragraphs 1.2.4 and 1.3.4 above, the most secure im­
plementations should be able to work with a general 
base field. 



1.4.6 Special coefficients 

Most of the formulas for elliptic curve arithmetic 
involve the use of the curve coefficients. Choosing 
special values for these coefficients, such as integers 
with a small absolute value, allows a faster implemen­
tation. 

However, as in the previous paragraph, we think 
that restricting implementation to benefit from these 
optimizations might be a security threat. 

1.5	 Families of curves with particular 
properties 

We give here a short list of families of curves with 
particular properties which might be useful in some 
specific contexts. These families are small enough to 
contradict the “normality” conditions of Section 1.3. 

1.5.1 Curves with a fast endomorphism 

Some families of curves have an easily computable 
endomorphism. This allows a faster implementation 
of point multiplication [36, 33], with a theoretical 
gain of up to 50%. 

However, the construction of all these families relies 
on the fact that the discriminant of the endomorphism 
field is small [67, 68], and is therefore in contradiction 
with paragraph 1.3.1. 

Moreover, in the presence of an endomorphism 
of order m, the Pollard rho method for computing 
discrete logarithms becomes faster by a factor of up 
to 

√ 
m [26, 35]. 

1.5.2 Pairing-friendly curves 

Some families of elliptic curves allow a fast pairing 
computation. This construction has various applica­
tions in cryptography, such as one-round three-way 
key exchange [42], short signatures [16], and identity-
based cryptography [14, 56, 15]. 

The main requirement for the existence of a fast 
pairing is that the embedding degree is small. This 
is in direct contradiction with the requirement from 
paragraph 1.1.4 above. 

Moreover, most of the constructions for pairing-
friendly curves [32, 28] either use very sparse families 
of curves, or use complex multiplication to construct 
adequate curves, which requires a small class group, 
in contradiction with paragraph 1.3.2. 

2	 Transparent generation of 
curves 

The selection of an elliptic curve for cryptographic 
purposes involves checking a long list of properties, 
including several for which arbitrary bounds have to 
be set: such as the threshold at which we consider the 
class number to be exceptionally small, or the order 
of the twisted curve to be exceptionnally smooth. 
This implies that the generated curve will always 
depend on arbitrary choices, including the choice of 
the sampling function for elliptic curves. That is why 
we think rigidity as often advertized [10] is illusory, 
and we prefer the notion of transparency. 

We point out that the standard parameters for ECC 
include not only the curve, but also its definition field 
and a point generating a prime-order group in the 
curve. While we know of no weakness related to the 
choice of this point, precaution still commands that 
this choice should also be justified. 

Checking that the generation process, with a known 
algorithm and a public seed, indeed produced the 
claimed curve is a computationnally expensive task. 
We give here the outlines of a certificate format for 
this. This allows any program receiving elliptic curve 
parameters for cryptographic purposes to check, at a 
moderate computational cost, that the curve is indeed 
suitable, and moreover, that it is the first suitable 
curve found by the sampling function. 

2.1	 Generating an elliptic curve 

This procedure is in two steps. First, a generation 
program checks elliptic curves, as provided by a sam­
pling function, until a suitable elliptic curve is found. 
This programs outputs the elliptic curve parameters 
together with a certificate proving that the curve is 
actually suitable for cryptographic purposes. More­
over, the certificate should also prove that none of the 
curves previously tried by the generating program 
was suitable. Then, a validation program can use 
the certificate data to validate the generating process. 
The certificate enables this second program to have a 
significantly shorter runtime than the first one. 

The list of conditions to be checked and the way 
to sample curve parameters would be indicated in 
the certificate header. We do not fully specify how 
every condition presented in the previous sections 
should be written down in the certificate when it 
leads to the rejection of a curve. For most of the ones 
presented in Section 1, checking whether a curve is 
suitable is very fast. However, three conditions in 
particular are more expensive: namely, the condition 



 

 
 

 

 

 

 

 

that the curve order is prime or only includes the 
expected small cofactor (this condition is expected 
to be the one condition leading to rejection of most 
of the unsuitable curves, so that this check will be 
performed a large number of times), the computation 
of the endomorphism ring and class number, and the 
computation of the embedding degree (both of which 
will typically be performed only once, for the final 
curve). 

2.2 Certifying the curve order 

The most restrictive condition in practice is that the 
curve order must be prime, or a prime number times 
a very small cofactor. This means that we expect that 
a linear number (in log p) of curves will be rejected 
because of a composite group order, whereas the 
first curve found with a prime (or only including the 
expected small cofactor) group order will be retained. 
Note that in a cryptographic context, when a small 
cofactor c is allowed, it is usually because a special 
form of curve is used and therefore N will always be 
divisible by c. We do not take into account the case 
where c does not automatically divide the order of 
the tested curves (or is just a bound on the allowed 
cofactor) though the following treatment can be easily 
be extended to deal with this situation. 

2.2.1 Rejected curve order 

In general, proving that the curve order is not 
prime, or has an unexpected cofactor, is easy: namely, 
if n < 2(√ 

p − 1)2 is a composite number coprime to c 
and P = 0 is a point such that n·P = 0, then the curve 
order N has a composite factor coprime to c. Namely, 
let d = gcd(n, N ); d is coprime to c. Since P = 0, 
we have d = 1. If d = N then N divides n and is 
coprime to c. Since n/2 does not meet the lower Hasse 
bound (√ 

p − 1)2, we see that N = n, and therefore 
N is composite and coprime to c (which had to be 1). 
If on the other hand d = N , then d is a strict divisor 
of N coprime to c. 

The certificate is then the list (N/c, a, c · G), where 
N is the computed curve order, c is the cofactor, a is 
a witness of composition of N/c, and G is a random 
point (such that c · G = 0). 

Obstructions to producing such a certificate can 
occur when a cofactor c = 1 is expected: the actual 
cofactor d might be a product of small primes dividing 
c but still be different from c. Typically, d will be a 
multiple of c and the group of points will be cyclic. It 
is then easy to produce a point P of small order e a 
multiple of c and dividing d, but also to check that P 
has order exactly e; most other cases can be resolved 

in a similar way. The most problematic one is when 
N = d2eq, q is prime, de = c, d > 1, e ≥ 1, and the 
full d-torsion is rational, because no rational point 
of small order greater than c exists. Nevertheless, a 
certificate similar to the general case can still be be 
issued: (cq, a, G) where G has order cq. The Hasse 
bound indeed ensures that N/(cq) = 1 and the curve 
is not suitable. 

In practice, it is possible to do better than above. 
Indeed, over a prime base field, the most efficient 
methods to compute the curve order are variants of 
the g-adic SEA algorithm [61, 62, 20]. This algo­
rithm computes the order N of the curve by comput­
ing N (mod g) (or N (mod gk)) for several auxiliary 
primes g < O(log p) (and small exponents k). The 
fact that N is composite may therefore be detected 
in an early step, when there exists g (not dividing the 
allowed cofactor c) such that N ≡ 0 (mod g). 

It is also possible to benefit from this early de­
tection while still producing a proof of composition 
for the order of E. Namely, if N ≡ 0 (mod g) then 
the counting algorithm finds a polynomial f , of de­
gree (g − 1)/2, whose roots are the abscissae of points 
of order g of E. We may then recover one of these 
points by computing a root of f : using the Cantor-
Zassenhaus polynomial factorization algorithm, we 
find that the complexity of this operation is approx­
imately the same as that of computing N (mod g), 
so that computing this extra information has a small 
impact on computation time. 

The certificate in this case is the list (g, P ), where 
P is a point of order g.1 

We also note that, if the list of conditions include 
the primality of the twisted curve, then both methods 
above should be used simultaneously for the curve 
and its quadratic twist. 

2.2.2 Adequate curve order 

When the algorithm finds that the value N is prime 
or only includes the allowed small cofactor c, a certifi­
cate is as follows: (N/c, G, Π), where N is the number 
of points, c is the expected cofactor, G is a point of 
order N/c (for example, any random non-zero point 
if c = 1 and N is prime), and Π is a proof of primal­
ity of N/c (which may be left empty if N/c is small 
enough that proving its primality directly is easier 
than using a certificate). The validation program 
then checks that G = 0, (N/c) · G = 0, adequate 
points of small orders exist for the cofactor c (as c is 

1It is also possible, although slightly less efficient, to conform 
to the preceding certificate format by using the list (2£, 2, P ), 
since a = 2 is a witness of composition for 2£. 



expected to be very small, this is a cheap operation), 
and N ≥ (√ 

p − 1)2. If this is the case, then N is the 
curve order. 

For the sizes involved in elliptic curve cryptography, 
proving the primality is practical using a test such as 
the APR-CL test [1, 23]. In the case where the valida­
tion program runs under strong contraints, it is also 
possible to write a primality certificate in a form such 
as ECPP [3], which has a reasonable size (O(log2 p) 
bits) and is verifiable in a short time (O(log2 p) field 
operations). 

We expect that all curve orders including more 
than the expected cofactor c will be rejected by a 
pseudoprimality test such as the Miller-Rabin test. 
Therefore, the generating program will have to run 
the primality proof only once, for the last curve. 

2.2.3 Refreshing the base field 

We saw in paragraph 1.2.3 that the rarity of se­
cure and twist-secure elliptic curves depends on the 
cardinality of the base field, with a variation of a 
factor ≈ 10 for a given size of prime numbers. This 
means that, in the case where a pseudo-random base 
field is preferred, we suggest that the sampling func­
tion for elliptic curves change the base field for each 
new curve, to avoid being stuck at a “bad” prime. 
This averages out the probabilities and leads to a 
speed-up of ≈ 4 compared to the worst-case expecta­
tion. This has no apparent security implication since 
the final prime number is pseudo-random anyway; the 
only performance penalty is the cost of generating 
new primes, which is negligible comparde with the 
cost of computing curve orders. 

2.3 Discriminant and class group 

The fundamental discriminant is given by the fac­
torization of the discriminant Dφ = t2 − 4p. While 
computing this factorization is quite expensive, (and 
asymptotically dominates the whole generation pro­
cess), it will generally be performed only once, on 
the final curve, and validating the factorization is 
extremely easy. The same is true for the subsequent 
computation of the exact endomorphism ring OE and 
its discriminant ΔE in case the curve does not have 
prime order (recall that if the curve has prime order 
then OE = OK and no additional computation has 
to be performed). 

The sole knowledge of the fundamental discrimi­
nant also gives a lower bound on the class number 
of the endomorphism field of E and so on that of its 
endomorphism ring OE . However, this bound is only 
approximately p1/4/ log p. 

In some cases, a better (higher) lower bound B 
might be required. We can prove that the class 
number is greater than B in the following simple 
way: since the class group is expected to be almost 
cyclic [22], it is enough to produce an element g of 
order ≥ B. However, checking this requires comput­
ing the B multiples g, 2g, . . . , Bg, and is therefore 
exponential. 

We do not expect to ever have to prove that a 
curve was rejected because its class number is smaller 
than B. We know no efficient way to prove such a 
fact in general. However, it might be enough to prove 
that a few deterministically generated elements of 
the class group all have order ≤ B: while this does 
not prove that h ≤ B, it proves that the generating 
program was unable to prove that h > B and that 
the curve should therefore be rejected. 

The same considerations apply to the smoothness 
of the class number. If the class number is not smooth, 
then verifying it is a quadratic computation. If the 
class number is smooth, then the generating program 
cannot prove it, but it can prove that it was unable 
to prove that the class number is not smooth. 

2.4 Embedding degree 

The embedding degree of E is the smallest integer e 
such that q divides pe − 1 (that is the multiplicative 
order of p modulo q). Computing exactly this em­
bedding degree requires factoring q − 1 and is an 
expensive computation. However, this factorization, 
which is the only expensive task in the computation 
of the embedding degree, is easy to include in the 
certificate. (If one only wants to check that the em­
bedding degree is larger than a moderate bound B, 
brute-force might be sufficient.) 

We note that the embedding degree of the quadratic 
twist is distinct from that of the curve; therefore, if 
twist security is required, then this computation will 
need to be performed twice. 

2.5 Choice of the sampling function 

The previous algorithms provide, to the best of 
our knowledge, a certifiable way to transparently 
generate a cryptographic elliptic curve from the in­
put of some conditions and a sampling function. In 
the case where the generating function is considered 
as pseudo-random and the normality conditions of 
Section 1.3 are included, we feel confident that the 
resulting elliptic curve will not have any particular 
weakness. However, a malicious generating program, 
given enough computing resources, might be able to 
run the generating algorithm for a large family of 



seeds of a pseudo-random function until a suitable 
elliptic curve is found (see [9]). 

Even though we think that a curve satisfying the 
normality conditions of Section 1.3 will generally be 
as good as possible for cryptographic use, and using 
a highly constrained seed (such as zero) would be 
sufficient in practice, we could imagine as a supple­
mentary precaution against this manipulation to first 
fully specify the generating protocol in all its details, 
and to put the seed choice out of reach of the gen­
erating entity. Several examples come to mind. For 
example, several entities could contribute to the seed, 
each one of them generating its own secret share and 
publicly committing it before all shares are revealed. 
Another possibility is committing in advance to using 
the result of some future, publicly verifiable obser­
vation expected to be out of reach of manipulation, 
such as the observation of sunspots, a public physical 
random number such as the result of a lottery draw­
ing, or a number derived from stock market or sports 
results. 

2.6 A concrete example 

2.6.1 Certificate format 

We suggest that the certificate should be separated 
in three parts. 

First, a header declares which choices were made: 
the sampling function, the seed (if applicable), as well 
as the subset of conditions retained from part 1 with 
the numerical values of these criteria. The validation 
program is then able, upon reading the header and 
prior to any computation, to determine if it accepts 
the included criteria. 

The second part of the certificate is the final, “good” 
curve, together with a proof for all the criteria. 

The last part is the list of sampled curves, each 
one accompanied by a proof for its rejection. The 
certificate should also include enough information 
about the internal state of the sampling function to 
be able to retrace its execution. 

2.6.2 A toy example 

We chose the following sampling function as an 
example of “pseudo-random” curves. Starting from a 
seed s, we define p as the smallest prime greater than s 
and g as the smallest generator of the multipliative 
group (Z/pZ)×. We then iterate over the curves 

2 3 − 3x + b,with a = −3 (1.4.1) of the form y = x
nwhere b = g for n = 1, . . . , until a suitable curve is 

found.2 

2We use powers of g as a simple way to produce pseudo­
random looking elements of (Z/pZ)× only for the sake of this 

We also include the following conditions: 

–	 the discriminant 24 ·33 ·(4−b2) is non-zero (1.1.1); 
–	 the orders of the curve (1.1.2) and of its quadratic 

twist (1.2.3) are prime; 
–	 the trace is non-zero (1.1.3); 
–	 the embedding degree of the curve and of its 

quadratic twist (1.1.4) are at least p1/4 ≈ 7; 
1/4–	 the class number (1.3.2) is at least p . 

As a seed, we use the current year 2015.3 The next 
prime number is p = 2017, and the smallest generator 
is g = 5. 

The resulting certificate, in pseudo-code, is as fol­
lows. (Given the size of the parameters, all proofs of 
primality have been left empty). 

Header 
sampling.function = pseudo-random/powers 
sampling.seed = 2015 
condition.cofactor = 1 
condition.twist_prime = True 
condition.embedding_degree = 7 
condition.twist_embedding_degree = 7 
condition.class_number = 7 
Curve 

(2017, −3, 625)
 
order = 2063, point = (0, 25)
 
twist_order = 1973
 
disc_factors = {6043}

class_number = 9, form = (17, 3, 89)
 
embedding_degree = 1031, factors = {2, 1031}

twist_embedding_degree = 493, factors =
 
{2, 17, 29}

Rejected curves 

((2017, −3, 5), composite, 2065, witness, 1679,
 
point, (1, 258))
 
((2017, −3, 25), torsion_point, 3, point,
 
(448, 288))
 
((2017, −3, 125), torsion_point, 2, point, (982, 0))
 

Conclusion and suggestions 

Some of the publicly announced elliptic curves, are 
provably sampled, in a way conforming to the pre­
sentation sketched out in Section 2. This is the case 
of the Brainpool family, where the sampling function 
generates curves defined over pseudo-random prime 
fields, with pseudo-random coefficients. The only 
slight reservation about this family would be that 

toy example. An actual, working example should of course 
involve a more robust pseudo-random number generator. 

3Note that this seed choice was manipulated, in order to pro­
duce a certificate short enough to fit in a few lines. 



the generating process does not include the condition 
that the order of the quadratic twist be prime (1.2.3) 
which makes the curves more generic, but implemen­
tations more error-prone. This is also the case of 
some curves with small coefficients [7, 17], where the 
sampling function generates the coefficients in increas­
ing order. However, since these latter curves are, by 
construction, defined over special prime fields and 
since they also have small coefficients, they may be 
threatened in the sense of Section 1.2 and exceptional 
in the sense of Section 1.3. Moreover, most of these 
curves also have a cofactor strictly greater than one. 

We point out that, to our knowledge, there does not 
exist yet any public proposal of an elliptic curve, or 
of a family of elliptic curves, conforming both to the 
provable generation of Section 2 and to the maximal 
security criteria of Section 1 and in particular of 1.1, 
1.2 and 1.3, i.e. with pseudo-random coefficients 
modulo a pseudo-random prime, with a secure twist, 
and with a cofactor equal to one. We therefore think 
it is advisable to standardize (a family of) such curves. 
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