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Abstract. In this paper, we propose a universal hardware Application
Programming Interface (API) for authenticated ciphers. In particular,
our API is intended to meet the requirements of all algorithms submit-
ted to the CAESAR competition. Two major parts of the API, the inter-
face and the communication protocol, were developed with the goal of
reducing any potential biases in benchmarking of authenticated ciphers
in hardware. Our high-speed implementation of the proposed hardware
API includes universal, open-source pre-processing and post-processing
units, common for all CAESAR candidates and the current standards,
such as AES-GCM and AES-CCM. Apart from the full documentation,
examples, and the source code of the pre-processing and post-processing
units, we have made available in public domain a) a universal testbench
to verify the functionality of any CAESAR candidate implemented us-
ing our hardware API, b) a Python script used to automatically generate
test vectors for this testbench, c) VHDL wrappers used to determine the
maximum clock frequency and the resource utilization of all implemen-
tations, and d) RTL VHDL source codes of high-speed implementations
of AES and the Keccak Permutation F, which may be used as building
blocks in implementations of related ciphers. We hope that the existence
of these resources will substantially reduce the time necessary to develop
hardware implementations of all CAESAR candidates for the purpose of
evaluation, comparison, and future deployment in real products.

1 Motivation

The CAESAR competition [1], launched in 2014, aims at identifying a portfolio of
future authenticated ciphers with security, performance, and flexibility exceeding
that of the current standards, such as AES-GCM [2] and AES-CCM [3].

Although security is commonly accepted to be the most important criterion
in all cryptographic contests, it is rarely by itself sufficient to determine a winner.
This is because multiple candidates generally offer adequate security, and a trade-
off between security and performance must be investigated.

The focus of this paper is to facilitate the comparison of modern authenti-
cated ciphers in terms of their performance and cost in hardware, and in partic-
ular in FPGAs, All Programmable Systems on Chip, and ASICs. As a starting



point for such a comparison we propose defining hardware API, composed of the
specification of an interface of the authenticated cipher core, and the communi-
cation protocol describing the exact format of all inputs and outputs, as well as
the timing dependencies among all data and control signals passing through the
specified interface.

Similarly to the case of previous contests, software implementations of the
CAESAR candidates are being compared using a uniform API, clearly defined in
the call for submissions [1]. So far, no similar hardware API has been proposed,
not to mention accepted by the cryptographic community.

As a result any attempt at the comparison of existing hardware implemen-
tations is highly dependent on specific assumptions about the hardware API,
made independently by various hardware designers. These assumptions can have
potentially a very high influence on all major performance measures of the de-
veloped implementations.

Additionally, a hardware API is typically much more difficult to modify than
a software API, making any last minute standardization efforts and code adjust-
ments highly inefficient and questionable.

Therefore, there is a clear need for a proposal regarding a uniform hardware
API, which could be further modified and improved using feedback from the
cryptographic community, and eventually endorsed by the CAESAR Committee,
and adopted by majority of future hardware developers. Our goal is to address
this issue by providing the exact specification of the proposed interface, as well as
multiple supporting materials, such as open-source codes of pre-processing and
post-processing units, a universal testbench, and uniform ways of generating
optimized results.

2 Proposed Features

The proposed features of our hardware API are as follows:

– inputs of arbitrary size in bytes (but a multiple of a byte only)
– size of the entire message/ciphertext does not need to be known before the

encryption/decryption starts (unless required by the algorithm itself)
– wide range of data port widths, 8 ≤ w ≤ 256
– independent data and key inputs
– simple high-level communication protocol
– support for the burst mode
– possible overlap among processing the current input block, reading the next

input block, and storing the previous output block
– storing decrypted messages internally, until the result of authentication is

known
– support for encryption and decryption within the same core
– ability to communicate with very simple, passive devices, such as FIFOs
– ease of extension to support existing communication interfaces and protocols,

such as AMBA-AXI4 – a de-facto standard for the System-on-Chip (SoC)
buses [4], and PCI Express – high-bandwidth serial communication between
PCs and hardware accelerator boards [5].



3 Previous Work

Several general-purpose interfaces for SoCs have been recently proposed, includ-
ing but not limited to:

– AXI4, AXI4-Lite, AXI4-Stream (Advanced eXtensible Interface) from ARM
[4]

– PLB (Processor Local Bus) and OPB (On-chip Peripheral Bus) from IBM [6]
– Avalon from Altera [7]
– FSL (Fast Simplex Link) from Xilinx Inc. [8], and
– Wishbone (used by opencores.org) from Silicore Corp. [9]

These interfaces define the meaning and role of all data and control signals of
the communication buses, and the timing dependencies among them, but do not
describe the format of either data inputs or data outputs passing the boundaries
of the cryptographic core.

During the SHA-3 contest [10], the first full hardware APIs, dedicated to
hash functions, were proposed by:

– GMU [11], [12]
– Virginia Tech [13], and
– University College Cork [14].

Our current proposal is partially based on these APIs.
The majority of interfaces used so far in the CAESAR competition have been

quite minimalistic and candidate specific (e.g., [15]).
The only major exception was the adoption of the AXI4-Stream interface

by the ETH student, Cyril Arnould, in his Master’s Thesis defended in March
2015 [16]. However, the limitation of this solution was the use of non-uniform,
algorithm-specific control ports, which make the corresponding cores mutually
incompatible. Additionally, Arnaud’s proposal does not contain any description
of the exact formats of inputs and outputs of the cipher.

4 Specification

4.1 Interface

The general idea of our proposed interface for an authenticated cipher core (de-
noted by AEAD) is shown in Fig. 1. The interface is composed of three major
data buses for:

– Public Data Inputs (PDI)
– Secret Data Inputs (SDI), and
– Data Outputs (DO), respectively,
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as well as the corresponding handshaking control signals, named valid and ready.
The valid signal indicates that the data is ready at the source, and the ready
signal indicates that the destination is ready to receive them.

The physical separation of Public Data Inputs (such as the message, associ-
ated data, public message number, etc.) from Secret Data Inputs (such as the
key) is dictated by the resistance against any potential attacks aimed at accept-
ing public data, manipulated by an adversary, as a new key.

The handshaking signals are a subset of major signals used in the AXI4-
Stream interface. As a result AEAD can communicate directly with the AXI4-
Stream Master through the Public Data Input, and with the AXI4-Stream Slave
through the Data Output, as shown in Fig. 2. At the same time, AEAD is also
capable of communicating with much simpler external circuits, such as FIFOs,
as shown in Fig. 3.

In both cases, the Secret Data Input is connected to a FIFO, as the amount
of data loaded to the core using this input port does not justify the use of a
separate AXI4-Stream Master, such as DMA.

An additional advantage of using FIFOs at all data ports is their potential
role as suitable boundaries between the two clock domains, used for communica-
tion and computations, accordingly. This role is facilitated by the use of separate
read and write clocks, shown in Fig. 3 as rd_clk and wr_clk, accordingly. All FI-
FOs mentioned in our description are assumed to operate in the standard mode
(as opposed to the First-Word Fall-Through mode).



4.2 Communication Protocol

All typical inputs and outputs of an authenticated cipher are shown in Fig. 4.
Npub denotes Public Message Number, such as Nonce or Initialization Vector.
Nsec denotes Secret Message Number, which was recently introduced in some
authenticated ciphers. Both Npub and Nsec are typically assumed to be unique
for each message encrypted using a given key. The difference is that Npub is sent
to the other side in clear, while Nsec is sent in the encrypted form.

All inputs to encryption, other than a key, are optional, and can be omitted.
If a given input is omitted, it is assumed to be an empty string.

The proposed format of the Secret Data Input is shown in Fig. 5. The entire
input starts with an instruction, which in case of SDI is limited to Load Key
(LDKEY) and Load Round Key (LDRDKEY). The instruction is followed by
segments. Each segment starts with a separate header, describing its type and
size. In case of SDI, the only allowed segment types are: Key and Round Key,
carrying either the main key or a sequence of round keys, precomputed in soft-
ware, respectively. Round keys are assumed to be arranged in the natural order,
starting from the round key with the smallest index.

or

Key

TagNpub AD CiphertextNsec
Enc

Key

Encryption

Npub Nsec AD Message

Npub AD CiphertextNsec
Enc Tag Nsec AD MessageInvalid

Decryption

Fig. 4: Input and Output of an Authenticated Cipher. Notation: Npub - Public
Message Number, Nsec - Secret Message Number, Enc Nsec - Encrypted Secret
Message Number, AD - Associated Data

The proposed format of the Public Data Input is shown in Fig. 6. The al-
lowed instruction types are: Activate Key (ACTKEY), Authenticated Encryp-
tion (ENC), and Authenticated Decryption (DEC). The Activate Key instruc-
tion, typically directly precedes the Authenticated Encryption or Authenticated
Decryption instruction. PDI is divided into segments. Segment types allowed dur-
ing authenticated encryption include: Public Message Number (Npub), Secret
Message Number (Nsec), Associated Data (AD), and Message. Segment types al-
lowed during authenticated decryption include: Public Message Number (Npub),
Encrypted Secret Message Number (Enc Nsec), Associated Data (AD), Cipher-
text, and Tag. Any segment type can be omitted, if it is not required by a given
cipher. Public and Secret Message Numbers can only use one segment, as their
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sizes are typically quite small (in the range of 16 bytes). The Associated Data
and Message can be (but do not have to be) divided into multiple segments (as
shown in Fig. 6).

The primary reasons for dividing AD and Message into multiple segments
is that the full message size may be unknown when authenticated encryption
starts, and/or the maximum single segment size (determined by the parameters
of the implementation) is smaller than the message size (e.g., 216 bytes in case
of our supporting codes).

The instruction/status format is shown in Fig. 9. The Msg ID field should be
set to a unique message identifier, between 0 and 255. Similarly, the Key ID field
should be set to a unique key identifier, between 0 and 255. For instruction, the
Opcode field determines which operation should be executed next. For status,
the Opcode field is replaced by the Status field, which can be set to only two
values, PASS or FAIL.

The segment header format is shown in Fig. 10. Seg Len is a size of a segment
expressed in bytes. The field Info contains information about the Segment Type,
as well as single-bit flags denoting the last segment of a particular type (EOT),
and the last segment of the entire input (EOI), accordingly. In case of decryption,
both the tag segment and the last segment before the tag must be marked as
the last segment of the entire input (EOT=1 and EOI=1). The leftmost field
represents the Key ID if the Segment Type is Key or Round Key, and the Message
ID otherwise.

0101 − Load Round Key (LDRKEY)

48 8

Divided into  24/w  words, starting from MSB

0000Msg ID Key ID

MSB LSB

0011 − Authenticated Decryption (DEC)

0010 − Authenticated Encryption (ENC)
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Status

Opcode
or

0100 − Load Key (LDKEY)

Status:
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Others − Reserved0111 − Activate Key (ACTKEY)

4

Fig. 9: Instruction/Status Format

For some authenticated ciphers (e.g., AES-CCM), the entire lengths of asso-
ciated data and message/ciphertext have to be known before the encryption/de-
cryption starts. In order to make it possible, an optional Segment Type, called
Length is defined. This segment contains only the total length of associated data
concatenated with the total length of message/ciphertext, expressed in bytes. In
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a typical usage, the Length segment is placed right after the instruction Authen-
ticated Encryption (ENC) or Authenticated Decryption (DEC). See Appendix
D for a more detailed description and some examples of our implementation of
the Length segment.

5 Supporting Codes for High-Speed Implementations

5.1 High-Level Block Diagram

The high-level block diagram of our proposed high-speed implementation of an
authenticated cipher is shown in Fig. 11. AEAD consists of AEAD Core and the
memory region. The memory region is separated from the AEAD Core for the
ease of benchmarking.

The AEAD Core consists of the following three primary units: PreProces-
sor, PostProcessor, and CipherCore. All data outputs from PreProcessor (i.e.,
all outputs connected to CipherCore Datapath) the and all data inputs to Post-
Processor (i.e., all inputs connected to CipherCore Datapath) are registered to
ensure high-performance. Supporting codes for PreProcessor, PostProcessor, and
the memory region are provided as a part of our HW API distribution [17].

Bypass FIFO is a standard FIFO used for holding public input data that
should be transferred to the output module unchanged, e.g., segment headers
and associated data. This data is held in the Bypass FIFO for a short period of
time until the PostProcessor is ready to receive it. AUX FIFO is an auxiliary
FIFO, operating in the standard mode, used to store a decrypted message until
this message is either fully authenticated or found invalid.

5.2 PreProcessor and PostProcessor

The PreProcessor is responsible for the execution of the following tasks common
for majority of CAESAR candidates:
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Fig. 11: High-level block diagram of a high-speed implementation



– parsing segment headers
– loading and activating keys
– Serial-In-Parallel-Out loading of input blocks
– padding input blocks, and
– keeping track of the number of data bytes left to process.

The PostProcessor is responsible for the following tasks:

– clearing any portions of output blocks not belonging to ciphertext or plain-
text

– Parallel-In-Serial-Out conversion of output blocks into words
– formatting output words into segments
– storing decrypted messages in AUX FIFO, until the result of authentication

is known, and
– generating the status block with the result of authentication.

Our goal is to assure the following features of the supporting codes:

– Ease of use
– No influence on the maximum clock frequency of AEAD (up to 300 MHz in

Virtex 7)
– Limited area overhead
– Clear separation between the core unit and internal FIFOs.

The PreProcessor and PostProcessor cores are highly configurable using
generics. These generics can be used for example to determine:

– the widths of the pdi, sdi, and do ports,
– the size of the message/ciphertext block, key, nonce, and tag,
– padding for the associated data and the message, and
– types and order of segments expected by a particular cipher.

TPreProcessor loading and activation of a new key is described below:
For the first message and the subsequent key change, a new key must be

loaded into the PreProcessor via the SDI port first. This can be done by providing
the Load Key instruction. A typical key loading sequence of words is shown
below:

 # 001 : Instruction(Opcode=Load Key)
 INS = 0104010000000000
 # 001 : SgtHdr (Size= 16) (EOI=1)(EOT=1)(SgtType=Key)
 HDR = 0163000000000010
 DAT = D7B1CB5221D16D92
 DAT = BB910D157C6F1C04

In this example, the first word specifies the Load Key instruction. The second
word specifies that the subsequent data segment is of the key type, with the size
of 16 bytes (128 bits). This segment is also the end-of-type and the end-of-input
segment. The next two words consist of the data representing the key.



Before the new key becomes active, it must be activated via the PDI port first.
This mechanism facilitates the synchronization between the two input ports. It
also allows loading a new key without interfering with the key that is being used.
A typical key activation process is shown below:

 # 001 : Instruction (Opcode=Activate Key)
 INS = 0105010000000000

This word must be applied before any other instruction word.
Loading of round keys precomputed in software can be performed in a similar

way, with the instruction Load Key replaced by Load Round Key, followed by a
segment composed of a sequence of round keys.

5.3 AES and Keccak Permutation F

Additional support is provided for designers of cipher cores of CAESAR candi-
dates based on AES and Keccak. Fully verified VHDL codes, block diagrams,
and ASM charts of AES and Keccak Permutation F have been developed and
made available at [17]. Our AES core implements a basic iterative architecture
of a block cipher, with the SubBytes operation realized using memory. Either
distributed memory (implemented using multipurpose LUTs) or block memory
is inferred depending on the specific options of FPGA tools.

5.4 Using Supporting Codes

A typical hardware development process based on the use of our supporting codes
requires a designer to modify the default values of generics in the AEAD_Core
to match the needs of a targeted algorithm, and then develop the CipherCore
based on user preferences (see Section 6).

The primary benefit of using our supporting codes is that the designers can
focus on developing the CipherCore specific to a given algorithm, without wor-
rying about the functionality common for multiple authenticated ciphers. Addi-
tionally, the interface of the CipherCore has full-block widths for all major data
buses, which should substantially simplify the development effort.

6 The Development of CipherCore

It is recommended to start the development of the CipherCore, specific to a
given authenticated cipher, by using the provided AEAD_Core and CipherCore
template files as a starting point [17]. This is because the appropriate connections
among the CipherCore, the PreProcessor and the PostProcessor modules are
already specified in these files. A designer needs first to modify the generics at
the top of the AEAD_Core module, and then develop the CipherCore Datapath
and the CipherCore Controller.

The development of the CipherCore is left to individual designers and can
be performed using their own preferred design methodology. Typically, when



using a traditional RTL (Register Transfer Level) methodology, the CipherCore
Datapath is first modeled using a block diagram, and then translated to a hard-
ware description language (VHDL or Verilog HDL). The CipherCore Controller
is then described using an algorithmic state machine (ASM) chart or a state
diagram, further translated to HDL.

The algorithmic state machine (ASM) of the CipherCore Controller is typi-
cally characterized by the following groups of states:

1. Load and/or activate the key
2. Process associated data
3. Process message/ciphertext
4. Generate/verify an authentication tag

In the first group of states, Load and activate the key, the CipherCore should
monitor the key_needs_update and key_ready inputs, and provide key_updated
output at the appropriate time. The circuit should operate as follows:

After reset, key_needs_update and key_ready are low and a new key can
be loaded into the PreProcessor at any time. After the new key is loaded using
the SDI port, key_ready goes high. After the instruction ACTIVATE_KEY is
received at the PDI port, the key_needs_update goes high. Please note that the
above two events can occur in an arbitrary order.

After key_ready and key_needs_update are both high, and the CipherCore
is either in the period between reset and the first input, or in the period between
two consecutive inputs, the CipherCore should read the new key. After the key is
read, key_updated signal should be set to high. The key_updated signal should
be deactivated at the end of processing of the current input. If a user wants to
use the same key for the subsequent input data, ACTIVATE_KEY instruction
can be omitted from the PDI input port. In this case, the processing of new data
will start as soon as an instruction describing the way of processing a new input
is decoded (which is indicated by bdi_proc set to high).

In summary, the CipherCore should monitor the key_needs_update port prior
to processing any new input. If key_needs_update is high, the CipherCore should
wait for key_ready=1, and then read the new key, and acknowledge its receipt
using the key_updated output. If key_needs_update is low and the first instruc-
tion describing the way of processing a new input is decoded (bdi_proc=1), then
the CipherCore should move directly to processing a new input using a previous
key. If none of these two events is detected, the CipherCore should remain in
the same state. The described behavior is shown in Fig. 12. The key initializa-
tion and process data are two separate states that operate depending on the
requirements of a specific cipher.

In the second group of states, Process associated data, the core continuously
waits for the next AD block until the bdi_eot signal becomes active. This signal
indicates that the current block is the last block of associated data. The state
machine needs then to process this last block, and proceed to the next group
of states, responsible for encryption and decryption of data. If the first block
read by the CipherCore is not of type AD (bdi_ad=0), then associated data is
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Fig. 12: A part of the Algorithmic State Machine (ASM) chart describing a way
in which the CipherCore Controller may handle key loading and key activation

assumed to be empty. If the last block of AD (bdi_ad=1 and bdi_eot=1) is also
the last block of input (bdi_eoi=1), then the message/ciphertext is assumed to
be empty.

The third group of states, Process message/ciphertext, should operate in the
similar way as the second group, and should similarly progress to the next group
of states when the last block of message or ciphertext is processed. In this group
of states, bdi_ad should remain inactive for each input block to indicate that the
current block is not an associated data block. A corresponding output data block
should be passed to the PostProcessor using the bdo port with an accompanied
active bdo_write control signal.

After each block of associated data, message, or ciphertext is read by Ci-
pherCore, the bdi_read output must be activated for one full clock cycle. This
action clears control inputs, such as bdi_eot and bdi_eoi that may need to be
checked at a later time. At the same time, this action cannot be delayed because
doing so would stall the PreProcessor and prevent it from loading any subse-
quent data block using the PDI input. As a result, bdi_eot and bdi_eoi must
be registered at the latest in the clock cycle when the acknowledgment signal
bdi_read is generated. Only registered values of these inputs should be checked
at a later time.

In the last group of states, Generate/verify an authentication tag, during
the authenticated encryption, the core should generate a new tag and pass it
to the PostProcessor, using ports tag and tag_write. During the authenticated
decryption, msg_auth_done should be activated, and the msg_auth_valid port
should be used to output the result of authentication.



It should be noted that not all signals at the interfaces PreProcessor-CipherCore
and PostProcessor-CipherCore need to be used for each particular cipher. If any
port is left unconnected, the corresponding port and the associated logic are
automatically trimmed off (removed) by the synthesis tool. Thus, the full set
of internal signals shown in Fig. 11 and included in the template files available
at [17] should be treated as a superset of signals required by all authenticated
ciphers, supported by our hardware API and the associated high-speed PrePro-
cessor and PostProcessor modules.

The full description of all generics and ports used by our supporting VHDL
codes can be found in the Appendices A, B, and C.

7 Universal Testbench and Test Vector Generation

Our supporting codes for verification include:

– universal testbench for any authenticated cipher core that follows our Hard-
ware API

– AETVgen: Authenticated Encryption Test Vector generation script
– C codes of the CAESAR candidates from the SUPERCOP distribution.

AETVgen generates a comprehensive set of test vectors for a specific CAE-
SAR candidate, based on the reference C code of that candidate, and additional
parameters, provided by the user [17] (see Appendix D).

8 Generation and Publication of Results

Generation of results is possible for AEAD, AEAD Core, and CipherCore (see
Fig. 11). We strongly recommend generating results primarily for AEAD Core.
This recommendation is based on the fact that

1. CipherCore has an incomplete functionality and a full-block-width interface,
2. Using AEAD may cause difficulty with setting BRAM usage to 0 (as often

desired in order to easily calculate throughput to area ratio).

In case AEAD Core, for Virtex 7 and Zynq, we recommend generating results
using Xilinx Vivado [18], operating in the Out-of-Context (OOC) mode [19]. In
this mode, no pin limit applies. For Virtex 6 and below, since Xilinx ISE must
be used, and the OOC mode is not supported by this tool, we recommend using
a simple wrapper, with five ports: clk, rst, sin, sout, piso_mux_sel, provided as
a part of supporting files [17].

In case of CipherCore, because of a large number of port bits and limited
effectiveness of the OOC mode, we recommend using the aforementioned five-
port wrapper for all FPGA families.

In terms of optimization of tool options, for Virtex 7 and Zynq, we recom-
mend the use of 25 default optimization strategies available in Xilinx Vivado.
The corresponding scripts, used to run Xilinx Vivado in batch mode, are included



in our supporting codes [17], and their use is explained in detail in Appendix E.
For Virtex 6 and below, we recommend using Xilinx ISE and ATHENa [20]. For
Altera FPGAs, we suggest using Altera Quartus II and ATHENa.

Our database of results for authenticated ciphers is available at [21]. After
receiving an account in the database, the designers can enter results by them-
selves.

8.1 Overheads

So far, eight CAESAR Round 1 candidates (all qualified to Round 2) and the
current standard AES-GCM have been implemented using our hardware API.
The detailed results, for Xilinx Virtex 6, Virtex 7, and Zynq 7000 families, are
available in [21].

The first preliminary results regarding an overhead introduced by extending
CipherCore to AEAD Core are summarized in Figs. 13, 14, 15, and 16.

For Virtex 6, the highest area overheads are incurred for ICEPOLE and
Keyak (both in the range of 25%). These large overheads are caused primarily
by large cipher block sizes (1024 bits for ICEPOLE and 1344 bits for Keyak), as
well as large input word sizes (w=256 and w=128, respectively). For all remaining
algorithms, the overhead does not exceed 18%, even for the smallest investigated
cipher cores, and reaches values in the range of 2-3% for the biggest cores. For
one algorithm, POET, the area overhead becomes even negative, which can
be explained only by the boundary optimizations performed by Xilinx FPGA
tools. In terms of the Throughput/Area ratio, the overheads are the highest
for ICEPOLE, PRIMATES-HANUMAN, Keyak, AES-GCM, and PRIMATES-
GIBBON, all in the range 15-19%. For the remaining algorithms, the overhead
does not exceed 6%.

For Virtex 7, the area overheads are the highest for Keyak (due to the
large block and word sizes), as well as PRIMATES-GIBBON and PRIMATES-
HANUMAN (due to low overall area of these cores), all between 18% and 28%.
For all remaining algorithms, the area overhead does not exceed 15%, and be-
comes even negative for AES-COPA. In terms of the Throughput/Area ratio, the
overhead is exceptionally high for Keyak (35.3%). For all remaining algorithms,
it does not exceed 30%.

9 Unsupported Features and Future Work

The features of our Hardware API that are not yet fully supported by our codes
available at [17] include:

– use of Message ID
– use of Key ID.

The possible future extensions of the API and supporting codes include:

– detection and reporting of input formatting errors



Fig. 13: AEAD Core vs. CipherCore Area Overhead for Virtex 6 FPGA family

Fig. 14: AEAD Core vs. CipherCore Throughput/Area Overhead for Virtex 6
FPGA family



Fig. 15: AEAD Core vs. CipherCore Area Overhead for Virtex 7 FPGA family

Fig. 16: AEAD Core vs. CipherCore Throughput/Area Overhead for Virtex 7
FPGA family

– support for two-pass algorithms
– accepting inputs with padding done in software
– support for multiple streams of data.

10 Conclusions

In this paper, we have described our proposal for a complete Hardware API for
authenticated ciphers, including the interface and communication protocol. The
design with our Hardware API is facilitated by:



– Detailed specification
– Universal testbench and Automated Test Vector Generation
– PreProcessor and PostProcessor Units for high-speed implementations
– Scripts and wrappers for generating results
– Source codes of AES and Keccak Permutation F
– Ease of recording and comparing results using our database of results.

Our proposal is open for discussion and possible improvements through better
specification as well as better implementation of supporting codes.
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Appendix A: Generics used by the PreProcessor and/or
the PostProcessor

Table A1: Generics used by the PreProcessor and/or the PostProcessor

Pre- Post- Name Default Brief
Processor Processor Value Definition

x x W 32 Public data input and Data output width (bits)
x SW 32 Secret data input width (bits)
x NPUB_SIZE 128 Npub size (bits)
x NSEC_ENABLE 0 Enables nsec port
x NSEC_SIZE 8 Nsec size (bits)
x ABLK_SIZE 64 Block size of associated data (bits)
x x DBLK_SIZE 128 Block size of message and ciphertext (bits)
x KEY_SIZE 128 Key size (bits)
x RDKEY_ENABLE 0 Enables rdkey port and disables key port
x RDKEY_SIZE 128 Round key size (bits)
x x TAG_SIZE 128 Tag size (bits)
x x BS_BYTES 4 The number of bits required to hold the size of an

incomplete block, expressed in bytes =
log2dmax(ABLK_SIZE,DBLK_SIZE)/8e

x x LOADLEN_ENABLE 0 Enable Length segment. See Appendix D for more
details.

x PAD 0 Enable 10* padding to a multiple of a block size.
x PAD_STYLE 1 [0] = No actual padding, the unit will produce

bdi_pad_loc, [1] = Pad10*, [2] = ICEPOLE’s
specific mode, [3] = Keyak’s specific mode

x PAD_AD 1 (Active when PAD=1) Enable padding for asso-
ciated data (AD) block. See Table A2 for more
details.

x x PAD_D 1 (Active when PAD=1) Enable padding for data
block. See Table A2 for more details.

x CTR_AD_SIZE 64 The width of the len_a port representing the
length of associated data

x CTR_D_SIZE 64 The width of the len_d port representing the
length of data (the length of message for encryp-
tion, and the length of ciphertext for decryption)

x PLAINTEXT_MODE 0 Plaintext input handling mode. See Table A3 for
more details.

x x CIPHERTEXT_MODE 0 Ciphertext output handling mode. See Table A4
for more details.

x x REVERSE_DBLK 0 [0] Ciphertext blocks arrive in normal order [1]
Ciphertext block arrives in a reversed order (last
block first). Note: bdi_size is provided in a re-
versed order for decryption. This means that the
remainder is provided in the first block instead of
the last block.



Table A2: Extended description of PAD_AD and PAD_D.
Generic Value 0 1 2 3 4

Enable padding x x x x
Add extra block when
AD/D is Empty

x x

Add extra block when
AD/D is multiple of a
block size

x x

Table A3: Extended description of PLAINTEXT_MODE
Generic Mode Description
Value
0* N_A_M Separate Nonce, Associated Data, and Message segments.
1** NA_M The Associated Data segment contains Nonce concate-

nated with Associated Data.
2** AN_M The Associated Data segment contains Associated Data

concatenated with Nonce.
3*** N_A_M_A Separate Nonce, Associated Data - Header, Message, and

Associated Data - Trailer segments.
4*** N_M_A Separate Nonce, Message, and Associated Data segments.

Note: (*) default option. (**) Npub related signals are disabled.
(***) Not yet supported.

Operations specific to each CIPHERTEXT_MODE value are further described below:

(0) C_T
during encryption
– len_d= |M |
– The tag output of the CipherCore Datapath is used
– The PostProcessor waits for 1 at the tag_write output of the CipherCore

Datapath
– The size of C in the ciphertext segment header = |M |

during decryption
– The size of C in the ciphertext segment header = |M |
– len_d = |M |
– The exp_tag input of the CipherCore Datapath is used.
– The exp_tag_ready input of the CipherCore Controller is used.

(1) CT
during encryption
– len_d = |M |
– The tag output of the Datapath is not used
– The PostProcessor does not wait for 1 at the tag_write output of the Cipher-

Core Datapath
– The size of C in the ciphertext segment header = |M |+ |T |



Table A4: Extended description of CIPHERTEXT_MODE.
Generic Mode Description
Value
0* C_T Separate Ciphertext and Tag segments.
1 CT The Ciphertext segment contains Ciphertext concate-

nated with Tag.
2 Cexp_T Separate Ciphertext and Tag segments. Ciphertext seg-

ment is expanded to a multiple of the block size.
Note: (*) default option.

during decryption
– The size of C in the ciphertext segment header = |M |+ |T |
– len_d = |M |+ |T | (|M | is calculated inside of the datapath)
– The exp_tag input of the CipherCore Datapath is not used.
– The exp_tag_ready input of the CipherCore Controller is not used.

(2) Cexp_T
during encryption
– len_d = |M |
– The tag output of the CipherCore Datapath is used
– The PostProcessor waits for 1 at the tag_write output of the CipherCore

Datapath
– The size of C in the ciphertext segment header = |M | but the PostProcessor

expects block_size ∗ d|M |/block_sizee bits of the ciphertext
during decryption
– The size of C in the ciphertext segment header = |M |, but the PreProcessor

reads and passes to the CipherCore Datapath block_size ∗ d|M |/block_sizee
bits of the ciphertext

– len_d = |M |
– The exp_tag input of the CipherCore Datapath is used.
– The exp_tag_ready input of the CipherCore Controller is used.



Appendix B: PreProcessor Ports

Table B5: PreProcessor Ports

Name Direction Width Definition
clk in 1 Global clock signal
rst in 1 Global reset signal (synchronous)
pdi in W Public data input
pdi_valid in 1 Public data input valid
pdi_ready out 1 Public data input ready
sdi in SW Secret data input
sdi_valid in 1 Secret data input valid
sdi_ready out 1 Secret data input ready
npub out NPUB_SIZE [Optional] Public message number (Npub). This

port is inactive if PLAINTEXT_MODE = 1 or
2.

nsec out NSEC_SIZE [Optional] Secret message number (Nsec). This
port is inactive if NSEC_ENABLE = 0.

key out KEY_SIZE [Optional] Key data. Note: Port is disabled if RD-
KEY_ENABLE = 1.

rdkey out RDKEY_SIZE [Optional] Round key data. Note: Port is disabled
if RDKEY_ENABLE = 0.

bdi out DBLK_SIZE Input block data
exp_tag out TAG_SIZE Expected tag data. This output is valid for au-

thenticated decryption operation.
len_a out CTR_AD_SIZE [SEGMENT INFO] Length of associated data in

bytes (used in some algorithms). See Appendix
D.6 for details.

len_d out CTR_D_SIZE [SEGMENT INFO] Length of data in bytes (used
in some algorithms). See Appendix D.6 for details.

key_ready out 1 Key ready signal. This signal indicates that the
key is available.

key_needs_ update out 1 Key needs an update signal. This signal indicates
to the crypto core that the key should be updated
(i.e., new round keys calculated). The crypto core
should update the key before the next input is
processed.

key_updated in 1 Return signal from the crypto core acknowledging
that the key has been updated

rdkey_ready out 1 [Optional] Round key ready signal. This port is
ignored if RDKEY_ENABLE = 0.

rdkey_read in 1 [Optional] Round key read signal. This port is ig-
nored if RDKEY_ENABLE = 0.

npub_ready out 1 [Optional] Npub ready signal. This port is inactive
if PLAINTEXT_MODE = 1 or 2.



npub_read in 1 [Optional] Npub read signal. This port is inac-
tive if PLAINTEXT_MODE = 1 or 2. Note:
npub_read signal must be issued for the current
message before the next npub of the next message
can be loaded within the PreProcessor.

nsec_ready out 1 [Optional] Nsec ready signal. This port is inactive
if NSEC_ENABLE = 0.

nsec_read in 1 [Optional] Nsec read signal. This port is ignored
if NSEC_ENABLE = 0.

bdi_ready out 1 Block ready signal
bdi_proc out 1 [INPUT INFO] Input processing. This signal in-

dicates that the current input is being processed.
This signal will remain high from the moment of
decoding an instruction describing the way of pro-
cessing a given input to the moment when the last
block of the input has been fully processed. This
signal is low after reset and in any interval be-
tween two consecutive inputs (including the time
of decoding and executing any Activate Key in-
structions).

bdi_ad out 1 [SEGMENT INFO] Input block is associated data
bdi_decrypt out 1 [INPUT INFO] Current input should be de-

crypted.
bdi_eot out 1 [BLOCK INFO] Current block is the last block of

its type. There may be more data blocks belong-
ing to different segments following this block. For
instance, if the current block is Npub, the subse-
quent block is generally either of type message or
associated data.

bdi_eoi out 1 [BLOCK INFO] Current block is the last block of
the given public data input (i.e., all segments as-
sociated with a given message or ciphertext). This
signifies that the following block will be the first
block of the group of segments associated with
another message or ciphertext.

bdi_nodata out 1 [BLOCK INFO] Current block has no data (it
contains only padding)

bdi_read in 1 Return signal from the crypto core indicating that
data block is being read

bdi_size out BS_BYTES [BLOCK INFO] The size of the current block in
bytes (0 for full blocks)

bdi_valid_bytes out DBLK_SIZE/8 [BLOCK INFO] Number of valid bytes of BDI.
bdi_pad_loc out DBLK_SIZE/8 [BLOCK INFO] Pad location. An active bit indi-

cates the starting point of the padding location.
Note: Must set PAD=1 (set PAD_STYLE=0 if
no padding is required)



msg_auth_done in 1 Message authentication completion signal. This
signal indicates that the comparison is completed
for authenticated decryption and data in exp_tag
port can be overwritten.

exp_tag_ready out 1 Expected tag (exp_tag) ready signal.
bypass_fifo_full in 1 Bypass FIFO indicating that it is full
bypass_fifo_wr out 1 Write signal to bypass FIFO

[INPUT INFO]. Auxiliary signal that remains valid until a given message is fully pro-
cessed. Deactivation is typically done at the end of input.
[SEGMENT INFO]. Auxiliary signal that remains valid for the current segment. The
value changes when a new segment is received via the PDI data bus.
[BLOCK INFO]. Auxiliary signal that is applicable only to the current block. This
signal can be considered valid as long as bdi_read signal has not been received from
CipherCore.



Appendix C: PostProcessor Ports

Table C6: PostProcessor Ports
Port Direction Width Definition

clk in 1 Global clock signal
rst in 1 Global reset signal (synchronous)
do out W Output data out
do_ready in 1 Output ready
do_valid out 1 Output write
bypass_data in W Bypass FIFO data
bypass_empty in 1 Bypass FIFO empty
bypass_rd out 1 Bypass FIFO read
bdo_ready out 1 Signal indicating that a new set of data block is

ready to be received
bdo_write in 1 Input data write
bdo_data in BLOCK_SIZE Input data from crypto core
bdo_size in BS_BYTES+1 [Optional] Data size of the output block (required

when CIPHERTEXT_MODE = 2)
bdo_nsec in 1 Input data Nsec flag. This signal indicates that

the incoming block is an Nsec block.
tag_ready out 1 Signal indicating a new tag data is ready to be

received
tag_write in 1 Tag data write
tag_data in TAG_SIZE Input tag from from crypto core
msg_auth_done in 1 Message authentication completion signal
msg_auth_valid in 1 Message authentication valid signal
bypass_fifo_data in W Bypass FIFO data
bypass_fifo_empty in 1 Bypass FIFO empty signal
bypass_fifo_rd out 1 Bypass FIFO read signal
aux_fifo_din out W Auxiliary FIFO input
aux_fifo_ctrl out 4 Auxiliary FIFO control signals
aux_fifo_dout in W Auxiliary FIFO output
aux_fifo_status in 3 Auxiliary FIFO status signals



Appendix D: Limitations and Special Usage

This section describes limitations and special usage of our high-speed implementation
of the proposed hardware API.

Appendix D.1 I/O Width

W < 32 and SW < 32 are not supported by our implementation. Please note that these
limitations of our specific implementation do not affect the user’s ability to develop
different PreProcessor and PostProcessor units that would support smaller values of
these generics.

Appendix D.2 Block size (ABLK_SIZE and DBLK_SIZE)

Values of ABLK_SIZE (block size of associated data in bits) and DBLK_SIZE (block
size of message and ciphertext in bits) have to meet the following conditions:

– ABLK_SIZE mod W = 0 or
ABLK_SIZE mod W = W/2, and

– DBLK_SIZE mod W = 0 or
DBLK_SIZE mod W = W/2

– DBLK_SIZE >= ABLK_SIZE
In case ABLK_SIZE < DBLK_SIZE, a block of associated data uses only
ABLK_SIZE rightmost bits of the bdi bus. The remaining bits of this bus, should
be ignored by the CipherCore each time a block of associated data is read (which
is indicated by an active value of the control input bdi_ad).

Appendix D.3 CIPHERTEXT_MODE

When CIPHERTEXT_MODE = 2 (i.e., the size of C in the ciphertext segment header
= |M |, but the PostProcessor expects block_size ∗ d|M |/block_sizee bits of the ci-
phertext during encryption, and the PreProcessor reads and passes to the CipherCore
Datapath block_size∗d|M |/block_sizee bits of the ciphertext during decryption), the
following operating conditions apply:

– zeroization (i.e., clearing any portion of an output block not belonging to ciphertext
or plaintext) by the PostProcessor is not performed.

– bdo_size is needed by PostProcessor to calculate |M | to be placed in the ciphertext
or decrypted message header. Empty value (bdo_size = 0) must be provided for the
case when an output block is empty. Similarly, a full (bdo_size = DBLK_SIZE/8)
or partial size must also be provided, accordingly, for each output write.

Appendix D.4 REVERSE_DBLK

REVERSE_DBLK = 1 is only supported when CIPHERTEXT_MODE = 2. When
this mode is active, ciphertext block is assumed to be provided in a reversed block order.
bdi_valid_bits, bdi_pad_loc, and bdi_size are also produced in reversed order. This
mode is currently required only by PRIMATEs-APE.



Appendix D.5 Minimum number of clock cycles per block

The provided Pre- and PostProcessor units are designed for algorithms that have a rela-
tively long block processing time (i.e., number of clock cycles per block) compared to the
loading time of a next block. The PreProcessor requires at least 2+(DBLK_SIZE/W )
clock cycles before a new data block becomes available for the next read. Likewise, the
PostProcessor requires at least 1 + (DBLK_SIZE/W ) clock cycles before a new
output block can be written to this unit. For instance, if DBLK_SIZE = W then
PreProcessor requires at least 3 clock cycles before a new read can be issued by Cipher-
Core, and the PostProcessor requires at least 2 clock cycles before a new data block
can be written to it.

Eliminating these limitations, required by some of the CAESAR candidates, will
be a subject of our future work, and most likely will involve developing separate,
specialized, and simplified Pre- and PostProcessor units.

Appendix D.6 Length inputs (len_a and len_d)

Warning(1): The units of length for len_a and len_d are bytes. These units may be
different from units of length used by specifications of various authenticated ciphers
(which are usually either bits or blocks).
Warning(2): Each of these length values is guaranteed to be valid only when the last
block of a respective data type is being processed (as indicated by an active value of
bdi_eot).

When LOADLEN_ENABLE is inactive (default), len_a and len_d do not represent
the full length of the respective data until the header of the last segment carrying data
of a particular type is read. Before then, these inputs represent only the cumulative
size of all segments of a particular type, recognized so far. As CipherCore is unaware
of the division of associated data or data into segments, the CipherCore Controller
should restrain from using len_a and len_d until the last block of particular data type
is being processed (as indicated by bdi_eot). As a result, this mode is recommended
only when the length values are not required until all blocks of a particular data type
are processed. Multiple authenticated ciphers, including AES_GCM, are suitable for
this mode.

A user should set LOADLEN_ENABLE to active if the above conditions do not
apply. In this case, an external circuit is required to provide a special Length segment.
This segment contains only the total length of associated data (in bytes) – X, followed
by the total length of message/ciphertext (in bytes) – Y. The sizes of X and Y (in
bytes) are defined as follows:

– size of X = |X| = (dCTR_AD_SIZE/W e) ∗W/8
– size of Y = |Y | = (dCTR_D_SIZE/W e) ∗W/8

The corresponding segment length (in bytes) is equal to |X| + |Y|. Both X and Y start
on a boundary of a word of the size W. Within the words of X and Y, only |X| and
|Y| leftmost bytes, respectively, are used to store the respective values. The remaining
bytes should be set to zero. Examples are shown below for different combinations of
W, CTR_AD_SIZE and CTR_D_SIZE, with the total length of AD and the total
length of data (message/ciphertext) equal to one byte.



 # W = 32, CTR_AD_SIZE = 64, CTR_D_SIZE = 64
 # 001 : Instruction (Opcode=AEAD decrypt)
 INS = 01030500
 # 001 : SgtHdr (Size= 16) (PAD=0) (EOI=0) (EOT=1) (SgtType=Length)
 HDR = 06C10010
 DAT = 0000000000000001 # X
 DAT = 0000000000000001 # Y

 # W = 32, CTR_AD_SIZE = 16, CTR_D_SIZE = 40

 # 001 : Instruction (Opcode=AEAD decrypt)
 INS = 01030300
 # 001 : SgtHdr (Size= 12) (PAD=0) (EOI=0) (EOT=1) (SgtType=Length)
 HDR = 01C1000C
 DAT = 00010000 # X
 DAT = 0000000001000000 # Y



Appendix E: Universal Testbench and Test Vector
Generation

Our supporting codes include the

– universal testbench for any authenticated cipher core that follows the GMU Hard-
ware API

– AETVgen: Authenticated Encryption Test Vector generation script
– Modified C codes of the Round 2 CAESAR candidates from the SUPERCOP

distribution.

The testbench is located in the folder: $root/src_tb,
the test vector generation script in: $root/software/AETVgen,
and the C codes of CAESAR candidates in $root/software/CAESAR.

AETVgen generates a comprehensive set of test vectors for a specific CAESAR
candidate, based on the reference C code of that candidate, and additional parameters,
provided by the user.

Appendix E.1 Compiler and interpreter prerequisites

Windows

– Method 1
• CYGWIN

Download and install an appropriate version of Cygwin (32-bit or 64-bit) from
https://cygwin.com/install.html. Make sure to include X11, perl and python
in the application list. For X11, type "x11" in the search box and install
everything under "X11" list. For perl and python, type "perl" and "python",
respectively, in the search box and install everything under "Devel" list.

– Method 2
Note: If this method is selected, make sure that all installations are done as an
administrator.
• MinGW with MSYS

Download and install the latest version from http://www.mingw.org. MSYS
should be included in the installation package.
Note: MSYS is the console for MinGW in Windows

• Python v3.5+
Download and install the latest Python distribution package from https://
www.python.org.
Note: The GMU code has been tested with v3.5

Method 1 is recommended for beginners as all prerequisites are installed within the
Cygwin environment at the same time, which makes it easier to manage.

Linux

– Python v3.5+

https://cygwin.com/install.html
http://www.mingw.org
https://www.python.org
https://www.python.org


Appendix E.2 Python package prerequisites

AETVGen requires one Python package:

– cffi

In Windows, as of Python version 3.5 the installation of this package can be done by
calling easy_install script. The script is typically located in:
C:/Users/%USER/%/AppData/Local/Programs/Python/Python35-32/Scripts

where %USER% is the local user name.

 # Method 1
 \$ easy_install cffi
 # Method 2
 C:/Users/%USER%/AppData/Local/Programs/Python/Python35-32/Scripts> easy_install cffi

In Linux, the installation procedure of these packages is dependent on the package
manager used by the user. As a result, we do not cover this issue in detail.

Appendix E.3 CAESAR library prerequisites

OpenSSL library is required to compile all the provided CAESAR source codes. In the
case that OpenSSL is not already installed on the system, please download the latest
OpenSSL code from https://www.openssl.org/source/ and do the following steps:

 tar zxvf openssl-1.0.2d.tar.gz
 cd openssl-1.0.2d
 ./Configure $SYSTEM --prefix=/usr/local shared
 make
 make install

The $SYSTEM is dependent on user’s OS/compiler. A small subset of available
$SYSTEM is shown in Table E7.

Table E7: $SYSTEM command for different OS/compilers
System $SYSTEM

Windows (mingw 32-bit) mingw
Windows (mingw 64-bit) mingw64
Windows (Cygwin 32-bit) Cygwin
Windows (Cygwin 64-bit) Cygwin-x86_64
Ubuntu

A full list can be viewed by issuing the following command:

 ./Configure LIST

In the case that the user only wants to focus on a subset of CAESAR algorithms, please
refer to Appendix E.7.

https://www.openssl.org/source/


Appendix E.4 Quick User Guide

This section provides a step-by-step quick user guide.

1. Create shared CAESAR libraries (*.dll in Windows and *.so in Linux)
(a) In console, navigate to the CAESAR folder ($root/software/CAESAR).

Note: For Windows, perform this step using msys console
(b) type

 make

2. Generate test vectors using the pre-defined settings. Examples of the pre-defined
settings can be found in the $root/software/AETVgen/gen.py file. The user
needs to do:
(a) Copy one of the example methods and modify the primary argument (args).

Example methods’ parameters are described in Appendix E.4.
(b) Call the new function from the main method by issuing:

 gen.py

3. Copy the three generated test vectors (pdi.txt, sdi.txt and do.txt) in AETVgen
folder to your simulation folder.

Table E8 provides a list of possible options for the (args) argument for AETV gen
class.



Table E8: AETVgen class parameters
Option Description Default value Valid values

caesarLib CAESAR library’s name aes128gcmv1 CAESAR’s library
name

Algorithm’s parameter
testMode Test mode 0 [0,1,2]
sizeKey Key size 16 Any integer
enableRoundKey Enable Round Key (disable Key) FALSE True/False
sizeRoundKey Round key size. Ignore if enableRoundKey ==

False.
16 Any integer

totalRoundKey Number of round key. Ignore if enableRoundKey
== False.

11 Any integer

sizeNpub Npub size 12 Any integer
enableNsec Enable Nsec segment FALSE True/False
sizeNsec Nsec size. Ignore if enableNsec == False. 16 Any integer
sizeTag Tag size 16 Any integer
blockSize Algorithm’s block size 16 Any integer
blockSizeAD Algorithm’s AD block size 16 Any integer
enableLoadLen Enable load length segment False boolean
ctrSizeAd AD’s length size (bytes) 8 Any integer
ctrSizeD D’s length size (bytes) 8 Any integer

I/O format
plainTextMode Plain text mode 0 [0,1,2,3]
cipherTextMode Cipher text mode 0 [0,1,2]
reverseDblk Reverse data block. This option should only be

used if a reversed order of ciphertext is required,
i.e. last block first. This mode was created specif-
ically for PRIMATEs-APE.

FALSE True/False

padD This mode should only be set to 4 when cipher-
TextMode == 2 as encrypted data is expanded
by default.

0 [0,4]

maxSizeSegment Max segment size 100000 Any integer divisible
by PIO and blockSize

Input Message Parameters
minSizeAD Minimum authenticated data size 0 Any integer
maxSizeAD Maximum authenticated data size 512 Any integer
minSize Minimum data size 0 Any integer
maxSize Maximum data size 512 Any integer

Hardware I/O width
sizePIO Size of pdi port 4 Any integer >4
sizeSIO Size of sdi port 4 Any integer >4

Debugging options
verbose Print everythign within the #if DBG âĂę #endif

clause in the C code
FALSE True/False

startTV Starting test vector. This option should be used
when testMode >0 for debugging purposes.

0 Any integer

decrypt Perform decryption. By default, input and out-
put are generated using only the encryption oper-
ation. This option allows the script to also perform
decryption for encrypted data for debugging pur-
poses. However, please note that we do not use
this option for generation of our test vectors.

FALSE True/False

Output file name
filePDI Public Data In file ’pdi.txt’ Any text
fileSDI Public Data Out file ’sdi.txt’ Any text
fileDO Data Out file ’do.txt’ Any text



Pre-defined Methods have the following format:

 $Method($NumberTestVector, $TestMode, $Verbose, $Decrypt, $startTV)

where,

– $Method is the name of the pre-defined method. Typically the name of the algo-
rithm is used, i.e. AES_GCM .

– $NumberTestV ector is the number of test vectors to be generated by the script.
– $TestMode is the method in which the AETVgen will generate the test vectors.

Currently, the following modes are supported:
• False: Generate randomized test vector based on the given parameters.
• 0 : Generate test vectors with 0x5555.. for key, 0xA0A0... for AD, 0xFFFF...

for data.
• 1 : Similar to 0 except input data is randomized

For $TestMode = 0 and 1, the test vectors will produce a pre-defined routine
following the description provided below:

 Msg 1 = AEAD encrypt [AD Size= 1, Msg Size=0]
 Msg 2 = AEAD decrypt [AD Size= 1, Msg Size=0]
 Msg 3 = AEAD encrypt [AD Size= 0, Msg Size=1]
 Msg 4 = AEAD decrypt [AD Size= 0, Msg Size=1]
 Msg 5 = AEAD encrypt [AD Size= 1, Msg Size=1]
 Msg 6 = AEAD decrypt [AD Size= 1, Msg Size=1]
 Msg 7 = AEAD encrypt [AD Size= blockSize, Msg Size=blockSize]
 Msg 8 = AEAD decrypt [AD Size= blockSize, Msg Size=blockSize]
 Msg 9 = AEAD encrypt [AD Size= blockSize-1,Msg Size=blockSize-1]

 Msg 10 = AEAD decrypt [AD Size= blockSize-1,Msg Size=blockSize-1]
 Msg 11 = AEAD encrypt [AD Size= blockSize+1,Msg Size=blockSize+1]
 Msg 12 = AEAD decrypt [AD Size= blockSize+1,Msg Size=blockSize+1]
 Msg 13 = AEAD encrypt [AD Size= blockSize*2,Msg Size=blockSize*2]
 Msg 14 = AEAD decrypt [AD Size= blockSize*2,Msg Size=blockSize*2]
 Msg 15 = AEAD encrypt
 [AD Size= X where 0<X<blockSize*2 and X /= Y,
 Msg Size= Y where 0<Y<blockSize*2]
 Msg 16 = AEAD decrypt
 [AD Size= X where 0<X<blockSize*2 and X /= Y,
 Msg Size= Y where 0<Y<blockSize*2]
 Msg 17 = AEAD encrypt [AD Size= blockSize*3,Msg Size=blockSize*3]
 Msg 18 = AEAD decrypt [AD Size= blockSize*3,Msg Size=blockSize*3]
 Msg 19 = AEAD encrypt [AD Size= blockSize*4,Msg Size=blockSize*4]
 Msg 20 = AEAD decrypt [AD Size= blockSize*4,Msg Size=blockSize*4]
 ...

– $V erbose prints output from the modified CAESAR program that is encapsulated
by the #ifdef DBG ... #endif macro. Accepted values are either True or False.

– $Decrypt performs decryption after encryption. By default, AETVgen only gen-
erates test vectors for the encryption operation. This flag should be used in con-
junction with the $V erbose operation to view the output of decryption operation.
Accepted values are either True or False.

– $StartTV provides the starting point for test vector generation. Valid when $TestMode
> 0.

Appendix E.5 Debugging

Oftentimes, it maybe necessary to view the intermediate state of the encryption or
decryption operation. It is up to the user to add the necessary debugging information
to the C source code. This can be done by printing values of the relevant variables



into the screen. It is recommended to surround a print statement with the #ifdef
preprocessor directive, so that when $V erbose is set to False, this information will not
be printed out, e.g.,

 #ifdef DBG
 printf("%02X", state);
 #endif

Note: The user will need to recompile the shared library again in order for the
changes in the source codes to take effect.

Appendix E.6 Addition of a new library

The script currently supports a limited set of CAESAR libraries. In order to add an
additional library to the script, one needs to perform modification in C and Python. It
must be noted that the instruction in this section assumes that the new library follows
the CAESAR software API.

C-related modification

– Modification of the header files and macros in encrypt.c file, located in the
reference implementation (ref) folder of the targeted algorithm
1. Headers

 // Old
 #include "crypto_aead.h"
 // New
 #include "../../crypto_aead.h"
 #include "../../dll.h"

2. Insert the pre-defined macros, EXPORT, in front of the primary function calls,
crypto_aead_encrypt() and crypto_aead_decrypt().

 EXPORT int crypto_aead_encrypt(
 ...
 )

 EXPORT int crypto_aead_decrypt(
 ...
 )

– Modify the global Makefile located inside the $root/CAESAR folder. This can be
done by inserting your new algorithm in the list of primitives at the top of the file
as shown below:

 PRIMITIVES = \
 $new_library \

Note: Do not forget to recompile the code according to the above instruction. You may
also need to perform make clean first.

Python-related modification There’s no specific Python related modification.
The user needs to provide appropriate settings to the AETV gen for the output to be
produced correctly.



Appendix E.7 Removal of a library

Amajority of round 1 CAESAR candidates are included in our distribution. Candidates
that are not being used by user can be removed from a compilation list to reduce
compilation time. This can be done by modifying the PRIMITIVEs variable at the top
of Makefile located in CAESAR folder.

Appendix F: Vivado Results Generation Scripts

Starting from version 1.1b1, our supporting codes, available at [17], include a set of
scripts that can be used to generate optimized results using Xilinx Vivado. A user of
these scripts can choose to implement HDL code of a cryptographic module

– without a wrapper, using the Out-of-Context (OOC) mode of Vivado (OOC mode)
[19], or

– with a simple wrapper (aimed at reducing a total number of pins required), using
the TopDown mode of Vivado [19].

To generate results for a specific project you must set up the directory structure, list all
source files to be included in the project, modify several key files, and finally run a few
scripts to generate device specific results. This process is summarized in the step-by-
step fashion below. Additionally, Xilinx provides a general tutorial [19], describing the
aforementioned design modes in more detail. The instructions below apply to both the
OOC mode and the TopDown mode of the results generation, unless otherwise noted.

1. Directory Structure Setup
(a) Copy the scripts/VivadoBatch folder to a new workspace.
(b) Rename the PROJECT folder to any more specific project name. Note, you

can copy and paste this folder as many times as required to accommodate
multiple projects.

(c) Copy all source files to the subfolder "Sources/hdl"
2. PRJ File Setup

For the AEAD_Core implemented in the OOCmode modify prj/AEAD_Core.prj.
For the CipherCore implemented in the TopDown mode, with a wrapper, modify
prj/CipherCore_Wrapper.prj, respectively.
In the respective PRJ file, list names of all source files necessary to implement
your circuit (including a possible wrapper). Use the format: vhdl work "[SRC
FOLDER]/[FILENAME]", e.g., vhdl work "hdl/AEAD_pkg.vhd"

3. (OOC Only): Blackbox File
(a) Create hdl/AEAD_Core_bb.vhd with only the entity declaration from

AEAD_Core.vhd.
4. (Optional): Constraints File

(a) The target clock frequency or placement constraints for the implementation
can be modified in either AEAD_Core_Wrapper_flpn.xdc (OOC) or
CipherCore_Wrapper_flpn.xdc (TopDown). Please note, that for any Top-
Down implementation, only timing constraints are required, while both timing
and placement constraints are used when generating OOC results. For more
details, please see "Step 5: Defining the Top-Level Constraints" [19] .

5. Wrapper Files



(a) Set the appropriate generic values for the wrapper files:
hdl/AEAD_Core_Wrapper.vhd (OOC) and/or
hdl/CipherCore_Wrapper.vhd (TopDown)

(b) Ensure that hdl/AEAD_Core_Wrapper.vhd has the correct values of G_W
and G_SW, set in accordance with AEAD_Core.vhd

6. Script Execution and Result Generation
(a) Type any of the following four command sequences into Vivado Tcl Shell to

generate results in the OOC or TopDown mode, targeting Virtex-7 (v7) or
Zynq. Note, you will need to launch a new Vivado Tcl Shell each time if you
want to run all four command sequences simultaneously.
OOC Zynq:

 vivado -mode batch -source genOOC_zynq.tcl -notrace
 vivado -mode batch -source runOOC_zynq.tcl -notrace

OOC v7:

 vivado -mode batch -source genOOC_v7.tcl -notrace
 vivado -mode batch -source runOOC_v7.tcl -notrace

TopDown Zynq:

 vivado -mode batch -source genTopDown_zynq.tcl -notrace
 vivado -mode batch -source runTopDown_zynq.tcl -notrace

TopDown v7:

 vivado -mode batch -source genTopDown_v7.tcl -notrace
 vivado -mode batch -source runTopDown_v7.tcl -notrace

Note, the gen scripts create Synthesis results and/or OOC constraints and the run
scripts produce the implementation results, which can be found in the "Implemen-
tation" folder for any device specific OOC/TopDown run.

7. Use python script to view results of all implementations
(a) Navigate to the python folder.
(b) Execute the getResults.py file, which takes the results folder as an input. Usage:

getResults.py [result_folder]
(c) All results found in the result_folder will be sent to output.txt located

in the python directory.

Appendix G: Update history for supporting codes

Version 1.2 - Released December 6, 2015

– Added LOADLEN_ENABLE generic that enables the Length segment required by
algorithms that need complete information about the AD and message/ciphertext
size, before encryption/decryption starts.

– Modified how PreProcessor handles the ACT_KEY command. The unit now au-
tomatically ignores ACT_KEY command for an already activated key.

– Extended the universal testbench to log more meaningful messages to log.txt, which
is generated during simulation. In particular, the current message ID, key ID, and
operation (encryption or decryption) are displayed. When an error occurs, the
following data are provided:



• Message ID
• A line number in which an error occurs in the expected output file (do.txt)
• A word number in the line
• Expected data
• Actual data.

– Changed the format of an expected output file (do.txt) generated by AETvgen.
’X’ (don’t care) character is no longer a part of a default output file due to incom-
patibility with ISim. Note: ModelSim correctly reads ’X’ via textio package while
ISim does not.

– Added missing ACT_KEY in do.txt for the encryption operation.
– Removed support for automatic zeroization (clearing any portions of output blocks

not belonging to ciphertext or plaintext) when CIPHERTEXT_MODE is set to
2. The designer needs to ensure the correct output from CipherCore when this
generic is set. Note: This change should affect only a limited number of ciphers.

– Changed the segment type encoding. The user will need to regenerate test vectors
to avoid any potential problems during verification.

– Clearly listed limitations of our high-speed implementation of the GMU Hardware
API in Appendix D.

Version 1.1b1 - Released September 12, 2015

– Added support for result generation and optimization in batch mode using Vivado.
– Added support for key scheduling done in software.
– Added support for Secret Message Number, Nsec.
– Added npub_read signal for better synchronization between the CipherCore and

the PreProcessor. In particular, the CipherCore can indicate whether the current
Npub can be overwritten by the PreProcessor or not.

– Extended PAD_D to support all modes of operation.
– Extended PAD_AD to support all modes of operation.
– Extended CIPHERTEXT_MODE to support all modes: 0, 1, and 2.
– Fixed REVERSE_DBLK behavior. It now correctly operates when CIPHER-

TEXT_MODE is set to 2.
– Fixed support for ABLK_SIZE 6= DBLK_SIZE.

Version 1.0b1 - Released June 30, 2015 (with minor upgrades on July 3, 2015 and July
15, 2015)

– Initial release.
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