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Abstract. This paper presents a generic “GMW-style” method for turning passively secure protocols
into protocols secure against covert attacks, adding relatively cheap offline preprocessing and post-
execution verification phases. In the preprocessing phase, each party generates and shares a sufficient
amount of verified multiplication triples that will be later used to assist that party’s proof. The execution
phase, after which the computed result is already available to the parties, has only negligible overhead
that comes from signatures on sent messages. In the postprocessing phase, the verifiers repeat the
computation of the prover in secret-shared manner, checking that they obtain the same messages that
the prover sent out during execution. The verification preserves the privacy guarantees of the original
protocol. It is applicable to protocols doing computations over finite rings, even if the same protocol
performs its computation over several distinct rings. We apply our verification method to the Sharemind
platform for secure multiparty computations (SMC), evaluate its performance and compare it to other
existing SMC platforms offering security against stronger than passive attackers.

1 Introduction

Suppose that mutually distrustful parties communicating over a network want to solve a common compu-
tational problem. It is known that such a computation can be performed in a manner that the participants
only learn their own outputs and nothing else [36], regardless of the functionality that the parties actually
compute. This general result is based on a construction expensive in both computation and communication,
but now there exist more efficient general secure multiparty computation (SMC) platforms [10,14,20,25], as
well as various protocols optimized to solve concrete problems [13,17,19,31].

Two main kinds of adversaries against SMC protocols are typically considered: passive and active. The
highest performance and greatest variety is achieved for protocols secure against passive adversaries. In
practice one would like to achieve stronger security guarantees (see e.g. [48]). Achieving security against
active adversaries may be expensive, hence intermediate classes (between passive and active) have been
introduced.

In practical settings, it is often sufficient that the active adversary is detected not immediately after the
malicious act, but at some point later. Hence ideas from verifiable computation (VC) [34] are applicable
to SMC. In general, VC allows a weak client to outsource a computation to a more powerful server that
accompanies the computed result with a proof of correct computation that is relatively easy for the weak
client to verify. Similar ideas can be used to strengthen protocols secure against passive adversaries: after
execution, each party will prove to others that it has correctly followed the protocol.

In this work we propose a distributed verification mechanism allowing one party (the prover) to convince
others (the verifiers) that it followed the protocol correctly. All the inputs and the incoming/outgoing mes-
sages of the prover are secret-shared (using a threshold linear secret-sharing scheme) among all the other
parties. The verifiers repeat the prover’s computations, using verifiable hints from the prover. The verification
is zero-knowledge to any minority coalition of parties.

Prover’s hints are based on precomputed multiplication triples [5] (Beaver triples), which we adapt for
verification. Before starting the verification (and even the execution), the prover generates and shares among
the other parties sufficiently many such triples. Importantly, the prover provides a proof that these triples



are generated and shared correctly. During verification, the correctness of precomputed triples implies the
correctness of prover’s computations.

The entire construction constitutes a variant of the GMW compiler [16, 36] from passively to actively
secure protocols, showing that this technique can be highly efficient. Our verification phase can be seen as
an interactive proof, where the prover uses correlated randomness to make the proof, and the verifier has
been implemented using SMC to ensure its correct behaviour and prover’s privacy.

Applying this verification mechanism n times to any n-party computation protocol, with each party
acting as the prover in one instance, gives us a protocol secure against covert (if verification is performed at
the end) or fully malicious (if each protocol round is immediately verified) adversaries corrupting a minority
of parties. In this work we apply that mechanism to the SMC protocol set [10] employed in the Sharemind
platform [9], demonstrating for the first time a method to achieve security against active adversaries for
Sharemind. We note that the protocol set of Sharemind is very efficient [39], and its deployments [11,37,60]
include the largest SMC applications ever [6, 7]. We discuss the difficulties with previous methods in Sec. 2.

From covert to active security. The verification step converts a protocol secure against a passive ad-
versary to a protocol secure against covert adversary [2] that is prevented from deviating from the prescribed
protocol by a non-negligible chance of getting caught. In our case, the probability of not being caught is neg-
ligible, based on the properties of underlying message transmission functionality (signatures), hash functions,
and the protocols that generate offline preshared randomness.

In general, we believe that in most situations, where sufficiently strong legal or contractual frameworks
are in place, providing protection against covert adversaries is sufficient to cover possible active corruptions.
The computing parties should have a contract describing their duties in place anyway [28], this contract can
also specify appropriate punishments for being caught deviating from the protocol.

Moreover, the protocol set [10] is private against active adversaries, as long as no values are declassi-
fied [52]. If declassification is applied only to computation results at the end of the protocol, then prepending
it with our verification step gives us an actively secure protocol [43].

Hence in this paper, our stated goal is to achieve a strong form of covert security, where any deviations
from the protocol will remain undetected with only negligible probability. But we keep in mind that it is
only a small step from this security property to fully active security.

Cost of precomputation. There exist other protocols for SMC secure against active adversaries (see
Sec. 2) where the additional verification of the behaviour of parties causes only very modest overheads. Our
verification phase, even while having a reasonable cost of its own, is not competitive with these approaches.
However, the efficiency of the verification of these other approaches comes at the expense of very costly
precomputation (see Sec. 2), significantly hampering the deployment. Our approach also has the precompu-
tation phase, which is still the most expensive part of the protocol, but it is orders of magnitude faster than
previous methods (see Sec. 6) and may actually serve as a partial replacement for them (see Sec. 7).

The reduction of the total cost of actively secure computation is the main benefit of our work. We achieve
this through novel constructions of verifiable computing, reducing the correctness of computations to the
correctness of pre-generated multiplication triples and tuples for other operations. An important difference
of our triple generation from the other works is that the prover is allowed to know the values of the triples,
which makes the triple generation significantly more efficient.

2 Related Work

Several techniques exist for two-party or multiparty computation secure against malicious adversaries. We
are aware of implementations based on garbled circuits [40, 49], on additive sharing with MACs to check
for correct behaviour [23, 25, 27], on Shamir’s secret sharing [20, 58], and on the GMW protocol [36] paired
with actively secure oblivious transfer [49]. Different techniques suit the secure execution of different kinds of
computations, as we discuss below. The verification technique we propose in this paper is mostly suitable for
secret-sharing based SMC, with no preference towards the algebraic structures underlying the computation.

Our protocol uses precomputed multiplication triples, and also precomputed tuples for other operations
to verify whether parties have followed the protocol. Such triples [5] are used by several existing SMC
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frameworks, including SPDZ [25] or ABY [30]. Differing from them, we use the triples not for performing
computations, but for verifying them. This is a new idea that allows us to sidestep the most significant
difficulties in pre-generating the tuples.

The difficulty is, that the precomputed tuples for secure computation must be private. Heavyweight
cryptographic tools are used to generate them under the same privacy constraints as obeyed by the main
phase of the protocol. Existing frameworks utilize homomorphic [30,51,53] or somewhat (fully) homomorphic
encryption systems [12, 23] or oblivious transfer [49]. For ensuring the correctness of tuples, the generation
is followed by a much cheaper correctness check [23]. Our approach keeps the correctness check, but the
generation can be done “in the open” by the party whose behaviour is going to be checked.

While these methods can be secure for dishonest majority, they lead to protocols that are in some sense
weaker than ours — they do not allow the identification of a misbehaving party. Recently, an identification
mechanism for SPDZ-like protocols has been proposed [59], but the complexity of determining the identity
of a misbehaving party may be too high for being a sufficient deterrent.

For honest majority and three parties, a recent method [33] proposes the use of a highly efficient passively
secure protocol for precomputing multiplication triples. Again, this method only allows the detection of
misbehaviour, but no identification of the guilty party.

Previously, methods for post-execution verification of the correct behaviour of protocol participants have
been presented in [3,21,42]. We note that the general outline of our verification scheme is similar to [3] — we
both commit to certain values during protocol execution and perform computations with them afterwards.
However, the committed values and the underlying commitment scheme are very different. One important
resulting difference is that our work can be straightforwardly applied to computation over rings.

We apply our verification to the protocol set of Sharemind [9], which is based on additive sharing over
finite rings among three computing parties. The number of parties providing inputs or receiving outputs may
be much larger. Typically, the rings represent integers of certain length. The protocol set tolerates one passive
corruption. Existing MAC-based methods for ensuring the correct behaviour of parties are not applicable
to this protocol set, because these methods presume the sharing to be done over a finite field. Also, these
methods can protect only a limited set of operations that the computing parties may do, namely the linear
combinations and declassification. Sharemind derives its efficiency from the great variety of protocols it has
and from the various operations that may be performed with the shares.

Complexity of actively secure integer multiplication and AES

We are interested in bringing security against active adversaries to integer and floating-point operations, to
be used in secure statistical analyses [7], scientific computations [37] or risk analysis [6]. Such applications
use protocols for different operations on private data, but an important subprotocol in all of them is the
multiplication of private integers. Hence, let us study the state of the art in performing integer multiplica-
tions in actively secure computation protocol sets. All times reported below are amortized over the parallel
execution of many protocol instances. All reported tests have used modern (at the time of the test) servers
(one per party), connected to each other over a local-area network.

Such protocol sets are based either on garbled circuits or secret sharing (over various fields). Lindell and
Riva [46] have recently measured the performance of maliciously secure garbled circuits using state-of-the-art
optimizations. Their total execution time for a single AES circuit is around 80ms, when doing 1024 executions
in parallel and using the security parameter η = 80 (bits). The size of their AES circuit is 6800 non-XOR
gates. According to [29], a 32-bit multiplier can be built with ca. 1700 non-XOR gates. Hence we extrapolate
that such multiplication may take ca. 20ms under the same conditions. Our extrapolation cannot be very
precise due to the very different shape of the circuits computing AES or multiplication, but it should be
valid at least as an order-of-magnitude approximation.

A protocol based on secret sharing over Z2 [49] would use the same circuit to perform integer multiplica-
tion. In [32], a single non-XOR gate is estimated to require ca. 70µs during preprocessing (with two parties).
Hence a whole 32-bit multiplier would require ca. 120ms. As the preprocessing takes the lion’s share of total
costs, there is no need for us to estimate the performance of the online phase.
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Recent estimations of the costs of somewhat homomorphic encryption based preprocessing for maliciously
secure multiparty computation protocols based on additively secret sharing over Zp are hard to come by.
In [22], the time to produce a multiplication triple for p ≈ 264 is estimated as 2ms for covert security and
6ms for fully malicious security (with two parties, with η = 40). We presume that the cost is smaller for
smaller p, but for p ≈ 232, it should not be more than twice as fast. On the other hand, the increase of η to
80 would double the costs [22]. In [23], the time to produce a multiplication triple for p ≈ 232 is measured
to be 1.4ms (two parties, η = 40, escape probability of a cheating adversary bounded by 20%).

The running time for actively secure multiplication protocol for 32-bit numbers shared using Shamir’s
sharing has been reported as 9ms in [20] (with four parties, tolerating a single malicious party). We are not
aware of any more modern investigations into Shamir’s secret sharing based SMC.

A more efficient N -bit multiplication circuit is proposed in [26], making use computations in Z2 and in Zp
for p ≈ N . Using this circuit instead of the one reported in [29] might improve the running times of certain
integer multiplication protocols. But it is unclear, what is the cost of obtaining multiplication triples for Zp.

In this work, we present a set of protocols that is capable of performing a 32-bit integer multiplication
with covert security (on a 1Gbps LAN, with three parties, tolerating a single actively corrupted party, η = 80,
negligible escape probability for a cheating adversary) in 15 µs. This is around two orders of magnitude faster
than the performance reported above.

In concurrent work [38], the oblivious transfer methods of [32] have been extended to construct SPDZ
multiplication triples over Zp. They report amortized timings of ca. 200µs for a single triple with two parties
on a 1Gbps network, where p ≈ 2128 and η = 64. Reducing the size of integers would probably also reduce the
timings, perhaps even bringing them to the same order of magnitude with our results. But their techniques
(as well as most others described here) only work for finite fields, not rings. For fields, there exist methods
to reduce the number of discarded triples during triple verification, which also apply for us.

Recently [24], amortized time 0.5µs was reported for computing a single AES block. However, it takes
into account only the online phase. The authors do not provide benchmarks for preprocessing, but they
estimate that using recent mechanisms for doing preprocessing, up to 105 AND gates could be computed per
second. Assuming that a single AES block contains ca 6400 AND gates (as in our benchmarks), this would
suffice for around 16 AES blocks per second, or 63ms per AES block. In this work, we compute a 128-bit
AES block with covert security in 2.9ms, including the preprocessing.

3 Ideal Functionality

Notation. Throughout this work, we use x to denote vectors, where xi is the i-th coordinate of x. All
operations on vectors are defined elementwise. We denote [n] = {1, . . . , n}.

Circuits. An arithmetic circuit over rings Zn1
, . . . ,ZnK consists of gates performing arithmetic oper-

ations, and connections between them. An operation may be either an addition, constant multiplication,
or multiplication in one of the rings Znk . It may also be “x = trunc(y)” or “y = zext(x)” for x ∈ Znx and
y ∈ Zny , where nx < ny. The first of them computes x = y mod nx, while the second lifts x ∈ Znx to the
larger ring Zny . Finally, there is an operation (z1, . . . , zdlognxe) = bd(x) that decomposes x ∈ Znx into bits.
This operation could be implemented through other listed operations, but it occurs so often in Sharemind [10]
protocols, and can be verified much more efficiently, so it makes sense to consider it separately.

This set of gates is sufficient to represent any computation. Any gates with other operations can be
expressed as a composition of the available ones. Nevertheless, the verifications designed for special gates
may be more efficient. The protocol set of Sharemind also contains some other operations, and all of them
can be handled by our verification method.

Execution Functionality. We specify our verifiable execution functionality in the universal compos-
ability (UC) framework [15]. Such specification allows us to precisely state the security properties of the
execution.

We have n parties (indexed by [n]), where C ⊆ [n] are corrupted for |C| < n/2 (we denote H = [n]\C).
There is a secure channel between each pair of parties. The protocol is synchronous. It has r rounds, where
the `-th round computations of the party Pi, the results of which are sent to the party Pj , are given by a

4



• In the beginning, Fvmpc gets from Z for each party Pi the message (circuits, i, (C`
ij)

n,n,r
i,j,`=1,1,1) and forwards them

all to AS . For each i ∈ [n], Fvmpc randomly generates ri. For each i ∈ C, it sends (randomness, i, ri) to AS . At this
point, AS may stop the functionality. If it continues, then for each i ∈ H [resp i ∈ C], Fvmpc gets (input,xi) from Z
[resp. AS ].
• For each round ` ∈ [r], i ∈ H and j ∈ [n], Fvmpc uses C`

ij to compute the message m`
ij . For all j ∈ C, it sends

m`
ij to AS . For each j ∈ C and i ∈ H, it receives m`

ji from AS .
• After r rounds, Fvmpc sends (output,mr

1i, . . . ,m
r
ni) to each party Pi with i ∈ H. Let r′ = r and B0 = ∅.

Alternatively, at any time before outputs are delivered to parties, AS may send (stop,B0) to Fvmpc , with B0 ⊆ C.
In this case the outputs are not sent. Let r′ ∈ {0, . . . , r − 1} be the last completed round.
• After r′ rounds, AS sends to Fvmpc the messages m`

ij for ` ∈ [r′] and i, j ∈ C.
Fvmpc defines M = B0 ∪ {i ∈ C | ∃j ∈ [n], ` ∈ [r′] : m`

ij 6= C`
ij(xi, ri,m

1
1i, . . . ,m

`−1
ni )}.

• Finally, for each i ∈ H, AS sends (blame, i,Bi) to Fvmpc , with M⊆ Bi ⊆ C. Fvmpc forwards this message to Pi.

Fig. 1: The ideal functionality Fvmpc for verifiable computations

publicly known arithmetic circuit C`ij over rings Zn1 , . . . ,ZnK . The honest parties are using these circuits to
compute their outgoing messages, while the corrupted parties can send anything.

The circuit C`ij computes the `-th round messages m`
ij to the party j ∈ [n] from the input xi, randomness

ri and the messages mk
j′i (k < `) that Pi has received before. All values xi, ri,m

`
ij are vectors over rings ZN .

We define that the messages received during the r-th round comprise the output of the protocol. The ideal
functionality Fvmpc , running in parallel with the environment Z (specifying the computations of all parties
in the form of circuits and the inputs of honest parties), as well as the adversary AS , is given on Fig. 1.

In addition to the computation results, Fvmpc outputs to each party a set M of parties deviating from
the protocol. Our verifiability property is very strong, as all of them will be reported to all honest parties.
Even if only some rounds of the protocol are computed, all the parties that deviated from the protocol in
completed rounds will be detected. Also, no honest parties (in H) can be falsely blamed. We also note that
if M = ∅, then AS does not learn anything that a semi-honest adversary could not learn.

The aim of this paper is to construct an efficient protocol Πvmpc and to prove the following theorem.

Theorem 1. Let C be the set of corrupted parties. If |C| < n/2 and there is a PKI that fixes the public keys
of all parties, then Πvmpc UC-emulates Fvmpc.

The following section gives the construction of the protocol and outlines its security proof. The full proof
of security is deferred to App. C.

4 The Real Protocol

Before going to the details, let us give a general look of transforming a protocol, defined by circuits C`ij ,
to a verifiable one. The general idea is that, after the protocol execution ends, each party (the Prover P )
has to prove that it followed the protocol to the set of other n − 1 parties (the Verifiers V1, . . . , Vn−1). All
n interactive proofs of the n provers may take place in parallel. In the rest of Sec. 4, we describe one such
proof.

We assume that the majority of parties is honest. We show that this allows us to use linear threshold
secret sharing to make P and V1, . . . , Vn−1 (some of which may be corrupted) together collaborate as an
honest verifier.

In the preprocessing phase, the parties generate verified multiplication triples. These are triples (a, b, c)
from some ring, secret-shared among the verifiers, such that ab = c and the verifiers have been convinced
that this equality holds. The triples are generated and secret-shared by the prover. The verifiers execute a
protocol to check that ab = c. Similarly, the parties generate trusted bits: values b from some ring, such that
b ∈ {0, 1} (the prover generates and shares b, and the verifiers check b ∈ {0, 1}). If some party misbehaves,
then the preprocessing phase fails with very high probability. It is possible that the deviator cannot be
identified. We formalize this phase as a functionality Fpre given in Fig. 2.
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Fpre works with unique identifiers id, encoding a ring size m(id) in which the tuples are shared, the party p(id) that
gets all the shares, and the number n(id) of tuples to be generated. It stores a vector triple of precomputed triples,
and a vector bit of trusted bits. Let AS denote the ideal adversary.
Initialization: On input (init, m̃, ñ, p̃) from each (honest) party, initialize triple and bit to empty arrays. Assign the
functions m← m̃, n← ñ, p← p̃.
Multiplication triple generation: On input (triple, id) from Pi, check if triple[id] exists. If it does, take

(rk
x, r

k
y , r

k
xy)k∈[n] ← triple[id]. Otherwise, generate rx

$← Zn(id)

m(id), ry
$← Zn(id)

m(id), and compute rxy ← rx · ry. Compute

the shares (rk
x)k∈[n], (rk

y)k∈[n], and (rk
xy)k∈[n] of rx, ry, and rxy respectively. Assign triple[id]← (rk

x, r
k
y , r

k
xy)k∈[n]. If

p(id) 6= i, send (ri
x, r

i
y, r

i
xy) to Pi. Otherwise, send (rk

x, r
k
y , r

k
xy)k∈[n] to Pi. For all k ∈ C, send (rk

x, r
k
y , r

k
xy) also to

AS . If i ∈ C, send all shares (rk
x, r

k
y , r

k
xy)k∈[n] to AS .

Trusted bit generation: On input (bit, id) from Pi, check if bit[id] exists. If it does, take (rk)k∈[n] ← bit[id].

Otherwise, generate a vector of random bits r
$← Zn(id)

2 . Compute the shares (rk)k∈[n] of r over Zn(id)

m(id). Assign

bit[id]← (rk)k∈[n]. Handle (rk)k∈[n] similarly to the multiplication triple shares.
Stopping: On input (stop) from AS , stop the functionality and output ⊥ to all parties.

Fig. 2: Ideal functionality Fpre

At the beginning of the execution phase, P commits to its inputs and randomness by secret-sharing
them among verifiers. During that phase, the parties run the protocol as usual, but they sign the messages
they send out, so that the receiver may later prove which message it has got from the sender. This adds some
overhead to the protocol run, but it is negligible — not many signatures are needed [47], and these can also
be largely precomputed [56].

The preprocessed multiplication triples and trusted bits are not used in the execution phase. They will
be needed to check the behaviour of the prover later, after the execution ends. Still, execution may not
start before a sufficient number of verified triples and bits have been generated, since otherwise it will be
impossible to check later if the party has cheated. Also, a party may not continue with the execution of the
protocol if a signature it has received does not pass verification.

At the beginning of the post-execution phase, the prover commits to the messages it has sent and
received during the execution phase by secret sharing them among the verifiers. The signatures generated
during the execution phase do not allow the sender to deny the transmitted message without the receiver’s
agreement. The verifiers then repeat the computations of the prover in secret-shared manner. For additions
and multiplications with constants, they use the homomorphic properties of the secret-sharing scheme. For
any other operation, they use verified triples or bits to linearize it. This linearization needs the opening of
some secret-shared values. The prover knows all these values and can broadcast all of them in a single round.
Hence, after the commitment transformation and broadcast by prover, each verifier can compute the shares
of prover’s messages without further interaction.

The verification ends with the verifiers executing a protocol to check that the secret-shared messages of
the prover they just computed are equal to the messages that the prover committed. At the same time, they
also verify that the prover broadcast correct values. The prover sees all messages in this protocol and can
complain if any verifier misbehaves. Assuming that the prover has signed all the shares that it has issued
to the verifiers, the complaint can be justified. The honest majority assumption ensures that a corrupted
prover cannot collaborate with the corrupted verifiers to cheat. We formalize the verification phase as a
functionality Fverify given in Fig. 3.

In the rest of this section, we describe the building blocks used by Fpre and Fverify , and the protocols
implementing them.

4.1 Building Blocks

Ensuring Message Delivery Throughout the protocol execution, we meet the problem of stopping. A
corrupted sender may provide an invalid signature, or even decide not to send the message at all, so that the
remaining parties cannot proceed with the execution. Even if the receiver complains that it has not received
the message, the remaining parties do not know whether they should blame the sender or the receiver.
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Fverify works with unique identifiers id, encoding the party indices p(id) and p′(id) (the latter is used only for message
commitments), the compound operation f(id) to verify (a composition of basic operations of Sec. 4.3), the input
indices xid(id), and the output indices yid(id) on which f(id) should be verified. The committed values are stored
in an array comm. The messages are first stored in an array sent before they are finally committed. Let AS denote
the ideal adversary.
Initialization: On input (init, f̃ , ˜xid, ˜yid, p̃, p̃′) from all the (honest) parties, initialize comm and sent to empty
arrays. Assign the functions f ← f̃ , xid← ˜xid, yid← ˜yid, p← p̃, p′ ← p̃′.
Input Commitment: On input (commit input,x, id) from Pp(id), and (commit input, id) from all honest parties, if
comm[id] exists, then do nothing. Otherwise, assign comm[id]← x. If p(id) ∈ C, then x is chosen by AS .
Message Commitment: On input (send msg,m, id) from Pp(id), output m to Pp′(id). If p(id) ∈ C, then m is chosen
by AS . If p′(id) ∈ C, output m to AS . Assign sent [id]←m.
On input (commit msg, id) from all honest parties, check if sent [id] and comm[id] are defined. If either comm[id] is
defined, or sent [id] is not defined, then do nothing. Otherwise, assign comm[id]← sent [id]. If both p(id), p′(id) ∈ C,
assign comm[id]←m∗, where m∗ is chosen by AS .
Randomness Commitment: On input (commit rnd, id) from Pp(id), and (commit rnd, id) from all honest parties,
if comm[id] exists. If it does, then do nothing. Otherwise, generate a random r, and assign comm[id]← r. Output r
to Pp(id). If p(id) ∈ C, output r also to AS .
Verification: On input (verify, id) from all honest parties, take x← (comm[i])i∈xid(id) and y ← (comm[i])i∈yid(id).
For f ← f(id), compute y′ ← f(x). If y′ − y = 0, output 1 to each party. Otherwise, output (corrupt, k) to each
party. Output the difference y′ − y, to AS . Output the difference y′ − y to AS .
Stopping: On input (stop, k) from AS for k ∈ C, output (corrupt, k) to each party. Do not accept any inputs from
p(id) = k anymore. Assign p(id)← p′(id) for p(id) = k, and p′(id)← p(id) for p′(id) = k (in order to make the proofs
of the other parties possible to finish).

Fig. 3: Ideal functionality Fverify

It would be especially sad to allow a corrupted party stop the verification phase in this way, so that the
misbehaved parties will not be pinpointed.

To solve this problem, we use the transmission functionality proposed in [21]. If the receiver claims that
the sender has not sent the message, then the sender has to broadcast the message, so that each party is
now convinced that the message has been delivered. If the sender refuses to broadcast, it will be publicly
blamed. In the optimistic setting, as far as all the parties follow the protocol, this broadcast will not be
needed at all. In a single adversary model (like UC), such a broadcast does not leak any data, since if there is
a conflict, then either the sender or the receiver is corrupted, and hence the adversary knows the broadcast
value anyway.

We use this solution not only in the execution, but also in the preprocessing and the verification phases,
in order to ensure that all the shares are delivered and all the proofs terminate.

Sharing Based Commitments The commitment of the inputs, the randomness, the messages, and also
the precomputed values, is based on a linearly homomorphic (n, t)-threshold sharing scheme with signatures.
It ensures consistency of the shared value and allows to prove later what exactly has been shared. We
emphasize that the initial protocol that is being verified does not have to be based on some linear sharing.
Our verification is very generic and can verify any multiparty computation, including the ones that do not
use any sharing at all. Linear sharing is needed only for the verification.

Shamir’s sharing is an example of (n, t)-threshold sharing that works over any finite field. We could verify
ring operations also in a finite field, but the solution would be cumbersome. An (n, t)-threshold sharing can
be constructed on the basis of additive sharing. Let a ∈ R for some ring R. Let V1, . . . ,V(nt)

be all subsets

of [n] of size t. The share of each party Pk is a vector ak ∈ R(nt), such that for each j ∈ [
(
n
t

)
], the equation∑

k∈Vj a
k
j = a holds. Also, akj = 0 whenever k 6∈ Vj .

In other words, the same value a is additively shared in
(
n
t

)
different ways, each time issuing some shares

a1, . . . , at such that a1 + . . .+ at = a to a certain subset of t parties. All these
(
n
t

)
sharings are independent.
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In this way, any t parties are able to reconstruct the secret, but less than t are not. We write JaK = (ak)k∈[n]
to denote the sharing of a.

Under the honest majority assumption, any (n, t)-threshold secret sharing scheme with t = bn/2c+ 1 can
be used as a commitment [18]. Namely, the committed value is shared among the n parties, and each share
is signed (we assume the availability of a PKI). The commitment can be opened by revealing the shares and
verifying their signatures. If the number of honest parties is also at least t, then there is an index j, such that
Vj lists only honest parties. In this case, a set of shares can be reconstructed to at most one value, even if
corrupted parties tamper with their shares (tampering may only lead to inconsistency of shares, and failure
to open the commitment). The signatures on shares prevent corrupted parties from causing an inconsistent
opening. Availability of at least t honest parties allows to open the commitment even if all the corrupted
parties refuse to participate.

Throughout this paper, by commitment we mean sharing the value among the n parties using a linear
(n, t)-threshold sharing. In order to avoid ambiguity, no other definition of commitment is used.

4.2 Protocol Implementing Fpre

In the preprocessing phase, the parties have to produce a sufficient number of multiplication triples and
trusted bits over each ring that is used in the main protocol. The prover, allowed to know the sharings,
simply generates the values itself, and commits to them by (n, t)-threshold sharing. The prover is interested
in generating the tuples randomly, because his (and only his) privacy depends on it. The parties will then
check whether the prover generated the tuples correctly. If the check fails, the parties will not run the
execution phase.

In order to perform the check, the parties first agree on a joint random seed. They will then perform two
sub-checks: cut-and-choose and pairwise verification. In the cut-and-choose step, the parties randomly select
k tuples and open them. This phase fails if any of the opened tuples are wrong. If cut-and-choose succeeds,
only a negligible amount of the remaining tuples may be wrong. The parties then randomly partition the
remaining tuples into groups of m. In each group, they use each of the first (m− 1) tuples to verify the m-th
one. This check fails if any of the pairwise checks fail. As analyzed below, it fails unless all tuples in a group
are valid or all are invalid. After the check, the first (m − 1) tuples in each group are discarded and only
the last one is used. The preceding cut-and-choose step ensures that all the finally used tuples are correct,
except with negligible probability.

Hence, to finish the preprocessing with u tuples of certain kind, (m · u+ k) tuples have to be generated
and shared in the beginning. A combinatorial analysis (omitted due to space constraints, and its results are
quite similar to [33]) shows that values m and k do not need to be large. For example, if u = 220, then
it is sufficient to take m = 5 and k = 1300. If u = 230 then m = 4 and k = 14500 are sufficient. These
choices guarantee that if the prover aims to have an invalid tuple among the final u ones, then no strategy
of generating the initial tuples makes the probability of the check succeeding greater than 2−80. At the other
extreme, if u = 10, then m = 26 and k = 168 are sufficient for the same security level.

The pairwise verification, applied to two multiplication triples, or to two trusted bits, works as follows.
Note that it is certain to fail if exactly one of the tuples is a correct one.

Multiplication triples. These are triples of shared values (JaK, JbK, JcK) in a ring Zn, where a and b are
random and c = a ·b. Let the triple (Ja′K, Jb′K, Jc′K) be used to verify the correctness of the triple (JaK, JbK, JcK).
The parties compute JâK = JaK− Ja′K and Jb̂K = JbK− Jb′K, and declassify â, b̂ (the check fails if reconstruction

is impossible). They will then compute JzK = â · JbK + b̂ · Ja′K + Jc′K− JcK, declassify it and check that it is 0.
The check succeeds if both tuples are correct and declassifications do not fail. If one of the tuples is correct
but in the other one, the third component differs from the product of the first two components by δc, then
z = ±δc 6= 0.

Trusted bits. These are shared values JbK in a ring Zn, where b ∈ {0, 1} is random. Let the bit Jb′K in
a ring Zn be used to verify that JbK is a bit. The prover broadcasts a bit indicating whether b = b′ or not. If
b = b′ was indicated, the verifiers compute JzK = JbK− Jb′K, declassify it and check that it is 0. If b 6= b′ was
indicated, the verifiers compute JzK = JbK + Jb′K, declassify it and check that it is 1. In both cases, if exactly
one of JbK, Jb′K contained a bit in {0, 1} and the other one did not, then the check cannot succeed.
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In a finite field, more efficient methods than pairwise verification are available. For example, we can replace
the cut-and-choose and pairwise verification steps with an application of linear error correcting codes [4].
This technique allows the construction of n verified triples from only n+k initial ones, where k is proportional
to η. Hence for large values of n, the communication cost due to verification is negligible.

The discussion of this section can be seen as a proof sketch for the following lemma:

Lemma 1. Let C be the set of corrupted parties. Assuming the existence of PKI and |C| < n/2, there exists
a protocol Πpre UC-realizing Fpre .

The cut-and-choose with pairwise verification works similarly to [25] and [33], so we refer to [33] for a
more formal proof of Lemma 1.

4.3 Protocol Implementing Fverify

The initialization of Fverify triggers initialization of Fpre that reserves the identifiers and the corresponding
types of tuples that will be later used to verify the functions f(id) with which Fverify is initialized.

One by one, we now describe how different functionalities of Fverify are implemented.

Commitment to randomness Before the execution phase starts and inputs are given to the parties, the
prover P must fairly choose the randomness it is going to use during the protocol, and commit to it. For
this purpose, the verifiers jointly generate this randomness. Each verifier Vj sends a sufficiently long random
vector rj to the prover P and commits both herself and the prover to it. More precisely, Vj secret-shares the
vector rj , signs the shares, and sends them all to P . The prover P checks for the correctness of sharing and
the signatures, and forwards a signed share to each verifier. The prover P uses

∑
j rj as its randomness. The

sharing of this sum can be computed as the sum of the shares of all rj .
This method works as far as the protocol rounds are synchronous, so that a corrupted prover cannot

collaborate with some corrupted verifier to tamper with the randomness share after all the shares of the
honest verifiers get known to P . In this particular case, synchronicity can be enforced by requiring each
verifier to send first to each other party the hash of the shares that it will obtain from P after one round, and
only then transmit to P the actual shares. In this way, the prover is bound to the t shares of each rj issued
to the honest parties already before any rj is revealed to P . We get a subprotocol implementing commit rnd.

Commitments to inputs and messages Before the execution phase starts, the prover P commits to its
input x by secret-sharing it. This implements commit input.

During the execution phase, the prover P signs the outgoing messages; each message m to some P ′ is
signed together with the identity of the protocol run it is participating in, as well as its position in this
run. In protocols spanning many rounds, many signatures are necessary. To reduce the effort, methods for
signing digital streams [35] may be useful. This implements the function send msg that is a prerequisite for
commit msg.

After the execution phase ends, the prover P secret-shares the message m it had sent to some P ′ during
the execution, separately signs all shares, and sends them all to P ′. Party P ′ (one of the verifiers) makes
sure that the sharing was done correctly, and sends to each party its share, in turn signing it, so that it can
be seen that both P and P ′ agree on the same m. If the sharing was incorrect, P ′ publishes the message, its
shares, and all P ’s signatures, demonstrating that P has misbehaved. Requiring signatures on shares from
both the sender and the receiver ensures that P and P ′ agree on the same committed message m. Since P ′

holds the signature of P on m, even if P does not share m correctly, P ′ may commit m itself by publishing
it, so that the parties may share the published m themselves in an arbitrary pre-agreed way. In the latter
case, publishing m does not leak anything, since if at least one of P and P ′ is corrupted, then the adversary
has already seen m.

At this point, both P and P ′ are committed to the shares of JmK that have been issued to the honest
parties. The same sharing of m is also used by P ′ in the proof of his correct behaviour. It may happen that
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the sharing JmK does not correspond to the m that was transmitted in the execution phase only if P and P ′

both are corrupted. In this case, the actual value of m during the execution phase is meaningless anyway, as
it can be viewed as an inner value of the joint circuit of P and P ′, and it is only important that P and P ′

are committed to the same value.

We get a subprotocol implementing commit msg.

Verification Verification of basic operations. A circuit (defined in Sec. 3) is composed of addition,
multiplication, bit decomposition (bd), and ring transition gates (zext and trunc). We now describe how each
of these gates is verified.

We have the following setup. There is an operation op that takes k inputs in Zm and produces l outputs
in Zm′ . The prover knows values x1, . . . , xk, these have been shared as Jx1K, . . . , JxkK among the n parties
(the prover and (n− 1) verifiers). Moreover, the prover knows the shares of all parties. During the execution
of the protocol the prover was expected to apply op to x1, . . . , xk and obtain the outputs y1, . . . , yl. The
verifiers are sure that the shares they have indeed correspond to x1, . . . , xk (subject to some deferred checks).
A verification step gives us Jy1K, . . . , JylK, where the prover again knows the shares of all verifiers, but no
coalition of up to (t − 1) verifiers has learned anything new. It also gives us a number of alleged zeroes —
shared values Jz1K, . . . , JzsK (all known to prover). If z1 = · · · = zs = 0 then the verifiers are sure that their
shares of y1, . . . , yl indeed correspond to these values. All these equality checks are deferred to be verified
(possibly succinctly) one round later.

Verifying linear combinations. The verifiers compute locally the linear combination of their shares. No
alleged zeroes are created.

Verifying multiplications. The parties want to compute JyK from Jx1K and Jx2K, such that y = x1x2 in
some ring Zn. They pick a precomputed multiplication triple (JaK, JbK, JcK) over Zn. The prover broadcasts
x̂1 = x1 − a and x̂2 = x2 − b. For an honest prover, this is the first time the values a and b are used, and
since these values are uniformly distributed over Zn, they serve as masks for x1 and x2.

The parties compute JyK = x̂1 · Jx2K + x̂2 · JaK + JcK using the homomorphic properties of the sharing
scheme. Similarly, they compute the alleged zeroes Jz1K = Jx1K− JaK− x̂1 and Jz2K = Jx2K− JbK− x̂2.

Verifying bit decomposition. The parties want to compute Jy0K, . . . , Jyn−1K from JxK, where x ∈ Z2n ,

yi ∈ {0, 1}, x =
∑n−1
i=0 2iyi and all sharings are over Z2n . They pick n trusted bits Jb0K, . . . , Jbn−1K, shared

over Z2n . The prover broadcasts bits c0, . . . , cn−1. The parties take JyiK = JbiK if ci = 0, and JyiK = 1− JbiK,
if ci = 1 (this explains how the prover computes c0, . . . , cn−1). The parties compute the alleged zero JzK =

JxK −
∑n−1
i=0 2i · JyiK. Similarly to the multiplication case, this is the first time trusted bits bi are used, and

hence ci are distributed uniformly over {0,1} in Z2n .

Verifying conversions between rings. The parties want to compute JyK from JxK, such that y = x, but
while the sharing of x, is over Z2n , the sharing of y is over Z2m . If m < n, then the parties simply drop
n−m highest bits from all shares of x, resulting in shares of y. We denote this operation by JyK = trunc(JxK).
Otherwise, the parties perform the bit decomposition of JxK as in previous paragraph, obtaining the shared

bits Jy′0K, . . . , Jy′n−1K; the bits are shared over the ring Z2m . They will then compute JyK =
∑n−1
i=0 2i · Jy′iK

and the alleged zero JzK = JxK−
∑n−1
i=1 2i · trunc(Jy′iK). All the published values are distributed uniformly, by

reasoning similar to the previous cases.

Verifying outputs of circuits. By composing the steps described above, the parties obtain a sharing JyK of
some output of the circuit from the commitments to its inputs. The prover has previously committed that
output as Jy′K. To verify the correctness of prover’s commitment, the parties simply produce an alleged zero
JzK = JyK− Jy′K.

In the verification of operations, the communication between parties (if any) only originated from the
prover. Thus the verification of a circuit can be performed by the prover first broadcasting a single long
message, followed by all parties performing local computations.

Checking of alleged zeroes. An alleged zero JzK is verified by simply opening the secret sharing. After
the opening, each party may reconstruct z and verify that it is equal to 0. This opening preserves prover’s
privacy because each JzK is just a random sharing of 0 if the prover behaved honestly.
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The opening is simplified by the prover knowing all shares of JzK. He broadcasts all shares to all verifiers
(signed). A verifier complains if the received shares do not combine to 0, or if its own share in JzK is different
from the one received from the prover. In both cases, the verifier publishes the shares signed by the prover.
In the former case, the prover’s maliciousness is immediately demonstrated. In the latter case, note that an
alleged zero JzK is a linear combination (with public coefficients) of secret-shared values, where all shares are
signed by the prover. The complaining verifier also publishes its shares of all values from which it computed
its share in JzK. All other verifiers can now repeat the computation and check whether it was correctly
performed.

Similarly to Sec. 4.3, all communication in the checking step also originates from the prover, unless
there are complaints. Hence the messages in these two steps can be transmitted in the same round, and the
whole post-execution phase, in the case of no complaints, only requires two rounds of communication. The
transformation of commitments takes place in both rounds, while the messages required for verifying basic
operations and checking alleged zeroes are broadcast during the second round.

Putting the subprotocols of Fverify together Putting together the subprotocols of Sec. 4.3, and assuming
identifiable abort (ensured by the message transmission of Sec. 4.1 that we use for sending all messages), we
get a method that allows to blame any party that deviated from the protocol in any of its three phases. It may
be less clear at this point whether the real protocol allows blaming more parties, that have not misbehaved
during the execution phase.

The function stop of Fverify allows to blame any party Pk for k ∈ C, so it is not a problem if any
corrupted party is blamed due to deviating from the additional verification-related steps. Note that, in our
implementation of Fverify , the accusations may take place in the following two cases:

1. The party Pi failed in proving its honestness in the execution phase. If Pi is honest, then it has honestly
followed the execution phase, and it always committed only the values that lead to successful alleged
zero check. Under honest majority assumption, using threshold secret sharing with signatures ensures
that the corrupted parties cannot tamper with their shares and force the proofs of Pi to fail.

2. Some other party presents a signature, proving that Pi has generated a set of shares that does not
correspond to the previously signed message (during commitments), or that Pi generated a share that
does not correspond to the shares it has committed before (during the verification). An honest party
never signs a value that does not correspond to its previous signatures.

The discussion above gives us a proof sketch for the following lemma.

Lemma 2. Let C be the set of corrupted parties. Assuming the existence of PKI and |C| < n/2, there exists
a protocol Πverify UC-realizing Fverify in Fpre-hybrid model.

Using Fverify for commitments of all the input, randomness, and communication; and to later verify the
computation on this values, we get an implementation of Fvmpc , thus proving Theorem. 1.

5 Extensions

In this section, we describe possible optimizations and extensions of the protocol described in Sec. 4.

5.1 Optimizations

Our protocols allow a general optimization: in a secret sharing JaK = (ak)k∈[n] we can delete from the vectors

ak (of length
(
n
t

)
) the components that correspond to the subsets of [n] the contain (the index of) the prover,

because the prover knows all the shares anyway and can make up its own only when required to send it to
someone. Effectively, this means that JaK is shared among the n−1 verifiers using (n−1, t)-threshold sharing
scheme described in Sec. 4.1. In particular, if n = 3 (as in Sharemind), then JaK = (a1, a2), where a1 +a2 = a
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Fig. 4: Components of Sharemind with verification

in some ring R and ai is held by the i-th verifier. This simplification enables many more optimizations for
n = 3, as described below.

Sharing the messages. At the beginning of the post-execution phase, to share the messages it had
sent or received during the execution phase, the prover does not have to do anything: the messages are
already shared. Indeed, one of the verifiers, being the recipient or the sender of that message, already knows
it. The other verifier’s share of that message will be 0.

Committing to randomness. For the prover to commit to its randomness at the beginning of the
execution phase, he receives a signed random seed si from the i-th verifier. He will then use G(s1) + G(s2)
(for the PRG G) as its randomness.

In case of Sharemind, the commitment is even simpler. In all protocols currently in use, any random
value is known by exactly two parties out of three (each pair of parties has a common random seed). Hence
any random value r used by the prover is already shared in the same manner as the messages.

Checking alleged zeroes. To check if Jz1K, . . . , JzsK are all equal to 0, the first verifier computes
H(z11 , z

2
1 , · · · , zs1) and the second verifier computes H((−z12), (−z22), · · · , (−zs2)), where H is a hash function

and zi1, z
i
2 are the shares of JziK held by the first and second verifier, respectively. They sign and send the

computed shares to each other and to the prover, and check that they are equal.

5.2 Auditability

If a party P has deviated from the protocol, then all honest parties will learn its identity during the post-
execution phase. In this case, assuming that P does not drop out from the verification process at all, the
honest parties are going to have a set of statements signed by P , pertaining to the values of various messages
during the preprocessing, execution, and post-execution phases, from which the contradiction can be derived.
These statements may be presented to a judge that is trusted to preserve the privacy of honest parties.

6 Evaluation

6.1 Implementation

We have implemented the verification of computations for the Sharemind protocol set [10, 39, 41, 45]. The
previously existing (gray) and newly implemented (white) components are depicted in Fig. 4.
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Sharemind has a large protocol set for integer, fix- and floating point operations, as well as for shuffling
the arrays, that can be used by a privacy-preserving application. Almost all these protocols are generated
from a clear description of how messages are computed and exchanged between parties [44]. The application
itself is described in a high-level language that is compiled into bytecode [8], instructing the Sharemind
virtual machine to call the lower-level protocols in certain order with certain arguments. Both descriptions
are used in the post-execution phase.

Preprocessing phase. The verified tuple generator has been implemented in C, compiled with gcc

ver. 4.8.4, using -O3 optimization level, and linking against the cryptographic library of OpenSSL 1.0.1k. We
have tried to simplify the communication pattern of the tuple generator as much as possible, believing it to
maximize performance. On the other hand, we have not tried to parallelize the generator, neither its com-
putation, nor the interplay of computation and communication. Hence we believe that further optimizations
are possible.

The generator works as follows. If the parties want to produce n verified tuples, then (i) they will select
m and k appropriately for the desired security level (Sec. 4.2); (ii) the prover sends shares of (mn+k) tuples
to verifiers; (iii) verifiers agree on a random seed (used to determine, which tuples are opened and which are
grouped together) and send it back to the prover; (iv) prover sends to the verifiers k tuples that were to be
opened, as well as the differences between components of tuples that are needed for pairwise verification; (v)
verifiers check the well-formedness of opened tuples and check the alleged zeroes stating that they received
from the prover the same values, these values match the tuples, and the pairwise checks go through. Steps (ii)
and (iv) are communication intensive. In step (iii), each verifier generates a short random vector and sends
it to both the prover and the other verifier. The concatenation of these vectors is used as the random seed
for step (iv). Step (v) involves the verifiers comparing that they’ve computed the same hash value (Sec. 5.1).
We use SHA-1 as the hash function. After the tuples have been generated, the prover signs the shares that
the verifiers have.

To reduce the communication in step (ii) above, we let the prover share a common random seed with
each of the verifiers. In this manner, the random values do not have to be sent. E.g. for a multiplication
triple (JaK, JbK, JcK), both shares of JaK, both shares of JbK and one share of JcK are random. The prover only
has to send one of the shares of JcK to one of the verifiers.

Execution phase. A Sharemind computation server consists of several subsystems on top of each other.
Central of those is the virtual machine (VM). This component reads the description of the privacy-preserving
application and executes it. The description is stated in the form of a bytecode (compiled from a high-level
language) which specifies the operations with public data, as well as the protocols to be called on private
data. There is a large number (over 100) of compiled primitive protocols that may be called by the VM.
These protocols are compiled from higher-level descriptions with one of the intermediate formats being very
close to circuits in Fig. 1. The protocols call the networking methods in order to send a sequence of values
to one of the other two computation servers, or to receive messages from them.

In order to support verification, a computation server of Sharemind must log the randomness the server
is using, as well as the messages that it has sent or received. Using these logs, the descriptions of the privacy-
preserving application and the primitive protocols, it is possible to restore the execution of the server.

We have modified the network layer of Sharemind, making it sign each message it sends, and verify the
signature of each message it receives. We have not added the logic to detect whether two outgoing messages
belong to the same round or not (in the former case, they could be signed together), but this would not have
been necessary, because our compiled protocols produce only a single message for each round. We have used
GNU Nettle for the cryptographic operations. For signing, we use 2 kbit RSA and SHA-256. Beside message
signing and verification, we have also added the logging of all outgoing and incoming messages.

Verification phase. The virtual machine of the post-execution phase reads the application bytecode
and the log of messages to learn, which protocols were invoked in which order and with which data during
the execution phase. The information about invoked protocols is present in both the prover’s log, as well
as in the verifiers’ logs. Indeed, the identity of invoked protocols depends only on the application, and on
the public data it operates on. This is identical for all computation servers. The post-execution VM then
reads the descriptions of protocols and performs the steps described in Sec. 4.3. The post-execution VM has
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Table 1. Time to generate n = 108 verified tuples for security parameter η = 80 (m = 4, k = 15000)

Tuple width time

Multiplication triples
32 bits 217 s
64 bits 313 s

Trusted bits
32 bits 68 s
64 bits 93 s

xor-shared AND triples 32 bits 217 s

been implemented in Java, translated with the OpenJDK 6 compiler and run in the OpenJDK 7 runtime
environment. The verification phase requires parties to sign their messages, we have used 2 kbit RSA with
SHA-1 for that purpose.

6.2 The Total Cost of Covertly Secure Protocols

For benchmarking, we have chosen the most general protocols of Sharemind over Z232 : bitwise conjunction
(AND32), multiplication (MULT32), 128-bit AES (AES128), conversion from additive sharing (i.e. over Z232)
to xor sharing (i.e. over Z32

2 ) (A2X32) and vice versa (X2A32). We have measured the total cost of covert
security of these protocols, using the tools that we have implemented. Our tests make use of three 2× Intel
Xeon E5-2640 v3 2.6 GHz/8GT/20M servers, with 125GB RAM running on a 1Gbps LAN, similarly to
the benchmarks reported in Sec. 2. We run a large number of protocol instances in parallel, and report the
amortized execution time for a single protocol.

Preprocessing. In the described set-up, we are able to generate 100 million verification triples for
32-bit multiplication in ca. 217 seconds (Table 1). To verify a single multiplication protocol, we need 6 such
triples (we use Sharemind protocol [10, Alg. 2] that formally has 3 multiplications per party, but all of them
are of the form x1y1 +x1y2 +x2y1 and can be trivially rewritten to x1(y1 +y2) +x2y1). Hence the amortized
preprocessing effort to verify a single 32-bit multiplication is ca. 13 µs.

Sharemind uses 6400 AND gates per AES128 block. Each AND gate is just a multiplication, and it
requires 6 one-bit triples. The time of generating 108 xor-shared 32-bit AND triples is 217 s. Hence the
amortized preprocessing effort to verify a single 128-bit AES block is ca. 2.6 ms.

The A2X [resp. X2A] protocol requires 96 xor-shared AND triples [resp. 64 additively shared 32-bit
multiplication triples], and 64 [resp. 96] 32-bit trusted bits. The amortized effort of these protocols is ca.
252 µs for A2X, and 204 µs for X2A.

Execution. We have measured runtimes of passively secure Sharemind with and without signing and
logging. The execution times in milliseconds are given in Table 2. If a large number of these operations are
computed in parallel, the amortized time (including all necessary signing and logging) is ca 0.16 µs for AND32
and MULT32, 0.04 ms for one AES128 block, 2.3 µs for A2X, and 5.1 µs for X2A. In general, for sufficiently
large inputs, the signing and logging appears to reduce the performance of the current implementation of
Sharemind up to three times. It is likely that a more careful parallelization of the networking layer would
eliminate most of that overhead, by performing the signature creations and verifications on currently idling
processor cores.

Verification. Assuming that all the inputs and the communication have already been committed, and
the beaver triples precomputed, we run the verification phase in parallel for all 3 provers, and measure
the total execution time (for asymmetric protocols, we report the times of all 3 provers). We consider the
optimistic setting, where the prover only signs the broadcast message, and the verifiers exchange the hash of
the message to ensure that they got the same message. The results are given in Table 3. When performing
10 million verifications in parallel, the cost of verification is ca. 1.6 µs for MULT32 (or AND32), 0.27 ms for
a single AES128 block, 21 µs for A2X32, and 39 µs for X2A32.

When adding the costs of three phases, we find that the total amortized cost of performing a 32-bit
multiplication in our three-party SMC protocol tolerating one covertly corrupted party is ca. 15 µs. This is
more than two orders of magnitude faster than any existing solution. For a single AND gate, we get 0.46 µs.
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Table 2. Times of the execution phase with and without signing and logging (ms)

# runs AND32 MULT32 AES128 A2X32 X2A32
w/o w/ w/o w/ w/o w/ w/o w/ w/o w/

101 0.362 4.75 0.349 3.96 11.3 485 0.785 38.8 0.19 8.75
102 0.345 4.42 0.237 3.84 13.4 496 0.928 38.7 1.05 8.59
103 0.147 4.58 0.282 4.04 33.0 600 1.73 45.0 2.28 12.8
104 0.668 6.37 0.733 5.40 214 726 8.44 55.6 27.3 60.4
105 7.46 15.1 8.13 15.1 2090 3740 98.4 227 252 481
106 73.9 166 73.8 184 – – 909 2290 2690 5050
107 683 1550 717 1630 – – – – – –

Table 3. Time and communication of the verification phase

# runs time (s)

AND32 MULT32 AES128 A2X32 X2A32
P1 P2 P3 P1 P2 P3

101 0.316 0.319 0.434 0.315 0.329 0.317 0.329 0.329 0.322
102 0.317 0.320 0.678 0.369 0.362 0.356 0.362 0.397 0.401
103 0.371 0.373 1.11 0.471 0.452 0.482 0.452 0.516 0.533
104 0.558 0.569 4.21 0.891 0.829 0.911 0.829 0.109 1.12
105 0.895 0.906 2.67 2.55 2.43 2.93 2.43 0.491 5.50
106 2.48 2.50 – 17.2 15.8 20.4 15.8 34.3 39.1
107 15.5 15.5 – – – – – – –

The total cost of evaluating a 128-bit AES block is ca 2.9 ms, which is at least one order of magnitude faster
than the existing solutions. The total cost of conversions between additive and bitwise sharing is ca. 275 µs
for A2X32 and 248 µs for X2A32, and we could not find similar results in related works, with whom we could
compare ourselves.

The recent result of computing AND gates [33] does not report times, but uses total number of commu-
nicated bits per AND gate instead. Their reported number is 30 bits per AND gate for 3 parties. Using the
same security parameter η = 40 (taking m = 3), and making use of shared randomness, we get that the
generation one 1-bit multiplication triple requires 1 bit of communication and each pairwise verification 4
bits (opening the 2 masked values by 2 verifiers to each other), adding up to 1 + 4 · (m − 1) = 9 bits for a
single verified triple. Since we require a triple for each of the 6 local multiplications of Sharemind protocol,
we already get 54 bits. The execution phase requires 6 bits of communication, and the verification phase 24
bits (8 for each party). This is 84 bits in total, or almost three times more. Some additional overhead may
come from signatures (their cost becomes negligible as the communication grows). But our security property
is stronger, allowing to pinpoint the cheating party and make the protocol aborting identifiable. Our method
is also more generic and allows to easily generate preprocessed tuples other than multiplication triples, that
are very useful in verifying protocols other than multiplication.

Instead of Sharemind multiplication, we could apply our verification to the protocol of [1]. This would
reduce the execution phase time, but complexities of the preprocessing and the verification phases remain
the same. It is not clear how well that protocol could be integrated with the other Sharemind protocols, so
it becomes more interesting when more various protocols composable with [1] will be developed.

7 Conclusions and Further Work

We have proposed a scheme transforming passively secure protocols with honest majority to covertly secure
ones. The protocol transformation is suitable to be implemented on top of some existing, highly efficient,
passively secure SMC frameworks, especially those that use 3 parties and computation over rings of size 2N .
The framework will retain its efficiency, as the time from starting a computation to obtaining the result
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at the end of the execution phase will increase only slightly. We evaluated the verification on top of the
Sharemind SMC framework and found its overhead to be of acceptable size, roughly an order of magnitude
larger than the complexity of the SMC protocols themselves included in the framework (which are already
practicable).

The notion of verifiability that we achieve in this paper is very strong — a misbehaving party will
remain undetected with only a negligible probability. The original notion of covert security [2] only required
a malicious party to be caught with non-negligible probability. By randomly deciding (with probability p)
after a protocol run whether it should be verified, our method still achieves covert security, but the average
overhead of verification is reduced by 1/p times. It is likely that overheads smaller than the execution time
of the original passively secure protocol may be achieved in this manner, while keeping the consequences of
misbehaving sufficiently severe. Auditability (Sec. 5.2) helps in setting up the contractual environment that
establishes the consequences.

We could use the verification procedure after each protocol round, thereby obtaining a fully actively
secure SMC protocol. While the communication overhead of such solution would be the same, its total
overhead will probably be larger than for the verification after the computation, because of a more complex
communication pattern. Also, verification after the protocol run may allow further optimizations for such
computations, where the effort to check its correctness is smaller than the effort to actually perform it [57].
Such optimizations are applicable if the original SMC protocol set preserves privacy (but not necessarily
correctness) against active adversaries [52]. The extent of their applicability is a subject of future work.

For three-party protocols, we see the combination of Sharemind’s multiplication protocol (or the protocol
of [1]) with our verification mechanism as a suitable method for performing the precomputations of SPDZ-
like SMC protocol sets. Even though we would in this manner only get security against a malicious minority,
we still consider the outcome interesting, because the online phase of SPDZ is hard to beat even in this
case. Also, the online phase would still be secure even against all-but-one malicious parties. There may be
use cases where the number of corrupted parties increases between the precomputation phase and the actual
protocol run. Again, the investigation of this use case, together with the optimizations to our scheme that
may be possible due to working over fields, is a subject of future work.
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53. Pullonen, P. Actively secure two-party computation: Efficient Beaver triple generation. Master’s thesis, Uni-
versity of Tartu, Aalto University, 2013.

54. Ray, I., Li, N., and Kruegel, C., Eds. Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, Denver, CO, USA, October 12-6, 2015 (2015), ACM.

55. Safavi-Naini, R., and Canetti, R., Eds. Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology
Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings (2012), vol. 7417 of Lecture Notes in
Computer Science, Springer.

56. Schnorr, C. Efficient identification and signatures for smart cards. In Advances in Cryptology - CRYPTO
’89, 9th Annual International Cryptology Conference, Santa Barbara, California, USA, August 20-24, 1989,
Proceedings (1989), G. Brassard, Ed., vol. 435 of Lecture Notes in Computer Science, Springer, pp. 239–252.

57. Schoenmakers, B., and Veeningen, M. Universally verifiable multiparty computation from threshold homo-
morphic cryptosystems. In Applied Cryptography and Network Security - 13th International Conference, ACNS
2015, New York, NY, USA, June 2-5, 2015, Revised Selected Papers (2015), T. Malkin, V. Kolesnikov, A. B.
Lewko, and M. Polychronakis, Eds., vol. 9092 of Lecture Notes in Computer Science, Springer, pp. 3–22.

58. Shamir, A. How to share a secret. Commun. ACM 22, 11 (1979), 612–613.
59. Spini, G., and Fehr, S. Cheater detection in SPDZ multiparty computation. In Information Theoretic Security

- 9th International Conference, ICITS 2016, Tacoma, WA, USA, August 9-12, 2016, Revised Selected Papers
(2016), A. C. A. Nascimento and P. Barreto, Eds., vol. 10015 of Lecture Notes in Computer Science, pp. 151–176.

60. Vaht, M. The Analysis and Design of a Privacy-Preserving Survey System. Master’s thesis, Institute of Computer
Science, University of Tartu, 2015.

A Other operations

The circuits for computing the messages in certain protocols of Sharemind use some more operations in
addition to those described in Sec. 4.3. We now describe their verification. Note that the multiplication
protocol only needs multiplications to be verified [10, Alg. 2].

Comparison. The computation of a shared bit JyK from Jx1K, Jx2K ∈ Z2n , indicating whether x1 < x2,
proceeds by the following composition. First, convert the inputs to the ring Z2n+1 , let the results be Jx′1K
and Jx′2K. Next, compute JwK = Jx′1K − Jx′2K in the ring Z2n+1 . Finally, decompose JwK into bits and let JyK
be the highest bit.

Bit shifts. To compute JyK = JxK � Jx′K, where JyK and JxK are shared over Z2n and Jx′K is shared
over Zn, the parties need a precomputed characteristic vector (CV) tuple (JrK, JsK), where JrK is shared over
Zn, JsiK are shared over Z2n , the values si are bits, the length of s is n, and si = 1 iff i = r. The prover
broadcasts x̂ = r − x′ ∈ Zn. The verifiers compute Js′K = rot(x̂, JsK), defined by Js′iK = Js(i+x̂) mod nK for all

i < n. Note that s′i = 1 iff i = x′. The verifiers compute J2x
′
K =

∑n−1
i=0 2iJs′iK and multiply it with JxK (using

a multiplication triple). They compute the alleged zero JzK = JrK − Jx′K − x̂, as well as two alleged zeroes
from the multiplication.

To compute JyK = JxK � Jx′K, the parties first reverse JxK, using bit decomposition. They will shift the
reversed value left by Jx′K positions, and reverse the result again.

During precomputation phase, the CV tuples have to be generated. Their correctness control follows
Sec. 4.2, with the following pairwise verification operation. Given tuples (JrK, JsK) and (Jr′K, Js′K), the verifiers
compute Jr̂K = Jr′K − JrK, declassify it, compute JŝK = JsK − rot(r̂, Js′K), declassify it and check that it is a
vector of zeroes. Recall (Sec. 4.2) that we need the pairwise verification to only point out whether one tuple
is correct and the other one is not.

Rotation. The computation of JyK = rot(Jx′K, JxK) for JxK, JyK ∈ Zm2n and Jx′K ∈ Zm could be built from
bit shifts, but a direct computation is more efficient. The parties need a rotation tuple (JrK, JsK, JaK, JbK),
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where JrK and JsK are a CV tuple (with r ∈ Zm and s ∈ Zm2n), a ∈ Zm2n is random and the elements of b
satisfy bi = a(i+r) mod m.

The prover broadcasts r̂ = x′ − r and x̂ = x− a. The verifiers can now compute

JciK = x̂ · rot(i, JsK) (i ∈ {0, . . . ,m− 1})
JyK = rot(r̂, JcK) + rot(r̂, JbK) .

Here · denotes the scalar product; each ci is equal to some x̂i. The correctness of the computation follows
from c = rot(r, x̂). The procedure gives the alleged zeroes Jz′K = Jx′K− JrK− r̂ and JzK = JxK− JaK− x̂.

The pairwise verification of rotation tuples
T = (JrK, JsK, JaK, JbK) and T′ = (Jr′K, Js′K, Ja′K, Jb′K) works similarly, using the tuple T′ to rotate JaK by JrK
positions and checking that the result is equal to JbK (i.e. subtract one from another, open and check that
the outcome is a vector of zeroes). Additionally, pairwise verification of CV tuples is performed on (JrK, JsK)
and (Jr′K, Js′K).

Shuffle. The parties want to apply a permutation σ to a vector JxK ∈ Zmn , obtaining JyK satisfying
yi = xσ(i). Here σ ∈ Sm is known to the prover and to exactly one of the verifiers [45]. To protect prover’s
privacy, it must not become known to the other verifier. In the following, we write [σ] to denote that σ is
known to the prover and to one of the verifiers (w.l.o.g., to verifier V1).

The parties need a precomputed permutation triple
([ρ], JaK, JbK), where ρ ∈ Sm, a, b ∈ Zmn and b = ρ(a). Both the prover and verifier V1 sign and send
τ = σ ◦ρ−1 to V2 (one of them may send H(τ); verifier V2 complains if received τ -s are different). The prover
broadcasts x̂ = x−a. The verifiers compute their shares (y1,y2) of JyK as y1 = τ(b1+ρ(x̂)) and y2 = τ(b2),
where bi is the i-th verifier’s share of JbK. The alleged zeroes JzK = JxK− JaK− x̂ are produced.

The pairwise verification of permutation triples ([ρ], JaK, JbK) and ([ρ′], Ja′K, Jb′K) again works similarly,
using the second tuple to apply [ρ] to Ja′K. The result is then checked for its equality to Jb′K.

B Estimating the cost of other Sharemind protocols

Our implementations of the preprocessing and verification phases are still preliminary, at least compared
to the existing Sharemind platform and the engineering effort that has been gone into it. We believe that
significant improvements in their running times are possible, even without changing the underlying algorithms
or invoking extra protocol-level optimizations. Hence we are looking for another metric that may predict the
running time of the new phases once they have been optimized. Due to the very simple communication
pattern of that phase, consisting of the prover sending a large message to the verifiers, followed by the
verifiers exchanging very small messages, we believe that the number of needed communication bits is a good
proxy for future performance.

The existing descriptions of Sharemind’s protocols make straightforward the computation of their exe-
cution and verification costs in terms of communicated bits. We have performed the computation for the
protocols working with integers, and counted the number bits that need to be delivered for executing and
verifying an instance of the protocol. We have not taken into account the signatures, the broadcast overhead,
and the final alleged zero hashes that the verifiers exchange, because these can be amortized over a large
number of protocols executing either in parallel or sequentially.

Table 4 presents our findings. For each protocol, the results are presented in the form x:y:z
1 :a:b . The upper

line lists the total communication cost (in bits): x for the execution of the protocol, y for its verification in the
post-execution phase, and z for the generation of precomputed tuples in the preprocessing phase. The suffixes
k and M denote the multipliers 103 and 106, respectively. The lower line is computed straightforwardly from
the upper line, and it shows how many times more expensive each phase is, compared to the execution phase
(i.e a = y/x, b = z/x). The most interesting value is a that shows how much overhead our verification gives
in the online phase, compared to passively secure computation.

In estimating the costs of generating precomputed tuples, we have assumed the tuples to be generated in
batches of 220, with security parameter η = 80. Sec. 4.2 describes the number of extra tuples that we must
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Table 4. Communication overheads of integer operation verification

Operation
bit width

8 16 32 64

multiplication
48 : 192 : 1008
1 : 4 : 21

96 : 384 : 2017
1 : 4 : 21

192 : 768 : 4034
1 : 4 : 21

384 : 1536 : 8067
1 : 4 : 21

division
4178 : 46.0k : 1.1M

1 : 10 : 272
9752 : 106.5k : 5.0M

1 : 10 : 514
31.2k : 339.6k : 28.5M

1 : 10 : 914
87.6k : 941.4k : 181.2M

1 : 10 : 2069

div. with pub.
404 : 4812 : 94.4k

1 : 11 : 234
948 : 11.3k : 339.9k

1 : 11 : 359
2180 : 26.1k : 1.3M

1 : 11 : 581
4932 : 59.1k : 4.8M

1 : 11 : 982

priv. � priv.
144 : 1472 : 20.7k

1 : 10 : 144
400 : 5504 : 141.3k

1 : 13 : 353
1296 : 21.2k : 1.1M

1 : 16 : 811
4624 : 83.5k : 8.1M

1 : 18 : 1758

priv. � priv.
328 : 4592 : 35.8k

1 : 14 : 109
864 : 16.9k : 185.9k

1 : 19 : 215
2352 : 52.9k : 314.0k

1 : 22 : 134
7120 : 198.8k : 1.1M

1 : 27 : 161

priv. � pub.
180 : 1626 : 14.8k

1 : 9 : 82
468 : 4090 : 52.9k

1 : 8 : 113
1092 : 9690 : 182.8k

1 : 8 : 167
2564 : 22.4k : 658.2k

1 : 8 : 257

equality
50 : 200 : 1571
1 : 4 : 31

106 : 424 : 4549
1 : 4 : 43

218 : 872 : 14.3k
1 : 4 : 66

442 : 1768 : 49.3k
1 : 4 : 112

less than
280 : 2748 : 16.0k

1 : 9 : 57
719 : 7440 : 46.0k

1 : 10 : 64
1750 : 18.7k : 127.3k

1 : 10 : 73
4109 : 44.7k : 354.7k

1 : 10 : 86

additive to xor
160 : 1120 : 6403

1 : 7 : 40
416 : 3008 : 18.1k

1 : 7 : 44
1024 : 7552 : 49.4k

1 : 7 : 48
2432 : 18.2k : 135.5k

1 : 7 : 56

xor to additive
80 : 560 : 3722
1 : 7 : 47

288 : 2144 : 14.7k
1 : 7 : 51

1088 : 8384 : 58.7k
1 : 7 : 54

4224 : 33.2k : 234.2k
1 : 7 : 55

send for correctness checks. We consider the selected parameters rather conservative; we would need less extra
tuples and less communication during the preprocessing phase if we increased the batch size or somewhat
lowered the security parameter. Increasing the batch size to ca. 100 million would drop the parameter m
from 5 to 4, thereby reducing the communication needs of preprocessing by 20%. If we take η = 40, then
m = 3 would be sufficient.

The described integer protocols in Table 4 take inputs additively shared between three computing par-
ties and deliver similarly shared outputs. In the “standard” protocol set, the available protocols include
multiplication, division (with private or with public divisor), bit shifts (with private or public shift), com-
parisons and bit decomposition, for certain bit widths. We left out the protocols for operations that require
no communication between parties during execution or verification phase: addition, and multiplication with
a constant.

We see that the verification overhead (normalized to communication during the execution phase) of differ-
ent protocols varies quite significantly. While most of the protocols require 7–20 times more communication
during the verification phase than in the execution phase, the important case of integer multiplication has
the overhead of only four times. Even more varied are the overheads for preprocessing, with integer multipli-
cation again having the smallest overhead of 21 and the protocols working on smaller data having generally
smaller overheads.

Discussion

Our explanation to the variability of overheads is the following. We are measuring a parameter of the
protocols that, up to now, has been considered completely irrelevant to their performance. The overheads of
pre- and post-processing depend on the operations performed locally by the Sharemind servers during the
execution phase. The overheads are particularly sensitive to the order of operations, and how similar are the
consecutive operations performed with the “same” data. A n-bit value held by a server may be interpreted
both as an element of Z2n or an element of Zn2 ; the conversion is cost-free during the execution phase. During
verification, such conversion requires us to do a bit-decomposition or a number of conversions to a larger ring.
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If the expressions evaluated during the execution contain a fine mix of arithmetic and bitwise operations,
then the number of such conversion will be large and many trusted bits are consumed.

We have thus identified a new goal in optimizing SMC protocols, and Sharemind protocols in particular
— the local computations of a server should be structured in a manner that minimizes the number of times a
bitwise operation follows an arithmetic one or vice versa. Also, the number of operations that are not free to
verify should be minimized in general. We have already tried to optimize the local computations of protocols
with such goals. While we likely cannot achieve overheads as small as the multiplication protocol currently
has (the servers perform no bitwise operations in this protocol, hence the issue of mixing operations does
not arise), we hope that strategic placement of conversions allows us to further reduce the overheads of pre-
and post-processing.

Three protocols stand out in terms of pre-processing overhead — shift left with private offset, and divisions
with either public or private divisor. This shows that they make use of many trusted bits, possibly from large
rings. We hope that it is possible to verify them with smaller overheads. Indeed, both division protocols
may be verified through multiplication, making use of the active privacy of Sharemind’s protocols [43]. The
current protocol for shifting left is probably sub-optimal and still contains a number of local conversions
between elements of Z2n and Zn2 .

One may ask whether the relatively higher cost of verifying other operations (besides multiplication)
may diminish the advantages of our techniques over the state of the art when considering privacy-preserving
applications that are more dependent in these other operations. This question may be answered both affirma-
tively and negatively. Closest to our performance are SPDZ-like protocols [23] built on top of additive secret
sharing over fields Zp. These protocol sets do not “naturally” support many operations; instead, they have
to build other private operations from the composition of multiplications and bit decompositions [19, 50].
Hence their performance is also worse for other operations. On the other hand, the protocol sets working
with Boolean circuits (using either garbled circuits or secret sharing) do not pay similar performance penalty.
But their currently discussed performance was another order of magnitude slower than for protocols based
on sharing over Zp.

C Full Security Proofs

In this section, we formalize the subprotocols of Sec. 4, and also the main protocol implementing Fvmpc that
we defined in Sec. 3. We then prove Theorem 2, which is the generalization of Theorem. 1 of Sec. 3 with
more details. Throughout this section, we use A to denote the real adversary, and As the ideal adversary.

Theorem 2. Let n be the number of parties. Let C be the set of covertly corrupted parties, |C| < n/2.
Assuming that there is a PKI fixing the public keys of all parties, and a signature scheme with probability
of existential forgery δ, there exists a protocol Πvmpc UC-emulating an r-round functionality Fvmpc with
correctness error ε ≤ n2(3n + r + 6) · δ + 2−η for a security parameter η. If the initial protocol of Fvmpc

has Mx, Mr, Mc, bits of inputs, randomness, and communication respectively, its circuits have Nb gates
requiring bit decompositions, Nr other non-linear gates (treating rotations of length ` as ` distinct gates),
and its largest used ring has cardinality m, then the resulting protocol Πvmpc has at most 11 + r + 6 rounds,
and the communication of different phases has the following upper bounds (let Ng := Nb + Nr, m := logm,
and shn the number of times the bit width of the value shared among n parties is smaller than the bit width
of its one share).

– Preprocessing: shn · (4n2ηm(Nbm +Nr) + n2Mr + o(nηm(Nbm +Nr))).
– Execution: shn · (n ·Mx +Mc + o(rn2)).
– Postprocessing: shn · (3n2(n+ 1)Ngm + o(n3(Ng +Mc))).

If some corrupted party starts deviating from the protocol, the number of rounds may at most double, and
the communication may increase at most 2n times.

We now give formal definitions of the subprotocols of Sec. 4 and their security proofs.
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Ftransmit works with unique message identifiers id, encoding a sender s(id) ∈ [n], a receiver r(id) ∈ [n], and a party
f(id) ∈ [n] to whom the message should be forwarded by the receiver (if no forwarding is foreseen then f(id) = r(id),
and for broadcasts the values of r(id) and f(id) do not matter).
Initialization: On input (init, ŝ, r̂, f̂) from all (honest) parties, where ŝ,r̂,f̂ are mappings s.t Dom(ŝ) = Dom(r̂) =
Dom(f̂), assign s← ŝ, r ← r̂, f ← f̂ .
Secure transmit: On input (transmit, id,m) from Ps(id) and (transmit, id) from all (honest) parties:

1. Store (id,m, r(id)), mark it as undelivered, and output (id, |m|) to AS .
2. For s(id) ∈ C, m is chosen by As. If the input of Ps(id) is invalid (or there is no input), and r(id) /∈ C, then output

(corrupt, s(id)) to all parties.

Secure broadcast: On input (broadcast, id,m) from Ps(id) and (broadcast, id) from all (honest) parties:

1. Store (id,m, bc), mark it as undelivered, output (id, |m|) to AS .
2. For s(id) ∈ C, m is chosen by As. If the input of Ps(id) is invalid, output (corrupt, s(id)) to all parties.

Synchronous delivery: At the end of each round:

1. For each undelivered (id,m, r) send (id,m) to Pr; mark (id,m, r) as delivered.
2. For each undelivered (id,m, bc), send (id,m) to each party and AS ; mark (id,m, bc) as delivered.

Forward received message: On input (forward, id) from Pr(id) and on input (forward, id) from all (honest) parties,
after (id,m) has been delivered to Pr(id):

1. Store (id,m, f(id)), mark as undelivered, output (id, |m|) to AS .
2. For s(id), r(id) ∈ C, m is chosen by As. If the input of Pr(id) is invalid, and f(id) /∈ C, output (corrupt, r(id)) to

all parties.

Reveal received message: On input (reveal, id) from all (honest) parties, such that Pf(id) at any point received
(id,m), output (id,m) to each party, and also to AS .
Do not commit corrupt to corrupt: If for some id both Ps(id), Pr(id) are corrupt, then on input (forward, id) the
adversary can ask Ftransmit to output (id,m′) to Pf(id) for any m′. If additionally Pf(id) is corrupt, then on input
(reveal, id) the adversary can ask Ftransmit to output (id,m′) to all honest parties.

Fig. 5: Ideal functionality Ftransmit

C.1 Ensuring Message Delivery

From the informal construction of Sec. 4.1, we may abstract away the functionality Ftransmit that we will use
to ensure message delivery. It is given in Fig. 5. In addition to transmitting a message between two parties,
it also allows to broadcast messages, and to forward and reveal previously transmitted messages.

The protocol Πtransmit implementing Ftransmit is formalized in Fig. 6. It works on top of signatures.
The definitions of Ftransmit and Πtransmit are almost directly taken from [21], and defining them is not a

contribution of this work. We use this functionality as a building block for our protocols.
From the definition of Πtransmit in Fig. 6, we can count the number of rounds and the communicated bits

of different operations.

Observation 1 Let c be the number of bits in a signature. The round and bit communication complexities
of applying different functions of Πtransmit to an N -bit message are given in Table. 5.

We note that there should formally be reserved an additional “empty” round for the cheap mode. This
would be a certain time span within which the parties are waiting for possible complaints, and that would
be silent in the optimistic setting, when no one attempts to cheat. Since the adversary is covert, we may
assume that the accusations, if any, can be as well handled in the next round. Hence everywhere in the cheap
mode we have one less round than it may seem from the description of Πtransmit . For similar reasons, in the
broadcast and the revealing functionalities, we include the round of exchanging m 6= m′ messages only into
the expensive mode.
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In Πtransmit , each party works locally with unique message identifiers id, encoding a sender s(id) ∈ [n], a receiver
r(id) ∈ [n], and a party f(id) ∈ [n] to whom the message should be forwarded by the receiver.
Initialization: On input (init, ŝ, r̂, f̂), where Dom(s) = Dom(r) = Dom(f), each (honest) party, assigns s← ŝ, r ← r̂,
f ← f̂ .
Secure transmit:

1. Cheap mode: use as far as Ps(id) follows the protocol.
(a) On input (transmit, id,m) the party Ps(id) signs (id,m) to obtain signature σs. It sends (id,m, σs) to Pr(id).
(b) On input (transmit, id) the party Pr(id) waits for one round and then expects a message (id,m, σs) from

Ps(id), where σs is a valid signature from Ps(id) on (id,m). If it receives it, it outputs (id,m) to Pr(id). If it
does not receive it, it broadcasts a message (bad, s(id)) using secure broadcast, and upon receiving it, each
party goes to the expensive mode.

2. Expensive mode: use if Pr(id) complains about Ps(id) not following the protocol.
(a) On input (transmit, id,m) the party Ps(id) signs (id,m) to obtain signature σs. It sends (id,m, σs) to each

other party.
(b) Each (honest) party Pi sends (id,m, σs) to Pr(id). If Pi does not receive (id,m, σs), it sends a signature γi

on (corrupt, s(id)) to all parties.
(c) On input (transmit, id), Pr(id) expects a message (id,m, σs) from each Pi, where σs is a valid signature of

Ps(id) on (id,m). If it arrives from some Pi, then Pr(id) outputs (id,m).

Secure broadcast:

1. On input (broadcast, id,m) the party Ps(id) signs (id,m) to obtain signature σs and sends (id,m, σs) to each
other party.

2. On input (broadcast, id) each (honest) party Pi waits for one round and then expects a message (id,m, σs) from
Ps(id), where σs is a valid signature from Ps(id) on (id,m). If no message arrives or the signature is invalid, it
sends a signature γi on (corrupt, s(id)) to each other party. Otherwise, it sends the message (m, id, σs) to each
other party.

3. If any party receives (id,m, σs) and (id,m′, σ′s) for m 6= m′, it sends (id,m,m′, σs, σ
′
s) to each other party.

4. If indeed m 6= m′ and the signatures are valid, the honest party Pi receiving them outputs (corrupt, s(id)) to Pi.
But if Pi receives only messages (id,m, σs) with valid σs and no message (id,m′, σ′s) with m 6= m′ and valid σ′s,
then it outputs (id,m) to Pi.

Forward received message:

1. On input (forward, id) the party Pr(id) that at some point received (id,m, σs) signs (id,m, σs) to obtain signature
σr and sends (id,m, σs, σr) to Pf(id).

2. On input (forward, id) the party Pf(id) waits for one round and then expects a message (id,m, σs, σr) from Pr(id),
where σs [σr] is a valid signature from Ps(id) [Pr(id)] on (id,m). If it receives it, it outputs (id,m) to Pf(id).

Reveal received message:

1. Cheap mode:
(a) On input (reveal, id), the party Ps(id) which at any point sent the message (id,m, σs), sends (reveal, id,m, σs)

to each other party.
(b) Each (honest) party in turn sends the message to each other party. Several different messages and signatures

corresponding to the same id (including the messages (id,m′, σ′s, σ
′
r) that Pf(id) may have received before)

are handled by an honest party in the same way as by broadcasting, but instead of stopping the protocol, the
parties go to the expensive mode. If only a single (id,m, σs) is received, an honest party Pi outputs (id,m)
to Pi.

2. Expensive mode:
(a) On input (reveal, id), the party Pf(id) which at any point received the message (id,m, σs, σr), signs

(id,m, σs, σr) to obtain σf and sends (reveal, id,m, σs, σr, σf ) to each other party.
(b) Each (honest) party in turn sends the message to each other party. Several different messages and signatures

corresponding to the same id are handled by an honest party in the same way as by broadcasting. If only a
single (id,m, σs, σr, σf ) is received, an honest party Pi outputs (id,m) to Pi.

Fig. 6: Real Protocol Πtransmit
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Secure transmit:

1. Cheap mode:
(a) On input (transmit, id,m) for s(id) ∈ C, S receives m∗ and σ∗s from A. In its local copy of Πtransmit , it

plays sending (id,m∗, σ∗s ) to Pr(id). For s(id), r(id) /∈ C, S gets the message length |m| from Ftransmit . This
is needed to model the view of A on messages moving through secure point-to-point channels between the
honest parties. For simplicity, we will ignore |m| in further simulations.

(b) On input (transmit, id) for s(id) ∈ C and r(id) /∈ C, if A decides not to send a valid message from s(id), then
S plays the broadcast of (bad, id) of Pr(id), and goes to the expensive mode. For s(id) /∈ C, r(id) ∈ C, S
receives a message (id,m) from Ftransmit . It creates a signature σm on m and plays delivery of (id,m, σs) to
Pr(id).

2. Expensive mode:
(a) On input (transmit, id,m), S signs (id,m) to obtain signature σs. S knows m since if the expensive mode is

entered, then either the sender or the receiver is corrupt. S models sending (id,m, σs) to each other party.
(b) S models the honest behaviour of i /∈ C. For i ∈ C, it acts as A tells to Pi.
(c) S models the honest behaviour of r(id) /∈ C. For r(id) ∈ C, it acts as A tells to Pr(id). If (corrupt, k) should

be output by any party, then S sends (stop, k) to Ftransmit .

Secure broadcast:

1. On input (broadcast, id,m) for s(id) /∈ C, S receives (id,m) from Ftransmit and generates a signature σm on m.
For s(id) ∈ C, S receives m∗ and σ∗s from A. It models sending (id,m, σs) (or (id,m∗, σ∗s )) to each other party.

2-4 For the next broadcast rounds, S models the honest behaviour of all i /∈ C. For i ∈ C, it acts as A tells to Pi. If
(corrupt, k) should be output by any party, then S sends (stop, k) to Ftransmit .

Forward received message:

1. On input (forward, id) for r(id) /∈ C and f(id) ∈ C, S receives (id,m) from Ftransmit , generates the signatures σs,
σr on m, and models sending (id,m, σs, σr) to Pf(id). For r(id) ∈ C and f(id), s(id) /∈ C, S should ensure delivery
of m that was sent by s(id) on some point. A may choose some m∗ 6= m to be forwarded, and the signatures σ∗s ,
σ∗r on m∗.

2. S models the behaviour of Pf(id) as it did on input (transmit, id), going to the expensive mode if necessary.

Reveal received message:

1. Cheap mode: Simulated similarly to the broadcast. The only difference is that, as soon as a message (corrupt, k) is
received by a party Pi, it goes to the expensive mode instead of stopping the protocol and outputting (corrupt, k)
to Z.

2. Expensive mode:
(a) On input (reveal, id) for f(id) /∈ C, S gets (id,m) from Ftransmit and creates the signatures σs of Ps(id),

σr of Pr(id), and σf of Pf(id) on m. For f(id) ∈ C, S receives m∗, σ∗s ,σ∗r , σ∗f from A. S models sending
(reveal, id,m, σs, σr, σf ) (or (id,m∗, σ∗s , σ

∗
s , σ
∗
f )) to each other party.

(b) S models the honest behaviour of all i /∈ C. For i ∈ C, it acts as A tells to Pi. If (corrupt, k) should be output
by any party, then S sends (stop, k) to Ftransmit .

Fig. 7: Simulator Stransmit
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Table 5. Costs of different functionalities of Πtransmit applied to N -bit messages, using c-bit signatures

Cheap mode (as far as all parties follow the protocol)

functionality rounds communicated bits

transmit 1 N + c
broadcast 2 n(n− 1) · (N + c)
forward 1 N + 2c
reveal 2 n(n− 1) · (N + c)

Expensive mode (if some party deviates from the protocol)

functionality rounds communicated bits

transmit 2 2(n− 1) · (N + c)
broadcast 3 (n(n− 1) + 2(n− 1)2) · (N + c)
forward 2 2(n− 1) · (N + 2c)
reveal 3 (n(n− 1) + 2(n− 1)2) · (N + 3c)

Lemma 3. Let C be the set of corrupted parties. Assuming |C| < n/2 and existence of signature scheme
with probability of existential forgery δ, the protocol Πtransmit UC-realizes Ftransmit with correctness error
ε < N · δ and simulation error 0, where N is the total number of sent messages.

Proof. We use the simulator S = Stransmit described in Fig. 7. The simulator runs a local copy of Πtransmit .
It also generates signing and verification keys for all the n parties, using a pre-agreed signature scheme.

Simulatability In Πtransmit , the real adversary A needs to get all the messages received by the corrupted
parties. Any message m that is sent to a corrupted party is delivered by Ftransmit to S. It is sufficient to
know the message length |m| to simulate secure channels between honest parties. For the additional rounds
in the expensive mode, S needs the message m to simulate resolving the conflict (i.e let all parties assist
in delivery of m). In this case, the value m is known to S since the expensive mode is entered if either
s(id) ∈ C or r(id) ∈ C. In the first case, m is chosen by A. In the latter case, a message (id,m) comes from
Ftransmit . In addition, S needs to generate the signatures of honest parties on messages m that is receives
from Ftransmit , which is possible since S has instantiated the signature scheme itself. Hence everything is
perfectly simulatable.

Correctness We discuss the correctness of different modes.

– Transmission (cheap): As far as all the parties provide valid signatures, the messages in simulated
Πtransmit are delivered in the same way as in Ftransmit .

– Broadcast: We need to ensure that, either each honest party gets the same message m, or all of them
output (corrupt, k) for the same index k ∈ C. Suppose that s(id) has sent a message (id,mi, σ

i
s(id)) to the

party Pi, for all i ∈ [n]. If Pi does not receive a valid message, it sends a signature γi on (corrupt, s(id))
to each other party. Otherwise, it sends (id,mi, σ

i
s(id), σ

i
i) to each other party. If any party receives

(id,m, σs) and (id,m′, σ′s) for m 6= m′, it sends (id,m,m′, σs, σ
′
s) to each other party, proving that Ps(id)

misbehaved. This situation is possible only if Ps(id) has itself generated the contradictory signatures σs
and σ′s. Since the signature includes not only the message, but also the current protocol session and the
message identifier id, there is no way for A to take signatures of some previous rounds or sessions. By
properties of the signature scheme, A may succeed in generating σs and σ′s for m′ 6= m with probability
at most δ. Hence if m 6= m′, then s(id) /∈ C will be accused only with probability at most δ, and for
s(id) ∈ C a message (stop, k) will be sent by S to Ftransmit . If no (id,m,m′, σs, σ

′
s) has been sent for

m 6= m′, then all honest parties should have obtained the same message (id,m, id).
– Transmission (expensive): If something goes wrong, a message (bad, id) will be broadcast to each party.

We have just proven that either all honest parties receive (bad, id), or they output (corrupt, k) if the
broadcast fails due to Pk. After that, each party Pi forwards (id,mi, σ

i
s) that it received to Pr(id),

sending a (corrupt, k) if the signature is invalid (similarly to the broadcast). Differently from broadcast,
if Pi gets two properly signed, but different messages m 6= m′, it does not distribute (id,m,m′, σs, σ

′
s) to

prove that Ps(id) is malicious, but just proceeds with either m or m′. This is allowed since in Ftransmit
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the message m for s(id) ∈ C is chosen by As anyway. At this point, the correctness error of the expensive
mode is 0.

– Forwarding: A party Pr(id) that already holds a signature σs on m creates one more signature σr on
m. sending the message to Pf(id). If both s(id), r(id) ∈ C, then they may choose a new message m∗

and create arbitrary signatures on it. This is allowed by Ftransmit , since it does not commit corrupt to
corrupt. If s(id) /∈ C, then r(id) may generate a signature σ∗s on some other message m∗ with probability
at most δ. If r(id) /∈ C, then we would not reach forwarding unless σs would be a valid message on m.
Hence Pf(id) gets valid signatures on m only if it is the same m that was transmitted by Ps(id) to Pr(id),
or otherwise the expensive mode is run for forwarding m.

– Revealing messages (cheap): in addition to common broadcast messages, S may need to simulate the
complaint of Pf(id) that has received (id,m′, σ′s, σ

′
r) at some point before. If f(id) /∈ C, then it should

be s(id) ∈ C since there is a complaint, and S creates the signatures σ′s, σ
′
r itself, so the complaint will

be accepted. If f(id) ∈ C, then A chooses (id,m′, σ′s, σ
′
r) for the complaint. Unless both s(id), r(id) ∈ C,

it may come up with valid signatures σ′s, σ
′
r with probability at most δ. Otherwise, an unreasonable

complaint will not be accepted. If all s(id), r(id)mf(id) ∈ C, then Ftransmit allows to reveal m 6= m′ since
it does not commit corrupt to corrupt.

– Revealing messages (expensive): The party Pf(id) that holds m and the signatures σs, σr now broadcasts
(id, σs, σr) to each other party. The broadcast itself involves one more signature σf of Pf(id). The message
m is accepted by an honest party iff all the three signatures σs, σr, σf correspond to m, and there is
no m′ 6= m that is also provided with valid signatures. If s(id), r(id), f(id) ∈ C, then Ftransmit allows to
reveal any value (do not commit corrupt to corrupt). If at least one of them is honest, then its signature
can be falsified with probability at most δ.

As a summary, for each message identifier id, if A wants to force m′ 6= m to be delivered for s(id) /∈ C [or
r(id) /∈ C in the case of forwarding], it should falsify at least the signature of Ps(id) [Pr(id)] on m, which
happens with probability at most δ. Alternatively, if A just wants to cause the honest parties to blame an
innocent Ps(id), then it should generate another message m′ s.t m 6= m′, and σm′ is a valid signature of Ps(id)
on m′, which also happens with probability at most δ. If the total number of transmitted messages is N , the
probability of cheating in at least one of them is at most N · δ. �

Parallelization. If several messages need to be transmitted to the same party in the same round,
it is enough to provide just one signature for all of them. The only problem is that, only some of these
messages may need to be forwarded or revealed afterwards, and it should be possible to verify if the signature
corresponds to that particular message. We note that the signature covering all the messages of one round can
be efficiently constructed by computing a Merkle hash tree of the single signatures of all these messages [47].
If the signature should be verified for only one message, it is necessary to reveal the authentication path of
that message, which is just taking one node from each level of the tree, and also the one-time public/private
key pair for that particular message. In this way, instead of sending n signatures for n messages, it suffices
to send just dlog ne+ 3 signatures.

C.2 Sharing Based Commitments

From the informal construction of Sec. 4.1, we may abstract away the functionality Fshare that we will use
to generate shared commitments. It is given in Fig. 8.

The protocol Πshare implementing Fshare works on top of the message transmission functionality Ftransmit

defined in Sec. C.1. It ensures that all shares will be delivered to all parties, and that the parties may later
prove which shares they received. The protocol Πshare is given in Fig. 9 and Fig. 10.

From the definition of Πshare , we count the number of Ftransmit operations being called for different func-
tions. This allows us to estimate the round and the communication complexity based on the implementation
of Ftransmit .

Observation 2 The number of Ftransmit operations for applying different functions of Πshare to an N -bit
input is given in Table 6, where trM , bcM , fwdM , revM denote the calls of transmit, broadcast, forward, reveal
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Fshare works with unique identifiers id, encoding the ring size m(id) in which the value is shared, and the parties
p(id) and p′(id) that get the shared value (if there is only one such party, then p(id) = p′(id)). It uses a linear
(n, t)-threshold sharing scheme with t = n/2 + 1, and fixes a set H ⊆ [n] \ C of t honest parties. The shared vectors
are stored in an array comm.
Initialization: On input (init, m̂, p̂, p̂′) from all (honest) parties, where Dom(m̂) = Dom(p̂) = Dom(p̂′), assign the
functions m← m̂, p← p̂, p′ ← p̂′. Send the fixed set H of the selected t honest parties to AS .
Share: On input (share, (xk)k∈[n], id) from Pp(id) and (share, id) from all (honest) parties, if comm[id] exists, then do
nothing. Otherwise:

1. Write comm[id]← x where x = declassify(xk)k∈H. If p(id) ∈ C, then xk are chosen by AS .
2. Output (xk)k∈[n] to Pp(id). For p(id) 6= k, output xk to Pk. For all k ∈ C, send xk also to AS .

Mutual Share: On input (mshare, (xk)k∈[n], id) from Pp(id) and (mshare, id) from all (honest) parties, if comm[id]
exists, then do nothing. Otherwise:

1. Repeat the points (1)-(2) of the sharing functionality.
2. Output (xk)k∈[n] also to Pp′(id).

Reshare: On input (reshare, (xk)k∈[n], id) from Pp(id) and (reshare, x∗k, id) from each (honest) party Pk, if comm[id]
exists, then do nothing. Otherwise:

– If p(id) /∈ C, write comm[id]← declassify(xk)k∈H.
– If p(id) ∈ C, write comm[id]← declassify(x∗k)k∈H.

Compute Linear Combination: On input (lc, c, id, id′) from all (honest) parties, where p′(idi) are the same for
all i ∈ {1, . . . , |id|}, for p′ ← p′(id), m← min ({m(idi) | i ∈ {1, . . . , |id|}}):

1. Compute y ←
∑|id|

i=1 ci · comm[idi].
2. Write comm[id′]← y.
3. Assign m(id′)← m, p(id′) = p′(id′)← p′.

Compute Truncation: On input (trunc,m′, id, id′) from all (honest) parties, where m(id) = 2m for some m ≥ m′ ∈
N:

1. Compute y ← comm[id] mod 2m′ .
2. Write comm[id′]← y.
3. Assign m(id′)← m′, p(id′) = p′(id′)← p′(id).

Weak Open: On input (weak open, id) from all (honest) parties, ask from AS whether comm[id] or ⊥ should be
output to each party. If it is comm[id], output it also to AS .
Open: On input (open, id) from all (honest) parties, output comm[id] to each party and also to AS .
Stopping: On input (stop, k) from AS output (corrupt, k) to all parties. For all id, define p′(id)← p(id) for p′(id) = k,
and p(id)← p′(id) for p(id) = k. Do not accept any inputs s.t p(id) = p′(id) = k anymore.

Fig. 8: Ideal functionality Fshare
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In Πshare , each party works locally with unique identifiers id, encoding the ring size m(id) in which the value is shared,
and the parties p(id) and p′(id) that know the shared value. The parties use a linear (n, t)-threshold sharing scheme
with t = n/2 + 1. Each party Pk stores its own local copy of an array commk into which it writes its shares. It also
stores an array comm into which it writes the entire shared values known to it. For the new indices id that will store
the new values computed from the committed values, store a term deriv [id] (represented by a tree whose leaves are
commitments, and the inner nodes are operations applied to them) to remember in which way they were computed.
For the committed values, deriv [id] = id.
Initialization: On input (init, m̂, p̂, p̂′) where Dom(m̂) = Dom(p̂) = Dom(p̂′), each (honest) party, assigns m ← m̂,
p ← p̂, p′ ← p̂′. It defines mappings s, r, and f , such that s(idkk′) ← p(id), r(idkk′) ← k, and f(idkk′) ← k′, for all
id ∈ Dom(p), k, k′ ∈ [n]. In addition, it defines the senders s(idbck ) ← k for the broadcasts (used for share opening).
It sends (init, s, r, f) to Ftransmit .
Stopping: At any time when (corrupt, k) comes from Ftransmit , each (honest) party outputs (corrupt, k) to Z. It treats
Pk as if it has left the protocol, and defines p′(id)← p(id) for p′(id) = k, and p(id)← p′(id) for p(id) = k.

Fig. 9: Real Protocol Πshare (initialization and stopping)

Table 6. Calls of Ftransmit for different functionalities of Πshare with N -bit values

functionality called Ftransmit functionalities

share n · trshn·N
mshare n · trshn·N + n · fwdshn·N
reshare –

weak open n · bcshn·N
open n · revshn·N

lc, trunc –

respectively on an M -bit message, and shn the number of times the bit width the value shared among n parties
is smaller than the bit width of its one share. We note that, at least with the linear (n, t)-threshold schemes
used in this work (see Sec. 4.1), the overhead of share sizes is multiplicative w.r.t to the bit length of the
shared value, i.e shn · (M1 +M2) = shn ·M1 + shn ·M2, which means that several values can be shared in
parallel without additional overheads to the share size.

Lemma 4. Let C be the set of corrupted parties. Assuming |C| < n/2, the protocol Πshare UC-realizes Fshare

in Ftransmit -hybrid model.

Proof. We use the simulator S = Sshare described in Fig. 11. The simulator runs a local copy of Πshare ,
together with a local copy of Ftransmit . It receives the subset H of t honest parties from Fshare . Throughout
the simulation, the shares commk[id] of p(id) ∈ C held by k ∈ H should comprise the value comm[id] held
by Fvmpc . This ensures that the parties are committed to the values they have initially shared.

Simulatability S simulates the messages communicated through Ftransmit . All messages of Πshare in-
volving either a corrupted sender or a corrupted receiver are given to S by Fshare . The only private values
that are generated by S itself are the shares (xk)k∈C of x belonging to some honest party, that should be
delivered to A. By assumption, Πshare works with a linear (n, t)-threshold sharing scheme with t = n/2 + 1.
Assuming |C| < n/2, there are at most t−1 shares that S needs to simulate. By definition of threshold secret

sharing, any set of less than t shares looks uniformly distributed. Hence it is sufficient sample xk
$← Zm(id).

For the messages moving between honest parties, S only needs to simulate Ftransmit , which should output
the message length to A. The message length can be derived from the ring m(id) in which the values are
shared.

Correctness The delivery of transmitted and broadcast messages in ensured by Ftransmit . If any (corrupt, k)
message comes from Ftransmit , then S discards Pk from its local run of Πshare . Since |C| > n/2 and t = n/2+1,
there is still enough shares to continue running Πshare with the values shared by the other parties. The as-
signments p′(id)← p(id) for p′(id) = k, and p(id)← p′(id) for p(id) = k ensure that the mutual shares of Pk
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Share: On input (share, (xk)k∈[n], id):

1. Pp(id) writes comm[id]← (xk)k∈[n].
2. Pp(id) sends (transmit, idkk, x

k) to Ftransmit , for each k ∈ [n].
3. Upon receiving (idkk, x

k) from Ftransmit , Pk writes commk[id]← xk, deriv [id]← id.

Mutual Share: On input (mshare, (xk)k∈[n], id):

1. Pp(id) writes comm[id]← (xk)k∈[n].

2. Pp(id) sends (transmit, (id
p′(id)
k , xk) to Ftransmit for all k ∈ [n].

3. Upon receiving (id
p′(id)
k , xk) from Ftransmit , Pp′(id) checks if xk are valid consistent shares. If they are not, P ′p′(id)

handles all the received messages as invalid, going to the expensive mode of Ftransmit .

4. Pp′(id) sends (forward, id
p′(id)
k ) to Ftransmit for each k ∈ [n].

5. Upon receiving (id
p′(id)
k , xk) from Ftransmit , Pk writes commk[id]← xk, deriv [id]← id.

Reshare:

1. On input (reshare, (xk)k∈[n], id), Pp(id) writes comm[id]← (xk)k∈[n].
2. On input (reshare, xk, id), Pk writes commk[id]← xk, deriv [id]← id.

Compute Linear Combination: On input (lc, c, id, id′), where p′(idi) are the same for all i ∈ {1, . . . , |id|}, for
p′ ← p′(id), m← min ({m(idi) | i ∈ {1, . . . , |id|}}), each (honest) Pk

1. computes yk ←
∑|id|

i=1 ci · commk[idi] mod m (Pp(id) computes all (yk)k∈[n]);
2. writes commk[id′]← yk (Pp(id) also writes comm[id′]← (yk)k∈[n]);
3. assigns m(id′)← m, p(id′) = p′(id′)← p′, deriv [id′]← lc(c, id).

Compute Truncation: On input (trunc,m′, id, id′), where m(id) = 2m for some m ≥ m′ ∈ N, each (honest) Pk

1. computes yk ← commk[id] mod 2m′ (Pp(id) computes all (yk)k∈[n]);
2. writes commk[id′]← yk (Pp(id) also writes comm[id′]← (yk)k∈[n]);
3. assigns m(id′)← m, p(id′) = p′(id′)← p(id), deriv [id′]← trunc(m′, id).

Weak Open: On input (weak open, id):

1. Pk takes xk ← comm[id] and sends (broadcast, idbck , x
k) to Ftransmit for all k ∈ [n].

2. Upon receiving all shares (idbck , x
k) from Ftransmit , each (honest) party reconstructs x ← declassify(xk)k∈[n] and

outputs x to Z. If not all n shares come, or they are inconsistent, output ⊥ to Z.

Open: On input (open, id′):

1. Pp(id) sends (reveal, idk
′

k ) to Ftransmit for all endpoint indices idk
′

k of the derivation term deriv [id′].

2. Upon receiving all (idk
′

k , x
k) from Ftransmit for all k ∈ [n], each (honest) party reconstructs x← declassify(xk)k∈[n],

computes y by instantiating the leaves idk
′

k of the term deriv [id′] with xk, and outputs y to Z.

Fig. 10: Real Protocol Πshare (sharing, local operations on shared values, and opening)
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Let comm be the local array of Fshare , and commk, k ∈ [n] the local arrays of S that it stores for each party. Let H
be some set of t honest parties.
Share: On input (share, x, id) for p(id) ∈ C, S gets the shares (xk)k∈[n] from A. For p(id) /∈ C, S generates the shares

xk
$← Zm(id) for k ∈ C. S simulates using Ftransmit to distribute the shares (xk)k∈C .

If no (corrupt, k) has come from Ftransmit , then all the shares xk have been successfully delivered. Fshare is now
waiting for x from S for p(id) ∈ C. It may happen that the shares (xk)k∈[n] coming from A are inconsistent. S
defines x← declassify(xk)k∈H, which is unique since |H| = t. It sends x to Fshare that writes comm[id]← x. S writes
comm[id] = x, and commk[id]← xk for all k ∈ [n].
Mutual Share: On input (mshare, x, id):

1. If p(id) ∈ C, then S gets (xk)k∈[n] from A.
2. If p′(id) ∈ C, then S gets (xk)k∈[n] from Fshare .

3. Otherwise, it generates xk
$← Zm(id) for all k ∈ C.

S handles the obtained shares similarly to the (share, x, id) case.
Reshare: On input (reshare, xk, id), S receives x∗k for k ∈ C from A, and just simulates outputting the same x∗k

back to parties.
Weak Open: On input (weak open, id), S gets (xk)k∈[n] from Fshare . If k ∈ C, then xk is chosen by A. S simulates
(broadcast, idbck , x

k) using Ftransmit . It models the honest behaviour of i /∈ C, and for i ∈ C it acts as A tells to Pi.
Open: On input (open, id), S gets (xk)k∈[n] from Fshare . If p(id) ∈ C, then (xk)k∈[n] is chosen by A. S simulates all

the revealings (reveal, idk
′

k , (x
k)k∈[n]) of the leaves of deriv [id] using Ftransmit . It models the honest behaviour of i /∈ C,

and for i ∈ C it acts as A tells to Pi.
Stopping: S models the honest behaviour of all i /∈ C. For i ∈ C, it acts as A tells to Pi. If (corrupt, k) should be
output to each honest party in Πshare , then S discards Pk from its local run of Πshare , and assigns p′(id)← p(id) for
p′(id) = k, and p(id)← p′(id) for p(id) = k.
Compute Linear Combination and Truncation: S locally preforms the computation for all k ∈ C. No outputs
are produced.

Fig. 11: The simulator Sshare

with the remaining parties will not be lost. S sends (stop, k) to Fshare , so that both the real and the ideal
worlds blame Pk and do not perform any computations on its values anymore.

The shares issued to each party are coming from uniform distribution also in Fshare . We now need to
show that the opened values are the same in both worlds.

– Let p(id) /∈ C. During the opening, at least the shares (xk)k/∈C come from Fshare , and there are at least
t such shares that comprise comm[id]. A may tamper with the shares xk for k ∈ C. Since comm[id]
is already fixed by the shares of honest parties, A may at most make the opening inconsistent. In the
weak opening case, the opening may fail, and S sends ⊥ to Fshare . In the strong opening case, Ftransmit

ensures that the opened shares are indeed those chosen by Pp(id).

– Let p(id) ∈ C. We need to show that declassify(commk[id])k∈H = comm[id] for the initially fixed set of
honest parties H is maintained throughout the computation, where commk[id] are the shares of the local
copy of Πshare of S, and comm[id] is the inner value of Fshare . We will prove it by induction on the
number of operations that have been applied to the shared values.
• Base: The initial values for comm[id] are chosen by A during executing share and mshare. In both

cases, S sends to Fshare the value x ← declassify(xk)k∈H, where xk = commk[id] for k ∈ H in the
local copy of Πshare of S. Hence declassify(commk[id])k∈H = comm[id].

• Step: The new values comm[id′] are created when calling reshare, lc and trunc. If reshare is called
for p(id) ∈ C, then Fshare takes the shares x∗k of the honest parties to reconstruct comm[id]. Since
declassify(commk[id])k∈H = comm[id] held before by induction hypothesis, it still holds. Since both
lc and trunc are linear operations, and we are using linear secret sharing, we have

declassify(commk[id′])k∈H = declassify(f(commk[id]))k∈H

= f(declassify(commk[id]))k∈H .
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Table 7. Number of tuple bits involved in different steps (ring cardinality m, length `)

x nbitstuple(x,m, `) nbitsopen1(x,m, `) nbitsopen2(x,m, `)

bit logm 1 logm
triple 3 logm 2 logm logm

cv log `+ ` logm log ` ` · logm
rot log `+ 3` · logm log `+ ` · logm 2` · logm

By induction hypothesis, declassify(commk[id]))k∈H = comm[id], and hence this quantity equals
f(comm[id]) = comm[id′], so declassify(commk[id′])k∈H = comm[id′].

As the result, A may tamper with the shares xk for k ∈ C, but since comm[id] is already fixed by the
shares issued to H, they may at most make the opening inconsistent. In the weak opening case, S sends
⊥ to Fshare , and the opening fails. In the strong opening case, Ftransmit ensures that only the shares
xk = commk[id] that have been indeed received by Pk are opened for k /∈ C, and so for k ∈ H. Finally,
either comm[id] or (corrupt, p(id)) is output to each party. �

C.3 Generation of Preprocessed Tuples

Fig. 2 of Sec. 4.2 presents the functionality Fpre that we use to generate and share among the parties a
sufficient amount of verified preprocessed multiplication triples and trusted bits. We now give in Fig. 12 an
extended version of Fpre that also allows to generate the characteristic vectors (CV) and the rotation tuples
that we briefly discussed in Sec. 5.1 (verifiable shuffle is omitted since it works only for the 3-party case, but
its implementation and proofs would be very similar to the rotation tuples). The protocol Πpre implementing
such an extended Fpre is formalized in Fig. 13. It works on top of the sharing functionality Fshare defined in
Sec. C.2.

Observation 3 From the definition of Πpre , we can extract the total number of bits nbitstuple(T ) of a single
tuple of type T , and the total numbers nbitsopen1(T ) and nbitsopen2(T ) of tuple bits opened in the pairwise check,
where nbitsopen1(T ) bits are opened before the last nbitsopen2(T ) bits. For the rotation tuples, the characteristic
vector part and the rotation part can be done in parallel, so two sequential broadcasts are sufficient for each
type of tuples. These values are represented by Table 7.

Lemma 5 (cost of preprocessed tuple generation of Πpre). Let the Fshare used by Πpre be realized by
the protocol Πshare . Let c be the number of bits in the randomness seed used by the parties, and let the hash
function H outputs also be c-bit values. Given the parameters µ and κ, the number of Ftransmit operations
for generating N tuples of type T using Πpre can be expressed as the quantity pre(N,T ) = t · bcc + t · bcc +
n · tr(µN+κ)·shn·(nbitstupleT ) + bcκ·shn·(nbitstupleT ) + bc(µ−1)N ·shn·(nbitsopen1T ) + bc(µ−1)N ·shn·(nbitsopen2T ).

Proof. By Obs. 2, the cost of sharing of an M -bit value by Fshare is n · trshn·M , and the cost of weak opening
an M -bit value by Fshare is bcshn·M . The lc operations do not involve any communication. We interpret the
terms in the sum defining pre(N,T ). It covers all the communication for generating all the N triples of type
t.

– t · bcc + t · bcc is the cost of agreeing on a common randomness seed.
– n · tr(µN+κ)·shn·(nbitstupleT ) is the cost of sharing the initial unverified tuples among the n parties in parallel.

– bcκ·shn·(nbitstupleT ) is the cost of cut-and-choose opening. All the κ tuples are opened in parallel.
– bc(µ−1)N ·shn·(nbitsopen1T ) and bc(µ−1)N ·shn·(nbitsopen2T ) are the costs of the pairwise verifications of all the

(µ− 1) pairs, which counts the total cost of the two sequential weak openings of this step. �

Lemma 6. Let C be the set of corrupted parties. Assuming |C| < n/2, if µ > 1 + η/ logN and κ >
max{(N1/µ+1)η,N1/µ+µ−1}, where N is the total number of generated tuples, the protocol Πpre UC-realizes
Fpre in Fshare-Ftransmit hybrid model with correctness error ε < 2η, and simulation error 0.
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Fpre works with unique identifiers id, encoding a ring size m(id) in which the tuples are shared, the vector length
`(id) (needed for characteristic vectors and rotations), the party p(id) that gets all the shares, and the number n(id)
of tuples to be generated. It stores an array comm of already generated triple shares.
Initialization: On input (init, ˜̀, m̃, ñ, p̃) from all (honest) parties, where Dom(˜̀) = Dom(m̃) = Dom(ñ) = Dom(p̃),
assign the functions `← ˜̀, m← m̃, n← ñ, p← p̃.
Trusted bits: On input (bit, id) from all (honest) parties, if comm[id] exists, then do nothing. Otherwise:

1. Generate a vector of random bits r
$← Zn(id)

2 .

2. Compute the shares (rk)k∈[n] of r over Zn(id)

m(id), assign comm[id]← (rk)k∈[n].

3. Output (rk)k∈[n] to Pp(id). For k 6= p(id), output rk to Pk. For all k ∈ C, send rk also to AS . If i ∈ C, send all
shares (rk)k∈[n] to AS .

Multiplication triples: On input (triple, id) from all (honest) parties, if comm[id] exists, then do nothing. Otherwise:

1. Generate rx
$← Zn(id)

m(id), ry
$← Zn(id)

m(id), and compute rxy = rx · ry.

2. Compute the shares (rk
x, r

k
y , r

k
xy)k∈[n] of (rx, ry, rxy) over Zn(id)

m(id), assign comm[id]← (rx, ry, rxy)k∈[n].

3. Distribute the shares as in the point (3) of trusted bits.

Characteristic vector (CV) pairs: On input (cv, id) from all (honest) parties, if comm[id] exists, then do nothing.
Otherwise:

1. Generate a vector of pairs (r, s) ∈ (Z`(id) × Z`(id)
2 )n(id), s.t r

$← Z`(id), and for all i ∈ [`(id)], si = 1 iff i = r.

2. Share each pair (r, s) to (rk, sk)k∈[n] over Z`(id) × Z`(id)

m(id), assign comm[id]← (r, s) to (rk, sk)k∈[n].

3. Distribute the shares as in the point (3) of trusted bits.

Rotation tuples: On input (rot, id) from all (honest) parties, if comm[id] exists, then do nothing. Otherwise:

1. Generate a CV pair (r, s) over Z`(id) × Z`(id)
2 . Generate a

$← Z`(id)

m(id). Compute b ∈ Z`(id)

m(id) s.t bi = a(i+r) mod `(id)

for all i ∈ [`]. In total, generate n(id) such quadruples (r, s,a, b).

2. Share each tuple to (rk, sk,ak, bk)k∈[n] over (Z`(id) × Z`(id)

m(id) × Z`(id)

m(id) × Z`(id)

m(id)), assign comm[id] ←
(rk, sk,ak, bk)k∈[n].

3. Distribute the shares as in the point (3) of trusted bits.
4. Distribute the shares as in the point (3) of trusted bits.

Stopping: On input (stop) from AS , stop the functionality and output ⊥ to all parties.

Fig. 12: Ideal functionality Fpre

In Πpre , each party works with unique identifiers id, encoding a ring cardinality m(id) in which the tuples are shared,
the vector length `(id), the party p(id) that gets all the shares, and the number n(id) of tuples to be generated. It
uses Fshare as a subroutine. The parameters µ and κ depend on the security parameter. The protocol uses a one-way
function H.
Initialization: On input (init, ˜̀, m̃, ñ, p̃) from Z, where Dom(˜̀) = Dom(m̃) = Dom(ñ) = Dom(p̃), each (honest)
party assigns the functions ` ← ˜̀, m ← m̃, n ← ñ, p ← p̃. For each id, it defines a couple of identifiers idki for
k ∈ [µ ·n(id)+κ], and i ∈ [u], where u depends of the type of preprocessed tuple to be generated for this id: 1 for bits,
3 for triples, `(id) + 1 for CV pairs, 3 · `(id) + 1 for rotation tuples. In this way, if the tuple contains several elements,
they are just appended together into one vector. It defines m̂(idk0)← `(id) for the CV pairs and the rotation tuples,
and it defines m̂(idki )← m(id) for all other indices. For all the indices, it defines p̂(idki )← p(id). It sends (init, m̂, p̂, p̂)
to Fshare .
Stopping: If at any time (corrupt, k) comes from Fshare or Ftransmit , output ⊥ to Z.

Fig. 13: Real protocol Πpre (initialization and stopping)
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Trusted bits: On input (bit, id):

1. The party Pp(id) generates (µ · n(id) + κ) random bits bk
$← Z2. It shares bk to (b`k)`∈[n] and sends

(share, (b`k)`∈[n], id
k
0) to Fshare , which distributes the shares among the parties. Each (honest) party sends

(share, idk0) to Fshare . If (corrupt, i) comes from Fshare for some i, output ⊥.
2. The parties jointly agree on κ random indices denoting the bits that are going to be revealed for each id, defining

a vector k(id) of random indices. For such agreement, it suffices that each party (any subset of t parties is actually
sufficient) broadcasts a random number ri (using Ftransmit), and the randomness seed is taken as

∑
i∈[n] ri. In

order to ensure that no party adapts its rj to the other parties’ rj , the hashes of rj are broadcast first. Each
party then constructs all the vectors k(id) locally.
For k ∈ k(id), each (honest) party sends (weak open, idk0) to Fshare , getting back a bit bk. If the opening fails, or
bk /∈ {0, 1}, then output ⊥.

3. The parties jointly agree on random pairing of 2 ·n(id) bits. For each pair (k, k′), Pp(id) broadcasts a bit indicating

whether bk = bk′ or not. If bk = bk′ was indicated, each (honest) party sends (lc, [1,−1], [idk0 , id
k′
0 ], idk,k

′

0 ) to Fshare .

If bk 6= bk′ was indicated, each (honest) party sends (lc, [1, 1], [idk0 , id
k′
0 ], idk,k

′

0 ) to Fshare . Each (honest) party then

sends (weak open, idk,k
′

0 ) to Fshare and checks if the value returned by Fshare equals 0 if bk = bk′ was indicated,
and 1 if bk 6= bk′ was indicated. If it does not, then output ⊥. This pairwise verification is repeated µ− 1 times.

4. Pi outputs the remaining n(id) shares bik. Pp(id) outputs (bik)i∈[n].

Multiplication triples: On input (triple, id):

1. The party Pp(id) generates (µ · n(id) + κ) random ring element pairs ak
$← Zm(id), bk

$← Zm(id). It computes
ck = ak · bk for k ∈ |µ · n(id) + κ|. Each value is shared similarly to the step (1) of trusted bits, using Fshare .

2. The parties reveal and check κ random triples similarly to the step (2) of bits.
3. The parties agree on a pairing of 2 · n(id) triples, as in the step (3) of trusted bits. For each

pair (k, k′), each (honest) party sends (lc, [1,−1], [idk0 , id
k′
0 ], idk,k

′

0 ), (lc, [1,−1], [idk1 , id
k′
1 ], idk,k

′

1 ), and then

(weak open, idk,k
′

0 ), (weak open, idk,k
′

1 ) to Fshare , getting back â and b̂ respectively. Each (honest) party then

sends (lc, [â, b̂, 1,−1], [idk1 , id
k′
0 , id

k′
2 , id

k
2 ], idk,k

′

2 ) and (weak open, idk,k
′

2 ) to Fshare . If Fshare outputs a value z 6= 0,
then output ⊥. The pairwise verification is repeated µ− 1 times.

4. Pi outputs the remaining n(id) shares (aik, b
i
k, c

i
k). Pp(id) outputs (aik, b

i
k, c

i
k)i∈[n].

Fig. 14: Real protocol Πpre (basic tuples)

Proof. We use the simulator S = Spre described in Fig. 16. The simulator runs a local copy of Πpre , together
with local copies of Ftransmit and Fshare .

Simulatability The shares of dishonest parties may be generated uniformly, by reasoning similar to the
case of Sshare , since there are at most n/2 shares to be revealed, and we are using linear (n, t)-threshold
sharing with t ≥ n/2 + 1. The simulator needs to generate some non-trivial values during the openings of
the cut-and-choose and the pairwise verification.

1. First of all, the randomness r is generated. S makes its shares ri dependent on the shares ri chosen by
A. Since the hashes of shares H(rki ) should be sent to Pk first, A cannot adapt its values rki to those of
S, unless A makes them inconsistent with the previously sent hashes (in the latter case S sends stop to
Fpre). Hence at the point when S needs to send its own hashes H(rki ) to A, it knows the distribution
from which A generates its ri, so it just generates the remaining ri in such a way that their sum equals
to the desired value of r such that the finally chosen random tuples will be exactly those chosen by Fpre .
Since S initially shuffled the shares, such an r is distributed uniformly.

2. For cut-and-choose of honest provers, S generates the opened tuples itself from the same distribution as
an honest prover would. By choice of the randomness seed r, these tuples are completely new and are
not related to the n(id) tuples generated by Fpre .

3. For the pairwise verification, S needs to simulate different values, depending on the tuple type. For the
first µ− 1 iterations, S generates all the tuples for honest parties itself, since they are not included into
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Characteristic vector (CV) pairs: On input (cv, id) from all (honest) parties:

1. The party Pp(id) generates (µ · n(id) + κ) pairs (rk, sk) where rk
$← Z`(id), and sk ∈ Z`(id)

2 is such that ski = 1 iff
i = rk. As in the step (1) of trusted bits, these values are shared and distributed using Fshare .

2. The parties reveal and check κ random pairs similarly to the step (2) of bits.
3. The parties agree on a pairing of 2 · n(id) tuples, as in the step (3) of trusted bits. For each pair (k, k′), each

(honest) party sends (lc, [1,−1], [idk0 , id
k′
0 ], idk,k

′

0 ) and (weak open, idk,k
′

0 ) to Fshare , getting back r̂.

Each (honest) party then sends (lc, [1,−1], [idki+1, id
k′
((i+r̂) mod `)+1], idk,k

′

i+1 ), (weak open, idk,k
′

i ) for i ∈ [`(id)] to
Fshare , getting back values z. If z 6= 0 for some z, output ⊥.

4. Pi outputs the remaining n(id) shares (rik, s
i
k). Pp(id) outputs (rik, s

i
k)i∈[n].

Rotation tuples: On input (rot, id) from all (honest) parties:

1. The party Pp(id) generates and shares (µ · n(id) + κ) CV pairs (rk, sk) over Z`(id) ×Z`(id)

m(id). For each such pair, it

also generates a
$← Z`(id)

m(id) and computes b ∈ Z`(id)

m(id) s.t bi = a(i+r) mod `(id). As in the step (1) of trusted bits, all
the entries of the vectors a and b are shared and distributed using Fshare .

2. The parties reveal and check κ random tuples similarly to the step (2) of bits.
3. The parties agree on a pairing of 2 · n(id) tuples, as in the step (3) of trusted bits. For each pair (k, k′), each

(honest) party does the following:
(a) Similarly to the step (3) of CV pairs, prove that sk is a characteristic vector of rk. For each pair (k, k′),

each (honest) party sends (lc, [1,−1], [idk0 , id
k′
0 ], idk,k

′

0 ) and (weak open, idk,k
′

0 ) to Fshare , getting back r̂. Each

(honest) party sends (lc, [1,−1], [idki+1, id
k′

((i+r̂) mod `)+1], idk,k
′

i+1 ), (weak open, idk,k
′

i ) for i ∈ [`] to Fshare , getting
back values z. If z 6= 0 for some z, output ⊥.

(b) Send (lc, [1,−1], [idk`+i+1, id
k′
`+i+1], idk,k

′

`+i+1) and (weak open, idk,k
′

`+i+1) to Fshare for i ∈ [`], getting â = ak−ak′ .

(c) Send (lc, [1,−1], [idk2`+i+1, id
k′

((i+r̂) mod `)+2`+1], idk,k
′

2`+i+1) to Fshare for i ∈ [`], expecting the rotation of â by
rk (which needs to be checked).

(d) Rotate â by rk by computing the linear combinations (lc, â, [idki , . . . , id
k
((`+i) mod `)+1], idk,k

′

3`+i+1) for all i ∈
[`(id)].

(e) Send (lc, [1,−1], [idk,k
′

2`+i+1, id
k,k′

3`+i+1], idk,k
′

4`+i+1) and (weak open, idk,k
′

4`+i+1) to Fshare for all i ∈ [`(id)]. If there
is at least one opened value z 6= 0, output ⊥.

4. Pi outputs the remaining n(id) shares (rik, s
i
k,a

i
k, b

i
k). Pp(id) outputs (rik, s

i
k,a

i
k, b

i
k)i∈[n].

Fig. 15: Real protocol Πpre (extended tuples)

Fpre anyway. The most interesting is the last µ-th iteration. Let k be the tuple that will be finally output
and is not known to S, and let k′ be the tuple that S may still choose itself.

(a) Trusted bits: First, S needs to broadcast a bit indicating whether bk 6= bk′ . This value is distributed
uniformly since bk′ has not been used anywhere yet. After that, S simulates Fshare outputting either
bk − bk′ , or bk + bk′ . For an honest prover, that value is always 0 for bk − bk′ , and 1 for bk + bk′ since
it tells honestly if bk 6= bk′ .

(b) Multiplication triples: S broadcasts â = ak − ak′ and b̂ = bk − bk′ which are uniformly distributed

due to the masks ak′ and bk′ . For an honest prover, the value â · bk + b̂ · ak′ + ck′ − ck equals 0, since
it would generate ck = ak · bk and ck′ = ak′ · bk′ .

(c) CV pairs: S broadcasts r̂ = rk − rk′ , which is uniformly distributed due to the mask rk′ . After that,
the vector sk′ rotated by r̂ is opened. For an honest prover, rotating sk′ back to rk′ positions gives a
vector (1, 0, . . . , 0), and rotating it forward by rk positions should indeed give sk as the result. Hence
all the final opened values are 0.

(d) Rotation tuples: The first checks are the same as for the CV tuple, and the masks rk′ and sk′ are
used up at this point. Similarly, â = ak−ak′ is uniform due to the mask ak′ . Finally, the differences
between the rotation of â by rk and the differences between bk and the rotation of bk′ by r̂ are
opened. For an honest prover, rotating bk′ by r̂ = rk − rk′ equals to rotating ak′ by rk, and since
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Tuple generation: On input (bit, id), (triple, id), (cv, id), and, (rot, id), S behaves according to the following pattern:

1. For p(id) /∈ C, S obtains n(id) shares sk from Fpre for each k ∈ C. It generates (µ − 1)n(id) + κ more shares
for each k ∈ C, shuffles all the shares, and delivers them to A. If p(id) ∈ C, then all the (µ − 1)n(id) + κ shares
(sk)k∈[n] are chosen by A. Even if the shares of A are inconsistent or do not comprise valid tuples, the simulation
does not stop yet. S models distributing sk to the parties using Fshare .

2. The parties should jointly agree to reveal some random κ tuples.

– In order to agree on the same κ, each party broadcasts a random number ri, and the randomness is taken as
r =

∑
i ri. All the communication takes part through Ftransmit and hence is easy to simulate. For i ∈ C, the

values ri are chosen by A. For i /∈ C, S generates ri
$← Zm(id), so that r in such that the only n(id) tuples

that have not been generated by S are exactly those that remain accepted in the end.
– Now a vector s′ of certain κ tuples needs to be revealed. S needs to simulates the weak opening of Fshare ,

but that requires knowing the values s′ to be opened. If p(id) ∈ C, then S takes the s′ chosen by A before. If
p(id) /∈ C, then S only knows s′k for k ∈ C. In this case, S generates a vector of random valid tuples s′, since
that is what an honest prover would generate. After Fshare returns the published results, S either accepts or
rejects these tuples from the name of honest parties, exactly in the same way as they would do in Πpre . If
any tuple should be rejected, S sends (stop) to Fpre .

3. The parties start verifying the tuples pairwise. For this, certain values should be computed and opened using
Fshare , that depend on the tuple type. For p(id) ∈ C, S already knows these values, and hence can simulate their
opening. If there are any inconsistencies, S sends (stop) to Fpre . For p(id) /∈ C, S needs to simulates two types of
values:

– The first component are alleged zeroes. For these, S simulates opening 0.
– The second component are some additional values needed in verification. For these, S simulates opening

uniformly distributed random values in the corresponding rings.
4. There are now n(id) shares left for each party that are treated as the final output. For p(id) ∈ C, Fpre has shared

s in such a way that declassify(sk)k/∈C are valid tuples. If the cut-and-choose and the pairwise verification have
not failed, then the same holds also in Πpre with probability that depends on the security parameters.

Stopping: If at any time (corrupt, k) should come from Fshare or Ftransmit , output (stop) to Fpre .

Fig. 16: The simulator Spre

bk is ak rotated by rk, their difference is indeed ak − ak′ (which is â) rotated by rk. Hence all the
opened values are 0.

Correctness For p(id) /∈ C, the finally left n(id) tuples are exactly those that are generated by Fpre .
For p(id) ∈ C, these n(id) shares are all generated by A. We need to show that, if finally n(id) tuples are
accepted for p(id) ∈ C, then they are all valid, except with negligible probability.

First of all, we show that, if the tuple with the index k′ is valid, then the pairwise check passes only if
the tuple k is also valid. We prove it for different kinds of tuples, one by one.

1. Trusted bits: Let bk′ ∈ {0, 1}. First, the prover decides whether to indicate bk = bk′ , or bk 6= bk′ .
– Suppose the prover indicated bk = bk′ . In this case, bk − bk′ is output. If indeed bk − bk′ = 0, then it

should be bk = bk′ ∈ {0, 1}.
– Suppose the prover indicated bk 6= bk′ . In this case, bk + bk′ is output. If indeed bk + bk′ = 1, then it

should be bk = 1− bk′ ∈ {0, 1}.
– If the prover indicates something else, the protocol aborts. No tuples are accepted.

2. Multiplication triples: Let ck′ = ak′ ·bk′ . The values â = ak−ak′ and b̂ = bk−bk′ are computed and opened
by the parties using Fshare , so there is no way to cheat with them. Suppose that â·bk+ b̂·ak′+ck′−ck = 0.
Since ck′ = ak′ ·bk′ , we have â·bk+b̂·ak′+ak′ ·bk′−ck = (ak−ak′)·bk+(bk−bk′)·ak′+ak′ ·bk′−ck = ak·bk−ck.
If this value is 0, then ak · bk = ck.

3. CV pairs: Let sk′ be a CV of rk′ . Since r̂ = rk − rk′ is computed by the parties using Fshare , there is no
way to cheat with that value. After that, the parties again use Fshare to rotate the vector sk′ by r̂. Let
it be denoted t. By correctness of the tuple k′, the vector t is indeed a CV of rk for the shared rk, and
t− sk = 0 implies that so is the vector sk.
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4. Rotation tuples: Let sk′ be a CV of rk′ , and bk′ a rotation of ak′ by rk′ . The first CV tuple checks prove
that sk is indeed a CV of rk. Since â = ak − ak′ is computed and opened by the parties using Fshare ,
there is no way to cheat with it. Similarly, the rotation of â by rk (denote it c), the rotation of bk′ by r̂
(denote it d), and the difference e = bk − d, are all computed using Fshare . Since bk′ is a rotation of ak′

by rk′ , we get that d is ak
′

rotated by rk.

Now suppose that the final checks passed, and e− c = 0. This means that e is the vector â = ak − ak′

rotated by rk, which we can rewrite as ark − d, where ark is ak rotated by rk. Since at the same time
e = bk − d (as computed by the parties), we get bk = ark, so bk is indeed a rotation of ak by rk.

We have shown that the only possibility for the prover to cheat is to put two invalid tuples into the same
pair. For the µ−1 pairwise checks, the finally accepted invalid tuple should be paired with some other invalid
tuple on each iteration. Now we need to show that, for sufficiently large µ and κ, this happens only with a
negligible probability.

Let p(id) ∈ C. Let n := n(id). If Pp(id) wants to have ` bad tuples among the final n ones, it has to do
the following:

1. put µ · ` bad tuples into the initial set of (µ · n+ κ) tuples;

2. hope that no bad tuple is among the ones opened during the cut-and-choose step;

3. hope that the µ · ` tuples are put together into ` groups during the pairwise checking step.

We will now give lower bounds for the values µ and κ, such that the probability of steps (2) and (3)
succeeding (from the point of view of a malicious prover) is less than 2−η for a security parameter η.

Probability of passing cut-and-choose. The κ tuples to be opened can be selected in
(
µn+κ
κ

)
different

ways. Assuming that some ` of the n tuples are“bad”, there are
(
µ(n−`)+κ

κ

)
ways of choosing a set that contains

only “good” tuples. The probability of selecting such a set is

Pc&c(µ, n, κ, `) =

(
µ(n−`)+κ

κ

)(
µn+κ
κ

) =
(µ(n− `) + κ)!

(µn+ κ)!
· (µn)!

(µ(n− `))!
=

µn · · · (µ(n− `) + 1)

(µn+ κ) · · · (µ(n− `) + κ+ 1)
≤
(

µn

µn+ κ

)µ·`
(1)

In particular, if ` ≥ cn for some c ∈ [0, 1], then, assuming κ ≤ µn
2 ,

Pc&c(µ, n, κ, `) ≤
(

µn

µn+ κ

)µnc
=

(
1

1 + κ
µn

)µnc
=

1((
1 + κ

µn

)µn
κ

)cκ ≤ 1

2cκ
(2)

Probability of passing pairwise checking. For the pairwise checking, we partition the µn tuples into
n groups of size µ, so that only one tuple of each group is left after checking. We have

(
µn
µ

)
ways to select

the first group,
(
µn−µ
µ

)
ways to select the second group,

(
µn−2µ
µ

)
ways to select the third group, etc. If we

multiply all these values, we get the number of all possible groupings, where the order of the groups matters.
Since the order of the groups is not important, we have to divide the final number by n!. The number of
groupings of µn tuples into n groups is

G(µ, n) =
1

n!

n−1∏
i=0

(
µ(n− i)

µ

)
=

1

n!

(
1

µ!

) n−1∏
i=0

(µ(n− i))!
(µ(n− i− 1))!

=
1

n!

(
1

µ!

)n
(µ(n− 0))!

(µ(n− (n− 1)− 1))!
=

(µn)!

n!(µ!)n

(3)
In order to pass the pairwise checking, all the µ` bad tuples should form exactly ` groups of size µ, such that
no “good” tuple is present in any of these groups. The number of such groupings is G(µ, `) · G(µ, n− `), and
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the probability of this happening is

Ppwc(µ, n, `) =
G(µ, `) · G(µ, n− `)

G(µ, n)

=
(µ`)!

`!(µ!)`
· (µ(n− `))!

(n− `)!(µ!)(n−`)
· n!(µ!)n

(µn)!

=
n!

`!(n− `)!
· (µ`)!(µn− µ`)!

(µn)!

=

(
n

`

)
/

(
µn

µ`

)
(4)

Probability of passing both checks. This probability is the product of (1) and (4):

Ppp(µ, n, κ, `) =

(
µ(n−`)+κ

κ

)(
n
`

)(
µn+κ
κ

)(
µn
µ`

)
=

(
n

`

)
· (µn− µ`+ κ)!

(µn− µ`)!κ!
· (µn)!κ!

(µn+ κ)!
· (µ`)!(µn− µ`)!

(µn)!

=

(
n

`

)
/

(
µn+ κ

µ`

)
(5)

Catching a single bad tuple. Suppose that the malicious prover aims to have a single bad tuple
among the final n ones, i.e. ` = 1. In this case

Ppp(m,n, k, 1) =

(
n

1

)
/

(
µn+ k

µ · 1

)
≤ n/

(
µn+ k

µ

)µ
= n/

(
n+

k

µ

)µ
≤ n1−µ .

In order to have Ppp(µ, n, κ, 1) ≤ 2−η, it is sufficient to have n1−µ ≤ 2−η or µ ≥ 1 + η/ log n.
Making a single bad tuple the worst case. We aim to select the parameters µ and κ in such a way,

that aiming for a single bad tuple is the best strategy for the malicious prover.
First, let ` < cn for some c ∈ [0, 1] (fixed below). We consider the ratio Ppp(µ, n, κ, `)/Ppp(µ, n, κ, `+ 1)

and search for sufficient conditions for it to be larger than 1. Let an := a(a− 1) · · · (a− n+ 1).

Ppp(µ, n, κ, `)

Ppp(µ, n, κ, `+ 1)
=

(
n
`

)(
µn+κ
µ`+µ

)(
n
`+1

)(
µn+κ
µ`

)
=

(`+ 1)!(n− `− 1)!

(n− `)!`!
· (µn− µ`+ κ)!(µ`)!

(µn+ k − µ`− µ)!(µ`+ µ)!

=
(`+ 1)

(n− `)
· (µ(n− `) + κ)µ

(µ(`+ 1))µ

≥ 1

n
·
(
µ(n− `− 1) + κ+ 1

µ`+ 1

)µ
(6)

For (6) to be at least 1, it is sufficient to take

µ(n− `− 1) + κ+ 1 ≥ n1/µ(µ`+ 1),

meaning that it suffices for κ to be at least

n1/µ(µ`+ 1)− 1− µ(n− `− 1) = µ(n1/µ`− n+ `) + n1/µ + µ− 1

≤ µ(n1/µcn− n+ cn) + n1/µ + µ− 1

= µn(c(n1/µ + 1)− 1) + n1/µ + µ− 1 .
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Table 8. Number of preprocessed tuples needed for basic operations

operation tuple type #tuples ring length

Linear combination – – – –

Conversion to a smaller ring – – – –

Bit decomposition in Zm bit logm m –

Multiplication in Zm triple 1 m –

Extending Zmx to Zmy bit logmx my –

Comparison in Zm bit 3 logm+ 1 m –

Bit shift in Zm cv 1 m logm
triple 1 m –

Rotation of length ` in Zm rot 1 m `

If we take c = 1/(n1/µ + 1), then this quantity is upper bounded by n1/µ +µ− 1, which is a sufficient choice
for κ.

Now let ` ≥ cn. In this case, by (2), already the probability of passing cut-and-choose is less than 2−ck,
on the condition k ≤ µn

2 . It is sufficient to take k ≥ η/c = η(n1/µ + 1) for this probability to be smaller than
2−η.

Due to the condition k ≤ µn
2 , we need to show that η(n1/µ + 1) ≤ µn

2 , and n1/µ + µ− 1 ≤ µn
2 . We have

shown that, for catching a single tuple, we should anyway choose µ ≥ 1 + η/ log n. We get

η(n1/µ + µ− 1) ≤ n1/(1+η/ logn) + µ− 1 ≤ nlogn/η + µ− 1 = 2−η + µ− 1 ≤ µ ≤ µn

2

for n ≥ 2, and

η(n1/µ + 1) ≤ η(n1/(1+η/ logn) + 1) ≤ η(nlogn/η + 1) = η(2−η + 1) ≤ 3

2
η .

In order to get µn
2 ≥

3η
2 , we need µ ≥ 3η

n . Since µ ≥ 1 + η/ log n > η/ log n, it suffices to have log n ≤ n
3 ,

which is true for n ≥ 12. Such a choice for n is reasonable, since we may always generate more tuples than
we actually need, and the preprocessing phase is in general run for several future protocol runs.

Summary. In order to allow a bad tuple pass with the probability of at most 2−η, while ending up
with n tuples, it is sufficient to choose the parameters µ and κ as follows:

µ ≥ 1 + η/ log n

κ ≥ max{(n1/µ + 1)η, n1/µ + µ− 1} .

This choice of µ and κ is given for each type of tuples separately. If the total number of generated tuples
is N , then it suffices in any case to take µ ≥ 1 + η/ logN and κ ≥ max{(N1/µ + 1)η,N1/µ + µ− 1}. �

C.4 Verification of Linear Subcircuits

We now present a formal protocol Πverify implementing the ideal functionality Fverify of Fig. 3. The protocol
Πverify is given in Fig. 17-20. It works on top of the sharing functionality Fshare defined in Sec. C.2, and the
preprocessed tuple generation functionality Fpre defined in Sec. C.3.

Observation 4 We may extract the number of different tuples required for each operation type directly from
the description of the initialization phase. They are given in Table 8.

Lemma 7 (cost of initializing Πverify). Let Πverify use the implementation Πpre of Fpre with c-bit ran-
domness seed, and the parameters µ, κ. Let all the functions f to be verified consist of basic operations
fi, such that there are Nb operations requiring bit decompositions (bit decomposition, ring extension, bit
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In Πverify , each party works with unique identifiers id, encoding the party indices p(id) and p′(id), the ring cardinality
m(id), the operation f(id) to verify, the input identifiers xid(id), and the output identifiers yid(id) on which f(id)
should be verified. The prover stores the committed values in a local array comm. The verifiers store the helpful values
published by the verifier in an array pubv . The messages that are not committed yet are stored by the sender and
the receiver in a local array sent . Πverify uses Ftransmit , Fshare and Fpre as subroutines. The protocol uses a one-way
hash function H.
Initialization: On input (init, m̂, f̂ , ˆxid, ˆyid, p̂, p̂′) from all the (honest) parties, where the domains of the input
functions m̂, f̂ , ˆxid, ˆyid, p̂, p̂′ are all the same, initialize comm and sent to empty arrays. Assign the mappings m← m̂,
f ← f̂ , xid← ˆxid, yid← ˆyid, p← p̂, p′ ← p̂′.
Initializing subroutine protocols:

– Initialize Ftransmit : For all id ∈ Dom(f), define s(id) ← p(id), r(id) = f(id) ← p′(id). For id corresponding to
randomness, define also s((id, j, k))← j, r((id, j, k))← p′(id), f((id, j, k)) = k. Send (init, s, r, f) to Ftransmit .

– Initialize Fpre : A message (init, ¯̀, m̄, n̄, p̄) is sent to Fpre , where ¯̀,m̄,n̄,p̄ depend on the functions f to be verified.
Let f(id) be a composition of basic operations f1, . . . , fNid . Each such fi, introduces to Fpre identifiers of the
form id′ ← (idi, type, `,m, n) such that type is the type of the tuple, ¯̀(id′) = `, m̄(id′) = m, n̄(id′) = n. For all
id′, take p̄(id′)← p(id).

1. Linear combination, conversion to a smaller ring: no tuples needed.
2. Bit decomposition in Zm: (idi, bit, 1,m, logm);
3. Multiplication in Zm: (idi, triple, 1,m, 1);
4. Extending Zmx to a larger ring Zmy : (idi, bit, 1,my, logmx);
5. Comparison in Zm: (idi, bit, 1,m+ 1, 3 logm+ 1);
6. Bit shift in Zm: (idi, cv, logm,m, 1), (idi, triple, 1,m, 1);
7. Rotation of length ` in Zm: (idi, rot, `,m, 1).

Let pre be the array containing all such identifiers introduced by all basic operations of f(id). Since Fpre generates
all the tuples of the same type simultaneously, we may optimize tuple generation by substituting all the identifiers
(idi, type, `,m, nidi

) for the same type, m, ` with a single identifier id′ = (type, `,m, n) for n =
∑
nidi

. After

inducing ¯̀, m̄, n̄, p̄ from these new identifiers, each (honest) party sends (init, ¯̀, m̄, n̄, p̄) to Fpre .
– Initialize Fshare : The identifiers should be reserved for the following values:

1. Each of the tuples for which Fpre was initialized reserves a sharing for each its element, whose precise number
depends on the type of the tuple. Define id′ ← idtypei,k , m̃(id′)← m, p̃(id′)← p̄(id′), p̃′(id′)← p̄′(id′).

2. For sharing the inputs and the outputs of f(id), take m̃(id) ← m(id), p̃(id) ← p(id), p̃′(id) ← p′(id). If any
such element is randomness, define additionally m̃(idj)← m(id), p̃(idj)← j, and p̃′(idj)← p(id).

3. A special index idm1 is introduced to store the value 1 shared in Zm.

Each (honest) party sends (init, m̃, ñ, p̃, p̃′) is sent to Fshare .

Generating preshared triples: A message (type, id′) is sent to Fpre by each (honest) party for each id′ on which Fpre

was initialized. Upon getting s as a response for (type, id′) from Fpre , each (honest) party reads the next n′ tuples
for each (idi, type, `,m, n

′) ∈ pre, puts them all sequentially into a vector sj , and sends (reshare, sj , id
type
i,j ) to Fshare .

Pp(id) writes comm[idtypei,j ]← sj .

Fig. 17: Real protocol Πverify (initialization)
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Input Commitment: On input (commit input, x, id), Pp(id) sends (share, (xk)k∈[n], id) to Fshare . On input
(commit input, id), each (honest) party sends (share, id) to Fshare .
Message Commitment:

1. On input (send msg,m, id), Pp(id) sends (transmit, id,m) to Ftransmit .
2. On input (commit msg,m, id), Pp(id) sends (mshare, (mk)k∈[n], id) to Fshare . On input (commit msg, id), each

(honest) party sends (mshare, id) to Fshare .

Randomness Commitment: On input (commit rnd, id), each (honest) party Pj , j 6= p(id) (actually, a set of any t
parties is sufficient):

1. Generates a random value rj ∈ Zm(id), shares it to (rkj )k∈[n], and sends (transmit, (id, j, k), H(rkj )) to Ftransmit .
2. Sends (mshare, (rkj )k∈[n], idj) to Fshare .
3. Sends (lc, [1, . . . , 1], (idj)j∈[n],p(id)6=j , id) to Fshare .

Stoppings: At any time, when Ftransmit , Fpre , or Fshare outputs a message (corrupt, k), output (corrupt, k) to Z.
Treat Pk as if it has left the protocol. Assign p(id)← p′(id) for p(id) = k, and p′(id)← p(id) for p′(id) = k.

Fig. 18: Real protocol Πverify (commitments, and stopping)

Verification: On input (verify, id), each (honest) party Pk decomposes f(id) to basic operations f1, . . . , fN . For each
fi, some additional identifiers are defined: id

xk
i for the k-th input, id

yk
i for the k-th output, and id

zk
i for the k-th

alleged zero of fi (some of these will actually overlap). The index k is omitted if there is only one such identifier. The
symbols other than x, y, z will be used for intermediate values.
For shortness of notation, we write 1 instead of the identifier in which Fshare stores the public value 1 over a certain
ring of cardinality m (where m is omitted from the notation since it can be easily derived from the context).
First, Pp(id) computes all the intermediate values comm[idixk ]. Let x̂ = [x̂1‖ · · · ‖x̂N ] denote all values that should be
broadcast by Pp(id), where x̂i depends on fi, the results comm[idixk ], and the previously generated tuples comm[idtypei,k ]
as follows:

1. Linear combination: no broadcasts.
2. Multiplication in Zm: x̂i = [(x1 − a) mod m, (x2 − b) mod m] for a ← comm[idtriplei,1 ], b ← comm[idtriplei,2 ], x1 ←

comm[idx1i ), x2 ← comm[idx2i ].
3. Bit decomposition in Zm: x̂i = [c1, . . . , clogm], where ck ∈ {0, 1} denotes whether the trusted bit comm[idbiti,k] is

different from the k-th bit of comm[idxi].
4. Conversion to a smaller ring : no broadcasts.
5. Conversion from Zmx to a larger ring Zmy : Perform bit decomposition of comm[idxi] over Zny , getting logny bits

bk. Take the first log nx of these bits.
x̂i = [c1, . . . , clognx ], where ck ∈ {0, 1} denotes whether the trusted bit comm[idbiti,k] is different from bk.

6. Comparison: Let x1 ← comm[idx1i ], x2 ← comm[idx2i ]. Perform bit decomposition of x1, x2 and x1 − x2 over
Zm+1. Take the first logm bits bk, bk+logm (k ∈ [logm]) of the first two decompositions, and all the logm + 1
bits bk+2 logm (k ∈ [logm+ 1]) of the third decomposition.
x̂i = [c1, . . . , c3 logm+1], where ck ∈ {0, 1} denotes whether the trusted bit comm[idbiti,k] is different from bk.

7. Bit Shift : Let x1 ← comm[idx1i ], x′ ← comm[idx2i ], r ← comm[idcvi,1], a ← comm[idtriplei,1 ], b ← comm[idtriplei,2 ].

Compute x2 ← 2x′ .
x̂i = [(x′ − r) mod (logm), (x1 − a) mod m, (x2 − b) mod m].

8. Rotation of length ` in Zm: x̂i = [[(x′−r) mod `]‖(x−a) mod m] for r ← comm[idroti,1], a← comm[idroti,k+`+1]]k∈[`],
x′ ← comm[idx2i ], x← comm[idx1i ].

Pp(id) sends (broadcast, public, (idtypei , x̂i)i∈[N ]) to Ftransmit . Upon receiving (broadcast, public, (idtypei , x̂i)i∈[N ]),
each (honest) party writes pubv [idtypei ] ← x̂i. For simplicity of further verifications, we assume that
(lc, [1,−1], [1, idbiti,k], idbiti,k) is immediately sent to Fshare for all k such that ck = 1 was broadcast, so that we do
not need to compute it for each operation separately.

Fig. 19: Real protocol Πverify (broadcast)
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The verifier computation depends on fi. They start jointly generating the values idyi (that they will use also as idxi),
and the alleged zeroes idzi.

1. Linear combination [c1, . . . , cm]:
Send (lc, [c1, . . . , cm], [idx1

i , . . . , idxmi ], idyi ) to Fshare .
2. Multiplication in Zm: Let (ida, idb, idc)← (idtriplei,k )k∈[3], and [x̂1, x̂2]← pubv [idtriplei ]. Send to Fshare

– (lc, [x̂1 · x̂2, x̂1, x̂2, 1], [1, idb, ida, idc], idyi);
– (lc, [x̂1, 1,−1], [1, ida, idx1i ], idz1i );
– (lc, [x̂2, 1,−1], [1, idb, idx2i ], idz2i ).

3. Bit decomposition in Zm: Let [idb0 , . . . , idblogm−1 ]← (idbiti,k−1)k∈[logm].

Send (lc, [2k−1]k∈[logm], [id
bk−1 ]k∈[logm], id

y
i) to Fshare .

4. Conversion to a smaller ring : Send (trunc, idxi, id
y
i) to Fshare .

5. Conversion from Zmx to a larger ring Zmy : Let [idb0 , . . . , idblogmx−1 ]← (idbiti,k−1)k∈[logmx]. Send to Fshare

– (lc, [2k−1]k∈[logmx], [id
bk−1 ]k∈[logmx], id

y
i);

– (trunc, idyi , id
w
i );

– (lc, [1,−1], [idxi, id
w
i ], idzi).

6. Comparison: Let idb0 , . . . , idb3 logm ← (idbiti,k−1)k∈[3 logm+1]. Repeat the steps of ( 5), converting the inputs x1 and

x2 from Zm to Zm+1, using up the first 2 logm bits idbk . Let the results be written into idy1i , idy2i , and the alleged
zeroes into idz1i , idz2i respectively. Send to Fshare

– (lc, [2k−1]k∈[logm+1], [id
b2 logm+k−1 ]k∈[logm+1], id

w
i );

– (lc, [1,−1,−1], [idy1i , id
y2
i , id

w
i ], idz3i );

– Take idyi ← idb3m .
7. Bit Shift : Let [r̂]← pubv [idcvi ]. Let (idr, ids1 , . . . , idslogm)← [idcvi,1, id

cv
i,2, . . . , id

cv
i,logm+1]. Send to Fshare :

– (lc, [2k−1]k∈[logm], [id
sr̂+k−1 ]k∈[logm], id

w
i );

– (lc, [1,−1,−r̂], [idx1i , id
r, 1], idz1i ).

Repeat the steps of ( 2) multiplying idxi and idwi , writing the result into idyi and obtaining alleged zeroes idz2i and
idz3i .

8. Rotation: Let idr ← idroti,1, idsk ← idroti,k+1, idak ← idroti,k+`+1, idbk ← idroti,k+2`+1 for k ∈ [`]. Let [r̂, x̂]← pubv [idroti ].
Send to Fshare :

– (lc, x̂, [idsk+j−1 ]j∈`, id
ck
i ) for all k ∈ `;

– (lc, [1, 1], [id
cr̂+k−1

i , idbr̂+k−1 ], id
yk
i ) for k ∈ `;

– (lc, [1,−1,−r̂], [idx1i , id
r, 1], idz1i );

– (lc, [1,−1,−x̂k], [id
xk+1

i , idak+1 , 1], id
zk+1

i ) for k ∈ `.

If i = N , then each (honest) party also sends (lc, [1,−1], [id
yk
N , idk], id

zk
N+1) to Fshare for all idk ← yidk.

After all fi have been processed, for each obtained id
zk
i , each (honest) party first sends (weak open, idzki ) to Fshare . If

Fshare outputs ⊥, then each (honest) party sends (open, idzki ) to Fshare . Upon receiving all (id
zk
i , zik) from Fshare (or

all the values xik needed to compute zik), if zik = 0 for all i, k, then an honest party outputs 1. Otherwise, it outputs
0.

Fig. 20: Real protocol Πverify (verifying operations)

42



shift, comparison), and Nr other non-linear operations (rotating a vector of length ` is treated as ` different
operations). Let m be the cardinality of the largest ring involved in the computation, and let m := logm.
The cost of initializing Πverify is upper bounded by t · bcc + t · bcc + n · trshn·((3m+1)(µ(Nb·m+Nr)+κ(m+1))) +
bcshn·(κ(3m+1)(m+1)) + bcshn·((µ−1)m(Nb·m+2·Nr)) + bcshn·((µ−1)m(Nb·(3m+1)+2·Nr)).

Proof. In Table 6, the reshare functionality of Πshare does not have any cost. Hence the cost comes only
from the generation of preprocessed tuples. The number of different tuples used by each operation is given in
Table. 8. By Lemma 5, the cost of generating N tuples of type x of length ` over ring of size m is t·bcc+t·bcc+
n·tr(µN+κ)·shn·(nbitstuple(x,m,`))+bcκ·shn·(nbitstuple(x,m,`))+bc(µ−1)N ·shn·(nbitsopen1(x,m,`))+bc(µ−1)N ·shn·(nbitsopen2(x,m,`))
(the definitions of subterms can be found in Table 7). In this way, the total number of the transmitted and
broadcast bits is linear in the terms N ·shn·(nbitstuple(x,m, `)), N ·nbitsopen1(x,m, `), and N ·nbitsopen2(x,m, `).
Hence it suffices to find the upper bounds for these three quantities.

– For the bit-related gates, the largest value forN ·shn·(nbitstuple(x,m, `)) isNb·(3 logm+1)·nbitstuple(bit,m, 1) =
Nb · (3 logm+ 1) · shn · (logm), which comes from the comparison gate. Similarly, Nb · (3 logm+ 1) · shn ·
(nbitsopen2(bit,m, 1)) = Nb · (3 logm+ 1) · shn · (logm) is the largest value for N · shn · (nbitsopen2(x,m, `)).

For N · shn · (nbitsopen1(x,m, `)), the largest value Nb ·1 · shn · (nbitsopen1(cv,m, logm)) = Nb · shn · (log2m)
comes from the bit shift gate.

– For the multiplication and rotation gates, the largest value for N · shn · (nbitstuple(x,m, `)) term is Nr · 1 ·
shn · (nbitstuple(rot,m, 1)) = Nr · shn · (3 logm + 1), which comes from the rotation gate unit. Similarly,
Nr ·1 ·shn ·(nbitstuple(rot,m, 1)) = Nr ·shn ·(3 logm+1) is the largest value for N ·shn ·(nbitsopen2(x,m, `)).
For N ·shn·(nbitsopen1(x,m, `)), the largest value Nr ·1·shn·(nbitsopen1(triple,m, logm)) = Nr ·shn·(2 logm)
comes from the multiplication gate.

The randomness seed of c bits may be generated once for all the tuples. Summing up the upper bounds
for each operation, and assuming that all of them can be transmitted and broadcast in parallel, we may
sum up the total number of bits in each round. For simplicity, let µ and κ be the same for generating all
types of tuples. For the shortness of notation, let m := logm. Let x1, x2, x3, x4 be the total number of bits
transmitted/broadcast in the given 4 rounds, i.e such that the total cost is t ·bcc+n ·trx1

+bcx2
+bcx2

+bcx4
.

We use the fact that the share overhead is linear w.r.t the number of shared bits, i.e shn · (M1 + M2) =
shn ·M1 + shn ·M2 (see Observation 2).

x1 ≤ (µNb + κ)(3m + 1)shn · (m) + (µNr + κ)shn · (3m + 1)

= shn · (µNb(3m + 1)m + µNr(3m + 1) + κ(3m + 1)(m + 1))

= shn · (µ(3m + 1)(Nbm +Nr) + κ(3m + 1)(m + 1))

= shn · ((3m + 1)(µ(Nbm +Nr) + κ(m + 1))) .

x2 ≤ κ(3m + 1)shn · (m) + shn · (3m + 1)

= shn · (κ(3m + 1)(m + 1)) .

x3 ≤ (µ− 1)(Nb · shn · (m2) +Nr · shn · (2m))

= shn · ((µ− 1)m(Nbm + 2Nr)) .

x4 ≤ (µ− 1)(Nb(3m + 1)shn · (m) +Nr · shn · (2m))

= shn · ((µ− 1)m(Nb(3m + 1) + 2Nr)) .

The total cost is bounded by t · bcc + t · bcc + n · trshn·((3m+1)(µ(Nb·m+Nr)+κ(m+1))) + bcshn·(κ(3m+1)(m+1)) +
bcshn·((µ−1)m(Nb·m+2·Nr)) + bcshn·((µ−1)m(Nb·(3m+1)+2·Nr)). �

Observation 5 From the description of the commitment functions of Πverify , we may count the number of
Ftransmit and Fshare calls that it makes. They are given in Table 9

Lemma 8 (cost of the commitments of Πverify). Let Fverify use the implementation Πshare of Fshare .
Let Nx be the number of inputs, Nr the number of random elements, an Nc the number of message elements
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Table 9. Number of Fshare operations needed for commitments of N -bit values in Fverify

commitment type called functionality #bits #calls

commit input share N 1

send msg transmit N 1

commit msg mshare N 1

commit rnd transmit c nt
mshare N t

Table 10. Number of bits broadcast by the prover for each operation in Fverify

operation #bits

Linear combination, conversion to a smaller ring 0
Bit decomposition in Zm logm

Multiplication in Zm: 2 logm
Extending Zmx to Zmy logmx

Comparison in Zm 3 · logm+ 1
Bit shift in Zm log logm+ 2 logm

Rotation of length ` in Zm log `+ ` logm

over a ring of size m. Let m := logm Taking into account the costs of different operations of Πshare given in
Table 6, the total number of Ftransmit operations needed to commit these elements is nNx · trshn·(m) + (ntNr ·
trc + ntNr · trshn·(m) + ntNr · fwdshn·(m)) + (Nc · trshn·(m) + nNc · trshn·(m) + nNc · fwdshn·(m)).

Proof. For each of the Nx inputs, commit input is called. For each of the Nr random elements, commit rnd is
called. For each of the Nc message elements, send msg and commit msg are called sequentially. The definition
of Πverify does not state whether the inputs, the randomness, and the messages are committed in parallel,
so the quantities Nx, Nr, Nc cannot be moved into subindices of tr and fwd without additional context. The
final quantity is obtained by combining the values of Table 6 and Table 9. �

Observation 6 By simply counting the number of broadcast bits for each basic operation, we get the numbers
given in Table. 10. Note that the bits ci broadcast for each bit decomposition do not have to be shared in Zm,
and each such bit is broadcast as a 1-bit value.

Lemma 9 (cost of the broadcasts of Fverify). Let all the functions f to be verified consist of N basic
operations fi /∈ {lc, trunc}, treating a rotation of length ` as ` different operations. Let m be the size of the
largest used ring, m := logm. The total cost of the broadcast phase of Πverify is upper bounded by bcN ·(3m+1).

Proof. All the bits are broadcast in parallel using Ftransmit . We use Table 10 to count the number of bits for
each operation. We take the upper bound 3 logm+ 1 on broadcast bits per operation, which comes from the
comparison operation. Differently from the initialization phase of Πverify , the costs are similar for distinct
types of basic operations, as they are all O(logm). �

Observation 7 By simply counting the number of bits of the alleged zeroes for each operation, we get the
results given in Table 11.

Lemma 10 (cost of the final verification of Πverify). Let all the functions f to be verified consist of
N basic operations fi /∈ {lc, trunc, bd}, treating a rotation of length ` as ` different operations. Let My be
the total number of bits output by f . Let m be the size of the largest used ring, m := logm. The cost of the
verification phase of Πverify is upper bounded by:

– n · bcshn·(N ·(3m+1)+My), if weak open succeeds.
– n · revshn·(N ·(3m+1)+My)

, if weak open outputs ⊥.
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Table 11. Number of alleged zero bits for verifying each operation in Fverify

operation #bits

Linear combination, conversion to a smaller ring 0
Bit decomposition in Zm 0

Multiplication in Zm: 2 logm
Extending Zmx to Zmy logmx

Comparison in Zm log (m+ 1) + 2 logm
Bit shift in Zm log logm+ 2 logm

Rotation of length ` in Zm log `+ ` logm

Proof. Taking into account the costs of different operations of Πshare given in Obs. 2, the functionalities lc
and trunc do not take any communication. Hence the only cost for verifying different basic operations comes
in the end, where the alleged zeroes are verified.

– Assume that weak open succeeds for all alleged zeroes. It has cost n · bcm for an m-bit value. From
Table. 11, we see that the largest number of alleged zero checks per operation (treating rotation as
` distinct operations) is 3m + 1, which comes from comparison. In addition, there is an alleged zero
bit for each of the My output bits of f . The broadcast is parallelizable, so all the bits are broadcast
simultaneously.

– Assume that weak open returns ⊥. In this case, open is used instead. Exactly the same values are revealed,
but the underlying Ftransmit operation is different. �

Lemma 11. Let C be the set of corrupted parties. Assuming |C| < n/2, the protocol Πverify UC-realizes
Fverify in Ftransmit -Fshare-Fpre-hybrid model.

Proof. We use the simulator S = Sverify described in Fig. 21. The simulator runs a local copy of Πverify ,
together with local copies of Ftransmit , Fshare , Fpre .

Simulatability During the commitments, S simulates Fshare , the inputs of dishonest parties for which
are provided by A. When the verification starts, S needs to simulate the broadcast, and it needs to generate
the broadcast values of the honest provers itself. All of these values are some private values hidden by a
random mask (each tuple is used only once), and hence are distributed uniformly. We discuss it in details
for different kinds of tuples.

1. Bit decomposition of x in Zm: Since each bk is distributed uniformly in Z2, the difference bk − xk is also
distributed uniformly in Z2.

2. Multiplication of x1 and x2 in Zm: Since the entries a and b of the triple (a, b, c) are distributed uniformly
in Zm, so are the values (x1 − a) mod m and (x2 − b) mod m.

3. Characteristic Vector of x in Zm: Since r is distributed uniformly in Z`, so is (x− r) mod `.
4. Rotation of x of length ` in Zm by x′ positions: Since r is distributed uniformly in Z`, and a in Z`m, so

are (x− r) mod ` and (x− a) mod m.

After all the broadcasts are simulated, S simulates opening to each party the alleged zero vector z. If
p(id) ∈ C, then S already knows all the values needed to compute z. If p(id) /∈ C, then S obtains only the
difference f(x) − y from Fverify . However, it needs to simulate the alleged zeroes zi of each intermediate
basic function fi. Here we use the fact that, if p(id) /∈ C, then it has broadcast x̂ that indeed corresponds
to the computation of f(x). The only non-zero entries of z may come due to the mismatches between f(x)
and y, and these differences f(x)− y are provided by Fverify .

Correctness The inputs, the messages, and the randomness are shared among the n parties by definition
of Fshare . In addition, the preprocessed tuples are shared among the n parties by definition of Fpre . The
functionality reshare of Fshare is used to put these shares together and allow to further use Fshare as blackbox,
doing computation on all these shares. For p(id) /∈ C, Fshare takes the shares (xk)k∈[n] provided by Pp(id)
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Initialization: S calls Fpre to simulate the preprocessing phase. It gets all the n shares of dishonest provers, and up
to t− 1 shares of honest provers.
Input Commitment: S models sending (share, (xk)k∈[n], id) and (share, id) to Fshare .
Message Commitment: On input (send msg,m, id), S models sending (transmit, id,m) to Ftransmit . On input
(commit msg,m, id), S models sending (mshare, (mk)k∈[n], id) and (mshare, id) to Fshare .
Randomness Commitment: On input (commit rnd, id), S needs to show to A the hashes generated by the hon-
est parties. Since S has all information about A and the randomness that A uses, it knows the shares rj for

j ∈ C that are chosen by A. Hence S generates rj
$← Zm(id) for j /∈ C in such a way that

∑
j∈[n] rj equals to

the appropriate value. S models sending (transmit, (id, j, k), H(rkj )) to Ftransmit and then (mshare, (rkj )k∈[n], idj) and
(lc, [1, . . . , 1], (idj)p(id) 6=j∈[n], id) to Fshare . Assuming that the outputs of H are indistinguishable from random, the
behaviour of adaptive A does not depend on whether S has chosen truly random rj for j /∈ C, or made them dependent
on the values of rj for j ∈ C that A would generate in the case if rj for j /∈ C were truly random.
Stoppings: At any time, when Ftransmit , Fpre , or Fshare should output a message (corrupt, k), S outputs (corrupt, k)
to Fverify . S discards Pk from its local run of Πverify .
Verification: On input (verify, id), S decomposes f(id) to basic operations f1, . . . , fN , and defines the additional
identifiers id

xk
i , id

yk
i , id

zk
i as the honest parties do. For p(id) ∈ C It computes all the intermediate values comm[id

xk
i ]

and comm[id
yk
i ], and broadcasts the values x̂ chosen by A. For p(id) /∈ C, broadcasting x̂ is to be simulated by S as

follows (we use case distinction on types of preprocessed tuples causing the broadcast):

1. Bit decomposition of x in Zm: Need to broadcast x̂i = [c1, . . . , cm], where ck ∈ {0, 1} denotes whether the

preshared trusted bit bk is different from the k-th bit of x. Generate ck
$← {0, 1}.

2. Multiplication of x1 and x2 in Zm: Need to broadcast x̂i = [(x1 − a) mod m, (x2 − b) mod m] for the preshared

multiplication triple (a, b, c). Generate x̂i
$← Z2

m.
3. Characteristic Vector of x in Zm: Need to broadcast x̂i = [(x − r) mod `] for the preshared CV pair (r, s).

Generate x̂i
$← Z1

m.
4. Rotation of x of length ` in Zm by x′ positions: Need to broadcast x̂i = [[(x′− r) mod `]‖(x−a) mod m] for the

rotation tuple (r, s,a, b). Generate x̂i
$← Z1

` × Z`
m.

S simulates (broadcast, public, (idtypei , x̂i)i∈[N ]) using Ftransmit . Upon receiving (broadcast, public, (idtypei , x̂i)i∈[N ]), it
writes pubv [idtypei ] ← x̂i for all honest parties, and sends the corresponding messages (lc, [1,−1], [1, idbiti,k], idbiti,k) to
Fshare , as the honest parties do.
The further computation depends on fi, and S just sends to Fshare the same messages that the honest parties send.

Fig. 21: The simulator Sverify

itself. By definition of Πpre , they are consistent with the shares of honest parties. It remains to prove that,
if all these values are shared properly, then Πverify does verify the computation of f(id) on input (verify, id).

It easy to see that, if zi = 0 for the alleged zeroes produced by the basic function fi, then fi has been
computed correctly with respect to the committed inputs and outputs on which it was verified, and x̂i has
been computed correctly for fi. The details of verifying each basic function are analogous to the preprocessed
tuple generation proof of Lemma 6, and we do not repeat them here. If all fi have been computed correctly,
then so is the composition of f . �

C.5 The Main Protocol for Verifying SMC

The protocol Πvmpc implementing Fvmpc is given in Fig. 22. It is built on top if the functionality Fverify , used
to verify the computation of each output of each round, with respect to the committed inputs, messages,
and randomness.

Lemma 12. Let C be the set of corrupted parties. Assuming |C| < n/2, the protocol Πvmpc UC-realizes Fvmpc

in Fverify -hybrid model.

Proof. We use the simulator S = Svmpc described in Fig. 23. The simulator runs a local copy of Πvmpc ,
together with a local copy of Fverify .
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• In the beginning, Each party Pi gets the message (circuits, i, (C`
ij)

n,n,r
i,j,`=1,1,1) from Z.

1. Initializing Fverify : Let the n`
ij output wires of the circuit C`

ij be enumerated. For all k ∈ [n`
ij ], the value

id ← (i, j, `, k) serves as an identifier for Fverify . In addition, for each party Pi, there are identifiers (i, x, k) and
(i, r, k) for the enumerated inputs and randomness respectively.

– For each input wire id ← (i, x, k) or id ← (i, r, k), define m(id) to be the ring in which the wire is defined,
f(id)← ⊥, xid(id)← ⊥, yid(id)← ⊥, p(id) = p′(id) = i.

– For each output wire id← (i, j, `, k), define m(id) to be the ring in which the wire is defined, f(id) a function
consisting of basic operations of Sec. 4.3, computing the k-th coordinate of m`

ij ← C`
ij(xi, ri,m

1
1i, . . . ,m

`−1
ni )

(this is always possible since every gate of C`
ij is by definition some basic operation), xid(id) the vector of

all the identifiers of xi, ri,m
1
1i, . . . ,m

`−1
ni that are actually used by C`

ij , yid(id)← [id], p(id) = i, p′(id) = j.
Each (honest) party sends (init,m, f,xid,yid, p, p′) to Fverify .

2. Randomness generation: For each randomness input wire id← (i, r, k), each (honest) party sends (commit rnd, id)
to Fverify .

3. Input commitment: For each input wire id ← (i, x, k), Pi sends (commit input,xi, id) to Fverify , and each other
(honest) party sends (commit input, id) to Fverify .

• For each round ` ∈ [r], Pi computes m`
ij = C`

ij(xi, ri,m
1
1i, . . . ,m

`−1
ni ) for all j ∈ [n], and sends

(send msg,m`
ijk, (i, j, `, k)) to Fverify for all k ∈ [|m`

ij |].
• After r rounds, each (honest) party Pi outputs (output,mr

1i, . . . ,m
r
ni) to Z. Let r′ = r and mlci[k] ← 0 for all

k ∈ [n].
Alternatively, at any time before outputs are delivered to parties, if a message (corrupt, k) comes from Fverify , each
(honest) party Pi writes mlci[k] ← 1. In this case the outputs are not sent to Z. Let r′ ∈ {0, . . . , r − 1} be the last
completed round.
• After r′ rounds:

1. Each (honest) party sends to (commit msg, (i, j, `, k)) to Fverify for all i, j ∈ [n], ` ∈ [r′], k ∈ n`
ij .

2. For each output wire identifier id← (i, j, `, k), each (honest) party sends (verify, id) to Fverify , getting a vector of
alleged zeroes z from Fverify . If z = 0, each (honest) party writes mlci[k]← 0. Otherwise, it writes mlci[k]← 1.

• Finally, each (honest) Pi outputs to Z the set of parties Bi such that mlci[k] = 1 iff k ∈ Bi.

Fig. 22: The protocol Πvmpc for verifiable computations

Simulatability S needs to simulate the messages m`
ij that are computed by the honest parties Pi for

corrupted parties Pj . It gets all such messages from Fvmpc .
Another thing that should be simulated is the side-effect of Fverify that outputs the difference between

the actual output of f(x) and the output y that was committed by the prover. All the verifiable functions
f of Fverify correspond to the computation of some output of a circuit C`ij with respect to the committed
inputs, randomness, and messages. By definition of Fverify , unless at least one message (corrupt, p(id)) has
been output to each honest party (in this case p(id) ∈ C ), all these values are indeed committed as chosen by
the party committing to them. Since each honest party has followed the protocol and computed C`ij properly,
and all its commitments are valid, the difference f(x)−y should be 0 for honest parties, and so it is easy to
simulate.

Correctness We need to prove that Fverify outputs exactly the same values as the parties in Πverify

would. By definition of Fverify , there are two kinds of outputs:

1. The computation output (output,mr
1i, . . . ,m

r
ni). Let ` be any round. We prove by induction that each

message m`
ij seen by the adversary is consistent the Fvmpc ’s internal state.

– Base: Initially, there are the inputs xi and the randomness ri in the internal state of Fvmpc . So far,
for i /∈ C, A has no information about xi, ri, and for i ∈ C it expects xi = x∗i , ri = r∗i , where x∗i is
chosen by A itself, and r∗i is a uniformly distributed value that has been provided by Fverify . Exactly
these values are delivered by S to Fvmpc , so the state of Fvmpc is consistent with A.

– Step: In the real world, for each i /∈ C, A chooses all the messages m`
ji for j ∈ C coming from i. By

induction hypothesis, the rest of the messages m`
ji for j /∈ C and the inputs/randomness xi,ri of the
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• In the beginning, S gets all the circuits (C`
ij)

n,n,r
i,j,`=1,1,1 from Fvmpc . These are the same circuits that the parties

would have obtained from Z in Πvmpc .

1. Initializing Fverify : S simulates the initialization of Fverify .
2. Randomness generation: S simulates sending the messages (commit rnd, id) to Fverify for each input wire id ←

(i, r, k). For all i ∈ [n], the randomness ri provided by Fverify is the same as the randomness ri generated by
Fvmpc .

3. Input commitment: For each input wire id ← (i, x, k), S simulates sending (commit input,xi, id) and
(commit input, id) to Fverify . For i ∈ C, the value x∗i is chosen by A. S delivers this x∗i to Fvmpc .

• For each round ` ∈ [r], S needs to simulate computing the messages m`
ij = C`

ij(xi, ri,m
1
1i, . . . ,m

`−1
ni ) for all

j ∈ C. If i ∈ C, then the message m∗`ij is generated by the adversary, and S delivers it to Fvmpc . If j ∈ C, then the
message m`

ij comes from Fvmpc , and S delivers it to A. In all cases, S simulates sending (send msg,m`
ijk, (i, j, `, k))

to Fverify for each entry m`
ijk of m`

ij .
• After r rounds, each (honest) party Pi should output (output,mr

1i, . . . ,m
r
ni) to Z. This does not need to be

simulated. Let r′ = r and mlci[k]← 0 for all k ∈ [n].
Alternatively, at any time before outputs are delivered to parties, if a message (corrupt, k) comes from Fverify ,
S writes mlci[k] ← 1 for each honest party Pi. In this case the outputs do not have not sent to Z. S defines
B0 = {k |(corrupt, k) has been output}, and sends (stop,B0) to Fvmpc to prevent it from outputting the results to Z.
Let r′ ∈ {0, . . . , r − 1} be the last completed round.
• After r′ rounds:

1. S simulates sending messages (commit msg, (i, j, `, k)) to Fverify for all i, j ∈ [n], ` ∈ [r′], k ∈ n`
ij .

2. For each output wire identifier id ← (i, j, `, k), S simulates sending (verify, id) to Fverify . For each k ∈ [n], S
simulates the output bit bk of Fverify . If k ∈ C, and (f(id))(xid) 6= yid for the commitments of Pk in the inner
state of Fverify maintained by S, then S simulates Fverify outputting 0, and writes mlci[k] ← 1 for each honest
party Pi. Otherwise, simulates Fverify outputting 1, and writes mlci[k]← 0. For all k /∈ C, it writes mlci[k]← 0.

• Finally, Fvmpc outputs to each party Pi the set of parties B for which m∗`ij 6= m`
ij has been provided by S at some

point before. It now waits for a set of parties Bi from S, containing the parties that will be additionally blamed by
Bi. Let B′i = {j |mlci[j] = 1}. S sends to Fvmpc the sets Bi = B0 ∪ B′i, where B0 is the set defined in the execution
phase.

Fig. 23: The simulator Svmpc for verifiable computations

inner state of Fvmpc do not contradict with the view of A. In Πvmpc , A expects that an honest Pi
will now compute each message m`+1 = C`ij(xi, ri,m

1
1i, . . . ,m

`
ni). In the inner state of Fverify , the

value m`+1 is computed in exactly the same way.

2. The sets Bi of blamed parties. Fvmpc computes all the messages m`
ij and constructs the setM of parties

j for whom m`
ij 6= m∗`ij , where m∗`ij is the value provided by S (that was actually chosen by A). After

that, it receives a couple of messages (blame, i,Bi) from S, where Bi = B0∪B′i, and B0 = {k | (corrupt, k)
has come from Fverify in the execution phase }. Fvmpc expectsM⊆ Bi ⊆ C. First, we prove that Bi ⊆ C,
i.e no honest party will be blamed.

(a) For each j ∈ B0, a message (corrupt, j) has come from Fverify at some moment. By definition of
Fverify , no (corrupt, j) can be sent for j /∈ C. Hence j ∈ C.

(b) For each j ∈ B′i, the proof of Pj has not passed the final verification. For j /∈ C, S has committed to
Fverify exactly those messages that correspond to the computation of f on the committed input, the
randomness ri, and the incoming messages m`

ij . Hence j ∈ C.
Secondly, we prove that M⊆ Bi, i.e all deviating parties will be blamed.

(a) The first component of M is B0 for which S has sent (stop,B0) during the execution phase. The
same set B0 is a component of each Bi.

(b) The second componentM′ ofM are the parties Pi for whom inconsistency of m`
ij happens in Fvmpc .

We show that if i /∈ Bk for all k /∈ C, then i /∈ M′. Suppose by contrary that there is some i ∈ M′,
i /∈ Bk. If i /∈ Bk for all k /∈ C, then the proof of i had succeeded for every C`ij . For all i, j ∈ [n],
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Table 12. Costs of different phases of Πvmpc for one prover

phase rounds Ftransmit op #ops # bits

pre 11 transmit n+ nt shn · (nµ(3 logm+ 1)(Nb logm+Nr))
+shn · (nκ(3 logm+ 1)(logm+ 1))

+shn · (nt ·Mr)
+cnt ·Mr

forward nt shn · (nt ·Mr)
broadcast 3 + 2t shn · ((µ− 1) logm · (Nb(4 logm+ 1) + 4Nr))

+shn · (κ(3 logm+ 1)(logm+ 1))
+2ct

exec 1 + r transmit n(1 + rn) shn · (n ·Mx +Mc)

post 2 transmit n shn · (n ·Mc)
forward n shn · (n ·Mc)

2 broadcast 1 Ng(3 logm+ 1)
2 broadcast 1 shn · (n(Ng(3 logm+ 1) +Mc))

` ∈ [r′], i should have come up with the commitments xi, ri, m
`
ij such that Fverify outputs 1 on

input (verify, id) for each output wire identifier id. By definition of S, the committed xi are chosen
by A before the execution, in the input commitment phase, the randomness ri is coming from the
same distribution as the randomness generated by Fvmpc , the incoming messages m`

ji are those that

are treated by Fvmpc as being sent to Pi by Pj , and the outgoing messages m`
ij are the same that

are computed by Fvmpc (the messages moving between two corrupted parties have been chosen by
A). Hence m`

ij = C`ij(xi, ri,m
1
1i, . . . ,m

`−1
ni ) for all i, j ∈ [n], ` ∈ [r′], so i /∈M′. �

Lemma 13. Let Πvmpc use the implementation of Πverify that is built on top of Πpre , Πtransmit , and Πshare .
Let the initial protocol defined by the circuits C`ij has the following parameters (for one prover):

– has r rounds;
– its largest ring is Zm;
– the number of transmitted bits of the protocol is Mc;
– the number of input and randomness bits is Mx and Mr respectively;
– the total number of used bit related gates (bit shift, bit decomposition, comparison, ring extension) is Nb;
– the number of multiplication and rotation gates (treating a rotation of length ` as ` gates) is Nr;
– the total number of input and output wires in the circuits (excluding the intermediate wires) is Nw;

The resulting protocol may be seen as split into preprocessing, execution, and postprocessing phases, whose
complexity upper bounds are given in Table 12 for the optimistic case (where the adversary does not attempt
to cheat).

In the pessimistic case, up to the final verification, the number of rounds at most doubles, and the
number of communicated bits increases at most 2n times. The cost of the final verification increases up
to log(max(Nw, Nb logm+Nr)) times.

Proof. Let Ng := Nb+Nr, m := logm. We have taken the numbers of communicated bits from the previously
proved lemmas for Πverify . In the optimistic case, Ftransmit works in the cheap mode.

– The total cost of generating preprocessed tuples, taken from Lemma 7, is t·bcc+t·bcc+n·trshn·((3m+1)(µ(Nb·m+Nr)+κ(m+1)))+
bcshn·(κ(3m+1)(m+1)) + bcshn·((µ−1)m(Nb·m+2·Nr)) + bcshn·((µ−1)m(Nb·(3m+1)+2·Nr)). Taking the number of
rounds from Obs. 1, we get the total number of 11 rounds in the cheap mode of Ftransmit .

– The total cost of generating the randomness nt · (trMrc
+ trshn·Mr

+ fwdshn·Mr
) is taken from Lemma 8.

All the randomness of one prover can indeed be generated in parallel.
– Before the execution starts, each input has to be committed. The total cost of input commitment n ·

trshn·Mx
is taken from Lemma 8, where all the Mx bits of one prover are committed in parallel.
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– The Mc bits of the original communication are transmitted in r rounds. On each round, up to n(n− 1)
distinct transmissions may take place, since each of the n parties may send something to n − 1 other
parties. We upper bound it by rn2 to get a nicer number.

– The remaining cost comes from the complexity of verify call of Fverify . It consists of the following se-
quential blocks:
• The total cost of mutually committing the messages n · (trshn·Mc

+ fwdshn·Mc
) is taken from Lemma 8,

where all the messages can be committed in parallel.
• The total number of broadcast bits (Nb + Nr)(3m + 1) of the postprocessing phase is taken from

Lemma 9.
• The total number of alleged zero bits n · shn · ((Nb +Nr)(3m + 1) +Mc)) is taken from Lemma 10.

Here we assume that all the outputs of the circuits are exactly the communicated messages coming
out of the circuits, so we do not introduce My.

In the pessimistic mode, Ftransmit works in its expensive mode. As can be seen from Table 5, the number
of rounds at most doubles, and the total communication increases up to 2n times. In the final opening, the
function reveal of Ftransmit is called instead of broadcast. Since we do not want to reveal all the messages that
have been transmitted in parallel, the authentication paths of the Merkle tree for simultaneously sent values
may need to be sent to each verifier, so that the signature may be checked. This gives a multiplicative overhead
logM where M is the number of distinct elements sharing one signature. Since the total number of wires is
Nw, we may assume that there cannot be more than Nw inputs, randomness, or communication elements
committed in the same round. The maximum amount of distinct preprocessed tuples is Nb logm+Nr. Hence
the overhead can be at most log(max(Nw, Nb logm+Nr)). �

C.6 Proof of the main theorem

We are now ready to prove Theorem 2. We take Πvmpc that is build on top of Πverify , which is in turn using
Πshare , Πpre , and Πtransmit .

Correctness For estimating the correctness error, we need to count the total number of messages sent
using Ftransmit . By message we mean a bitstring that is signed with one signature. For this, we look at the
Table 12.

– The tuple generation takes n parallel transmissions and 5 sequential broadcasts for one prover. Running
this phase for all provers gives us n(n+ 5) messages.

– The randomness generation takes 2nt transmissions and nt forwardings for each prover, which is 3n2t.
– In the beginning of the execution phase, each prover sends its (n− 1) input shares to the other parties.

For all the n provers, this is n(n− 1).
– The execution phase has r rounds, where in each round each party may send something to the n − 1

other parties, so it gives rn(n− 1) messages. In addition, each party sends the shares its input to n− 1
other parties, which is n(n− 1) messages.

– After the execution phase, the prover broadcasts its public values. For all the provers, there are n
broadcasts with a single signature.

– In the final check, a certain number of alleged zeroes is opened. For this, n shares should be broadcast
by each prover, so there are n2 messages.

The total number of sent messages is n(n + 5) + 3n2t + n(n − 1) + rn(n − 1) + n(n − 1) + n + n2 ≤
n2(3n + r + 6) for r ≥ 1,n ≥ 2, which are reasonable assumptions for a multiparty protocol. By Lemma 3,
the error of the underlying Πtransmit is bounded by n2(3n + r + 6) · δ. The other source of error is Πverify .
In order to achieve error at most 2η, by Lemma 6 it is sufficient to take µ = 1 + η

Ng
≤ η, and κ =

max({(n1/µ + 1)η, n1/µ + µ− 1}) ≤ max({(2−η + 1)η, 2−η + η}) ≤ η+1, which we will need when estimating
the complexity of preprocessing phase.

Security We have proven that Πvmpc securely implements Fvmpc in Lemma 12.
Complexity First, we estimate the complexity of the optimistic setting, where the adversary does not

attempt to stop the protocol. We combine the numbers of Table 12 with the costs of particular Ftransmit
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operations of Table. 5. Since the variables Nb, Nr, Mx, Mc, Mr are estimated for the entire computation of
all the n parties, and the costs are linear w.r.t these values, we do not multiply each number by n to scale
it to n provers. However, we still need to multiply the number of used Ftransmit operations by n in the pre-
and postprocessing phases. The only exception is the parameter κ of the preprocessing phase that is upper
bounded by η + 1 for each separate proof, and which is not scaled to n parties (differently from µ). Hence
we take everywhere κ′ := nκ.

– Preprocessing: Transmit shn · (nµ(3m + 1)(Nbm + Nr) + nκ′(3m + 1)(m + 1) + nt ·Mr) + cntMr bits.
In order to achieve the reported correctness, we took µ ≤ η and κ ≤ η + 1 (so κ′ ≤ n(η + 1)). Since
3m + 1 ≤ 4m and (3m + 1)(m + 1) ≤ 8m2, and the total number of independent transmissions that need
a signature is (n+ 2nt) for each prover, an upper bound of bit communication is

shn · (nη4m(Nbm +Nr) + n2(η + 1)8m2 + nt ·Mr) + cntMr + n(n+ 2nt)c′ .

Similarly, the upper bound on (µ− 1)m · (Nb(4m + 1) + 4Nr) + κ′(3m + 1)(m + 1) + 2ct is η4m(Nbm +
Nr) + η4mNb + n(η + 1)8m2 + 2cn, so the upper bound on the broadcast bits is

shn · (n2η4m(Nbm +Nr) + n2ηmNb + n3(η + 1)8m2) + 2cn3 + 2n(1 + n)c′ ,

since each of the 3+2t ≤ 3+2n broadcasts of each prover needs a signature of c′ bits, and each broadcast
is up to n2 times more expensive than a transmission.
Summing together the upper bounds, and putting all the non-leading terms into o, treating c and c′ as
constants, and assuming n ≤ Ng (each party computes at least one gate), we get the total number of
bits upper bounded by

shn · (4n2ηm(Nbm +Nr) + n2Mr + o(nηm(Nbm +Nr))) .

– Execution: all the n transmitted shares of n parties, and up to n(n− 1) messages transmitted in each of
the r rounds are signed, so the total number of signatures is rn(n− 1) + n2. Treating c′ as constant, we
may write the total cost as shn · (n ·Mx +Mc + o(rn2)).

– Postprocessing: Translating the values of Table 12 to actual communication gives us (shn · (n ·Mc) +
nc′) + (shn · (n ·Mc) + 2nc′) + n2(Ng(3m + 1) + nc′) + n2 · n(shn · (Ng(3m + 1)) +Mc + nc′). Treating c′

as constant, and assuming n ≤ Ng, we may write it as shn · (3n2(n+ 1)Ngm + o(n3(Ng +Mc))).

For estimating the numbers of the pessimistic setting, we look at Table. 5. The number of rounds for
each expensive mode operation is twice as large as the same operation in the cheap mode, and the bit
communication is up to 2n times larger. Another possibility for the adversary to increase the communication
is to fail the last weak opening of alleged zeroes and force all the shares committed so far to be revealed.
The weak opening may fail either if the prover clearly broadcasts inconsistent messages, or if some verifier
complains that the broadcast values were not correct. In both cases, a strong opening pinpoints the party
that has caused the weak opening to fail. Hence a covert adversary will not do it anyway. �

Discussion. For a fixed number of parties, we get the following complexities of different phases:

– Preprocessing: O(ηm(Nbm +Nr) +Mr).
– Execution: O(Mx +Mc + r).
– Postprocessing: O(Ngm +Mc).

For n = 5, the constant of O is already quite large due to the exponential nature of share cost shn and
the quadratic cost of broadcast. However, for n = 3, the constant is very small. The gates involving bit
decomposition incur additional multiplicative overhead of m = logm, where m is the size of the ring in which
the computation takes place. Otherwise, all the overheads are linear. Together with the special optimizations
of Sec. 5.1, our verification method becomes very fast for 3-party protocols.
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