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Abstract
We are the first to address the problem of efficient obliv-
ious substring search over encrypted data supporting up-
dates. Our two new protocols SA-ORAM and ST-ORAM
obliviously search for substrings in an outsourced set of n
encrypted strings. Both protocols are efficient, requiring
communication complexity that is only poly-logarithmic
in n. Compared to a straightforward solution for substring
search using recent “oblivious data structures” [30], we
demonstrate that our tailored solutions improve commu-
nication complexity by a factor of logn. The idea behind
SA-ORAM and ST-ORAM is to employ a new, hierarchical
ORAM tree structure that takes advantage of data depen-
dency and optimizes the size of ORAM blocks and tree
height. Based on oblivious suffix arrays, SA-ORAM tar-
gets efficiency, yet does not allow updates to the outsourced
set of strings. ST-ORAM, based on oblivious suffix trees,
allows updates at the additional communications cost of
a factor of loglogn. We implement and benchmark SA-
ORAM to show its feasibility for practical deployments:
even for huge datasets of 240 strings, an oblivious substring
search can be performed with only hundreds of KBytes
communication cost.

1 Introduction
Users outsource their data to clouds to benefit from reduced
costs and availability. However, several concerns related
to confidentiality create considerable uncertainty for those
maintaining sensitive information. There are several devas-
tating attacks on clouds known that have led to data disclo-
sure and sensitive information theft [17, 28]. A standard so-
lution is to store only encrypted data in the cloud. While this

approach preserves users’ confidentiality, it impedes typical
cloud applications, such as searching on outsourced data.

Recent research has investigated the topic of efficiently
searching over encrypted data. In particular, single
exact keyword search schemes, e.g., [9, 26] and many
others, have been presented. These techniques fall within
symmetric searchable encryption (SSE) that enables
efficient sublinear search complexity, but at the cost of
“leaking” some information about the search, such as the
search and access pattern.

To strengthen security, one can adopt more powerful
cryptographic primitives that prevent from leaking access
patterns, such as oblivious RAM (ORAM) [23] or Private
Information Retrieval (PIR) [24]. In particular, the
former technique has been thoroughly investigated during
recent years leading to many schemes with poly-log
communication complexity [27].

In this paper, we are the first to investigate oblivious
substring search over encrypted data with security prop-
erties similar to those of ORAM. Our goal is to not leak
any information about the search pattern. More precisely,
given a set of n strings S= {s1,...,sn} and a substring ς,
the search returns the number of occurrences of substring
ς in the set of strings S. We will provide obliviousness,
ensuring that the server performing the verification will (1)
neither learn which substring has been queried for, (2) nor
learn which string matches the substring, (3) nor learn the
outcome of the search; only the user understands the result.
Our second goal is to handle dynamic string updates, i.e.,
to allow the set S to increase.

Motivation Enabling efficient substring search over
encrypted data is important in many real-world applications.
For example, imagine a company’s web proxy logging
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millions of URLs accessed by company workstations every
day. Securely storing a large amount of accessed URL log
data should not impede possible future forensic analysis
to detect system compromise. A typical forensic analysis
could include, e.g., searching for suspicious URLs or parts
(substrings) of URLs accessed. Trivial solutions to this
problem like generating all substrings of possible keywords
(URLs) in the logs and storing them using SSE techniques
or ORAM result in significant overhead. The drawbacks
of trivial solutions are twofold: (1) the considerable amount
of storage induced, and (2) the large communication
complexity. Recently, Chase and Shen [8] introduced a first,
efficient solution to substring search based on suffix trees.
For security parameter λ, ς being the substring searched
for, and occ the number of occurrences of the substring,
their scheme offers low search complexity over encrypted
data inO(λ·ς+occ).

While highly efficient, Chase and Shen [8] leak sensitive
information to an adversary: the pattern of the prefix of
the substring and the occurrences of positions induced by
the leaf and index intersections. Therewith, an adversary
(server) will know whether two substring searches are
sharing the same prefix. This leakage is a result of
the underlying suffix tree structure which inherently
discloses information of its structure. A server with some
knowledge of the dictionary and a certain number of
queries can recover the content of many edges of the
encrypted suffix tree only based on the frequency of letters
distribution. While this leakage by Chase and Shen [8]
may be considered acceptable in some scenarios, this paper
targets stronger security protection.

Contribution In this paper, we present the first oblivious
substring search over encrypted data. Roughly speaking, we
construct a scheme that efficiently inserts a pre-processed
suffix data structure into a modified, tree-based ORAM.
While this can also trivially be achieved using very general
solutions [30], we show that our new, dedicated oblivious
data structure improves by a factor of logn in communi-
cation over the general solution. Therewith, even for a huge
number of strings, e.g., n= 240, testing obliviously for a
matching substring requires communication in the order
of only 100 KByte.

First, we present a static construction, dubbed SA-
ORAM, that enables oblivious substring search for an
a priori fixed set of strings. SA-ORAM is based on
incorporating a suffix array construction on the position
map of a tree-based ORAM. The position map is a
recursive structure composed of a number of trees with

linearly-increasing heights. Searching for a substring on
plaintext data using suffix arrays is based on binary search.
For a number of strings n, string lengthm∈Ω(logn), and
size of the alphabet γ∈Ω(logn), searching for a substring
using SA-ORAM can be performed with communication
complexityO(log3n)·ω(1).

Static constructions only work for a fixed set S of
strings. Consequently, our second contribution, dubbed
ST-ORAM, enables to obliviously add strings to S. To
search for a substring, communication complexity is in
O(log3n · loglogn) ·ω(1). ST-ORAM incorporates suffix
trees in a recursive way. The suffix tree data dependency
implies that the distribution of leaves over the levels can
vary depending on the data set. To tackle this issue, we
present a new suffix tree encoding fixing the distribution
of leaves and interior nodes in a suffix tree.

Table 1 provides a comparison between general purpose
oblivious data structure (ODS) [30] and our dedicated
constructions, SA-ORAM and ST-ORAM. The table shows
the asymptotic gain under different settings of the size of
the alphabet γ and length of the stringm.

2 Background
In this section, we briefly revisit tree-based ORAMs. In
particular, we will focus on Path ORAM [27].

First, the objective of oblivious RAM in general is to hide
access patterns. That is, ORAM insures that, for an adver-
sary, any two accesses to the same or different data will look
indistinguishable. The data is divided in a number of blocks
(elements) that we denote byn. Each block of data has a spe-
cific size in bits. Our focus will be on tree-based ORAMs
that are composed of two main parts: the position map
and the main data ORAM. The position map consists of a
logarithmic number of tree ORAMs that map an ORAM
address a to a tag. This tag identifies a leaf in the main data
ORAM. Any node in the tree is called a bucket, where each
bucket is composed of a constant number of entries z. The
difference between a tree in the position map and the main
data ORAM is the size of blocks and the tree height. In the
position map, the block size is fixed toO(logn), while the
block size in the main data ORAM can vary.

Tree-based ORAMs simulate Read(a), Write(a,data)
by the following three operations: ReadAndRemove(a),
Add(a,data), and Evict. Parameter a is the address of
the element and data is the data to be written. Any
ReadAndRemove operation is followed by an Add oper-
ation. In Path ORAM, the eviction process is performed
at the same time the write operation is performed. We
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Scheme m,γ∈Ω(1) m,γ∈Ω(logn) m,γ∈Ω(log2n)

SA-ODS O(log3n)·ω(1) O(loglogn·log3n)·ω(1) O(loglogn·log4n)·ω(1)

ST-ODS O(log2n)·ω(1) O(log4n)·ω(1) O(log6n)·ω(1)

SA-ORAM O(log3n)·ω(1) O(log3n)·ω(1) O(loglogn·log3n)·ω(1)

ST-ORAM O(log2n)·ω(1) O(loglogn·log3n)·ω(1) O(loglogn·log4n)·ω(1)

Table 1: Communication complexity of oblivious substring schemes.

overview these operations.
ReadAndRemove(a): To access element with address a,

the user first fetches the tag t of the element from the posi-
tion map. The user then downloads the entire path that starts
from the root to the leaf tagged with t. The user decrypts
all buckets, retrieving the desired block which has a as its
identifier. Finally, the user appends the downloaded path to
a stash of sizeO(logn). The stash is stored on the user side.

Add(a,data): The data associated to address a will be
overwritten by data. From the stash, the user recursively
determines elements that are closest to the leaf tagged with
t and outputs a sorted path which is sorted based on the
least common ancestor rule. This Evict operation needs
a logarithmic number of loops throughout the stash to
compute the path to be inserted. The same tag t retrieved
during a ReadAndRemove operation will be used for the
path insertion. All elements are IND-CPA encrypted.

In this paper, we will be using the position map of Path
ORAM as a building block for both our static and dynamic
solution.

2.1 OSS definition
Oblivious substring search (OSS) is composed of three
probabilistic algorithms:

• (OSS,κ)=SetupOSS(S,n,m,γ,λ): takes as an input
the set of strings S, the maximum number of strings
n, the maximum string lengthm, the alphabet size γ,
and security parameter λ. It initializes a new instance
OSS and outputs secret state κ and OSS.

• OSS=AddString(s,κ): takes as an input a new string
s such that |s|≤m, secret state κ, and adds s to OSS.
It outputs the updated OSS.

• occ = QuerySubstring(ς,κ) : takes as an input the
substring ς and secret κ. It outputs the occurrences
occ∈N∪{⊥}

We say that OSS is correct if for all λ, m, n and
γ ∈ N, for all S ∈ [γ]m×n, for all (OSS, κ) output by

SetupOSS(S, n,m, γ, λ), for all substrings ς ∈ [γ]≤m,
QuerySubstring(ς,κ) outputs the correct number of occ
with all but negligible probability.

2.2 Security definition
Oblivious substring search (OSS) should preserve the
following obliviousness requirement.

Definition 2.1. Let −→a = {(op1,d1),(op2,d2), ... ,(opM ,
dM)} be a sequence of M accesses (opi,di), where opi
denotes AddString or QuerySubstring, and di denotes
the data to be written. Data di equals string si if
opi=AddString, and substring ςi otherwise. LetA(−→a ) be
the access pattern induced by sequence−→a , λ the security
parameter, and ε(λ) is a negligible function in λ. We say
that (SetupOSS, AddString, QuerySubstring) is secure
iff, for any PPT adversary D and any two same-length
sequences−→a and

−→
b , access patternsA(−→a ) andA(

−→
b ),

|Pr[D(A(−→a ))=1]−Pr[D(A(
−→
b ))=1]|≤ε(λ)

holds.

3 SA-ORAM:
Suffix arrays over ORAM

3.1 Suffix Arrays
Suffix arrays [22] are sorted index arrays that enable
searching for substring occurrences in a given string
with search complexity O(ς + logm). While the search
complexity increases by an additional log factor over
suffix trees, their storage efficiency is their advantage [31].
Moreover, their construction is very elegant and simple.
We now give an example of a suffix array construction.
Consider the string security.

1. First, we extract all suffixes from right to left, and we
enumerate them: (1 - y), (2 - ty), (3 - ity), (4 - rity),
(5 - urity), (6 - curity), (7 - ecurity), and (8 - security).
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2. The second step consists of sorting these suffixes in
lexicographic order: (6 - curity), ( 7 - ecurity), (3 -
ity), (4 - rity), (8 -security), (2, ty), (5 - urity) and (1
- y). Based on the lexicographically order, this array is
transformed into a (balanced) binary search tree BST,
where each node stores its index, see Fig 1.

3. Finally, we delete all the suffixes, keep the positions
in the array (6,7,3,4,8,2,5,1), and store the string
security.

Storing the sorted array without the BST is sufficient
to emulate a BST – we can perform a simple binary search
over that array. For ease of exposition, we will stick in
our description to BST, though. To search for the substring
ς, we retrieve the index i stored in the root and compare
the ith letter of security to the first letter of ς. If the letters
match, we move to the (i+1)th letter and check it against
the second letter of the substring ς. Otherwise, we move to
left or right child of the root, and we redo the same process.
Thus, the search for any substring can be performed in
O(ς · logm) steps. This complexity can be improved by
adding the longest common prefix information, so a search
can be performed inO(ς+logm), see Manber and Myers
[22] for details.

Figure 1: Illustration of suffix array BST of security.

3.2 SA-ORAM overview
The above lexicographically sorted array is equivalent
to constructing a binary search tree BST. Obliviously
searching in a BST has been recently introduced by Gentry
et al. [14]. Therewith, Wang et al. [30] create oblivious
AVL trees. The search in a perfectly balanced BST is
logarithmic in the number of stored elements, as each level
of the BST can be stored in a level of the position map.
Thus, obliviously accessing an element in the position map
will add a multiplicative factor of logn due to the height
of the tree. Recall that each level of the position map is a
tree with a height at most equal to logn.

Tree-based ORAMs are one of the most efficient ORAM
structures with poly-logarithmic worst-case communication
complexity. Path ORAM allows for a search complexity in
O(logn), having blocks of size Ω(log2n) and user-memory
in Θ(logn). The main difference between our setting and
Path ORAM is that we do not want to store data, but only
the BST that will spread out throughout the entire level of
the position map. Employing the idea by Gentry et al. [14],
including a BST on the top of the position map will not in-
crease communication complexity, and we can maintain ex-
actly the same asymptotics as using the position map alone.

We now briefly compute the exact communication
complexity induced by the position map. The position map
is a recursion of ORAMs that linearly increase their height.
The position map maps n addresses to n tags. It is com-
posed of a logarithmic number of tree ORAMs, ORAMi,
for i ∈ [ lognlogτ ]. ORAMi+1 has τ times more leaves than
ORAMi. τ is called the recursion factor, and n=τ l. Thus,
the height of ORAMi equals logτ i. Parameter z denotes
the number of entries in each bucket of ORAMi. The
communication complexity to retrieve the tag computes to:

l−1∑
i=2

z·τ ·logτ i·logτ i+1 = z·τ ·log2τ

l−1∑
i=2

i·(i+1)

= z·τ ·log2τ ·( l(l−1)(l+1)

3
−2)

This complexity sums up a logarithmic number of paths
with different heights. The equation can be rewritten to be in
function of one variable, for example by replacing l by logn

logτ .
We can optimize the communication complexity by finding
the best value of l that minimizes the above equation for any
l≥3. For τ =16, n=232, l=8, and z=5. The position
map then exactly costs 1660 Bytes which is independent of
the size of the element (block), but depends only on the num-
ber of stored elements. Also, the communication complex-
ity increases poly-logarithmically in the number of elements.
This remark is very important because it shows us that we
can build a BST with a practically small amount of bits.

We have shown that a position map alone does not
consume a lot of bandwidth since it is independent of
the data block size. SA-ORAM will make use of the
position map as a building block to store the nodes of the
suffix array BST. Roughly speaking, each level of the
BST will be stored in the associated tree of the position
map. However, this will not be straightforward and some
modifications on the BST are needed beforehand.

For plaintext substring search over suffix arrays, we use
the BST and the stored string(s) to verify whether there is
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Figure 2: Illustration of augmented BST of the word
security.

a match or not. First, for each level of the BST, we retrieve
the index from the corresponding node. Second, we verify
if the substring exists by checking the stored string(s)
starting from the position equal to the index retrieved in the
first step. These two operations are performed a logarithmic
number of times. For oblivious substring search, we cannot
disassociate these two steps, otherwise the server can
always distinguish which string has been accessed. A trivial
solution consists of storing the string in a data ORAM, e.g.,
Path ORAM. However, with a large number of strings, this
will require considerable bandwidth and makes the scheme
very costly. To solve this issue, we create a suffix array
BST that also contains the suffixes instead of only the
position within each node of the BST. The only difference
in our case consists of avoiding the last step in suffix arrays
construction (step 3) that eliminates the suffix information,
i.e., our construction is only based on step 1 and 2. Finally,
we generate a BST where each node can be a suffix. See
Fig 2 for this “augmented” tree of security.

To sum up, SA-ORAM is a recursive set of trees where
each tree is an ORAM, see Fig 3. Each level of the BST,
containing l nodes, is represented as an ORAM with l
leaves. The number of trees is logarithmic in the number of
suffixes. The logarithmic number of trees equals the height
of the suffix tree BST. The construction consists of storing
the nodes of each level in the corresponding level of the
recursive SA-ORAM. To search for a substring, the user
has to access a logarithmic number of trees that will lead
to a match. In SA-ORAM, a match can occur (say) in the
2nd level, but the user has to continue until the last tree to
preserve obliviousness.

SA-ORAM handles occurrences search, i.e., retrieving
the number of suffixes that contain the substring searched
for. Similarly to plaintext search over suffix arrays,
SA-ORAM enables oblivious occurrences search based
on two binary searches on the SA-ORAM, we can bound
the existence of all substrings to a given interval. Since

Figure 3: High level illustration of SA-ORAM from a
suffix array BST with τ=2.

the suffix array is lexicographically ordered, keeping
meta-information about the order of the suffix is enough to
find the number of occurrences. Particularly, the first binary
search determines the smallest suffix that has the substring
while the second determines the largest. Getting these
two positions, we can determine all other substrings that
match the substring since they will be within this interval.
Retrieving the occurrence information is very important
for any user who wants to use our scheme as a component
to search over encrypted data. We now detail the algorithm
SetupOSS that outputs SA-ORAM main structure.

3.3 SetupOSS: SA-ORAM setup phase
Let S = {s1,···,sn} be the list of n strings such that the
maximal string length equalsm. Σ is the alphabet set that
has size γ. First, we generate all suffixes sufi associated to
S. Let τ be the recursion factor andN the total number of
generated suffixes such thatN=τ l. The number of unique
strings n gives an upper bound for the suffix numbers
N such that N ≤n·m. Let O ={(suf1,1),···,(sufN ,N)}
denote the suffix set where each suffix is associated to
its position. The set O is lexicographically sorted and
therefore can be represented in a τ-ary search tree .

Overview: Having a sorted list is equivalent to a BST and
more generally to τ-ary search tree. Constructing such a
tree represents a l= logN

logτ τ-chotomy of the entire set O.
For example, if τ = 2, the set O will be first divided in
two. Then, we insert only the two minimum values of
both subsets in two nodes that will represent the first level
of the tree. We divide a second time the entire set O and
we insert now the four minimum values in the four leaves.
We reiterate the process a logarithmic number of time. As
illustrated in Fig 3, we will first generate a τ-ary search tree
and gradually insert the τ i nodes of a level i of the BST in
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an ORAM with τ i elements. The elements of the set O will
be evenly distributed over the l trees of the SA-ORAM.

Details: More precisely, the construction phase is composed
of l steps. For the first step, we divide the set O in τ parts
such that for

oi={(suf (i−1)·N
τ +1

,
(i−1)·N

τ
+1),···,(suf i·N

τ
,
i·N
τ

)},

we have
O={o1,···,oτ}.

We continue the process for the second level where we
divide each oi in τ parts, compute the minimum for each
new subset and redo the same process until the lthstep.

To sum up, oi,j represents the ith set in the jth step for
i∈ [τj] and j∈ [l−2] such that:

oi,j={(suf (i−1)·N
τj

+1
,
(i−1)·N

τj
+1),···,(suf i·N

τj
,
i·N
τj

)}.

We define minoi,j as the smallest suffix in the set oi,j
and since oi,j is an ordered set, then minoi,j=suf (i−1)·N

τj
+1

.

We define Oj to be the set that contains the minimum
values for the jth step and the position of the set in the next
level of the position map. Oj represent the sets that will
be stored in the position map such that for each j∈ [l−1],

ri,j
$←− [τj+1], and minoi,j=suf (i−1)·N

τj
+1

Oj = {Oi,j}i∈[τj−1]

= {(minoi,j,ri,j),···,(minoi+τ−1,j,ri+τ−1,j)}i∈[τj−1].

For j=l, we have Ol={oi,l}i∈[τl−1].
The user has to insert the sets Oj for j ∈ [l] in the

position map. The position map, as previously introduced,
is divided in l ORAMs such that ORAMj is a binary tree
that has τj−1 leaves. ORAM1 consists of one block that
will be kept locally stored on the user side. We assume
that all these ORAMs are instantiated empty and contain
dummy elements. To store Oj in ORAMj, we proceed as
follows for 1<j≤l

• For each subset Oi,j−1∈Oj−1 for i∈ [τj−2]

– For each vt = (mint, tagt) ∈ Oi,j−1 for
t∈|Oi,j−1|, Write(Oi+t,j,tagt) in ORAMj

Write is an ORAM operation that simulates a
ReadAndRemove followed by and Add. Finally, the
user outsources the encoded position map, SA-ORAM=
{ORAMi}1<i≤l to the server. Note that ORAM1 =O1 is
stored on the user side.

Figure 4: High level illustration of SA-ORAM substring
query where all red and blue buckets are downloaded and
uploaded.

3.4 QuerySubstring: SA-ORAM search
phase

We want to search for the substring ς and find all occur-
rences, i.e., all strings that contain the substring. In plaintext
suffix arrays, this search can be performed by two consec-
utive binary searches, finding therefore the range of ς.

From a high level perspective, to search for a substring
ς, the user recursively accesses all ORAMi for i∈ [l]. Each
access outputs a pointer to the next ORAM in such a way
the user is obliviously performing a binary search. In
ORAM1, the user first checks out the suffix interval that
eventually contains the searched for substring. Once the
user determines the interval, he retrieves the pointer which
is a path identifier of the next ORAM tree. The user repeats
a logarithmic time these steps until the last tree ORAMl.
Finding out the number of occurrences of a substring can
be done similarly to the plaintext search. The user will
access SA-ORAM twice, the first access will output the
smallest suffix that contains the substring while the second
access outputs the largest suffix that contains the substring,
see Fig 4. The order relation used here is the lexicographic
order. Finally, the user outputs the number of occurrences
which equals the difference of the retrieved block indexes.

We define two conditions that capture the binary search
over the position map. For θ and θt in {min,{sufi}i∈[N]}:
“cond1(θ)=θt≤ς<θt+1” and “cond2(θ)=θt<ς≤θt+1”.
The user performs the following steps for each i∈{1,2}
(this represents two binary searches over SA-ORAM):

• Initialize two variables temp and tag. Locally, the
user compares in alphabetical order ς and each
element (mint, rt) ∈ O1 for t ∈ [τ ] such that if
condi(mint)=true then temp←mint, tag←rt and

rt
$←− [τ ]
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• For each 1<j≤l−1 do:

– Read(tag) from ORAMj and retrieve the
block B that has temp as its tag. Compare
each element (mint,rt) ∈ B for t ∈ [τ ] such
that if condi(mint)=true then temp← mint,

tag←rt and rt
$←− [τ ]

– Write(B,tag)

• For j = l, Read(tag) from ORAMl and retrieve
the block B that has temp as its tag. Compare
each element (suft, numt) ∈ B for t ∈ [τ ] such
that if condi(suft)=true then temp ← numbt and
Write(B,tag).

In a match case, the user knows the number of occur-
rences based on the indexes stored in the SA-ORAM blocs.
In fact, the block retrieved in the first search contains the
suffix index which is the suffix rank in the ordered list O
while the second one contains the rank of the second suffix.
Therefore, the user respectively retrieves two indexes a1
and a2 from the first and second search. The number of
occurrences occ is defined as a2−a1.

3.5 Block compression
The search complexity of SA-ORAM improves upon
the straightforward approach by Wang et al. [30] by only
multiplicative constant but the asymptotics remain the same,
namely O(m · logγ · log2N). Fortunately, SA-ORAM’s
hierarchical structure enables us to decrease the amount of
information that we are storing in each block. Using suffix
arrays over ORAM, we can improve by a logN factor
by taking advantage of the data dependency and suffix
ordering, for anym,γ∈Ω(logn).

Having a hierarchical structure, we can avoid storing
the entire suffix in each level which will decrease the size
of each block by mlogγ. One might assume that storing
only one character in all recursive ORAMs, except the last
one, is sufficient to lead the binary search, however it is
not totally correct. For τ≥2, the pointers within an interval
in a given block can share a common prefix (for example
sufi and sufi+1 share the same prefix) and therefore one
character will be not enough. While we want to avoid
storing unnecessary information, having a counter of the
length of common substring framed by two characters is
sufficient for the search. Keep in mind that the user will
verify whether the substring he is searching for exists or not
in the last level of the recursion. This simple modification
reduces the suffix size within each block, except blocks
in the last ORAM, frommlogγ to logm·logγ, see Fig 5.

Figure 5: Example of suffix compression

4 ST-ORAM:
suffix trees over ORAM

Motivation: Our static SA-ORAM only supports a static
set of suffixes. Now, we focus on a dynamic construction
that will enable efficient adding of new strings. Our
dynamic construction is based on the same philosophy
used in SA-ORAM, but with a different representation of
the suffix data structure. Updating suffix arrays in a binary
tree representation can be easy, if we use self-balancing
trees such as AVL or Red-Black trees. However, our
representation associates each node to a specific recursion
level. Therefore, if we perform a rotation to balance the
tree after every insertion, many nodes in the tree change
their levels resulting an inefficient construction.

To mitigate this problem, related work stores the suffix
array BST in an oblivious data structure (ODS) [30].
This allows updates to the structure, as ODS can handle
self-balancing. However, using an ODS would imply
higher communication complexity.

In our approach, instead of using suffix arrays, we store
a suffix tree in an ORAM. Similarly to SA-ORAM, we
associate each level of the suffix tree to a level of ORAM
recursion. The advantage of a suffix tree over suffix arrays
is its constant height. Suffix trees have a height equal to the
longest stringm, while in a suffix array, the height depends
on the number of elements. Therefore, a node created in a
suffix tree will always keep the same position, i.e., the same
level in the tree. However eventually, the node’s value can
change through updates. Again, one could store a suffix
tree in the ODS structure, however it will be at the expense
of storing the maximum number of leaves of a suffix tree as
well as very large blocks which will be inefficient. The total
number of leaves of the ODS will equal the total number
of nodes in an entire suffix tree which is upper bounded by
2n·m. Also, the block size of a suffix tree stored over ODS

7



will be large, also increasing communication overhead.
In our new construction ST-ORAM, we hide information

about updates from the server. For this, we define the
maximum size of strings during setup time, i.e., each tree
is instantiated with a maximum number of leaves also
considering future updates. Thus, even if an element is
added, the tree will keep the same size. For SA-ORAM,
even if we fix the number of leaves of each recursive tree to
be equal to an upper bound, there is no theoretical guarantee
that the number of elements will not exceed this bound.
The maximum size can be considered an upper bound
of the number of strings that the system can handle for a
defined period of time. For example, to handle, e.g., 106

strings per day for 10 years, we fix the maximum number
of strings to n≈109 (assuming all strings are different).

This approach suffers from some trivial drawbacks
related to storage efficiency and scalability. Also, in some
cases, it is difficult to define the proper upper bound of
strings that will be stored in the structure. To mitigate,
we can relax update security by disclosing new memory
allocation. That is, all trees will contain only the number
of nodes required for the current number of strings stored.
Any update involving the insertion of a new string will
imply the creation of new nodes in the corresponding trees,
increasing its size. Simply by looking at the size, the server
can therefore distinguish between a normal add/read and
an update. Resizing the construction will achieve optimal
communication complexity. For each level, we will have
the exact number of nodes required. In this paper, we
only consider the case where the ORAM has an upper
bound for each recursive tree. We target a scheme that
enables updating the oblivious structure while preserving
the obliviousness against any query type.

4.1 Suffix trees

A suffix tree [31] is a trie-like representation of text support-
ing a wide range of applications on strings. In particular,
it is suited for substring (pattern) search. Similar to suffix
arrays, suffix trees are pre-processed data structures that
enable sub-linear search in the size of the stored strings.
Suffix trees contain all possible suffixes of a given string.
This allows search complexity for a substring ς to be in
O(ς). The time complexity to construct a suffix tree is in
O(m) using, e.g., Ukkonen’s on-line construction [29]. As
Ukkonen’s algorithm is very involving and out of scope
of this paper, we briefly discuss only a straightforward
construction of suffix trees with time complexity inO(m2).

Construction: We consider a set of strings S={s1,···,sn}

such that maxi∈[n] |si|=m. First, we generate for each
string all possible suffixes. Let Suf(si) denote the set of
suffixes associated to si. All suffixes in Suf(si) are unique.
We define two operators cont and diff that respectively
output the common prefix between two strings and the
inclusive difference between two suffixes. For instance, con-
sidering the following three strings s1=aabca, s2=aabac
and s3 = aab, the operators output cont(s1,s2)=aab and
diff(s2,s3)=ac. The diff operator is only defined when the
first input is a prefix of the second one. To store a string si
in the suffix tree, for each suffix sufi∈Suf(si), we perform:

• Search for sufi in the suffix tree and retrieve the
path s that has an overlap with sufi. The path s is a
previously stored suffix. The path s is composed of
at least one edge and at most m edges. An edge is
a set of characters belonging to the alphabet Σ

• Compute cont(sufi,s) = pref. If |pref|> 0, create a
vertex at the end of the prefix pref that will have as
a first edge diff(pref,s) and a second edge which is
equal to diff(pref,sufi). Otherwise, create one edge
that has sufi as its value starting from the root, see Fig6

• Each path ends with a vertex that contains a linked
list of the suffix identifiers as well as their positions
in each string

Figure 6: Illustration of two cases of suffix insertion. The
first one depicts the insertion of the suffix bacb. In this
case, pref =bac, diff(pref,s) = a and diff(pref,sufi) = b$.
The second case represents the insertion of ca$ for which
pref =∅.

To later add new strings, we perform the same steps
above for the new suffix. The resulting suffix trees display
the following properties.

• Each internal node has at least two and at most γ
children
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• The total number of nodes is at most 2 ·N for N
suffixes

• Each path starting from the root towards a leaf
represents one unique suffix

• ForN suffixes, the suffix tree has exactlyN leaves

It is important to concatenate a special character $ 6∈Σ
at the end of each string. That will avoid that a suffix is
a prefix of another suffix. For example, string aacaba has
a as prefix of substring aacaba. See Fig 7 for an example
of a suffix tree construction.

To search for all occurrences occ of a substring ς, we
must first find the path that contains ς. Two cases might
arise. The first one is that the substring ς exactly ends on an
interior/leaf node that we denote as our reference. The ref-
erence defines a root of a subtree. The leaves of this subtree
are the suffixes that contain the substring ς. The second case
occurs when ς ends in the middle of an edge in the suffix
tree. In this case, we consider the lower node linked by this
edge as our nodes’ reference. In both cases, the number
of occurrences equals the number of leaves in the subtree
rooted by the node’s reference. We can order the leaves of
the suffix tree lexicographically as shown in Fig 7, so we
can point to an ordered set of leaves only by two pointers.
Therefore, for each interior node, we store two pointers to re-
fer to all the leaves of the subtree rooted by this node. Thus,
to search for the occurrence of a substring ς occurring occ
times in the suffix tree, we needO(ς+occ) node’s access.

Figure 7: Illustration of suffix tree construction using the
string aacaba.

4.2 ST-ORAM Overview
We now present our solution to efficiently build a suffix tree
over ORAM. Before describing the intuition behind this
second protocol called ST-ORAM, we introduce additional
notation.

For a set of strings S, we first generate its suffix tree.
We sort the suffix tree such that the leaves follow a
lexicographic order from the left side of the tree to the right
side. We also construct the ordered set of suffixes of S:
O={suf1,···,sufN}. In this suffix tree, each edge contains
at least one character and at most the entire substring ς. The
length of the edge is the number of characters it contains.
Ifm is the size of the longest string, we define sets Leveli
for i∈ [m] that contain the values of edges for each level
of the suffix tree. Fig 8 shows an example of a suffix tree,
its multiple levels, and edges of different lengths.

To keep up with the same philosophy as SA-ORAM, one
could store elements of Leveli in ORAMi. Yet, to update
the suffix tree, it is often required to split an edge into
two new edges, see Fig 6. This operation pushes all nodes
below this split edge one level downwards. Therefore, if
we associate, at the beginning, each edge to a specific level
of ORAM recursion, one update degrades the scheme’s
efficiency. The user has to read all edges below the updated
one and rewrite them to ORAMi. This stems from the fact
that we associate every edge to a level independently of
the number of characters in the edge. Consequently, every
creation of a new edge in the middle of the structure implies
a translation of the entire subtree below that edge. In
conclusion, updating this structure will be very inefficient

A first idea to mitigate this issue is to store any edge with
length i into ORAMi independently of its position in the
suffix tree. This modification ensures an oblivious update:
whenever an edge is split, it will not affect its position but
only trigger the creation of new edges. As described in
the suffix tree construction, the split is captured by the two
operators, cont and diff. Refer to Fig 6 for an example of
suffix’ insertion.

ST-ORAM’s objective is to associate any node in the
suffix tree to a fixed level, such that updates will not affect
the placement of previously stored nodes. Since any two
accesses have to be indistinguishable and the substrings
searched for may have different lengths, the server has to
always performm steps.

To build a hierarchical suffix tree over ORAM similar
to SA-ORAM, we then have to quantify the number of
nodes (or edges) in each level. Suffix trees withN suffixes
(leaves) contain up to 2 ·N nodes in total. With n the
number of total strings stored and ct a non-negative integer,
our goal is to uniformly distribute the number of nodes
over them levels of ST-ORAM such that each ORAM in
the recursive structure contains exactly N

m≤ct·n.
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4.3 Suffix Tree Encoding (STE)
We introduce a new suffix tree encoding (STE) that enables
uniform partitioning of nodes within the recursive ORAM
structure. STE fixes an upper bound ct for each ORAMi.
This upper bound ensures that during insertions we never
exceed the capacity of each ORAM. In practice, ct is small.
We will show in Lemma 4.1 that ct< 3. To achieve this,
our encoding (I) stores leaves based on the suffix length,
and (II) interior nodes are distributed following a geometric
series with ratio 1

2 . Part (I) of our encoding implies an
upper bound of n, and (II) an upper bound of 2·n, therefore
the maximum number of elements per ORAM equals 3·n.
Hence, the ct equals 3.

Contrary to k-ary trees, suffix trees do not have a well
defined distribution of interior nodes. Some levels of the
suffix tree might contain more nodes than others. The
distribution of interior nodes in suffix trees depends on the
string construction. The idea of our suffix tree encoding
(STE) is to give the suffix tree a particular structure to
control the distribution of nodes over levels. STE divides a
suffix tree inm levels such that each level hasO(n) nodes.
STE’s purpose is to avoid the worst-case scenario where a
level might haveO(m·n) nodes. For a maximum number
of nodes n, STE ensures that any level has an upper bound
of nodes that it will not exceed during updates. That is,
it avoids overflow scenarios where a level cannot store
additional nodes anymore. More formally, we will show
that for n strings the number of nodes in each level of
ST-ORAM is upper bounded by 3·n.

STE uses two encoding rules. The first applies to leaf
nodes, and the second to interior nodes:

1. Insert each leaf node li of suffix sufi, for i∈ [N ] into
Level|sufi| of the suffix tree.

2. For each interior node vi, find child vj with the short-
est distance from the root. Insert vi in level Levelj−1.

Here, the distance is defined as the number of characters
of an edge. If two edges have different lengths, they will
reside in different levels of the tree. For illustration, Fig 8
depicts the encoding of string “aacaba”.

Lemma 4.1. For n strings encoded with STE, the number
of nodes in each level Leveli is at most 3·n.

Proof. STE’s first rule stores any leaf associated to a
particular suffix suf of the suffix tree, into the |suf|th level
of the new encoded tree. For n strings, we store in the
worst case n·m suffixes in total. So, per level Leveli, we
need to store n suffixes. This n results from the theoretical

Figure 8: Illustration of suffix tree encoding of string
aacaba

upper bound of suffixes per each level. Recall that each
level is associated to a string length and therefore we can
have up to n suffixes representing all possible suffixes that
have a particular length. Thus, it is sufficient to show in
the remaining of the proof that the number of interior nodes
per level does not exceed 2·n.

We know that there exists a nonnegative integer % such
that γ%<n and γ%+1>n where the upper levels of the tree
takes all possible combinations of a suffix tree. Therefore,
for i < %, we know that the number of interior nodes in
Leveli does not exceed n. For i>%, recall that for now we
have in each level up to n leaves, any interior node has at
least 2 children, the worst case for the (%+1)th level is that
each node has to have exactly 2 children where at least one
of them is in the (%+2)th. Having more than 2 children
will reduce the number of interior nodes since more nodes
will map to the same parent. In fact, we show that each
level % < i≤m contains

∑nlogn
j=0

n
2j < 2n interior nodes

(which is the formula for the geometric series with ratio
1
2). First, notice that each ith level has n interior nodes
which are parent each of 2 leaves. This represents the worst
case as explained above. These nodes exist also in the
(i+1)th and they have at most n2 parents in the ith level,
recursively, we can show that the size of the interior nodes
equals n+ n

2 + n
4 + n

8 +···+1=
∑logn
j=0

n
2j .

For ST-ORAM with a bounded size n, we start the
construction with an empty suffix tree that will be filled
based on our STE encoding. For the setup phase, the
required parameters are the maximum number of strings,
n, the size of the longest stringm and the alphabet size γ.
Based on n and γ, we generate the non-negative integer
% that verifies: γ%<n and γ%+1>n.
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4.4 ST-ORAM details
4.4.1 SetupOSS: ST-ORAM setup phase

Create m− 2 binary tree ORAMs, {ORAMi}1<i≤m−1,
with a number of leaves equal to γi for 1 < i ≤ %, and
2n for i > %. We create another tree, denoted ORAMm,
that will contain all the suffixes and then has m·n leaves.
Elements of the first level Level1, which contains only one
block, will be stored locally in the user side. Children of the
same parent belonging to the same level will be enhanced
with a binary search tree-like indexing, i.e., if a parent has
γ children in the ith level, for example, one can find the
desired child in logγ accesses. That is, instead of storing γ
pointers, only two pointers are needed in each block. Thus,
the block structure in the ith level contains: an identifier for
the ORAM tree, two pointers for the next two children (it
can be a leaf) and one alphabetical character, plus, a counter
that will guide the binary search. The counter represents the
number of characters in common between the children of
the same parents. In fact, similarly to SA-ORAM compres-
sion technique, redundant information is not needed to lead
the search. The alphabetical character, plus, the counter
are sufficient to enable the user to decide which pointer to
follow within the same level. Note that for each level, dur-
ing the search, the user has to access logγ times since any
parent can have at most γ children. Finally, for occurrence
search, two pointers are required to define the beginning
and the end of the substring interval, similar to a traditional
suffix tree. Thus, the size of any block in the ith level equals:
2logm·n+ 3logn+ logγ · logm = O(logn·m+ logγ).
The block in ORAMm contains: an identifier and the
entire suffix. That is, the size of blocks in ORAMm

equals logn·m+mlogγ. Refer to Fig 9 for a high level
description of ST-ORAM setup phase.

Figure 9: Suffix tree contains two strings with m = 7,
aacaba and bcbbaa, stored using STE. The result
includes four interior nodes and twelve leaves.

4.4.2 SubstringQuery: ST-ORAM search phase

For a substring ς, the user locally retrieves from the first
block the associated child address. The user generates at
random the address and updates the block. Then, the user
accesses the first tree ORAM1 to retrieve the element. logγ
accesses have to be performed to stay oblivious even if the
child has been found in lesser steps. Also, if the leaf iden-
tifier has been found, the user has to make dummy queries
to all other left ORAM trees to stay oblivious as well. Oth-
erwise, the user repeats the same steps till finding the leaf
identifier. Finally, the user accesses ORAMm to retrieve the
suffix. If ς is within the found suffix then the user outputs
true with the number of occurrences occ, or⊥ otherwise.

Figure 10: We add the suffix cca. This triggers the creation
of a new interior node as well as a new leaf respectively
in ORAM3 and ORAM7.

4.4.3 AddString: ST-ORAM string insertion

As shown in Fig 6, the insertion of a suffix in the suffix
tree results either in the creation of a new leaf or an interior
node alongside with a new leaf. In ST-ORAM, the insertion
should follow the STE encoding rules. In the following,
we are not going to detail how the identifiers or the next
leaves identifiers are assigned for each new block since it
is very similar to SA-ORAM construction.

Formally, to insert a string s, the user generates all the
associated suffixes Suf(s) ={suf1,···,sufm} and performs
for each i∈ [m]:

• Search for sufi using ST-ORAM algorithm
SubstringQuery, if the suffix already exists, do
nothing. Otherwise, if the accessed path pi has
some overlapping between the suffix sufi, output
pref =cont(pi,sufi) and diff(pref,pi). The path pi is
a string defined as the concatenation of data contained
in all blocks accessed from ORAM0 to ORAMm
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during the search of sufi. Recall that cont and diff
are respectively an operator that outputs the common
prefix and the inclusive difference between two strings

• Create a new block that has as a prefix pref and has
at least two children, one of them is a new substring
that will be stored in ORAMm. The pointers to
these two children are respectively: diff(pref,pi) and
diff(pref,sufi). The block will be stored in Levelj, i.e.,
ORAMj, such that in the (j+1)th level, the block has
at least one child either from previous nodes or the new
substring, this ensures the STE encoding algorithm.

Refer to Fig 10 for a high level explanation of AddString
protocol.

5 Analysis

5.1 Security analysis
In this section, we proof security only for ST-ORAM. For
SA-ORAM, the proof is similar.

Theorem 5.1. SA-ORAM is a secure OSS following
Definition 2.1, if every bucket is a secure ORAM.

(Sketch). ST-ORAM is composed of a logarithmic number
of ORAMs. Each operation consists of multiple accesses
through all the trees. Since, for any operation, all trees are
equally accessed, our problem boils down to study only the
ith tree access of the ST-ORAM structure. For each of the
two operations AddString and QuerySubstring, the ith tree
access consists of a number of ORAM operations such that
AddString consists of logγ number of ReadAndRemove
followed by an Add accesses. Consequently, the operations
of ST-ORAM for the ith tree are equivalent to ORAM op-
erations. Thus, if the buckets of the tree are secure ORAMs,
the access pattern induced by these operations are indistin-
guishable based on tree-based ORAM security. This is true
for all trees of ST-ORAM and concludes the proof.

5.2 Theoretical efficiency analysis
We asymptotically compare between our proposed schemes
SA-ORAM, ST-ORAM against the oblivious data structure
(ODS). For this, SA-ODS and ST-ODS respectively
represent the insertion of suffix arrays and suffix trees into
the ODS.

First, we should define the construction of a block in
SA-ODS and ST-ODS. The block in SA-ODS contains the

addresses of two children, a tag as well as the suffix informa-
tion that can be the entire string. The block in ST-ODS con-
tains up to γ children, a tag as well as the suffix information
that can equal the entire string. The block size of SA-ODS
Bsa equals (3 · logN +m · logγ) while the block size of
ST-ODS Bst equals ((γ+1)·log2N+m·logγ). Thus, the
exact communication complexity S equals S(SA-ODS)=
2z ·log2N ·Bsa, and S(ST-ODS)=2z ·m·log2N ·Bst. We
recapitulate in the following the respective communication
asymptotics for SA-ORAM and ST-ORAM.

Communication overhead SA-ORAM The search is
performed by two operations (download/upload) on the
entire structure for 1<j≤ l. For a string lengthm and an
alphabet size γ, the size of each block in SA-ORAM equals
τ ·(logm·logγ+logτj+1) for 1<j≤ l−1. For j= l, the
size of each block has to be in τ ·(logN+mlogγ). Thus,
the total communication complexity S is equal to

S(SA-ORAM) = 2(z·τ ·(logN+mlogγ)·logτ l−1+
l−1∑
j=2

z·τ ·logτj−1·(logm·logγ+logτj+1))

= 2z·τ ·(l−1)·logτ ·(logN+mlogγ+

(2logτ+logm·logγ)(l−2)

2
+

logτ ·(l−2)(2l−3)

6
)

Communication overhead for ST-ORAM For a
search/insert phase, the number of accessed nodes is exactly
the same. The communication complexity equals:

S(ST-ORAM) = 2

m∑
i=2

z·logγ ·log2n·(2log(m·n)+logγ ·logm)+

2z·log(m·n)·(log(m·n)+mlogγ)

= 2z·logγ ·log2n·m·(2log(m·n)+logγ ·logm)+

2z·log(m·n)·(log(m·n)+mlogγ).

In Table 1, we compare the communication complexities
of SA-ORAM, ST-ORAM, SA-ODS, and ST-ODS when
instantiated with different values of m the length of the
string and γ the size of the alphabet. We assume that
z ∈ O(1) which is a result of using Path ORAM in our
ORAMi instantiations in both SA-ORAM and ST-ORAM.
In addition, we consider in our asymptotics results that
m ∈ o(n) which means that the length of the strings
m is negligible against the number of strings n. If m,
γ∈Ω(logN), SA-ORAM asymptotically improves upon
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SA-ODS by a loglogn factor, and by a logn factor form,
γ∈Ω(log2n). For m,γ∈Ω(log2n), ST-ORAM improves
by a multiplicative factor of loglogn · logn over ST-ODS.
For constant values ofm and γ, asymptotically ST-ORAM
and ST-ODS are the most efficient with a smaller hidden
constant for ST-ORAM. Also, Table 1 demonstrates that
inserting naively a suffix tree in an ODS does not scale well
specially for larger values ofm and γ. Figures 11, 12 and
13 represent the exact communication in bits for the three
different scenarios. We have considered a bucket size z
equal to 5 for all the four techniques. The number of consid-
ered strings n goes from 10 to 1010 elements. We show that
SA-ORAM is the most efficient technique that can reduce
up to 32× compared SA-ODS and 2000× compared to
ST-ODS. Clearly, for static data set scenarios, SA-ORAM
outperforms the other schemes. For dynamic scenarios,
ST-ORAM can reduce up to 7× compared to SA-ODS and
10× compared to ST-ODS, for constantm and γ. To search
obliviously for a substring, the user has to download/upload
103 KBytes in total for 1010 stored string. Also, based on
Amazon S3 pricing [1], SA-ORAM compared to SA-ODS
is up to 2× cheaper for largerm,γ∈Ω(logn). For example,
1000 accesses cost 0.2 United States Dollar (UDS), while
0.4 USD in SA-ODS for 1010 elements, see Fig 14.

5.3 Experimental analysis
For proof of concept, we present our SA-ORAM implemen-
tation using Java. The source code is publicly available for
download in [12]. This implementation has been done in a
client-server setting in order to have realistic measurements
of the implementation. The server chosen for our setting is
a M3 Amazon EC2 instance running Ubuntu Server 14.04
LTS that has 15 GBytes of RAM and 2 x 40 SSD storage
[2], while the client is a 64 bit laptop with 8 cores 2.4 GHz
CPU and 8 GByte RAM running Ubuntu 14.04 LTS. To
send one ICMP packet to the server, we need 35 ms one
way communication as an average of 10 ping commands.
The wire bandwidth between the server and the client is
2 Mbits per second.

For our benchmarking, we have chosen the publicly
available data set, Google book English 1-gram [16], that
contains ∼ 10 GBytes of uncompressed strings with a
total of ∼5 millions strings. The longest string has 100
characters and the alphabet is ASCII, i.e., m = 100 and
γ = 128. The n-grams, for n > 1, are composed of the
1-gram and will not add any additional new string to the
corpus. Therefore, we made the choice to only benchmark
our implementation based on 1-grams to reduce the
parsing time. Google book 1-grams are based on unique

non-redundant strings that enable us to divide the data
set to smaller ones for our measurements while keeping
a linear division of the number of strings.

Our measurements has been elaborated following two
aspects: first, indexing phase that generates the distribution
of suffixes given a set of strings, second, a real-time
measurements based on the communication overhead
and time needed for a substring search. For the real-time
measurements, for each input we run 10 times and we take
the average of the runs.

We have divided the corpus to four datasets with size
respectively equal to 1, 2, 4 and 8 GBytes. From each, we
extracted the strings and generated all suffixes. We compare
the number of generated suffixes to the upper bound that
is nearly equal to the multiplication of number of strings
with the size of the longest string. For instance, the 8
GBytes dataset, the longest string had 100 characters long.
Fig 15 summarizes the results of suffix extraction. The
number of suffixes is∼2 to 3 time larger than the number
of generated suffixes. This stems from the fact that English
words are not randomly generated and follow a particular
distribution where many strings share common suffixes.

Afterwards, we generate the SA-ORAM OSS structure.
The size of this structure varies between 2.5 to 10 GBytes
for a number of suffixes of 2 to 11 millions. The size of
OSS structure has been measured after serialization and it
does not provide the optimal solution. The size of the OSS
in our case is very language dependent, i.e., the code is
based on Java object instantiation and there is an enormous
waste of memory which is allocated to objects rather than
the actual necessary data. Thus, the size of the OSS can
be drastically reduced if the coding is optimized and also
if low-level language is used such as C language.

For comparison purpose, we have implemented SA-ODS
in Java. The code of the implementation is also publicly
available in [12] in a client-server setting. The size of the
SA-ODS varies between 5 to 20 GBytes which is twice the
value of SA-ORAM and validates therewith our theoretical
results. Recall that SA-ODS should store twice the number
of leaves compared to SA-ORAM and therefore will create
another level in the binary tree of Path ORAM.

Besides, each bucket of the recursive binary trees
contains five blocks. The composition of the block is
as follows: one leaf tag, one leaf identifier, τ next level
identifiers, τ next level leaf tags, plus, the data load. For
our experiments, we have fixed τ to 2.

In Fig 16, we provide the average of the communication
overhead in KBytes for substring search and compare
SA-ORAM and SA-ODS. The standard deviation is based
on 10 runs and equals 8 KBytes. The packet’s size are
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Figure 11: Communication per access form,γ∈Ω(1)
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Figure 12: Communication per acces form,γ∈Ω(logn)
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Figure 13: Communication per acces form,γ∈Ω(log2n)
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Figure 14: Cost for 1000 accesses form,γ∈Ω(logn)

for a public network communication between our laptop
and Amazon instance. While in our theoretical results, the
communication saving of SA-ORAM over SA-ODS is
around 7 times, we have only two times saving in practice.
This is a result of the network packet construction, we have
all the setup communication, the packets headers, plus, the
packet’s load distribution. Moreover, we have measured in
Fig 17 the time of to search for a particular substring in two
settings. The first one is in a private network and the second
one is in a public one. The average time to perform a search
is equal to 640 and 2700 milliseconds for SA-ORAM while
700 to 2900 milliseconds for SA-ODS, with a standard
deviation respectively equal to 25 and 60 ms and a relative
standard deviation equal to 3.9 and 2.22 for the private and
public networks. The time greatly increases for the second
setting since the server is outsourced with a reachability
equal to 35 ms per packet. Unfortunately, the search in
SA-ORAM is an interactive one where the server and the
client has to communicate a number of rounds equal to the
number of recursive trees generated and this creates some
latency issues. For instance, for 11 millions suffixes, 24
recursive trees are created. Therefore, there are 24 rounds
of communication between the client and the server.
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Figure 15: Suffix extraction from the Google 1-gram
dataset

6 Related work

Searching over encrypted data can be done with different
techniques that offer different levels of security and effi-
ciency. In particular, we focus on techniques that can enable
substring search over encrypted data. In the following,
we categorize these techniques depending on two main
categories: (1) techniques that can enable very fast search
but disclose the access pattern, and (2) techniques that can
hide the access pattern but induce more overhead.

14



 200

 250

 300

 350

 400

 450

 500

2 3 4 5 6 7 8 9 10

C
o

m
m

u
n

ic
a

ti
o

n
 i
n

 (
K

B
y
te

s
)

Number of suffixes in (millions)

SA-ORAM
SA-ODS

Figure 16: Communication overhead in KBytes
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6.1 Searchable Encryption

Substring search can be achieved by any symmetric
searchable encryption (SSE) scheme. SSE has been
introduced by Song et al. [26] and has been improved
to achieve sublinear search [7, 9]. Many works target
several search functionalities, such as similarity, multiple
keyword, range, fuzzy search and the possibility to update
over encrypted data [3–6, 18, 21]. SSE can be adapted to
substring search by using straightforward solutions such
as generating all possible substrings. These substrings can
then be considered as the keywords and securely be stored
using a sublinear SSE. However, this solution induces a
lot of storage overhead since the user has to generate all
possible combinations of substrings of any string. For
example, for an alphabet with a size γ and a string length
m, the number of possible substring equals γm which is
clearly infeasible for real-life values such asm=γ=27.

Recently, Chase and Shen [8] introduced a secure
substring search based on suffix trees in O(λ·ς+occ) to
search for a substring ς occurring occ times, where λ is
the security parameter. Trivial solutions based on SSE are
more efficient, but the scheme [8] greatly enhances the
storage efficiency to be inO(N), whereN is the number

of possible suffixes of all strings.

6.2 Oblivious RAM

Oblivious RAM (ORAM) has been introduced by Goldreich
and Ostrovsky [15]. ORAM can enable a user to outsource
his data encrypted and later on query the server without
disclosing which data has been retrieved. The main ORAM
issue was its linear shuffling that has been solved recently by
introducing tree-based ORAM by Shi et al. [25]. Tree-based
ORAMs offer poly-logarithmic worst case that has been sub-
stantially improved by [10, 11, 27]. ORAM can be applied,
as SSE, to solve substring problem. Clearly, the trivial solu-
tion that generates all possible substrings is clearly not fea-
sible. Recently, Wang et al. [30] have adapted Path ORAM
[27] to store any tree or graph structure obliviously by in-
ducing a logN ·ν blow up compared to plaintext solutions,
where ν is the factor of block size increase. This oblivious
data structure (ODS) can be adapted to store suffix arrays,
suffix trees and therefore enable oblivious substring search.

There are many other techniques that can also be applied
to solve secure substring search, such as functional, pred-
icate or homomorphic encryption [13, 19, 20] or private
information retrieval [24]. However, these techniques will
be impractical in practice, and there are other ways to solve
the problem with better efficiency.

Our objective in this paper is to present the first efficient
technique that solves obliviously substring matching. For
this, we make use of tree-based ORAM as a building block
and we particularly adapt it to handle in a more efficient
way the substring search.

SA-ORAM and ST-ORAM in SSE: Using SA-ORAM
or ST-ORAM, we can provide a symmetric substring search
over encrypted data. To this end, we should store the map-
ping between the substrings and the strings and also eventu-
ally the mapping between the substrings and the correspond-
ing records. For instance, an investigation aims to search
for all URL logs that contain “facebook” and find out the
employees that have accessed these websites. Also, the in-
vestigators should make sure that the matching URL logs is
exactly for the banned websites. Thus, there will be a need
to retrieve the entire URL logs to avoid uncertainty. For ex-
ample, the employee has accessed “www.facebooking.com”
which is totally a different website, but his URL logs has
been retrieved during the substring search phase.

To use SA-ORAM in a SSE scenario, we can utilize
any secure inverted index for this purpose, such as [7, 9].
We can store strings and records identifiers in the secure
inverted indexes. Finally, the pointer of each secure index
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entry should has to be added in the last level of SA-ORAM
that will map each suffix to all records/strings that contain it.

However, we should emphasize that disclosing the map-
ping between the substrings and the strings may have severe
consequences. If an adversary has an entire knowledge
of the dictionary, it can easily construct a frequency table
that associates each substring to the actual keywords in the
dictionary. In our construction during the search, even if
we hide which substring is retrieved, the retrieved mapping
eventually discloses the number of association, i.e., the size
of the set {a1,···,a2} is enough to give valuable information
to the server. An eventual solution yet expensive to this
issue might be an ORAM structure that stores these indexes.
In this paper, providing security model for SA-ORAM over
SSE is out of our scope.

7 Conclusion
We have presented the first two techniques specifically for
oblivious substring search over encrypted data. Our oblivi-
ous suffix arrays construction SA-ORAM provides best for
static string set. Our second construction, ST-ORAM can
handle updates, but at the additional cost of a (small) mul-
tiplicative factor. Both of our constructions asymptotically
improve naive solutions by a logn factor. Quantitatively,
we have shown that SA-ORAM results in up to 32× less
communication overhead compared to suffix arrays over
oblivious data structure [30]. As future work, we aim to
investigate the extension of the obliviousness feature on
more search types such as range or fuzzy search.
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