
Provable Virus Detection:
Using the Uncertainty Principle to Protect Against Malware∗

[Extended Abstract]

Richard J. Lipton
Georgia Institute of

Technology
rjl@cc.gatech.edu

Rafail Ostrovsky
UCLA

rafail@cs.ucla.edu

Vassilis Zikas
∗

ETH Zurich
vzikas@inf.ethz.ch

ABSTRACT
Protecting software from malware injection is the holy grail
of modern computer security. Despite intensive efforts by
the scientific and engineering community, the number of suc-
cessful attacks continues to increase.

We have a breakthrough novel approach to provably de-
tect malware injection. The key idea is to use the very
insertion of the malware itself to allow for the systems to
detect it. This is, in our opinion, close in spirit to the fa-
mous Heisenberg Uncertainty Principle. The attackers, no
matter how clever, no matter when or how they insert their
malware, change the state of the system they are attacking.
This fundamental idea is a game changer. And our system
does not rely on heuristics; instead, our scheme enjoys the
unique property that it is proved secure in a formal and
precise mathematical sense and with minimal and realistic
CPU modification achieves strong provable security guaran-
tees. Thus, we anticipate our system and formal mathemat-
ical security treatment to open new directions in software
protection.

General Terms
Malware Detection, Provable Security, Attestation

1. INTRODUCTION
Protecting software from malware injection is a major goal

of computer security. In this work we suggest a novel prov-
ably secure and practically efficient paradigm for software
protection against arbitrary malicious code injection.

Our system has the following desirable properties: 1) it
requires minor to no changes to the CPU specification to
provably defend against all injection attacks that can not
read the code before they inject its software; 2) it only affects
the performance of the program by a modest amount (or not
at all, given slightly more powerful CPU computation). The
first property implies that it can already be used on today’s
computers. The second property means that our system is
practical, since performance is critical in most applications;
this is obvious even in its simplified form presented here,
where various optimizations have been avoided for the sake
of clarity in the presentation. Finally, we allow attacks both
spatial and temporal freedom: the attack can occur at any
time during the execution and on any part of the memory.
It can attack code as well as data.
∗A patent is pending (Application Nr. 62/054,160).
∗Research done in part while the author was at UCLA.

Our solutions are practically efficient and, importantly,
they are accompanied by rigorous mathematical proofs that
any injection will be caught with arbitrary high probability.
For our security proofs we provide a formal cryptographic
model tailored to detect malware injection in modern com-
puters; we envision this model as the basis for fruitful re-
search on provable secure detection and prevention of mal-
ware leading into the next generation of secure systems.

1.1 Overview of our Approach
So how can we detect an intrusion that we have never seen

before? How can we arrange that any injection of malware
into our program, no matter how clever, will be detected?
The answer is that we will hide a secret in our program
in a way that ensures that with very high probability, any
injection by an adversary must destroy the secret. Once
this secret is destroyed, the adversary may indeed be able
to take over the program, but will be quickly detected. We
note that current systems may fail to detect such an attack
forever—we are able to detect it in seconds.

A point: We can imagine situations where even such a
swift detection of an attack is not sufficient to stop all po-
tential harm. An attacker could, in some situations, do im-
mense damage even if he is in control of a program for only
a fraction of a second. Furthermore, our approach is not
targeted towards fixing buggy software. And we do not nec-
essarily detect malware-including software which might be
(unknowingly) installed by the user. Rather, our detection
offer protection against ”unauthorized”injection of malicious
code, e.g., through buffer overflows. But the ability to detect
any attack, new, old, clever, or not, is an immense improve-
ment over the current state-of-the-art.

So how can we do this? Let W be a program that we

wish to protect from malware. We recompile W to W̃ . The

idea is that W and W̃ must compute the same thing, run

in about the same time, and yet W̃ must be able to detect
itself against the insertion of malware. An obvious idea is

to have W̃ periodically check to see if its code or data have
been maliciously changed. The trouble with this approach is
that the attacker could easily inject his own code, take over
the checker, and thereby disable the checking. In short: who
checks the checker?

Here is how we proceed. The protected program W̃ oper-
ates normally most of the time. Periodically it is challenged
by another machine to prove that it has a secret key K.

This key is known only to W̃ and not to the attacker. If W̃
has not been attacked, then it simply uses the key K to an-

1

swer the challenge and thus proves that it is still operating
properly.

The issue is what happens if W̃ has been attacked and

some code has been injected into it. We can arrange W̃
so that no matter how the injection of code has happened
the key K is lost. The attacker’s very injection will have

changed the state of W̃ so that it is now in a state that no
longer knows the key K. This is the analog of the Heisenberg
Uncertainty Principle: the attacker has damaged the state

of W̃ so that the key has been destroyed.
Making the attack destroy the key is the central idea here.

If W̃ simply stores K somewhere in memory, the attacker
will take over the program, look around for the key, and
likely find the key; thereby defeating the protection, since

now it can answer the periodic challenges just like W̃ could.
This would be a disaster.

To resolve the above issue we distribute the key K all
through memory by using what is called secret sharing [41].
This is a standard method in cryptography that breaks a
small key, like K, into many small pieces, called shares.

These pieces are cleverly placed throughout all of W̃ ’s mem-
ory. Our secret sharing allows K to be reconstructed only
if all the pieces are left untouched—if any are changed in
any way, then it is impossible to reconstruct the key. Obvi-
ously, if there has been no attack, then in normal operation

W̃ can reconstruct the key from the pieces and answer the

challenges. However, if the pieces are not all intact, then W̃
will be unable to answer the next challenge.

This is the high level idea of our method: hide the key via
secret sharing, and rely on the attacker to destroy at least
one share of the key. This destruction is irreversible and
makes the attack fail the next challenge.

There is one additional point that we must mention. We

must arrange that W̃ can be attacked at anytime, includ-
ing when it has collected all the shares and reconstructed

the key K. This is a very dangerous time, since if W̃ is
attacked at this moment the fact that shares are destroyed
does not matter. The attacker can simply use the recon-
structed key K. We avoid such time-of-check-time-of-use
(TOCTOU) attacks [36] by actually using two keys K1 and
K2 in tandem. Both are stored via secret sharing as before,
but now one must have both in order to answer the chal-
lenges. We arrange that W̃ only reconstructs one key at a
time and this means that an attacker must destroy either or
bot of the keys. This handles the above dangerous situation
and makes our method provably secure.

Tying up the last loose end, we treat the case of very
small viruses—i.e., ones that consist of a single bit or just a
few bits—and viruses that know (or guess) the exact mem-
ory locations of key-shares in advance and therefore might
not need to overwrite them. We armor our system to de-
fend even against such tiny/informed viruses by employing
an additional lightweight cryptographic primitive, namely a
message authentication code (in short, MAC). A MAC au-
thenticates a value using a random key, so that an attacker
without access to the key cannot change the value without
being detected.

We use the MACs in a straightforward and efficient man-
ner: we authenticate each word in W using the key-shares
(also) as MAC keys, and require that for any word that is
loaded from the random access memory, the CPU verifies
the corresponding MAC before further processing the word.

Thus, if the MAC does not check out we detect it (and im-
mediately destroy the share), and if the adversary changes
the MAC key, he loses one of the shares of one of the two
secrets, and we detect that as well.

We enforce the above checks by assuming a modified CPU
architecture (with only very small amount of additional com-
putation, so the CPU power consumption is not affected.)
More specifically, to get the most out of the MAC function-
ality we need that when the CPU executes the program, it
verifies authenticity of the words it loads from the memory.
That is, the load operation of the CPU loads a block of sev-
eral (four or five) words—this is already the case in most
modern CPUs—including the program word, the MAC-tag
and the corresponding keys, and check with every load in-
struction that the MAC verifies before further processing
the word. Importantly, our MAC uses just one field addition
and one field multiplication per authentication/verification;
the circuits required to perform these operation are actually
trivial compared to the modern CPU complexity and are
part of many existing CPU specifications.

But to obtain security against any injection, we need one
more trick: instead of using the actual key-shares in the
generation/verification of the MAC tag, we use their hash-
values. This ensures that the virus cannot manipulate the
keys and forge a consistent MAC unless he overwrites a large
part of them. We anticipate that given our proposed sys-
tem’s impact on security, such functionality will be included
in the next generations of CPUs [35].

1.2 Related Literature
The literature on modelling, generalizing, and provid-

ing defense mechanisms against malware-injection attacks
is vast. Due to its urgency and importance, the problem
has been intensively researched. In what follows we pro-
vide a brief overview of the basic research directions that
have been explored and refer to the full version for a more
detailed exposition and a complete list of references.

Common Security Countermeasures. The traditional
and most applicable countermeasures to prevent malware
attacks are antivirus technologies along with approaches di-
rected at blocking the path an attacker uses to inject its
malware, e.g., buffer-overflows [3, 9]. Other defenses moni-
tor the system calls that the program makes—e.g., its inter-
faces to the operating system—to detect abnormal behav-
ior [20, 19, 18]. Although the above countermeasures are
often successful in patching known vulnerabilities, they are
typically ad-hoc and/or targeted to a single or a small class
of attacks, thus leaving a large part of the system exposed
to unforeseen or zero-day attacks.

At a more theoretical level, the software diversification
approach uses randomization to ensure that each system ex-
ecutes a unique (or even several unique) copies of the soft-
ware, so that an attack which succeeds against some system
will most likely fail against other systems (or even when
launched twice against the same system), e.g., [8, 22, 24, 42,
10, 27]. This idea is inspired by biological systems, where
diversification is a prominent venue for resiliency. For exam-
ple address obfuscation randomizes the locations of program
data and instructions so that the attacker is most likely to
follow an invalid computation path and thus provoke a crash
or fault [24, 4].

It should be noted that the above approaches are typically
heuristics, and there is no formal proof that they are ei-

2

ther efficient or effective; rather their performance and accu-
racy are typically experimentally validated. (Many of these
experiments indicate a potentially undesirable trade-off be-
tween security and accuracy of the respective method.)

Attestation. Closer related to our goals is the literature
on verifying the authenticity/integrity of the internal state
of computing devices to confirm that they have not been
attacked by malware, a mechanism usually referred to as at-
testation. A rough taxonomy divides this literature in three
general categories, namely hardware-based attestation [2, 7,
15, 33], software-based attestation [31, 39, 38, 1, 28, 29],
and remote attestation [7, 15, 33, 21]. Due to the similar-
ity in the goals of attestation with our system, we present
a detailed overview of the corresponding literature in the
full version of this work. As a general note, we stress that
similarly to the aforementioned defense mechanism, attesta-
tion schemes do not come with a formal proof of security or
even a theoretical security model. In contrast, our scheme
is not only backed by a formal mathematical proof, but has
several additional advantages with respect to existing attes-
tation schemes, which are highlighted in Section 1.4.

Cryptographic Solutions. On the most theoretical side
of cybersecurity, cryptography provides solutions whose se-
curity is backed by rigorous mathematical proof that typ-
ically reduce hardness of breaking the scheme to hardness
of solving a mathematical problem, e.g., factoring. Unfor-
tunately, with only a few exceptions, e.g., the recent work
by Dachman-Soled et al. [11] and by Faust et al. [17] which
build on special non-malleable codes [14], the so-called proofs
of retrievability [30] which are aimed in verifying integrity of
stored static data, and the recent works on program obfus-
cation, e.g., [23, 37], the cryptographic literature has mostly
overlooked the problem of malicious code injection. More-
over, in contrast to the security-engineering research, cryp-
tographic solutions are often inefficient and/or adopt a too-
abstract model of computation which makes them inappli-
cable or impractical for today’s systems.

1.3 Our Approach in More Detail
We put forward and formally define the notion of a virus

detection scheme (in short, VDS) which compiles any given

program W (and its data) into a new secured program W̃
that performs the same computation as W but allows us
to detect any virus injected in the memory at any point of
the execution path. The detection is done via a provably
secure challenge-response mechanism between the machine
executing the (compiled) software and a verifying external
device. Importantly, we insist that the verification algorithm
be very simple, and in particular that it be executed by
a very lightweight device (Our constructions require that
the verifier only does encryption and compare strings for
equality.) Thus the role of the verifier can be, for example,
played by the user with a smartphone, or by a compact and
simple, intrusion-free hardware module that could even be
part of the CPU.1 Moreover, the verification uses public key
techniques, where the verifier knows the public key. This
restricts the attack surface to the machine executing the
secured code, as compromising the verifiers privacy gives an
attacker no advantage in breaking our scheme.

1Unlike software-based attestation techniques, the verifica-
tion in our scheme can be done even over an insecure net-
work, e.g. the Internet.

We provide our formal cryptographic definitions of VDS
security based on the well-studied Random Access Machine
(RAM) model, slightly adapted to be closer to an abstract
version of a modern computer following the von Neumann
architecture. The suggested model corresponds to a simplis-
tic closed-system abstraction of software execution, where
the execution of code is done by the software’s code and data
loaded (initially) in the random access memory (RMEM)
which through the execution only communication with the
CPU.2 We provide a formal and generic definition of mal-
ware injection in this model, which is motivated by how
modern computer systems might become infected by a virus.

In more detail, a secure VDS is described as follows. The
software to be executed is compiled, prior to being loaded
onto the memory, to a secure version. Importantly, this
compilation does not need the source code but merely the
binary (machine-language) code of the program (provided
that it is non-self-modifying); thus, the compilation can be
performed by the program vendor (this might allow for fur-
ther efficiency optimizations) or by the user without requir-
ing any reverse engineering. The compiler, in addition to
the (binary code) of the program and its data, uses a ran-
domly chosen compilation key K. To check/verify that the
software running on a system has not been attacked by a
virus (or to detect such an attack in case it has occurred),
the following detection process is executed. The user issues
a challenge c that depends on the compilation key K and
the system is required to produce a reply which passes a
specified verification test. As already discussed, we arrange
things in such a way that the verifier does not need to know
the compilation key, and he can just know some public in-
formation on it. Formally, this is done by the use of public
key cryptography, where the compilation key is the secret
key, and the information held by the verifier, which we refer
to as the verification key, is the corresponding public key.
The security of the VDS requires that if the RAM has not
been attacked then it can always reply to the challenge in an
accepting manner (verification correctness); otherwise, any
reply will be rejected with high probability (security).

We provide concrete instantiations of practical VDSs
which, depending on the assumptions about the CPU they
are executed on, can achieve from a reasonably strong secu-
rity (namely protection against moderate-sized virus) to the
ultimate security guarantee (namely security against viruses
that are arbitrary small and are injected on locations that
depend on the location of the key shares). Informally, we
prove the following result for our VDSs.

Theorem (informal) Under standard complexity assump-
tions our VDSs compile any non-self-modifying software W
into a secure version that detects any malware injection with
very high probability.

Our schemes are independent of the virus code, are
platform-independent, and might require only small mod-
ifications to the common CPU architecture (in particular,
they do not assume tamper-resilient hardware); and, with
appropriate optimizations we can make it that they only
affect the performance of the executed software by a practi-
cally unnoticeable amount. However, as this is the first work

2In particular, the current theoretical model does not ad-
dress how the data is exchanged with secondary storage de-
vices, e.g., flash memory. It is part of ongoing research to
extend this model to more complicated architectures.

3

introducing VDSs, various performance optimizations have
been sacrificed for the sake of presentation clarity. As a use-
ful side effect, our scheme is even able to detect hardware er-
rors, e.g., random bit-flips in the memory; as demonstrated
in [6], such errors might have important consequences on the
security of the executed software.

For the construction of our VDSs we devise a general
methodology. We start by constructing a scheme satisfying
a weaker notion of security which ensures that the adver-
sary is caught if the response is computed by an external
(trusted) device that is given access to the state of the at-
tacked system. We give a formal definition of this weaker
notion which depending on the application and the desired
security level might already be satisfactory. We then proceed
and gradually modify our weaker scheme to ensure the com-
piled program executes the detection by itself. The security
of our weakest scheme is information theoretic (it is based on
the perfect privacy of one-time pad encryption), whereas the
proof of the more secure scheme requires a leakage-resilient
encryption algorithm [13] and a secure hash function.

Our last, ultimately secure VDS uses the following simple
MAC algorithm. To authenticate a word w we use two keys
K1 and K2, and compute a MAC tag as t = w · K1 + K2,
where w, K1, and K2 are interpreted as elements of an ap-
propriate large arithmetic field. Observe that such arith-
metic operations are implemented in hardware in existing
CPUs. We assume, however, that the executing CPU has a
slightly extended instruction set which, informally, has each
“load” instruction, i.e., read-from-memory instruction, check
that the MAC is correct before it loads the word on the CPU
registers. We stress that this only needs the architecture to
provide us with a very simple extra piece of microcode, but
by engineering the CPU’s hardware in a smart way so that
these operations are done on the circuit level, we expect to
be able to reduce the effect of our compiler to a barely no-
ticeable slowdown. Fortunately, the new architecture that
Intel recently announced promises to embed such microcode
in its next-generation microchips [35].

1.4 Comparison to Existing Approaches
In Section 1.2 above we discussed main directions in exist-

ing malware detection and protection literature. Here, we
highlight the advantages of our scheme. As already men-
tioned, a major advantage with respect to existing works is
that our scheme comes with a mathematical security proof,
i.e., its security does not rely on simulations. In what fol-
lows we discuss some of our scheme’s basic advantages with
respect to existing methods:

State-independent verification. The verifier does not
need to know the state in which the executed software is at
the point of verification; in fact the state of the verifier is in-
dependent of the software’s computation. Thus our scheme
can protect both static program and its data and has the po-
tential to be extended to classes of dynamic (self-modifying)
programs.

Mitigating denial of service. Existing attestation tech-
niques, whether remote or software-based, require the host
to pause computation, as the state of the machine should
not change during the execution. (If the state changes the
checksum will fail.) This allows for trivial denial-of-service
attacks. Instead, our verification does not require the host
to pause its execution of the software, nor does it require
disallowing interrupts thus mitigating denial of service.

No need for timing or reliable communication.
Software-based attestation schemes typically require accu-
rate timing and a reliable connection to the receiver. (The
latter requirement is necessary even in remote attestation
schemes.) In contrast, our scheme allows for remote veri-
fication/attestation without the need for any of the above
properties. Indeed, even when taking full control over the
verification link, an attacker can respond correctly only if
the host has not been compromised.

No secrets held by the verifier. By using public key
cryptography, we restrict the attack surface to be only the
host. In particular, even if the entire environment of the
system which is verified is under the control of the adversary,
it will be provably infeasible to come up with a valid reply to
a challenge, as the only entity that can recover the private
key is the host itself. This is particularly useful in settings
where the system is a service provider, e.g., a cloud server,
and might be verified over the Internet by different users. In
contrast, in existing remote or software attestation schemes,
knowledge of the long-term or short-term key can trivially
compromise the schemes security.

A Single Realistic Assumption. Our scheme is secure
under the assumption that the attacker does not get to see
information on the key-shares without injecting its code first.
This is for example the case with many injection venues, e.g.,
buffer-overflows. Note that this assumption suffices to re-
move all past assumptions in remote or software attestation,
i.e., minimality and non-parallelizability of code, complete
knowledge of the hardware, etc [21].

1.5 Outline
The remainder of the paper is organized as follows: In

Section 2 we introduce some useful notation and terminol-
ogy; subsequently, in Section 3 we describe the model of
execution and malware injection which is used to introduce
Virus Detection Schemes (VDS) and describe their security
definition in Section 4. In Sections 5 and 6 we describe
our secure VDS instantiations: We start (in Section 5) with
a scheme that is secure against moderately-sized (at least
three words long) viruses injected in continuous memory lo-
cation and poses no architectural restrictions on the system
it is executed on (thus it can be applied on modern as well as
legacy systems); our system is strengthened in Section 5 to
tolerate injection of arbitrary small viruses and remove the
continuous injection assumption, under minimal and realis-
tic modifications on the systems CPU. This manuscript is an
extended abstract of our work; detailed definitions and for-
mal proofs of our statements can be found in the full version
of this work available from the authors.

2. PRELIMINARIES AND NOTATION
Throughout the paper we assume an (often implicit) se-

curity parameter denoted as k. For a finite set S we denote

by s
$← S the operation of choosing s from S uniformly

at random. For a randomized algorithm B we denote by
B(x; r) the output of B on input x and random coins r. To
avoid always explicitly writing the coins r, we shall denote

by y
$← B(x) the operation of running B on input x (and uni-

formly random coins) and storing the output on variable y.
We use the standard definition of negligible and overwhelm-
ing (e.g., see [25]). For a number n ∈ N, we denote by [n]

4

the set [n] = {1, . . . , n} and by 0n (resp. 1n) the all-zero
(resp. all-ones) string of length n. Finally, for strings x and
y we denote their concatenation by x||y. In slight abuse of
notation, we at times use the vector notation for denoting
concatenation, i.e., write (x, y) instead of x||y.

Secret Sharing. A perfect m-out-of-m secret sharing
scheme allows a dealer to split a secret s into m pieces
s1, . . . , sm, called the shares so that someone who holds all
m shares can recover the secret (correctness), but any m−1
shares give no information on the secret (privacy). In this
work we use m-out-of-m sharings of strings s ∈ S = {0, 1}n,
where n ∈ N. A simple construction of such a scheme has
the dealer choose all si’s uniformly at random with the re-
striction that s =

⊕m
i=1 si. We refer to the above sharing as

the XOR-sharing and denote it as 〈s〉 = (s1, . . . , sm).

3. THE MODEL
In this section we provide an abstract specification of our

model of computation and a model for malware injection.
We use as basis the well known Random Access Machine
(RAM) model but slightly adapt it to be closer to an ab-
stract version of a modern computer following the von Neu-
mann architecture. In a nutshell, this modification consist of
assuming that both the program and the data are written on
the RAM’s random access memory3 which is polynomially
bounded. Along the way we also specify some terminology
which draws parallels between our theoretical model and
modern computers’ specification.

A RAM R consist of two components: A Random Ac-
cess Memory (in short RMEM)4 and a Central Processing
Unit (in short CPU). The memory RMEM is modeled as
an array of m = poly(k) registers each of which can store
an L-bit string—word—where we assume that L is linear in
the security parameter. The CPU has a much smaller set of
registers—in this work we assume that the total amount of
storage of the CPU is linear in the security parameter k—an
instruction set I that defines which operations can be per-
formed on the registers, and how data are loaded-to/output-
from the CPU. The CPU registers include a read-only input-
register and output register which correspond to its interface
with its environment (the user), and a program counter pc

which stores the location in the memory that the will be read
in the next CPU cycle. Each register is assigned a unique
address and can store an L-bit word.

The RMEM and the CPU communicate in fetch and ex-
ecute cycles, aka CPU cycles, where the number of CPU
cycles is the default complexity measure of a RAM.5 We at
times refer to a CPU cycle as a round in the RAM execution.
In each round, the CPU accesses the RMEM to read (load)
a word to some of its registers, performs some basic opera-
tion from I on its local registers, e.g., adding two registers
and storing their output on a third register, and (poten-
tially) writes some word (the contents of some register) to
a location in the memory RMEM. The location in RMEM

3In the literature, a RAM with this modification is usually
called a Random Access Stored-Program machine [16].
4We use RMEM instead of the more standard “RAM” to re-
fer to random access memory as here RAM refers to Random
Access Machine.
5In reality, this communication is done through the CPU
bus; however for our treatment we do not need to formally
specify how this communication is implemented.

from where the next word will be read is stored in a spe-
cial integer-valued register denoted as pc (usually called the
program counter) which unless the CPU processes a “jump”
instruction (see below) is incremented by one in each cycle.
Although modern CPUs are able to execute several instruc-
tions per round, here we assume for simplicity that only one
instruction is executed in each round. In the following we
provide some details on the above components.

We represent the memory RMEM as an array MEM of m =
|MEM| words, where for i ∈ {0, 1, . . . ,m} we denote by MEM[i]
the ith word, i.e., the contents of the i-th register. Similarly,
the CPU registers are modeled as an array REG of words,
where we denote by REG[i] the content of the ith register.

We denote a CPU by the pair C = (REG, I) of the vec-
tor REG of registers and the instruction set I. As syntactic
sugar, we denote a RAM with CPU C and RMEM MEM as
R = (C, MEM). The state of a R at any point in the proto-
col execution is the vector (REG, MEM) including the current
contents of all its CPU and RMEM registers.

To allow for asymptotic security definitions—where the
word size, the size of the CPU (i.e., number of its reg-
isters), and the size of the memory depend on the se-
curity parameter—we often consider a family of RAM’s,
R = {Rk}k∈N with Rk = (Ck = (REGk, Ik), {MEMk}). (The
size of words processed by Rk is k). The RAM families
considered in this work have the following property: The
instruction set Ik is the same for all value of the security
parameter k. In particular, we assume that all elements of
a RAM family, have the same constant number c = O(1) of
CPU registers, and there is some set of instructions I that
is defined over strings of arbitrary size such that Ik is the
same as I applied on k-long words.

Software Execution and Virus Injection. A program to
be executed on a RAM R = (C, MEM) is described as a vector
W = (w0, . . . , wn−1) ∈ ({0, 1}L)n of words that might be in-
structions, addresses, or program data. To avoid confusion,
we refer to such a vector including the (binary of a) software
and its corresponding data as a binary or a programming for
R. By convention, whenever, for a RAM family R we say
that W is programming for R, we mean that W is a pro-
gramming for the element Rk ∈ R with register size as long
as the word size of W and instruction seat that includes all
the instructions used by W .

The execution of a program proceeds as follows: The pro-
gramming W is loaded onto the memory MEM. Unless stated
otherwise, we assume that W is loaded sequentially on the
first n = |W | locations of MEM and locations j of MEM with
j ≥ |W | are filled with (no op) instructions. The user might
give input(s) to R by writing them on its input register in a
sequential (aka write once) manner, i.e., a new input is writ-
ten (appended) next to the last previous input. Once the
binary is loaded (and, potentially, input has been written on
the input register) the RAM starts its execution by fetching
the word of the RMEM which the program counter points
to, i.e., MEM[pc]. Unless stated otherwise, at the beginning
of the computation pc is initiated to 0 (i.e., points to the
first memory location). The RAM executes the program in
CPU cycles as sketched above. We assume that the RAM is
reactive, i.e., any new input written (appended) on its input
register, makes the RAM resume its computation (even if it
had halted with output).

A CPU is complete (also referred to as universal) if given
sufficient (but polynomial) random access memory it can

5

perform any efficient deterministic computation. We at
times refer to a RAM (family) with a complete CPU as a
complete RAM (family). An example of a complete CPU
is one which has three registers (each of size k) and can, in
addition to communicating with its RMEM, compute arith-
metic operations on the contents of any two of these registers
(treated as representations of elements from an appropriate
finite field) and store it on the third. However, modern
CPUs have many more registers and might perform several
complicated instructions in a single round.

Modeling Virus Attacks. A virus attacks a RAM by in-
jecting its code on selected locations of the memory RMEM.
For simplicity, we discuss here viruses that inject sequences
of full words but our definitions are easily extended to ap-
ply also to viruses whose length (in bit) is not a mul-
tiple of the word length L. (In fact, in Section 6 we
show how to protect against such viruses.) More formally,
an `-word virus is modelled as a tuple v = (~α,W) =
((α0, . . . , α`−1), (w0, . . . , w`−1)), where each αi ∈ ~α is a lo-
cation (address) in the memory and each wi ∈W is a word.
The effect of injecting a virus v into a RAM R = (C, MEM), is
to have, for each αi ∈ ~α , the register MEM[αi] (over)written
with wi. We say that the v is valid for R if the following
properties hold: (1) αi 6= αj for every αi, αj ∈ ~α, and (2)
αi ∈ {0, . . . , |MEM| − 1} for every αi ∈ ~α. Furthermore, we
say that v is non-empty if |~α| > 0.

We make no external security assumption, e.g., existence
of secure hardware, about the CPU; thus, for example, an
“intelligent” virus is allowed to take full control of the CPU,
i.e., read and (over)write all its registers, while it is being
executed. But we do not allow the virus to inject itself on the
CPU registers. This is justified by the fact that during the
software execution, the CPU communicates only with the
RAM and the input/output devices. Finally, we point out
that some of our theorems assume a continuous injection
model, i.e., that the virus is injected as a single chunk in
continuous memory locations.

4. VIRUS DETECTION SCHEMES
In this section we define virus detection schemes and pro-

vide the relevant security definitions.

Definition 1. A virus detection scheme (VDS) V con-
sists of five (potentially) randomized algorithms, i.e., V =
(Gen, Comp, Chal, Resp, Ver), defined as follows:6

Gen is a key-generation algorithm; it computes a pair (comp-

ilation-key, verification-key), i.e., (Kc,Kv)
$← Gen.7

Comp on input the description R = {(Ck, MEMk)}k∈N of a
RAM family,8 a programming W for Rk, and a com-

pilation key Kc, Comp outputs a secure programming W̃

for Rk; i.e., W̃
$← Comp(Rk,W,Kc).

Chal on input a verification key Kv, and a string z ∈
InpChal ⊆ {0, 1}poly(k), Chal outputs a challenge string

6All five algorithms below take as an additional input the
security parameter k, which is omitted for compactness.
7Note that if we instantiate the VDS with symmetric-key
cryptography then Kc = Kv.
8This description of the family includes the word-size, the
size and addresses of the CPU and RMEM registers and (an
encoding) of the instruction set I.

c ∈ OutChal, where OutChal ⊆ {0, 1}poly(k) denotes the

output domain of algorithm Chal; i.e., c
$← Chal(z,Kv).

Resp on input a string c ∈ OutChal and a polynomial pro-

gramming W̃ , Resp outputs a string y ∈ OutResp, where

OutResp ⊆ {0, 1}poly(k) denotes the output domain of al-

gorithms Resp; i.e., y
$← Resp(c, W̃).

Ver on input a verification key Kv, a message z ∈ InpChal,
a challenge c ∈ OutChal and a response y ∈ OutResp, Ver
outputs a bit b ∈ {0, 1}; i.e., b

$← Ver(Kv, z, c, y). We say
that Ver accepts if b = 1.

In the following we sketch the security properties which
a VDS should satisfy. Due to space limitation, we restrict
ourselves to high-level descriptions and refer to the full ver-
sion of this paper for a detailed description of the random
experiments underlying these definitions.

The first property is verification correctness which, intu-
itively, guarantees that if the RAM has not been attacked,
then the reply to the challenge is accepting (except with
negligible probability).

The second property is compilation correctness, which

intuitively ensures that the compiled programming W̃
performs the same computation (on R) as the original
programming W . This means that on the same input(s)
from the user the following properties hold: (1)R execut-

ing W̃ produces the same output sequence asR executing
W , and (2) there exists an efficient transformation which

maps executions of R programmed with W̃ onto execu-
tions of R programmed with W , such that the contents
of the memory MEM at any point of the the execution of

R with programming W̃ are efficiently mapped to con-
tents of MEM at a corresponding point in the execution of
R with programming W .9

In an application of a VDS, the verifier inputs the chal-
lenge at a point of his choice and checks that the reply
verifies according to the predicate Ver. Thus the last
property we require from a VDS is self-responsiveness:

the secured programming W̃ includes code that on some
special input emulates algorithm Resp on the RAM it
executes. More concretely, the requirement here is that
upon receiving a special input message x′ = (check, c)
the next output of the RAM equals the output of Resp
on input c with overwhelming probability.

Virus Vulnerability as a Security Game. The afore-
mentioned properties, specify the behavior of software pro-
tected by a VDS when it is not attacked by malware. We
next define invulnerability of a VDS to malware-injection
attack via a security game between an adversary Adv who
aims to inject a virus on a RAM, and a challenger Ch who
aims to detect it. Informally, the security definition requires
that Adv cannot inject a virus without being detected, except
with sufficiently low probability.

At a high-level, the security game, denoted by GR,V,W
VDS ,

proceeds as follows: The challenger Ch runs the key-
generation algorithm to obtain a key-pair (Kc,Kv), and

9This latter property will be useful in a real-world deploy-
ment, where the computation also modifies program data
which might then be returned to the hard drive to be used
by another application.

6

compiles a programming W for RAMR into a new program-

ming W̃ for R by invocation of algorithm Comp; Ch then em-

ulates an execution of W̃ on R, i.e., emulates its CPU cycles
and stores its entire state at any given point. The adversary
is allowed to inject a virus of his choice on any location in the
memory MEM. Eventually, the challenger executes the (virus)
detection procedure: It computes a challenge c by invocation
of algorithm Chal(z,Kv), and then feeds input (check, c) to
the emulated RAM and lets it compute the response y.

To capture worst case attack scenarios, we allow the ad-
versary to inject his virus at any point during the RAM
emulation and make no assumption as to how many rounds
the RAM executes after the virus has been injected and be-
fore it receives the challenge. More concretely, we allow the
adversary to specify the number ρpre of rounds to be exe-
cuted before the detection process kicks in, the index ρatt of
the round in which Adv wants the virus to be injected on the
memory, and the number of rounds ρvd of the virus detec-
tion that the RAM will execute. Furthermore, we make no
assumptions on how much information the adversary holds
on the original programming W or on the inputs of R, by
assuming that Adv knows W and can decide/see the entire
sequence of inputs.

The formal description of the security game GR,V,W
VDS is

given in Figure 1. For simplicity we describe the game for
the case where the adversary injects a virus only once, but
our treatment can be extended to repeated injections.

Both the adversary Adv and the challenger Ch know the
RAM R = (C, MEM), the programming W , and the speci-
fication of a VDS V = (Gen, Comp, Chal, Resp, Ver).

1. The adversary Adv chooses (a sequence of) inputs x =
x1|| . . . ||xi for R, along with three numbers ρpre =
poly(k), ρatt = poly(k), and ρvd = poly(k); additionally,
Adv chooses a virus v Adv hands (x, ρpre, ρatt, ρvd,v) to
the challenger Ch.

2. Ch chooses (Kc,Kv)
$← Gen(1k) and computes W̃

$←
Comp(R,W,Kc).

3. Ch internally emulates ρpre rounds of an execution of R
on input x and programming W̃ (if R halts, Ch proceeds
to Step 4) where it stores in a counter ρ (initially set
to ρ := 1) the current round index (i.e., at the end of
each round, ρ is increased by 1). During this emulation,
if ρ reaches ρatt then at the beginning of round ρatt Ch
emulates an injection of v onto the memory MEM.

4. As soon as Step 3 completes (i.e., ρpre rounds have been
executed or R halts), Ch executes the following virus
detection procedure:

i. Ch chooses z
$← Inpchal and computes c

$←
Chal(z,Kv).

ii. Ch writes (check, c) on R’s input register, and exe-
cutes ρvd additional rounds of R (if R halts then go
to Step 3). As in Step 3, if during this execution the
round counter ρ reaches ρatt then at the beginning
of round ρatt Ch emulates an injection of v onto the
memory MEM.

3. Denote by y the (concatenation of) the strings which R
writes on its output register during Step 2. Ch computes

b
$← Ver(Kv , z, c, y).

Figure 1: The Virus Attack Game GR,V,W
VDS

The security definition for a VDS is provided in the fol-
lowing. In the definition we use the following terminology:
we say that a programming W is (R,V)-consistent for Rk

if the compiled version W̃ of W fits in the random access
memory MEMk of Rk (a formal specification can be found in
the full version).

Definition 2. We say that a virus detection scheme V =
(Gen, Comp, Chal, Resp, Ver) is secure for RAM family R if it
satisfies the following properties:
1. V is verification correct, compilation correct, and self-

responsive.

2. For sufficiently large k for any (R,V)-consistent program-
ming W for Rk and any polynomial adversary Adv in the
game GRk,V,W

VDS who injects a valid non-empty virus:

Pr[b = 1] ≤ µ(k),

where µ is some negligible function, and the probability
is taken over the random coins of Adv and Ch.

In our constructions we restrict our statements to certain
class of programming that satisfy some desirable properties
making the compilation easier, and/or to certain classes of
adversaries (e.g., adversaries injecting their virus to consec-
utive memory locations). We will then say that the corre-
sponding VDS is secure with respect to the given class of
programmings and/or adversaries.

The Repeated Detection Game. Definition 2 requires
that the adversary is caught even when he injects its virus
while the RAM is executing the Resp algorithm. A re-
laxed security game, which also provides a useful guaran-
tee for practical purposes has the virus detection (chal-
lenge/response) procedure executed multiple times periodi-
cally (on the same compiled programming); the requirement
is that if the adversary injects its virus to the RAM at round
ρ, then he will be caught by the first invocation of the virus
detection procedure which starts after round ρ. Note that
all executions use the same compiled RAM program and
therefore the same key K. The formal security definition is
similar to Definition 2 but requires that any virus that is in-
jected in the RAM will be caught in the first virus detection
attempt performed after the injection.

5. A VDS FOR MODERATE VIRUSES
In this section we provide a VDS which is secure in the

continuous-injection model assuming the virus has a con-
stant number of words. This covers a wide class in reality,
as viruses are usually several words long. Nonetheless, in
Section 6 we show how to get rid of the length and the con-
tinuous injection restrictions.

Our construction proceeds in three steps. First step we
construct a VDS V1 which achieves a weaker notion of se-
curity that, roughly, does not have self-responsiveness. In a
second step, we show how to transform V1 into a VDS V2
which is secure (and self-responsive) in the repeated detec-
tion game. Finally, in a third step we show how to transform
V2 into a VDS V3 which is secure in the standard detection
game. We point out that the VDSs V1 and V2 are not just
steps towards building V3, but can be useful in applications
where their corresponding (weaker) security is satisfactory.

A VDS without self-responsiveness We start by de-
scribing a VDS V1 = (Gen1, Comp1, Chal1, Resp1, Ver1) which
achieves security without self-responsiveness. More con-
cretely, the corresponding attack-game GR,V,W

VDS−
is derived

from the standard attack-game GR,V,W
VDS by modifying the

7

detection procedure so that in Step 2 of the game GR,V,W
VDS

(Figure 1), instead of emulatingR on the compiled program-

ming W̃ and input (check, c) to compute y = Resp(c, W̃),

the challenger evaluates y
$← Resp(c, W̃) himself.

At a high level, the idea of our construction is as follows:
The key generation algorithm Gen1 samples a k-bit key K

for a symmetric-key cryptosystem, i.e., Kc = Kv = K
$←

{0, 1}k. Given key K, the algorithm Comp1 computes an ad-
ditive sharing 〈K〉 of K and fills the entire memory MEM by
interleaving a different share of 〈K〉 between every two words
in the original programming. More precisely, Comp compiles
a programming W for a RAM R into a new programming

W̃ for R constructed as follows: Between any two consec-
utive words wi and wi+1 of W the compiler interleaves a
uniformly chosen k-bit string Ki,i+1 = Ki,i+1

1 || . . . ||Ki,i+1
k
L

,

where each Ki,i+1
j ∈ {0, 1}L. In the last k bits of the com-

piled programming (i.e., after the last word w|W |−1) the

string Klast = K ⊕
⊕|W |−2

i=0 Ki,i+1 is written.10

To ensure that the compiled programming W̃ executes the
same computation as W we need to ensure that while being
executed it “jumps over” the locations where keys are stored
(as the keys are only to be used in the detection procedure).
For this purpose, we do the following modification: After
each word wj of the original program we put a (jumpby, n)
instruction where n is the number of key-shares between this
and the next W -word in the compiled programming. Simi-
larly, we modify any “jump” instructions of the original pro-

gramming W to point to the correct locations in W̃ . Note
that this modification is not necessarily applicable for arbi-
trary classes of codes, and for certain self-modifying code it
might even be infeasible. Our goal here is to demonstrate
applicability of our method, therefore, in the following we
restrict to the class of programmings W with the follow-
ing four properties: (1) While executing, W accesses only
the first |W | MEM locations. (2) The only type of instruc-
tions in W which change the program flow (i.e., modify the
program counter) are (conditional) “jumps”, that skip con-
stantly many words. (These are sufficient for implementing
efficiently control-flow commands such as while- and for-
loops.) (3) During its execution in RAM R, W does not
write any (new) instructions to the memory MEM (but might
insert data) and and might only overwrite locations where
instructions other than no op are written. (4) The only
instructions in W that access the random access memory
RMEM are (read, i, j) (which loads the word from MEM[i]
onto the CPU register REG[j]), (write, j, i) (which stores the
word from REG[j] to the memory logation MEM[i]), and the
built-in load command that is executed at the beginning of
each CPU cycle and loads the contents of MEM[pc] to a spe-
cial CPU register. All other instructions define operations
on values of the CPU registers. Furthermore, we assume
that read is used to only load data and not instructions on
the CPU (i.e., an instruction is executed only if it is loaded
by the special built-in “load” command).

We refer to a programming W which satisfies the above
conditions as a non-self-modifying structured programming
for R. Without loss of generality, we shall allow throughout
this text that any considered RAM has the above instruc-

10Wlog, here we implicitly assume that (|MEM| − |W |) = 0
mod k so that the keys fit exactly in the memory. The gen-
eral case can also be easily treated.

tions, i.e., read, write, jumpby, and jumpby if, as part of
its CPU instruction set I. Observe, that the above specifica-
tion is sufficient for any structured program, i.e., a program
which uses while- and for-loops but no “goto”s. As a fact,
writing structured programs is considered a good practice
and most programmers avoid writing self-modifying code
as it can be source of bugs. Furthermore, classical results
in programming languages imply that any program can be
compiled to a structured program with a low complexity
overhead [5, 34]. Nonetheless, compilers at times do gen-
erate self-modifying code in order to optimize performance.
Extending our results to such code is one of many interesting
research direction.

In the full version of this work, we describe (and for-
mally prove the correctness of) a process, called Spread,
which spreads such programming to allow for enough space
between the words to fit the key-shares and adds the ex-
tra ”jump” instructions to preserve the right program flow.
The compiler Comp1 uses the process Spread to translate, as
sketched above, a non-self-modifying structured program-

ming W for a RAM R = (C, MEM) into a programming W̃
for R. For simplicity, we assume that |MEM| = (k/L+ 2)|W |
(if this is not the case we can expand W with no op instruc-
tions prior to computing and/or pad the last positions of
MEM with extra key shares).

To complete the description of VDS V1 we need to describe
the remaining three algorithms Chal1, Resp1, and Ver1. The
algorithm Chal1 chooses a random string x ∈ {0, 1}k, and
computes the challenge as a one-time pad encryption of x
with key K; i.e., c ← Chal(x,K) = EncK(x) = x⊕K. The
algorithm Resp1 works as follows: On input the challenge

c = EncK(r) and the compiled programming W̃ , it recon-

structs K by summing up all its shares as retrieved from W̃ ,
and outputs a decryption of the challenge under the recon-
structed key, i.e., outputs y = c ⊕ K. The corresponding
verification algorithm Ver1 simply verifies that y = x.

The security of V1 follows from the fact that an adver-
sary who injects a long-enough virus in consecutive memory
locations will overwrite a linear number of bits of some key-
share which will information-theoretically destroy an analo-
gous amount of decryption-key bits making it infeasible to
correctly decrypt the challenge and thus pass the VDS check.

Theorem 1 Assuming R is a complete RAM family the
VDS V1 is secure for R without self-responsiveness with re-
spect to the class of all non-self-modifying structured pro-
grammings and the class of adversaries who injects a virus
v with |v| ≥ 3 on consecutive memory locations.

Adding Self-Responsiveness. We next modify V1 so that
it is secure (with self-responsiveness) in the repeated detec-
tion game. Towards this direction, prior to applying the
above compilation strategy we extend the given sound pro-
gramming W to also implement the corresponding response
algorithm. The completeness of R and the universality of
structured non-self-modifying code [5, 34] ensure that given
that R has sufficient memory, there exists a programming
WResp which implements Resp on R. (Note that the algo-
rithm Resp1 above is deterministic.) Thus we can combine
WResp and W via a threading mechanism to some new pro-
gramming Emb(W,WResp) which, when executed (periodi-
cally) checks if a new (check, c)-input is provided, and if so
stores the CPU state on free memory locations and changes
the program counter to point to the location where WResp is

8

stored; once Resp has produced output, it restores the CPU
to its prior state and continues the execution of W .11

Although it might seem that using the above trick com-
bined with the response algorithm Resp1 from the previous
section, i.e., using Emb(W,WResp1

), takes care of the self-
responsiveness issue, this is not the case, i.e., the resulting
VDS in not secure. Informally, the reason is that it only de-
tects attacks (virus injections) that occur outside the virus
detection procedure. In more detail, a possible adversarial
strategy is to inject the virus while the RAM is computing
the response to a challenge, and in particular as soon as the
key K has been reconstructed on the CPU and is about to
be used to decrypt the challenge. By attacking at that exact
point, the adversary might be able to inject an “intelligent”
virus onto MEM while the key is still in the CPU, restore the
key back to the memory and use it to pass the current as
well as all future virus detection attempts.

To protect against the above attack we use the follow-
ing technical trick: instead of using a single compilation-key
K of length k we use a 2k-bit key K which is parsed as
two k-bit keys Kod and Kev via the following transforma-
tion: Let K = x1|| . . . ||x 2k

L
, where each xi is a word.12

Then Kod is a concatenation of the odd-indexed words,
i.e., xi’s with i = 1 mod 2, and Kev is a concatenation of
the even indexed words. Now the challenge algorithm out-
puts a double encryption of z with keys Kod and Kev, i.e.,
c = EncKod(EncKev(z)). In order to decrypt, the response
algorithm does the following: First it reconstructs Kod by
XOR-ing the appropriate shares, and uses it to decrypt c,
thus computing EncKev(z). Subsequently, it erases Kod from
the CPU register (e.g, by filling the register where Kod is
stored with 0’s) and after the erasure completes it starts re-
constructing Kev and uses it (as above) to decrypt EncKev(z)
and output y = z.

Intuitively, the reason why the above idea protects against
injections occuring during a detection-procedure execution
in the repeated detection game, is that in order to correctly
answer the challenge, the virus needs both Kod and Kev.
However, the keys are never simultaneously written in the
CPU. Thus if the adversary injects the virus before Kod is
erased he will overwrite bits from a share of Kev (which at
that point exists only in the memory); thus he will not be
able to decrypt the challenge. Otherwise, if the adversary
injects the virus after Kod has been erased from the CPU,
he will overwrite bits from a share of Kod; in this case he
will successfully pass this detection attempt, but will fail
the next detection attempt.

But we are still not done, because the above argument
cannot work with any encryption scheme, e.g., it fails if we
instantiate Enc(·) with one-time-pad encryption as in the
previous section. To see why, assume that we use c = z ⊕
K1 ⊕ K2. Because the input register is read-only (for the
RAM) once c is given it cannot be erased. Furthermore,
from c and y = z (which is the output of Resp) one can
recover Kod ⊕ Kev := c ⊕ y. Now if the adversary injects
its virus after y is computed but while Kev is still on the
CPU’s register he can easily recover both Kod and Kev and
answer all future challenges in an accepting manner. Thus

11Modern architectures use the program stack for efficiently
implementing such a multi-thread computation; in the full
version we describe a simple low level implementation in our
RAM model.

12Wlog we assume that k = Lq for some q.

we cannot use the one-time pad encryption as in the VDS
V1. In fact, we cannot even use a standard CCA2 secure
cipher for Enc(·) as the virus will have access to a big part
of the private key and the cyphertext and standard CCA2
encryption does not account for that (recall that we only
require the virus to overwrites a portion of a key share).

Instead we make use of a leakage resilient encryption
scheme, which is secure as long as the adversary’s proba-
bility of guessing the key is negligible even when one leaks
a big part of the key. A (public-key) encryption scheme
satisfying the above property (with CPA security) was sug-
gested by Dodis, Goldwasser, Kalai, Peikert, and Vaikun-
tanathan [12]. 13 We point out that the compiler Comp2
will only use the compilation key (i..e, the secret key of the
scheme in [13] plays the role of the compilation key) and
ignore the public key. In the following we assume that all
the remainder algorithms of VDS V2 use such a public-key
leakage resilient double encryption scheme. Thus the corre-
sponding key generation algorithm Gen2 generates two pairs
of keys for such a scheme, where the secret (compilation)
keys are used by Comp2, whereas all other algorithms in V2
use the corresponding verification (public) keys.

There are still a couple of details that need to be taken
care of in the design of the appropriate response algorithm
Resp2 used in Emb(W,WResp2

). First it should never copy
key-shares on other memory locations (this will ensure that
the key-shares which the virus overwrites are not recover-
able). Second, we need to make sure that Emb(W,WResp2

)
is still able to access key locations, even after it has been
compiled. (Recall that the compiler re-arranges the com-
mands read and write to avoid these locations). We can
resolve this by a simple technical trick: We make WResp2

use
a special read command (read key, i, j, `) for accessing the
key shares, which reads the i-th word of the jth key-share
and stores it on register REG[`]. According to the rules for
spreading out the programming from the previous section,
the compiler will not modify the address accessed by this
command when Emb(W,WResp2

) is compiled as it is not a
read or write instruction. This extra (read key, i, j, `) in-
struction can be easily implemented in machine code by a
combination of read and jump commands.

Having described Resp2 we can now provide the de-
tailed description of the corresponding compiler Comp2. The
compiler uses the programming Emb(W,WResp2

) described
above, and the compiler Comp1 from the previous section
but using the two compilation (secret) keys in tandem. De-
note by V2 the VDS (Gen2, Comp2, Chal2, Resp2, Ver2), where
Gen2, Comp2, Chal2, and Resp2 are as described above, and
Ver2 is identical to Ver1. As in Theorem 1, we assume wlog
that the RAM family has sufficient memory to accommodate

W̃ = Comp2(Emb(W,WResp2
)).

Theorem 2 Assuming R is a complete RAM, if the encryp-
tion scheme used in V2 is CPA secure against an adversary
who learns all but ` = ω(log k) bits of the secret key [12],
then the VDS V2 is secure in the repeated detection model
with respect to the class of non-self-modifying structured pro-
grammings and the class of adversaries who injects a virus
v with |v| ≥ 4 on consecutive memory locations.

Obtaining Standard Security. The final step is to com-
13For technical reasons we cannot use the (CCA) symmetric
encryption with auxiliary input [13]. For details we refer to
the proof of Theorem 2 in the full version.

9

pile the VDS V2 into a VDS V3 which is secure in the stan-
dard model. The transformation is to a large extend generic
and can be applied to most self-responsive VDSs as long as
the algorithm Resp can be described as an invertible RAM
program, i.e., a program which at the end of its execution
leaves the memory in the same state it was at the begin-
ning. Given sufficiently memory, that this is the case for the
algorithms described here, as they only need to compute
exclusive-ORs of the key shares and then use it to decrypt
the challenge. Modern CPUs can even perform these oper-
ations without ever changing the contents of the memory.

Our transformation also assumes a hash function h(·)
which can be efficiently computed by an invertible pro-
gramming on the RAM R. Most known hash functions
can be implemented as such by writing only on CPU reg-
isters and/or on temporary memory locations (swap mem-
ory) which can be erased at the end of their invocation.
We convert the VDS V2 = (Gen2, Comp2, Chal2, Resp2, Ver2)
which is secure in the repeated detection model into a VDS
V3 = (Gen3, Comp3, Chal3, Resp3, Ver3) secure in the single
detection model as follows:

1. The algorithm Gen3 is the same as Gen2.

2. The algorithm Resp3 works as follows on input a challenge

c and a programming W̃ : (i) It executes the invertible
programming for h(·) which computes a complete hash

yh = h(W̃ ||c) of the contents of memory RMEM (at the
beginning of the evaluation of h(·)) concatenated with the
challenge ciphertext,14 outputs yh to the user, and then
erases all memory locations and CPU registers that it
wrote on. (ii) It executes the invertible programming for

Resp2 and outputs its output y = Resp2(c, W̃). (iii) It
executes again the invertible programming for h(·) com-

putes again a complete hash y′h = h(W̃ ′||c) where W̃ ′

denote the current memory RMEM and outputs y′h.

3. The algorithms Comp3 is the same as Comp2 but uses Resp3
instead of Resp2, i.e., first generates the programming
Emb(W,WResp3

), and then spreads it and interleaves the
key-shares.

4. Chal3 is the same as Chal2.

5. Ver3 is modified as follows: Let Kv and z denote the
inputs of Chal3 in the attack game GR,V,W

VDS (Figure 1),
and let yh, y, and y′h denote the outputs of the detection
procedure. Then Ver3(·, z, ·, (yh, y, y′h) outputs 1 if y = z
and yh = y′h, otherwise it outputs 0.

The above modification takes care of adversaries that sub-
mit a virus to be injected during the computation of Resp3:
If the injections occurs before the first evaluation of the hash
function has been erased, then the security of V2 in the
repeated detection model ensures that the adversary will
be caught with overwhelming probability. Otherwise, if the
virus is injected after yh has been erased, then in order to
produce a valid reply, the virus will need to compute yh.
Because by assumption, the adversary overwrites at least
L = O(k) bits of a key share which he cannot recover, the
security of h(·) will guarantee that the probability that the
virus outputs yh is negligible in k.

Theorem 3 Assuming R is a complete RAM, if the encryp-
tion scheme used in V2 is CPA secure against an adversary

14This will ensure that, even if one uses this scheme for re-
peated detections, the hash will be different in each invoca-
tion of the detection process.

who learns all but ` = ω(log k) bits of the secret key [12],
then the VDS V3 is secure with respect to the class of non-
self-modifying structured programmings and the class of ad-
versaries who injects a virus v with |v| ≥ 4 on consecutive
memory locations.

6. VDS FOR ALL VIRUSES
The constructions from the previous section are secure

only against (sufficiently) long viruses (i.e., more than two
words). In this section we describe a VDS V4 which achieves

security 2−O(k) for any desirable value of the security param-
eter k, independent of the virus length, and in particular
even when the virus affects only part of a single word (i.e.,
is a few bits long). Injection of such a virus can be easily
captured by assuming a bit-by-bit injection (see full version
for details).

The basic difficulty in designing a VDS which tolerates
a virus of arbitrary small size is that depending on the ac-
tual programming we compile, an “intelligent” short virus
that is injected on the position of the first instruction exe-
cuted might cause the RAM to jump to a location that al-
lows the virus to take over the entire computation (e.g., by
return-oriented programming [40]). To prevent such an at-
tack and ensure that even such viruses will be caught we use
the following idea: We use a compiler similar to Comp3, but
we include, for each program word and pair of key-shares,
message authentication codes (MACs) which we check every
time we load a program word on the CPU.

A MAC consists of a pair of algorithms (Mac, Ver), where
Mac :M×K → T is the authentication algorithm (i.e., for
a message m ∈ M and a key vk ∈ K, t = Mac(m, vk) ∈ T is
the corresponding authentication tag), and Ver : M× T ×
K → {0, 1} is the verification algorithm (i.e., for a message
m ∈ M, an authentication tag t ∈ T and a key vk ∈ K
Ver(m, t, vk) = 1 if and only if t is a valid authentication
tag for m with key vk). We let M include all strings of
length at most k, K = {0, 1}2k, and T = {0, 1}k. Such a
MAC can be constructed as follows: Let GF (2k) be the field
of characteristic two and order 2k. (Every x ∈ GF (2k) can
be represented as a k-bit string and vice-versa). Let also
vk = vk1||vk2 ∈ {0, 1}2k where vki ∈ {0, 1}k for i ∈ {1, 2}.
Then Mac(m, vk) = vk1 ·m+ vk2, where + and · denote the
field addition and multiplication in GF (2k), respectively.15

(If |m| < k then pad it with appropriately many zeros.) The
verification algorithm simply checks that the message, tag,
and key satisfy the above condition. An important property
of the above MAC is that for a given key vk, every m ∈ M
has a unique authentication tag that passes the verification
test. Furthermore, the probability of any (even computa-
tionally unbounded) adversary learning a MAC tag to guess
the corresponding key is at most 2−k.

Similar to Comp3, our new compiler Comp4 compiles the
programming Emb(W,WResp4

), i.e., W combined with the
response algorithm Resp4 described below, into a new pro-

gramming W̃ which interleaves additive shares Ki,i+1
od and

Ki,i+1
ev of decryption keys Kod and Kev between any two

program words wi and wi+1 and adds the appropriate jump
command to ensure correct program flow. The difference is
that Comp4 also adds MAC tags tiod = Mac(w̃ĩ||w̃ĩ+1,K

i,i+1
od)

15Most modern CPUs are equipped with an arithmetic logic
unit the can perform modular arithmetic operations.

10

and tiev = Mac(w̃ĩ||w̃ĩ+1,K
i,i+1
od).16 To visualize it: Comp4 ex-

pands every word wi ∈ Emb(W,WResp4
), as w̃i||(jumpby, n)||

Ki,i+1
od ||Ki,i+1

ev ||Mac(w̃i||(jumpby, n),Ki,i+1
od)||Mac(w̃i||(jumpby,

n),Ki,i+1
ev).

As we prove, this ensures that any virus, no matter how
small, which is written consecutively in MEM in the bit-by-bit
injection setting, will either have to overwrite a long num-
ber of bits of some key Ki, or will create an inconsistency
in at least one of the MAC’s with overwhelming probability.
To exploit the power of the MACs we need to ensure that
during the program execution, before loading any word the
CPU first verifies its MACs. Therefore, we assume that, by
default, the CPU loads values from the memory RMEM to
its registers via a special load instructions (read auth, i, j),
which, first, verifies both MACs of the word in location i
of the memory with the corresponding keys, and only if the
MACs verify, it keeps the word on the CPU. If the MAC
verification fails, then (read auth, i, j) deletes at least one
of the key-shares from the memory, thus introducing an in-
consistency that will be caught by the detection procedure.

Note that (read auth, i, j) makes no tamper-resiliency as-
sumption on the memory or the CPU. It only needs for
the architecture to provide us with this simple piece of mi-
crocode, and by engineering the CPU’s hardware in a smart
way (so that these operations are done on the circuit level)
we expect to be able to reduce the effect of our compiler to a
barely noticeable slowdown. Fortunately, the new architec-
ture that Intel recently announced promises to embed such
microcode in its next-generation microchips [35]. Luckily,
the new architecture that Intel recently announced promises
to allow for support of such a microcode in its next gener-
ation microchips [35]. The implementation details on the
newly designed architecture are the subject of future work.

Observe that the original programming W might in-
clude (read, i, j) instructions which we will replace by
(read auth, i, j). Furthermore, to ensure that the compiled
program will not introduce inconsistencies, we replace ev-
ery (write, j, i) instruction of the programming with mi-
crocode write auth which, when writing a word in the mem-
ory it also updates the corresponding MAC tags. Unlike
read auth, this write auth does not require any change in
the architecture or additional assumptions as it can be im-
plemented in assembly code which can be included in W .
Nonetheless, a smart redesign of the CPU circuit (e.g., ex-
tensions of its ALU) to implement write auth in hardware
could give a speed up that would make its effect nearly no-
ticeable.

A formal description of the compiler Comp4 is derived along
the lines of Comp3 with the above modifications. We next
turn to other three algorithms of the VDS V4, namely Gen4,
Chal4, Resp4 and Ver4. The key generation Gen4 is identical
to Gen3 but generates 2k-bit compilation keys. The algo-
rithms Chal4 and Ver4 are identical to the corresponding
algorithms from the previous section, where the verification
keys are as generated by Gen4. Resp4 works as Resp3 with
the following difference: After the first evaluation of the
hash function, and before doing anything else, Resp4 scans
the entire memory to ensure that all MAC tags are correct.
After this check, Resp4 continues as Resp3 would. Observe
that for all (read, ·, ·) instructions in WResp3

, the compiler
Comp4 will replace then with corresponding (read auth, ·, ·)

16Wlog assume that L ≤ 2k.

instructions. However, it will not touch the (read key, i, j, `)
instructions used for reading the keys. Therefore, the keys
need not be authenticated. In the following we denote by
V4 the VDS (Gen4, Comp4, Chal4, Resp4, Ver4).

Theorem 4 Let R be a complete RAM. If the encryption
scheme used in Comp2 is CPA secure even against an adver-
sary who learns any ω(log k) bits of the secret key, then the
VDS V4 is secure for R with respect to the class of all non-
self-modifying structured programmings and adversaries in
the bit-by-bit continuous injection model.

Removing the Continuous-Injection Assumption.
The above VDS detects injections of arbitrary small size,
but assuming continuous injection. We now show how to
remove this assumptions, at the cost however of an addi-
tional modification on the CPU (microcode) specification.
(As before, the modification is simple enough to be imple-
mented in hardware which will impose a very small slow-
down.) More concretely, as for V4, we use MACs for au-
thenticating the words. However, to ensure that the ad-
versary cannot forge the MAC by a smart manipulation of
the word, keys, and tags, we do not use the actual key-
shares Ki,i+1

od and Ki,i+1
ev in the computation and verifica-

tion of the above MAC but rather their hash-value, i.e.,
H(Ki,i+1

od) and H(Ki,i+1
ev) for some hash function H(·). 17

Intuitively, this will ensure that if the malware overwrites
less than d bits of some of the key-shares it will be un-
able to guess an appropriate manipulation of the MAC key.
If, on the other hand, the adversary overwrites more than
d bits of any key-share, then with overwhelming probabil-
ity he will destroy a super-logarithmic portion of the de-
cryption key and will be, therefore, unable to answer de-
cryption challenges. More concretely, the compiler Comp5
works as Comp4 but maps a word wi of the original program-

ming onto w̃i||(jumpby, n)||Ki,i+1
od ||Ki,i+1

ev ||Mac(wi||(jumpby,
n), H(Ki,i+1

od), H(Ki,i+1
ev)). The instructions read auth and

write auth are modified accordingly to load and read the
above combination of word, keys, and MAC as a single chunk
and apply the modified MAC algorithm (which uses key-
share hashes instead of the key-shares themselves). The re-
mainder algorithms, i.e., Chal5, Resp5, and Ver5 are identi-
cal to Chal4, Resp4, and Ver4, respectively.

In the following we denote by V5 the VDS
(Gen5, Comp5, Chal5, Resp5, Ver5). The security proof of
V5 follows the intuition sketched above and is stated in the
following theorem.

Theorem 5 Let R be a complete RAM. If the encryption
scheme used in V5 is CPA secure even against an adversary
who learns all but ω(log k) bits of the secret key, then the
VDS V5 is secure for R with respect to the class of all non-
self-modifying structured programmings and adversaries in
the bit-by-bit (non-continuous) injection model.

7. REFERENCES
[1] T. AbuHmed, N. Nyamaa, and D. Nyang.

Software-based remote code attestation in wireless
sensor network. In GLOBECOM’09, pp. 4680–4687,
2009.

17As usually, we will assume that H(·) behaves as a random
function, which is very natural to assume since we do not
need any compression and we only evaluate it on randomly
distributed shares.

11

[2] W. A. Arbaugh, D. J. Farber, and J. M. Smith. A
secure and reliable bootstrap architecture. In SP ’97,
pp. 65–, 1997.

[3] A. Baratloo, N. Singh, and T. Tsai. Transparent
run-time defense against stack smashing attacks. In
ATEC ’00, pp. 21–21, 2000.

[4] S. Bhatkar, D. C. DuVarney, and R. Sekar. Address
obfuscation: An efficient approach to combat a board
range of memory error exploits. In SSYM’03, pp. 8,
2003.

[5] C. Böhm and G. Jacopini. Flow diagrams, turing
machines and languages with only two formation
rules. Commun. ACM, 9(5):366–371, May 1966.

[6] D. Boneh, R. A. DeMillo, and R. J. Lipton. On the
importance of checking cryptographic protocols for
faults. In EUROCRYPT’97, volume 1233 of LNCS,
pp. 37–51, 1997.

[7] B. Chen and R. Morris. Certifying program execution
with secure processors. In HOTOS’03, pp. 23–23, 2003.

[8] F. B. Cohen. Operating system protection through
program evolution. Comput. Secur., 12(6):565–584,
October 1993.

[9] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole,
P. Bakke, S. Beattie, A. Grier, P. Wagle, and Q.
Zhang. Stackguard: Automatic adaptive detection and
prevention of buffer-overflow attacks. In SSYM’98, pp.
5–5, 1998.

[10] S. Crane, P. Larsen, S. Brunthaler, and M. Franz.
Booby trapping software. In NSPW’13, pp. 95–106,
2013.

[11] D. Dachman-Soled, F.-H. Liu, E. Shi, and H.-S. Zhou.
Locally Decodable and Updatable Non-malleable
Codes and Their Applications. In TCC 2015, volume
9014 of LNCS, pp. 427–450, 2015.

[12] Y. Dodis, S. Goldwasser, Y. T. Kalai, C. Peikert, and
V. Vaikuntanathan. Public-key encryption schemes
with auxiliary inputs. In TCC 2010, volume 5978 of
LNCS, pp. 361–381, 2010.

[13] Y. Dodis, Y. T. Kalai, and S. Lovett. On cryptography
with auxiliary input. In STOC’09, pp. 621–630, 2009.

[14] S. Dziembowski, K. Pietrzak, and Daniel Wichs
Non-Malleable Codes. In ICS 2010, pp. 434–452, 2010.

[15] K. Eldefrawy, G. Tsudik, A. Francillon, and D. Perito.
SMART: secure and minimal architecture for
(establishing dynamic) root of trust. In NDSS 2012,
2012.

[16] C. C. Elgot and A. Robinson. Random-access
stored-program machines, an approach to
programming languages. J. ACM, 11(4):365–399, 1964.

[17] S. Faust, P. Mukherjee, J. B. Nielsen, and D. Venturi.
A tamper and leakage resilient von neumann
architecture. In PKC 2015, volume 9020 of LNCS, pp.
579–603, 2015.

[18] H. H. Feng, J. Giffin, Y. Huang, S. Jha, W. Lee, and
B. P. Miller. Formalizing sensitivity in static analysis
for intrusion detection. In SP’04, pp. 194, 2004.

[19] H. H. Feng, O. M. Kolesnikov, P. Fogla, W. Lee, and
W. Gong. Anomaly detection using call stack
information. In SP ’03, pp. 62–, 2003.

[20] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A.
Longstaff. A sense of self for unix processes. In SP ’96,

pp. 120–, 1996.

[21] A. Francillon, Q. Nguyen, K. B. Rasmussen, and G.
Tsudik. A minimalist approach to remote attestation.
In DATE ’14, pp. 244:1–244:6, 3001 2014.

[22] M. Franz. E unibus pluram: Massive-scale software
diversity as a defense mechanism. In NSPW ’10, pp.
7–16, 2010.

[23] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai,
and B. Waters. Candidate indistinguishability
obfuscation and functional encryption for all circuits.
In FOCS’13, pp. 40–49, 2013.

[24] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum.
Enhanced operating system security through efficient
and fine-grained address space randomization. In
SSYM’12, pp. 40–40, 2012.

[25] O. Goldreich. Foundations of Cryptography: Basic
Tools, volume 1. Cambridge University Press,
Cambridge, UK, 2001.

[26] S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion
detection using sequences of system calls. J. Comput.
Secur., 6(3):151–180, 1998.

[27] W. Hu, J. Hiser, D. Williams, A. Filipi, J. W.
Davidson, D. Evans, J. C. Knight, A. Nguyen-Tuong,
and J. Rowanhill. Secure and practical defense against
code-injection attacks using software dynamic
translation. In VEE ’06, pp. 2–12, 2006.

[28] M. Jakobsson and K.-A. Johansson. Practical and
secure Software-Based attestation. In LightSec, 2011.

[29] M. Jakobsson and G. Stewart. Mobile malware: Why
the traditional AV paradigm is doomed, and how to
use physics to detect undesirable routines. In
BlackHat, 2013.

[30] A. Juels and B. S. Kaliski Jr. Pors: proofs of
retrievability for large files. In ACM CCS 07, pp.
584–597, 2007.

[31] R. Kennell and L. H. Jamieson. Establishing the
genuinity of remote computer systems. In SSYM’03,
pp. 21–21, 2003.

[32] E. Klarreich. Perfecting the art of sensible nonsense.
Quanta Magazine, January 2014.

[33] X. Kovah, C. Kallenberg, C. Weathers, A. Herzog, M.
Albin, and J. Butterworth. New results for
timing-based attestation. In SP’12, pp.r 21-23 2012.

[34] R. C. Linger, H. D. Mills, and B. I. Witt. Structured
programming - theory and practice. The systems
programming series. Addison-Wesley, 1979.

[35] F. McKeen, I. Alexandrovich, A. Berenzon, C. V.
Rozas, H. Shafi, V. Shanbhogue, and U. R.
Savagaonkar. Innovative instructions and software
model for isolated execution. In HASP ’13, pp.
10:1–10:1, 2013.

[36] W. S. McPhee. Operating systems integrity in os/vs2.
IBM Systems Journal, 13 Issue 3, pp. 230–252, 1974.

[37] A. Sahai and B. Waters. How to use
indistinguishability obfuscation: deniable encryption,
and more. In STOC’14, pp. 475–484, 2014.

[38] A. Seshadri, M. Luk, A. Perrig, L. van Doorn, and P.
Khosla. Scuba: Secure code update by attestation in
sensor networks. In WiSe ’06, pp. 85–94, 2006.

[39] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn,
and P. Khosla. Pioneer: Verifying code integrity and

12

enforcing untampered code execution on legacy
systems. In SOSP ’05, pp. 1–16, 2005.

[40] H. Shacham. The geometry of innocent flesh on the
bone: Return-into-libc without function calls (on the
x86). In ACM CCS ’07, pp. 552–561, 2007.

[41] A. Shamir. How to share a secret. Communications of
the Association for Computing Machinery,
22(11):612–613, 1979.

[42] D. Williams, W. Hu, J. W. Davidson, J. D. Hiser,
J. C. Knight, and A. Nguyen-Tuong. Security through
diversity: Leveraging virtual machine technology.
SP’09, 7(1):26–33, 2009.

13

	Introduction
	Overview of our Approach
	Related Literature
	Our Approach in More Detail
	Comparison to Existing Approaches
	Outline

	Preliminaries and Notation
	The Model
	Virus Detection Schemes
	A VDS for Moderate Viruses
	VDS for all Viruses
	References

