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Abstract. There is a significant effort in building lightweight cryp-
tographic operations, yet the proposed solutions are typically single-
purpose modules that can implement a single functionality. In contrast,
we propose BitCryptor, a multi-purpose, bit-serialized compact processor
for cryptographic applications on reconfigurable hardware. The proposed
crypto engine can perform pseudo-random number generation, strong
collision-resistant hashing and variable-key block cipher encryption. The
hardware architecture utilizes SIMON, a recent lightweight block cipher,
as its core. The complete engine uses a bit-serial design methodology
to minimize the area. Implementation results on the Xilinx Spartan-3
s50 FPGA show that the proposed architecture occupies 95 slices (187
LUTs, 102 registers), which is 10× smaller than the nearest comparable
multi-purpose design. BitCryptor is also smaller than the majority of
recently proposed lightweight single-purpose designs. Therefore, it is a
very efficient cryptographic IP block for resource-constrained domains,
providing a good performance at a minimal area overhead.

Keywords: Lightweight cryptography, bit-serialization, hardware archi-
tecture, crypto engine, SIMON, FPGA

1 Introduction

Lightweight cryptography studies the challenges of enabling security services on
resource-constrained platforms. Typical applications on such devices require a
protocol execution for secure key exchange or entity authentication. For example,
the protocol with non-reversible functions (section 6.1.5. of [12]) uses a PRNG,
hash function and encryption, all within a single protocol run. Yet, most compact
implementations in the literature are single-purpose and stand alone building
blocks that can perform only one of these three operations. How should a designer
combine a multi-purpose requirement with an area resource-constraint? Clearly,
a solution that uses disjoint kernels (like PRESENT [7] for encryption, [19]
for hashing, and TRIVIUM [13] for PRNG) yields a design that is larger than
the sum of its composing kernels. It also ignores the opportunity to share the



internal designs for each kernel. Another solution would be to use software on a
microcontroller. But such a solution is not ideal either, because the instruction-
set of the microcontroller is generic, and not optimized for the multi-purpose
kernel which we have in mind. Therefore, we will evaluate a third option: the
design of a flexible yet specialized crypto-engine.

In this paper, we propose BitCryptor, a bit-serialized compact crypto en-
gine that can execute fundamental cryptographic operations. BitCryptor is a
multi-purpose design that can perform PRNG, encryption and hash operations.
Therefore, we are promoting BitCryptor as a generic lightweight crypto engine
upon which protocols can be built as a sequence of BitCryptor commands. We
show that the BitCryptor is significantly smaller than competing crypto engines
and it has a better performance than low-cost microcontrollers.

1.1 Compact and Efficient Crypto Engine on FPGAs

ASIC technology offers a high integration density and a low per-unit price, yet
there exist a myriad of applications where FPGAs are preferred over ASICs
due to their lower NRE cost and reconfigurable nature. Wireless sensor nodes
(WSN) [29], wearable computers (WC) [30], and Internet-of-Things (IoT) [25]
are amongst such application domains that require compact solutions and still
incorporate FPGAs. In addition to their primary functionality, secure systems in
FPGAs need a method to perform cryptographic operations. Thus, the resource-
constrained device should embody this method with low operational and area
costs.

We are not the first to propose a multi-purpose design in FGPA, but our
proposal is the smallest so far. BitCryptor occupies 95 slices, 12% of available
resources of a Spartan-3 s50 FPGA whereas the nearest competitor with similar
functionalities [24] occupies 916 slices and cannot even fit into the same device.
Hence, a system using [24] must migrate to a larger device (eg. Spartan-3 s200),
effectively increasing the component cost. A larger device also increases the sys-
tem cost, as it increases static power dissipation, and possibly PCB cost. So, the
argument that it is always possible to use a larger FPGA, and thus that FPGA
area optimization has little value, is not correct in the context of IoT, WSN, and
so on.

One can argue the use of embedded microcontrollers for low-cost reconfig-
urable systems. However, these platforms are at a disadvantage in terms of op-
erational costs: A recent work [14] shows that, compared to BitCryptor, encryp-
tion on a 16-bit MSP430 microcontoller needs 4.8× more clock cycles, 70.8×
execution time, and 15.2× energy1. Alternatively, to achieve a higher operat-
ing frequency, the same general purpose MSP430 microcontroller can also be
configured as a soft-core processor on FPGAs. However, this trivial approach is
problematic as the resulting hardware occupies a very large area, requiring the
system to again move to an expensive board. Therefore, a designer has to find

1 The results section elaborates on comparisons



the delicate balance between the area-cost, performance, and flexibility. BitCryp-
tor is such a solution that offers multiple cryptographic operations at minimal
area-cost and performance hit on reconfigurable hardware.

1.2 Novelty

Achieving the combination of area resource constraints with multi-purpose func-
tionality requires sound cryptographic engineering. It requires picking a lightweight
crypto kernel, applying specific functionalities with a careful analysis of modes-
of-operations, selecting proper configuration parameters, employing an appropri-
ate design methodology, and back-end engineering for EDA tool optimizations.
In this paper, we guide through these steps to reveal how to realize a compact
and multi-purpose crypto-engine on FPGA. We also provide detailed analysis
on the trade-offs within the design space.

The major contributions of this work are as follows

• We demonstrate a multi-purpose design that is 10× smaller than the nearest
comparable crypto-engine [24] and even smaller than the majority of single-
purpose encryption and all hash function implementations.

• We develop a systematic design approach with optimizations at several ab-
straction levels.

• We show area-performance trade-offs between different serialization methods
and on multiple platforms.

• We present a comparison with low-cost and moderate microcontroller designs
and quantify the performance improvement of our solutions.

• We provide a small isolated security module that is easier to validate and
certify.

1.3 Organization

The rest of the paper is organized as follows. Section 2 explains SIMON, the
lightweight core of the crypto engine, and discusses high-level design parameters.
Section 3 illustrates the bit-serial design methodology with a simple example.
Section 4 describes the hardware architecture of BitCryptor. Section 5 shows
the implementation results and its comparison to previous work and Section 6
concludes the paper.

2 High-Level Description of BitCryptor

Table 1 summarizes the design of BitCryptor. The heart of BitCryptor is a flex-
ible block cipher, SIMON [6]. The flexibility of SIMON allows multiple key and
block lengths. The choice of security-level (96-bits, corresponding to ECRYPT-
II Level 5 or ‘legacy standard-level’ [32]) is a trade-off between selecting the
shortest key length possible while offering reasonable security for the intended
application domains. Using SIMON as the kernel, we then configure different



Table 1: BitCryptor Construction
Operation Kernel and Configuration Modes-Of-Operation Security-level

Encryption SIMON 96/96 ECB, CBC 96-bits

Hash function SIMON 96/144 Hirose[20] 96-bits1

PRNG SIMON 96/96 CTR 96-bits
1 SIMON 96/144 generates a digest of 192-bits which has 96-bits of strong
collision resistance.

Fig. 1: (a) SIMON Round Function, (b) SIMON Key Expansion Function for
m=2, (c) SIMON Key Expansion Function for m=3

mode-of-operations to achieve message confidentiality (encryption), message in-
tegrity (hashing), and pseudo-random number generation. Each row in Table 1
describes such a mode-of-operation. In all of these configurations, we maintain
the selected 96-bit security level.

2.1 SIMON Block Cipher

The lightweight block cipher SIMON is developed by NSA, targeting compact
hardware implementations [6]. So far, conventional cryptanalytic techniques against
SIMON did not demonstrate any weaknesses [1], [3], [34]. Equations 1 and 2 for-
mulate the SIMON round and key expansion functions respectively, and Figure
1 illustrates them. SIMON has ten configurations with different block and key
sizes, giving users the flexibility to choose the best one that fits into their ap-
plications requirements. Block size indicates the bit length of the input message
to the block cipher while the key size is the bit length of the key. SIMON is a
Feistel-based block cipher and the input block (2n) is divided into two words,
shown as the word size (n). The key is formed by (m) words making the key



Fig. 2: Hirose Double-Block-Length Hash Function

size (mn). SIMON using a block size 2n and key size mn is denoted as SIMON
2n/mn.

R(Xu, Xl) = (Xu � 1) ∧ (Xu � 8)⊕ (Xu � 2)⊕Xl ⊕ ki (1)

K(i+m) =

{
ki ⊕ (ki+1 � 3)⊕ (ki+1 � 4)⊕ zi for m = 1

ki ⊕ (ki+2 � 3)⊕ (ki+2 � 4)⊕ zi for m = 2
(2)

2.2 Parameter Selection

The parameters we select directly affect the area and performance of the crypto
engine. Typically, to reduce the area, lightweight cryptographic systems utilize
shorter keys (80-bits). In our design, we aim to find the best configuration that
will at least meet this security level while minimizing the area. We utilize SIMON
96/96 for symmetric key encryption and PRNG, and SIMON 96/144 for hashing.

One of the challenges in selecting the parameters of the crypto engine is to
satisfy the security needs of the hash function. The security level of a hash is
determined by the size of the output digest and the probability of a collision
on the value of a digest. We choose the most stringent security constraint of
strong collision resistance [27] which requires that a hash at a k-bit security
level provides a 2k-bit digest. A common practice in building hash functions is
to use a block cipher with single-block-length (SBL) constructions like Davies-
Meyer [35] or double-block-length (DBL) constructions like Hirose [20]. In SBL,
the output size of the hash function is equal to the block size of the underlying
block cipher, while in DBL it is twice the block size. To have a strong collision
resistance of minimum 80-bits in SBL, the underlying block cipher must have a
block size of at least 160-bits. On the other hand, DBL can achieve the same
level of security with a block size of only 80-bits.

Figure 2 shows the DBL Hirose construction. The input message mi is con-
catenated with the chaining value Hi−1 and fed into the key input. Both block



ciphers use the same key generated by a single key expansion function. The Hi-
rose construction requires a block cipher with a key size that is larger than the
block size. The digest is the concatenation of the last two chaining values Hi

and Gi. The computation equations of Hi and Gi are as follows.

Hi = E(Gi−1 ⊕ c,mi||Hi−1)⊕Gi−1 ⊕ c (3)

Gi = E(Gi−1,mi||Hi−1)⊕Gi−1 (4)

The configuration of SIMON that will be used in Hirose construction must
have a block size that is at least 80-bits for strong collision resistance and it must
have a key size that is larger than the block size. Therefore we select SIMON
96/144 because it gives us the most compact solution and provides a security
level even stronger than the minimum requirements. The resulting hash function
reads messages in 48-bit blocks and produces a 192-bit digest.

To minimize the area, the crypto engine shares the SIMON block cipher used
in hash function to implement symmetric key encryption and PRNG. However,
having a 144-bit key is unnecessary in both operations since it is beyond our
security requirements. Therefore, the performance of the system improves if we
use SIMON 96/96 which has the same block size but a shorter key. In [18], Gulcan
et al. show that the flexible architecture of SIMON with all block and key sizes
is still very compact. So, the crypto engine uses a flexible SIMON architecture
with 96-bit key size for symmetric key encryption and PRNG, and 144-bit key
size for hash function. Since only the key size is flexible, the number of words
in the key expansion function changes while the datapath remains exactly the
same.

For the implementation of the PRNG, the crypto engine uses SIMON 96/96
in counter mode of operation. The host system provides a 96-bit key (seed) as
the source of entropy for the PRNG and is responsible to reseed the PRNG
when necessary. In [15] authors suggest that a single key be used to generate at
most 216 blocks of random data. For a block size of 96-bits, this corresponds to
approximately 222 bits hence the PRNG module uses a 22-bit counter.

3 Design Methodology

The way to systematically reduce the area of a circuit is through sequential-
ization; dividing operations in time and reusing the same resources for similar
computations. In our design, we have applied bit-serialization [4], a sequentializa-
tion methodology that processes one output bit at a time. We have adapted and
applied this methodology with an architecture optimization using shift register
logic (SRL-16) for the target FPGA technology.

3.1 Datapath

Figure 3 illustrates an example where the datapath computes c = a ⊕ b by
XORing two 16-bit registers a and b, and generates the 16-bit output c. In this



Fig. 3: (a)Bit-Parallel Datapath (b) Bit-Serial Datapath

example, the datapath uses the same value of a multiple times while the value of
b changes. If all the bits are processed in the same clock cycle (Figure 3(a)), the
datapath produces all bits of c in parallel. This datapath utilizes 48 registers (to
store a, b, and c) and 16 LUTs (to compute 16 XOR operations of c = a ⊕ b).
We can map these elements to 24 slices.

If we bit-serialize the entire datapath (Figure 3(b)), the resulting hardware
will produce one output bit in one clock cycle. The 16-bit register blocks can
now be mapped to SRL-16 logic and the output of a and b can be XORed using
a single XOR gate. To keep the value of a, SRL-16 a should have a feedback
from its output to input. Thus, the resulting hardware architecture will consist
of 5 LUTs (3 SRL-16 to store a,b, and c, 1 LUT to compute the XOR operation
and 1 LUT to apply the feedback via a multiplexer). Now, the datapath can be
mapped to a total of 3 slices, which is one-eight of the size of the bit-parallel
implementation.

3.2 Control

Bit-serialization comes with control overhead. If not dealt carefully, this can
counteract the area gain of the datapath. In bit-serial designs, to identify when
to start and end loading shift registers, and when to finish operations, we need
to keep track of the bit positions during computations. In the example, since
the value of a is fixed for a number of c = a ⊕ b executions, the control needs
to determine the value of the select signal at the input multiplexer of SRL-
16 a. It will select 0 while a in is loaded, otherwise it will select 1. Usually,
this is implemented with counters and comparators. Figure 4 (a) shows a 4-
bit counter with a corresponding comparator. In each clock cycle, the counter
value increments by one and four registers update their values in parallel. A
comparator checks the counter value and returns 1 when the check condition
occurs. This architecture consists of 5 LUTs (4 LUTs for counter and 1 LUT for
comparator) and 4 registers.



Fig. 4: (a) Control with Up-Counters (b) Control with Ring Counters (c) Control
of Nested Loops

Instead of using an up-counter, the same functionality can be realized using
a ring counter. Ring counters consist of circular shift registers. Figure 4 (b)
shows a 16-bit ring counter. After 16 clock cycles, the output of this counter will
return 1 indicating that 16 cycles have passed. The control unit can use a single
LUT (SRL-16) to implement the ring counter which is less than one-fifth of a
counter-based control mechanism. If the control signal has to remain 1 after 16
clock cycles, the controller can use an edge detector which costs an extra LUT
and register, to check when a transition from 1 to 0 occurs.

Managing the hierarchy of control is also simpler using ring counters and
edge detectors. Consider an example with two nested loops both counting up
to 16. Figure 4 (c) shows the implementation of this nested loop with two ring
counters and an edge detector. The outer (SRL-16 outer) loop may count the
number of rounds while the inner (SRL-16 inner) loop counts the number of
bits. The Edge Detector will convert the start pulse into a continuous enable
signal which will keep SRL-16 inner active until a positive edge is detected at
the output of SRL-16 outer. Once the SRL-16 inner is active, its output will
be 1 every 16 clock cycles and enable the SRL-16 outer for a single clock cycle.
This control unit can be realized with 4 LUTs and 3 register (2 LUTs for SRL-16,
2 LUT and 3 register for the Edge Detector).

3.3 Bit-serializing BitCryptor

The datapath of BitCryptor is serialized similar to the example. The bit-parallel
operations are converted into bit-serial ones and the necessary data elements are
stored in SRL-16. The sequentialization of the control flow is achieved by using
ring counters and edge detectors. The ring counters control the internal signals
when there is a data transmission with the host system. The I/O structure of



Fig. 5: Block Diagram of the BitCryptor

BitCryptor is also simplified using bit-serial design methodology. The data input
and output of the BitCryptor are single bit ports which makes it very suitable
for standard serial communication interfaces.

4 Hardware Implementation

Figure 5 shows the block diagram of BitCryptor. The host system indicates
the operation mode as 1, 2 or 3 for hash, encryption and PRNG respectively.
It also provides the input data, key/IV (Initialization Vector) and the start
signal. There are two output signals showing the current status of the engine.
The first status signal Next Block indicates that a new block of input data can
be hashed while the second signal Done states that the operation is completed
and the output can be sampled. All the data interfaces (Data In, Key/IV ,
Data Out) are realized as serial ports and the control signals (Start, Mode,
Next Block, Done) are synchronized with the corresponding data.

BitCryptor is an autonomous module and it does not reveal any internal
state to outside. To have a secure mode switching, the crypto engine requires
the host system to provide a key/IV at the start of each operation. This process
overwrites the residues of the key/IV from a previous execution and ensures
that no secret information is leaked between two consecutive operations. Output
data is revealed together with the done signal if and only if the operation is
completed. Hence, an adversary abusing the input control signals cannot dump
out the internal states of the engine.

The main controller of BitCryptor handles selecting the operation modes,
starting the functions and reading the output values. Ring counters and edge de-
tectors are used to manage the control hierarchy of modes following the method-
ology in Section 3.2. The hash function encapsulates the block cipher module
and controls it during the hashing operation. Also, the main controller has direct
access to the block cipher for encryption and PRNG modes, bypassing the hash
controller. Next, we describe the details of the individual operations.



Fig. 6: Hardware Architecture of the Double-Datapath SIMON and the Hirose
Construction

4.1 Hash Function

In the Hirose construction, we can use two block ciphers to compute the two
halves of the digest. However, this does not necessarily mean that there have to
be two full block cipher engines. Since both encryption engines use the same key,
they can share a single key expansion function. Moreover, the internal control
signals of both round functions are the same so they can share the same control
logic. We call this architecture the Double-Datapath (DDP) SIMON with a
master round function, slave round function and a shared key expansion function.
The master round function is the full version that is capable of running on its
own, independently. On the other hand, the slave round function gets the internal
control signals from the master so it can only run while the master is running.

Figure 6 shows the DDP SIMON architecture following a master/slave con-
figuration. The architecture is bit-serialized using the design methodology of
section 3. The hash function has two 96-bit chaining variables Gi and Hi, which
are produced by the master and slave round functions respectively. These two
variables are loaded with the IV value at the beginning of each operation. A
96-bit shift register (6 SRL-16) stores the Gi value while the shift registers of
the key expansion function store Hi. When the hash function is completed, it
returns Gi and Hi as the lower and upper 96-bits of the digest respectively.

4.2 Symmetric Key Encryption

At the core, the crypto engine uses the SIMON block cipher with a 96-bit block
and key size. In [5], Aysu et al. implement the bit-serial version of SIMON
128/128 and show that it is an extremely compact design. To adapt the bit-
serial SIMON block cipher to our crypto engine, we modify the implementation



in [5] and convert it into SIMON 96/96. We also extend it to perform Cipher-
block-chaining (CBC) mode as well as Electronic-code-book (ECB).

Figure 6 shows the hardware architecture of the hash function, which also
includes the SIMON 96/96 block cipher. When the crypto engine is in encryption
mode, it only uses the master round function while the slave round function is
inactive. The key expansion function uses the 96-bit key configuration. The input
data BC plain and key BC key come directly from the host system through the
main controller, bypassing the hash function. When the block cipher completes
encryption, it gives the output from the same data output port that is shared
with the hash function.

4.3 PRNG

The PRNG uses the SIMON 96/96 in counter mode of operation. When the host
system requests a random number, it provides the key as the source of entropy
and the PRNG module feeds the 22-bit PRNG counter value to the block cipher
padded with zeros. The host system is also responsible to change the key after
receiving 222 bits of random data. After the block cipher generates the random
number, the PRNG module increments the counter value. We verified that the
output of the PRNG passes the NIST statistical test suite [31].

5 Results

In this section, we first focus on BitCryptor, the lightweight bit-serialized imple-
mentation. Then, we show the trade-off between the area and performance on a
round-serial variant of BitCryptor.

5.1 Smallest Area – BitCryptor

The proposed hardware architecture is written in Verilog HDL and synthesized in
Xilinx ISE 14.7 for the target Spartan-3 XC3S50-4 FPGA as well as a more recent
Spartan-6 XC3S50-4 FPGA. In order to minimize the slice count, the synthesized
design is manually mapped to the FPGA resources using Xilinx PlanAhead and
finally the design is placed and routed. The power consumptions are measured
using Xilinx XPower. BitCryptor occupies 95 slices (187 LUTs, 102 Registers)
in the target FPGA with a throughput of 4 Mbps for encryption and PRNG,
and 1.91 Mbps for hashing at 118 MHz.

Figure 7 shows a detailed area comparison of BitCryptor with the smallest
previous multi-purpose engine [24] and with various standalone area-optimized
block ciphers [5, 10, 11, 22, 26, 28, 33, 36], hash functions [2, 23, 28], and PRNGs
[21]. The results show the effect of sound cryptographic engineering. Next, we
discuss the details of area comparisons and the performance tradeoff.



Fig. 7: Implementation Results and Comparison with Previous Work. For com-
parison fairness with the previous work, we map our architecture on an older
Spartan-3 FPGA but we also provide the result on a recent Spartan-6 FPGA.

Migrating to more recent Xilinx FPGAs For comparison fairness with the
previous work, we implement our hardware architecture on a Spartan-3 family
FPGA (XC3S50-4TQG144C). In addition, we also map our design on a more
recent Spartan-6 device. On a Spartan-6 XC6SLX4-2 FPGA, BitCryptor occu-
pies 5% of available resources which corresponds to only 35 slices (136 LUTs,
103 Registers) with a maximum frequency of 172 MHz.

Comparison with single-purpose designs The results show that our design
is more compact than the sum of implementing these functionalities individually.
Moreover, it is even smaller than the majority of the lightweight block ciphers
and all hash functions. Standalone PRNGs are usually based on simple stream
cipher constructions thus making them very compact.

Comparison with other multi-purpose designs Previous multi-purpose
designs on FPGAs are optimized primarily for performance and are not suitable
for lightweight applications. Bossuet et al. survey a number of multi-purpose
designs and document the smallest to be 847 slices [8]. In [24], Laue et al. propose
a hardware engine that offers the closest functionality to our design. However,
they do not apply our design and optimization methods. The resulting hardware
design is targeted towards high-end applications. It has a throughput of 357.4
Mbps and requires 916 slices on a Virtex-II family FPGA (which has the same



Table 2: Comparison of Encryption Performance with Low-Cost Microcontrollers
Platform Clock cycles Max. Frequency (MHz) Throughput (Kbps)

ATmega128 [14] 24369 16 82.07

MSP430F1611 [14] 12902 8 77.50

This work (bit-serial)
2685 118 4120

XC3S50-4TQG144C

This work (bit-serial)
2685 172 6005

XC6SLX4-2TQG144C

slice structure with Spartan-3). Compared to this design, our architecture has
an area improvement of almost 10×.

Comparison with soft-core and embedded processors We also compare
our results with the software implementations on actual microcontrollers and
on FPGAs using soft-core processors. Good et al. provide the smallest soft-core
processor in the literature that is capable of running only a single-purpose AES
encryption [17]. This design utilizes the 8-bit PicoBlaze processor [9], achieves
0.71 Mbps, and occupies 119 slices and a BRAM (≈ 452 slice equivalent), mak-
ing it larger and slower than BitCryptor. Likewise, the 16-bit MSP430 softcore
processor [16] on FPGAs occupies more than 10× of BitCryptor and it can not
even fit into the same device.

Table 2 shows the comparison of a SIMON block cipher encryption on FP-
GAs vs. low-cost 8-bit and 16-bit microcontrollers. BitCryptor is two orders of
magnitude better than ATmega128 and MSP430 based microcontroller imple-
mentations. Note that the previous work [14] uses a fixed-key implementation
that requires fewer operations and we provide throughput results to compen-
sate for different SIMON configurations. Unfortunately, the power and energy
results of Dinu et al. is not available, but we can make a rough estimation on
TI MSP430F1611. The typical energy consumption of this microcontroller at an
energy optimized configuration of 2.2 V and 1 MHz is 330µJ. A SIMON exe-
cution with this setting takes 1.3 ms and consumes 4.26 × 10−6 J of energy
which is 15.2× of our bit-serial compact design. Table 3 shows the details of the
performance figures.

5.2 Relaxing Area – Round-Serial Variant

Area-Performance Tradeoff A bit-serial design exchanges performance for
area savings. We have evaluated the relative impact of this trade-off, by com-
paring a bit-serial implementation of BitCryptor with a round-serial version of
BitCryptor. The area improvement comes at the expense of throughput and
energy-efficiency. Compared to bit-serial architectures, round-serial designs have
simpler control and a faster execution time, resulting in a reduced energy con-
sumption and a higher throughput. Table 3 quantifies these trade-offs. The
round-serial design is approximately two orders of magnitude faster and more



Table 3: Area-Performance Tradeoff (@100 MHz XC3S50-4)

testtesttestte

Bit-Serial Round-Serial1 Unit

testtesttestte

Block Cipher & PRNG 3.41 169.54 Mbps
Hash Short Block2 1.64 83.23 Mbps
Hash Long Block2 1.80 86.37 Mbps
Static Power3 3.24 14.31 mW
Dynamic Power 7 38 mW
Total Power 10.24 52.31 mW
Average Energy4 2.80 × 10−7 2.85 × 10−8 J
Energy-Delay 7.2.579 × 10−12 1.57 × 10−14 J-s
Area 95 500 Slice

1 The Round-Serial results are estimated from a simulation of SIMON 96/96 hardware
2 Short block is one 48-bit input block, long block is 1000 48-bit input blocks
3 Static power is scaled with respect to the resource utilization ratio
4 Average energy refers to the averaged energy consumption of three modes

Table 4: Comparison of Encryption Performance with Moderate Microcontrollers
Platform Clock cycles Max. Frequency (MHz) Throughput (Mbps)

ATSAM3A8
1406 84 7.29

ARM-CORTEX-M3[14]

This work (round-serial)
54 112 189.88

XC3S50-4TQG144C

This work (round-serial)
54 162 274.66

XC3S50-2TQG144C

energy efficient, but it occupies 5 times the area compared to the bit-serial.
However, the power requirement of the bit-serial design is lower due to sequen-
tialization (dynamic) and reduced total area (static).

The round-serial variant of BitCryptor is still smaller than previous multi-
purpose implementations and can also fit into the same Spartan-3 and Spartan-6
FPGA with the bit-serial design. Table 4 shows that this architecture can achieve
a two orders of magnitude performance improvement compared to a capable 32-
bit ARM microcontroller.

6 Conclusion

BitCryptor is a multi-purpose engine that supports a variety of cryptographic
operations with minimal area overhead. We showed that selecting the optimum
encryption kernel and parameters, using a bit-serial design methodology, target-
ing the architecture optimization for the shift register logic (SRL-16), and man-
ual placement of LUTs and registers can significantly minimize the area. The
resulting hardware architecture is 10× smaller than a previous multi-purpose
design and smaller than majority of single-purpose crypto modules. BitCryptor
can fit into the smallest FPGA in Spartan-3 and Spartan-6 family with only



12% and 5% resource utilization respectively, leaving a large amount of logic for
other embedded functionalities. Hence, the proposed hardware architecture is a
promising IP block for system designers who seek compact and efficient solutions
on reconfigurable hardware.
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