
Faster ECC over F2571

(feat. PMULL)

Hwajeong Seo1

Institute for Infocomm Research (I2R), Singapore
hwajeong84@gmail.com

Abstract. In this paper, we show efficient elliptic curve cryptography
implementations for B-571 over ARMv8. We improve the previous binary
field multiplication with finely aligned multiplication and incomplete re-
duction techniques by taking advantages of advanced 64-bit polynomial
multiplication (PMULL) supported by ARMv8. This approach shows per-
formance enhancements by a factor of 1.34 times than previous binary
field implementations. For the point addition and doubling, the special
types of multiplication, squaring and addition operations are combined
together and optimized, where one reduction operation is optimized in
each case. The scalar multiplication is implemented in constant-time
Montgomery ladder algorithm, which is secure against timing attacks.
Finally the proposed implementations achieved 759,630/331,944 clock
cycles for random/fixed scalar multiplications for B-571 over ARMv8,
respectively.

Keywords: ARMv8, Elliptic Curve Cryptography, Binary Field Multi-
plication

1 Introduction

Elliptic Curve Cryptography (ECC) is the most popular Public Key Cryptog-
raphy (PKC) in modern computers. However due to its high complexities, the
computations become performance bottleneck in the applications. Particularly,
the binary field multiplication is regarded as the most expensive operation so
many researchers have studied the high-speed implementation of binary field
multiplication in order to improve the availability of applications. The classical
binary field multiplication performs the bitwise exclusive-or operation with the
operands and the intermediate results when the target bit of operand is set to
one [14, 11, 12]. The alternative approach takes advantages of the pre-computed
Look-Up Table (LUT). The method constructs the part of results in advance and
then the logical operations are replaced into the simple memory access opera-
tions [7, 10]. Recently, the modern embedded processors support the advanced
built-in polynomial multiplication. ARMv7 architecture supports VMULL.P8 op-
eration which computes eight 8-bit wise polynomial multiplications with single
instruction and then outputs eight 16-bit results to the 128-bit NEON register.
In [2], Câmara et al. shows that the efficient 64-bit polynomial multiplication

with the VMULL.P8 instruction. Since the VMULL.P8 instruction only provides
the outputs in vectorized formats, the author presents nice approaches to align
the vectorized into sequential results. After then multiple levels of Karatsuba
multiplications are applied to various binary field multiplications ranging from
F2251 , F2283 to F2571 . The advanced ARMv8 architecture supports PMULL instruc-
tion which computes the 64-bit wise polynomial multiplication. In CT-RSA’15,
Gouvêa and López presented compact implementations of GCM based Authenti-
cated Encryption (AE) with the built-in AES encryption and PMULL instruction
[3]. Since the 128-bit polynomial multiplication only needs 4 times of PMULL

instructions, the basic multiplication shows better performance than asymp-
totically faster Karatsuba multiplication. After then the authors evaluate the
built-in AES encryption, which improves the performance of GCM by about 11
times than that of ARMv7. In [13], authors evaluated the PMULL based binary
field multiplication techniques ranging from 192-bit to 576-bit for ECC. From
256-bit polynomial multiplication, Karatsuba techniques show performance en-
hancements than traditional approaches. However, the paper does not explore
the full implementations of ECC and we found a room to improve the perfor-
mance further from the work.

In this paper, we present efficient implementation techniques for B-571 on
ARMv8. We improve the previous binary field multiplication by introducing
finely aligned multiplication and incomplete reduction technique. The proposed
technique improves the performance by a factor of 1.34 times than previous Seo
et al.’s implementations. For the point addition and doubling, we perform the
combined reduction on special types of binary field multiplication, squaring and
addition operations. The scalar multiplication is implemented in Montgomery
ladder algorithm, which ensures constant timing and security against timing
attacks. Finally, we set the speed record for B-571 on ARMv8, which performs
the unknown/fixed scalar multiplications within 759,630/331,944 clock cycles,
respectively.

The remainder of this paper is organized as follows. In Section 2, we recap the
B-571 curve, target ARM processor and previous polynomial multiplication on
ARMv8. In Section 3, we propose the efficient ECC implementations on ARMv8.
In Section 4, we evaluate the performance of proposed methods. Finally, Section
5 concludes the paper.

2 Related Works

2.1 Elliptic curve over F2571

The 571-bit elliptic curve standardized in [1] and the finite field F2m is defined
by:

f(x) = x571 + x10 + x5 + x2 + 1

The curve E : y2 = xy = x3 + ax2 + b over F2m is defined by:

a = 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000001

b = 02F40E7E 2221F295 DE297117 B7F3D62F 5C6A97FF CB8CEFF1 CD6BA8CE

4A9A18AD 84FFABBD 8EFA5933 2BE7AD67 56A66E29 4AFD185A 78FF12AA

520E4DE7 39BACA0C 7FFEFF7F 2955727A

and group order is defined by:

n = 03FFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

FFFFFFFF FFFFFFFF E661CE18 FF559873 08059B18 6823851E C7DD9CA1

161DE93D 5174D66E 8382E9BB 2FE84E47

2.2 ARM Processor

Advanced RISCMachine (ARM) is an instruction set architecture (ISA) for high-
performance embedded applications. ARM architecture supports low-power con-
sumptions and high code density. The most advanced ARMv8 processor supports
both 32-bit (AArch32) and 64-bit (AArch64) architectures. Particularly the pro-
cessor supports a single-instruction multiple-data (SIMD) instruction sets with
NEON engine. The processor has 32 64-bit registers (X0-X31) and 32 128-bit
NEON registers (V0-V31). Particularly, 64-bit wise polynomial multiplication
instructions (PMULL and PMULL2) are available. The PMULL instruction uses the
lower 64-bit part in 128-bit register for the input, while the PMULL2 instruction
uses the higher 64-bit part in 128-bit register for the input [3].

2.3 Polynomial Multiplication on ARMv8

In [13], authors evaluated the PMULL instructions for the various polynomial mul-
tiplications ranging from 192-bit to 576-bit. Particularly, the authors perform the
three terms of Karatsuba multiplication for 576-bit case, which reduces the num-
ber of 192-bit wise multiplication from 9 to 6 [8, 15, 6]. The author claims that
basic approach for 192-bit case is more efficient than Karatsuba multiplication
on the ARMv8 architecture, since additional number of addition operations are
larger than optimized multiplication operations. The detailed program codes are
drawn in Algorithm 1. The approach requires the 9 64-bit wise polynomial multi-
plications. The partial products (A[0]×B[1], A[1]×B[0], A[1]×B[2], A[2]×B[1])
are computed and shifted by 64-bit. The shifted results are accumulated to the
intermediate results for partial products (A[0] × B[0], A[0] × B[2], A[1] × B[1],
A[2]×B[0], A[2]×B[2]).

Algorithm 1 192-bit Polynomial Multiplication in Program Codes

Require: 192-bit operands A[2 ∼ 0] (v0, v1) and B[2 ∼ 0] (v5, v6).
Ensure: 384-bit result C[5 ∼ 0]← A[2 ∼ 0]×B[2 ∼ 0] (v10, v11, v12).
1: pmull v10.1q, v0.1d, v5.1d {A[0]×B[0]}
2: pmull v11.1q, v0.1d, v6.1d {A[0]×B[2]}
3: pmull2 v28.1q, v0.2d, v5.2d {A[1]×B[1]}
4: eor.16b v11, v11, v28

5: pmull v28.1q, v1.1d, v5.1d {A[2]×B[0]}
6: eor.16b v11, v11, v28

7: pmull v12.1q, v1.1d, v6.1d {A[2]×B[2]}
8: ext.16b v30, v0, v0, #8

9: pmull2 v29.1q, v30.2d, v5.2d {A[0]×B[1]}
10: pmull v28.1q, v30.1d, v5.1d {A[1]×B[0]}
11: eor.16b v29, v29, v28

12: pmull v30.1q, v30.1d, v6.1d {A[1]×B[2]}
13: ext.16b v28, v1, v1, #8

14: pmull2 v28.1q, v28.2d, v5.2d {A[2]×B[1]}
15: eor.16b v30, v30, v28

16: ext.16b v28, v31, v29, #8

17: ext.16b v29, v29, v30, #8

18: ext.16b v30, v30, v31, #8

19: eor.16b v10, v10, v28

20: eor.16b v11, v11, v29

21: eor.16b v12, v12, v30

3 Proposed Method

3.1 Optimization for Finite Field Operation

The polynomial addition/subtraction can be performed with bit-wise exclusive-
or instructions on both operands. For the 576-bit case, each operand is loaded
to the 5 128-bit NEON registers (5 = ⌈4.5⌉ = ⌈ 576

128⌉) and 5 times of bit-wise
excluisve-or operations are performed.

The binary field multiplication is the most expensive operation in the finite
field operations. For 576-bit case, Seo et al. proposed the three-term of Karatsuba
multiplication [13]. Each term performs the classical 192-bit wise polynomial
multiplication (See Algorithm 1). The 192-bit multiplication always outputs the
384-bit results in 3 consecutive 128-bit registers. However, this alignment style
requires additional 64-bit wise shift operations to get aligned intermediate re-
sults in three steps for 576-bit multiplication (See Step 4, 8, 10 in Algorithm
2). In order to hide these latencies, we used both previous and shifted 192-bit
polynomial multiplication. In Algorithm 3, shifted version of multiplication is
described. Unlike previous approach described in Algorithm 1, the partial prod-
ucts (A[0]×B[0], A[0]×B[2], A[1]×B[1], A[2]×B[0], A[2]×B[2]) are shifted
by 64-bit. The shifted results are accumulated to the intermediate results for
partial products (A[0]×B[1], A[1]×B[0], A[1]×B[2], A[2]×B[1]). The 64-bit
shifted results are stored into 4 consecutive NEON registers (v16, v17, v18,

Algorithm 2 Aligned Polynomial Multiplication for 576-bit

Require: 576-bit operands A[8 ∼ 0] and B[8 ∼ 0].
Ensure: 1152-bit result C[17 ∼ 0]← A[8 ∼ 0]×B[8 ∼ 0].
1: A← {AH , AM , AL} ← {(A[8], A[7], A[6]), (A[5], A[4], A[3]), (A[2], A[1], A[0])}
2: B ← {BH , BM , BL} ← {(B[8], B[7], B[6]), (B[5], B[4], B[3]), (B[2], B[1], B[0])}
3: CH ← (AH ×192 BH)≪ 384 {Algorithm 1}
4: CM ← (AM ×192 BM)≪ 192 {Algorithm 3}
5: CL ← AL ×192 BL {Algorithm 1}
6: T ← CH ⊕ CM ⊕ CL

7: C ← T ⊕ (T ≪ 192)⊕ (T ≪ 384)
8: CH ← ((AH ⊕AM)×192 (BH ⊕BM))≪ 576 {Algorithm 3}
9: CM ← ((AH ⊕AL)×192 (BH ⊕BL))≪ 384 {Algorithm 1}
10: CL ← ((AM ⊕AL)×192 (BM ⊕BL))≪ 192 {Algorithm 3}
11: C ← CH ⊕ CM ⊕ CL

v19) where the least significant 64-bit of v16 and most significant 64-bit of v19
are set to zero. The detailed 576-bit multiplication is described in Algorithm
2. The 576-bit polynomial multiplication requires 6 192-bit polynomial multi-
plications in Step 3, 4, 5, 8, 9 and 10. The results are required to be shifted
by 192, 384 or 576-bit to the left before intermediate result are accumulated.
The 384-bit shift case does not require additional shift operations on the 128-bit
register. However, two cases (192 and 576-bit) requires 64-bit wise shift to the
left to align the results (Step 4, 8, 10). In this case, we used the shifted 192-bit
polynomial multiplication described in Algorithm 3. For the other three cases
(Step 3, 5, 9), we used the previous approach described in Algorithm 1. By using
shifted approach, we can avoid three times of 64-bit wise shift operations in each
multiplication. In instruction set level, 12 times of extraction instructions are
optimized.

The polynomial squaring is a linear operation, since the result is obtained
by inserting a 0 bit between consecutive bits of operand. By using the 64-bit
polynomial multiplication (PMULL) instruction, we can compute the 64-bit wise
squaring with single PMULL instruction. In Algorithm 4, the 576-bit wise squar-
ing operation is drawn. The 576-bit operand requires 9 (57664) times of PMULL

instructions.

The m-bit polynomial multiplication/squaring operations produce the values
of degree at most 2m-bit, which must be reduced by modulo. When the modulo
is smaller than operand size (64-bit) of PMULL instruction, we can perform the
multiplication on higher parts (> m) by modulo. The modulo of binary field
F2571 is defined by f(x) = x571 + x10 + x5 + x2 + 1, which is only 11-bit modulo
so we can use PMULL instruction for computations. However, 571-bit modulo is
not efficient over the 64-bit machine since this requires 5-bit wise shift opera-
tions to align the results. Alternatively, we choose the 64-bit machine friendly
modulo (f(x) = x576 + x15 + x10 + x7 + x5) and incomplete reduction. This
approach avoids the number of 5-bit wise shift operations and complete results
are also obtained by performing the complete reduction before outputting the

Algorithm 3 (Shifted) 192-bit Polynomial Multiplication in Program Codes

Require: 192-bit operands A[2 ∼ 0] (v1, v2) and B[2 ∼ 0] (v6, v7).
Ensure: 384-bit result C[5 ∼ 0]← A[2 ∼ 0]×B[2 ∼ 0] (v16, v17, v18, v19).
1: pmull v17.1q, v1.1d, v6.1d {A[0]×B[0]}
2: pmull v18.1q, v1.1d, v7.1d {A[0]×B[2]}
3: pmull2 v28.1q, v1.2d, v6.2d {A[1]×B[1]}
4: eor.16b v18, v18, v28

5: pmull v28.1q, v2.1d, v6.1d {A[2]×B[0]}
6: eor.16b v18, v18, v28

7: pmull v19.1q, v2.1d, v7.1d {A[2]×B[2]}
8: ext.16b v16, v31, v17, #8

9: ext.16b v17, v17, v18, #8

10: ext.16b v18, v18, v19, #8

11: ext.16b v19, v19, v31, #8

12: ext.16b v30, v1, v1, #8

13: pmull2 v29.1q, v30.2d, v6.2d {A[0]×B[1]}
14: pmull v28.1q, v30.1d, v6.1d {A[1]×B[0]}
15: eor.16b v29, v29, v28

16: pmull v30.1q, v30.1d, v7.1d {A[1]×B[2]}
17: ext.16b v28, v2, v2, #8

18: pmull2 v28.1q, v28.2d, v6.2d {A[2]×B[1]}
19: eor.16b v30, v30, v28

20: eor.16b v17, v17, v29

21: eor.16b v18, v18, v30

Algorithm 4 576-bit Polynomial Squaring

Require: 576-bit Operand A[8 ∼ 0].
Ensure: 1152-bit Result C[17 ∼ 0]← A[8 ∼ 0]×A[8 ∼ 0].
1: for i = 0 to 8 by 1 do
2: {C[2× i+ 1]||C[2× i]} ← A[i]×A[i]
3: end for

Algorithm 5 Fast Reduction over F2571

Require: 576-bit (complete) or 1152-bit
(incomplete) operands A, complete re-
duction.

Ensure: 571-bit (complete) or 576-bit
(incomplete) result C.

1: if complete reduction then
2: r ←0x425

3: AL ← A mod 2571

4: AH ← A div 2571

5: T ← AH × r
6: C ← AL ⊕ T

7: else
8: r ←0x84A0

9: AL ← A mod 2576

10: AH ← A div 2576

11: T ← AH × r
12: T ← AL ⊕ T
13: TL ← T mod 2576

14: TH ← T div 2576

15: T ← TH × r
16: C ← TL ⊕ T
17: end if

results. The detailed reduction process is available in Algorithm 5. If the com-
plete reduction is selected, the modulo (r) is set to 0x425 representing the values
(x10 + x5 + x2 + 1). In Step 3, the part of A which is lower than 571-bit is ex-
tracted to AL. In Step 4, the part of A which is higher than 571-bit is extracted
to AH . In Step 5, the higher part (AH) is multiplied by modulus (r). In Step 6,
the results are added to the lower part (AL). In case of incomplete reduction,
the modulus (r) is set to 0x84A0 representing the values (x15 + x10 + x7 + x5).
In Step 9, the part of A which is lower than 576-bit is extracted to AL. In Step
10, the part of A which is higher than 576-bit is extracted to AH . In Step 11,
the higher part (AH) is multiplied by modulus (r). In Step 12, the lower part
(AL) are added to the intermediate results T . In Step 13, the part of T which is
lower than 576-bit is extracted to TL. In Step 14, the part of T which is higher
than 576-bit is extracted to TH . In Step 15, the higher part (TH) is multiplied
by modulus (r). In Step 16, the lower part (TL) are added to the intermediate
results T .

For fast and secure inversion operation, we used the Itoh-Tsujii algorithm [4],
which is an optimization of inversion through Fermat’s little theorem (f(x)−1 =
f(x)2

m−2), ensuring the constant time computations. The algorithm uses a re-

peated field squaring and multiplication operations for f(x)2
k

, which follows a
chains of multiplication and squaring sequences (f1 → f2 → f4 → f8 → f16 →
f17 → f34 → f35 → f70 → f71 → f142 → f284 → f285 → f570). The inversion
algorithm requires 13 multiplication and 570 squaring operations.

3.2 Optimization for Scalar Multiplication

In order to perform the scalar multiplication, the point addition and doubling
operations are required, which consist of a number of finite field operations.
Depending on specific coordinates, the number of finite field operations are var-
ied each other. The point addition in López-Dahab/affine coordinates requires 8
multiplication (M), 5 squaring (S) and 1 a-multiplication (a-M). Alternative point
addition in López-Dahab coordinates requires 13M and 5S. For the point doubling
in López-Dahab coordinates requires 3M, 5S, 1a-M and 1 b-multiplication (b-M).
Particularly, the variable (a) is set to 1 in the B-571 curve so the a-M operation
is free. The binary field multiplication and squaring operations are performed
by following the implementation techniques described in Section 3.1. A sequence
of multiplication, squaring and addition operations are optimized again by com-
bining the reduction operations . This sequence of field operations involve a
type (A×B + C ×D). The straight-forward implementation of type requires 2
multiplication, 2 reduction and 1 addition operations. One reduction operation
can be optimized by performing the multiplication and addition operations in
advance [9]. Similar a type (A2 + C × D) is also optimized from 1 squaring,
1 multiplication, 2 reduction and 1 addition operations to 1 squaring, 1 multi-
plication, 1 reduction and 1 addition operations. We employed the Negre and
Robert techniques for the point addition in López-Dahab/affine coordinates and
doubling in López-Dahab coordinates. For point addition in López-Dahab/affine
coordinates described in Algorithm 6, Step 13 and 19 can be optimized through

Algorithm 6 Optimization for Point Addition in López-Dahab/affine coordi-
nates [9]

Require: Point P1 (X1, Y 1, Z1) in
López-Dahab coordinates and P2
(X2, Y 2, 1) in affine coordinates

Ensure: Point P3 (X3, Y 3, Z3) in López-
Dahab coordinates

1: t0← Z12

2: t1← Y 2× t0
3: k0← Y 1 + t1
4: t2← X2× Z1
5: k1← X1 + t2
6: k2← k1× Z1
7: Z3← k22

8: k4← X2× Z3

9: t3← k12

10: t4← a× k2
11: t5← k0 + t3
12: t6← t5 + t4
13: X3← k02 + k2× t6 {A2 + C ×D}
14: t7← k0× k2
15: t8← k4 +X3
16: t9← t7 + Z3
17: t10← Y 2 +X2
18: t11← Z32

19: Y 3← t10× t11 + t8× t9 {A×B +
C ×D}

Algorithm 7 Optimization for Point Doubling in López-Dahab coordinates [9]

Require: Point P1 (X1, Y1, Z1) in
López-Dahab coordinates

Ensure: Point P3 (X3, Y3, Z3) in López-
Dahab coordinates

1: k0← Z12

2: t0← k02

3: k1← b× t0
4: k2← X12

5: Z3← A× k2

6: t1← k22

7: X3← t1 + k1
8: t2← Y 12

9: t3← a× Z3
10: t4← t2 + t3
11: t5← t4 + k1
12: Y 3← t5×X3 + Z3× k1 {A×B +

C ×D}

optimal (A2 +C ×D) and (A×B+C ×D) types. For point doubling in López-
Dahab coordinates described in Algorithm 7, Step 12 can be optimized through
optimal (A × B + C × D) type. We extended this technique to point addition
in López-Dahab coordinates in Algorithm 8. The Step 17, 18 and 20 include the
(A × B + C ×D) type and this approach optimizes the 3 reduction operations
in each point addition operation.

The scalar multiplication is implemented in Montgomery ladder algorithm
[5]. This algorithm always performs the point addition and doubling operations
in each bit and our implementations of finite field arithmetic are also regular
fashion, which ensure constant-time computation and security against Simple
Power Analysis (SPA). For unknown point, we used point addition/doubling
in López-Dahab coordinates with window methods and for fixed point we used
point addition in López-Dahab/affine coordinates and doubling in López-Dahab
coordinates with window methods.

Algorithm 8 Optimization for Point Addition in López-Dahab coordinates

Require: Point P1 (X1, Y 1, Z1) and P2
(X2, Y 2, Z2) in López-Dahab coordi-
nates

Ensure: Point P3 (X3, Y 3, Z3) in López-
Dahab coordinates

1: k0← X1× Z2
2: k1← X2× Z1
3: k2← k02

4: k3← k12

5: k4← k0 + k1
6: k5← k2 + k3
7: t0← Z22

8: k6← Y 1× t0

9: t1← Z12

10: k7← Y 2× t1
11: k8← k6 + k7
12: k9← k8× k4
13: t2← Z1× Z2
14: Z3← k5× t2
15: t3← k7× k3
16: t4← k2× k6
17: X3← k1×t4+k0×t3{A×B+C×D}
18: t5← k5×k6+k0×k9{A×B+C×D}
19: t6← k9 + Z3
20: Y 3← t6×X3+t5×k5{A×B+C×D}

Table 1: Comparison results of binary field multiplication for B-571 curve

Algorithm Clock cycle

Seo et al. [13] 132
Proposed Method 99

4 Evaluation

We used Xcode (ver 6.3.2) as a development IDE and programmed over iPad
Mini2 (iOS 8.4). The iPad Mini2 equipped Apple A7 with 64-bit architecture
operated in the frequency of 1.3GHz. The program is written in C and assembly
codes and complied with -Ofast optimization level. The timing are acquired
through the clock cycles of real device.

In Table 1, the comparison results of binary field multiplication over B-571
curve are drawn. We only compared results with Seo et al. [13] since SUPERCOP
benchmark tool does not support the iOS operating system which is required
for our experiments and the work by Gouvêa and J. López is only provide the
GCM operations [3]. The Seo et al. achieved the high performance with three-
term of Karatsuba multiplication for 576-bit polynomial multiplication and fast
reduction techniques. In our implementation, we further improved performance
by a factor of 1.34 times with the finely aligned multiplications and incomplete
reduction techniques.

In Table 2, we listed the whole results of ECC implementations. Unfortu-
nately, there is no paper about ECC implementations on ARMv8. We only
provide our results. The squaring operation is linear computations, which re-
quires small number of clock cycles. The inversion operation is implemented in
Fermat’s little theorem, which requires 570 squaring and 13 multiplication oper-
ations. For group operations, three different point operations are evaluated. The
doubling in López-Dahab coordinates shows the lowest clock cycles. The point

Table 2: Performance evaluations of B-571 curve, where w is window size

Operation Clock cycle

Binary Field Operation
Multiplication 99
Squaring 24
Inversion 31,232

Group Operation
Point addition (LD/affine) 1,107
Point addition (LD) 1,537
Point doubling (LD) 609

Scalar Multiplication
Unknown point (w = 4) 759,630
Fixed point (w = 4) 331,944

addition in López-Dahab coordinates shows the highest clock cycles. Finally, the
scalar multiplication is efficiently implemented with window methods. In the
fixed point, points can be pre-computed and the number of doubling operations
are optimized. In this paper, we explore the medium window size but this can
be easily extended to the long window size by sacrificing the RAM storages.

5 Conclusion

In this paper, we show efficient finite field and group operations for B-571 ECC
implementations over ARMv8. We optimized the binary field arithmetics by
introducing the several optimization techniques. The group operations are also
improved by reducing the number of reduction operations in point addition and
doubling operations. Finally, we achieved the high speed implementation of B-
571 implementation over ARMv8.

6 Conflict of Interests

The author(s) declare(s) that there is no conflict of interest regarding the pub-
lication of this paper.

References

1. Recommended elliptic curve domain parameters. Standards for Efficient Cryptog-
raphy Group, Certicom Corp, 2000.

2. D. Câmara, C. P. Gouvêa, J. López, and R. Dahab. Fast software polynomial multi-
plication on ARM processors using the NEON engine. In International Conference
on Availability, Reliability, and Security, pages 137–154. Springer, 2013.

3. C. P. Gouvêa and J. López. Implementing GCM on ARMv8. In Cryptographers
Track at the RSA Conference, pages 167–180. Springer, 2015.

4. T. Itoh and S. Tsujii. A fast algorithm for computing multiplicative inverses in
GF(2m) using normal bases. Information and computation, 78(3):171–177, 1988.

5. M. Joye and S.-M. Yen. The Montgomery powering ladder. In International Work-
shop on Cryptographic Hardware and Embedded Systems, pages 291–302. Springer,
2002.

6. A. Karatsuba and Y. Ofman. Multiplication of multidigit numbers on automata.
In Soviet physics doklady, volume 7, page 595, 1963.

7. J. López and R. Dahab. High-speed software multiplication in GF(2m). In Inter-
national Conference on Cryptology in India, pages 203–212. Springer, 2000.

8. P. L. Montgomery. Five, six, and seven-term Karatsuba-like formulae. IEEE
Transactions on Computers, 54(3):362–369, 2005.

9. C. Negre and J.-M. Robert. Impact of optimized field operations AB, AC and
AB+CD in scalar multiplication over binary elliptic curve. In International Con-
ference on Cryptology in Africa, pages 279–296. Springer, 2013.

10. L. B. Oliveira, D. F. Aranha, C. P. Gouvêa, M. Scott, D. F. Câmara, J. López, and
R. Dahab. TinyPBC: Pairings for authenticated identity-based non-interactive key
distribution in sensor networks. Computer Communications, 34(3):485–493, 2011.

11. H. Seo, Y. Lee, H. Kim, T. Park, and H. Kim. Binary and prime field multipli-
cation for public key cryptography on embedded microprocessors. Security and
Communication Networks, 7(4):774–787, 2014.

12. H. Seo, Z. Liu, J. Choi, and H. Kim. Karatsuba–block-comb technique for elliptic
curve cryptography over binary fields. Security and Communication Networks,
8(17):3121–3130, 2015.

13. H. Seo, Z. Liu, Y. Nogami, J. Choi, and H. Kim. Binary field multiplication on
ARMv8. Security and Communication Networks, 2016.

14. M. Shirase, Y. Miyazaki, T. Takagi, and H. Dong-Guk. Efficient implementation of
pairing-based cryptography on a sensor node. IEICE transactions on information
and systems, 92(5):909–917, 2009.

15. A. Weimerskirch and C. Paar. Generalizations of the Karatsuba algorithm for
efficient implementations. IACR Cryptology ePrint Archive, 2006:224, 2006.

