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Abstract. The bilinear map whose domain and target sets are identical
is called the self-bilinear map. Original self-bilinear maps are defined over
cyclic groups. This brings a lot of limitations to construct secure self-bilinear
schemes. Since the map itself reveals information about the underlying cyclic
group, hardness assumptions on DDHP and CDHP may not hold any more.
In this paper, we used iO to construct a self-bilinear map from generic
sets. These sets should own several properties. A new notion, One Way
Encoding System (OWES), is proposed to describe formally the properties
those sets should hold. An Encoding Division Problem is defined to complete
the security proof. As an instance of the generic construction, we propose
a concrete scheme built on the GGH graded encoding system and state
that any 1-graded encoding system may satisfy the requirements of OWES.
Finally, we discuss the hardness of EDP in the GGH graded encoding system.

Keywords: self-bilinear map, multi-linear map, indistinguishability obfus-
cation, one way encoding system.

1 Introduction

The bilinear map is a very useful cryptographic primitive. It provides solutions
for many cryptographic applications such as identity-based encryptions [2], non-
interactive zero-knowledge proof systems [16], attribute-based encryptions [21] and
short signatures [3, 23], etc. The self-bilinear map is a special variant of bilinear
maps. The target and preimage groups of self-bilinear maps are the same. Because of
this exclusive property, the self-bilinear map may have more interesting potentials.
A straightforward application of the self-bilinear map is constructing multilinear
maps.

Multilinear maps are generalized notion from bilinear maps. Not long after bilin-
ear maps show the convenience they bring to the cryptography, Boneh and Silverg
[4] imaged applications of the multilinear maps. But, when they tried to find such
a fantastic tool, they met serious obstacles. From then on, constructing multilin-
ear maps became a long-standing open problem. Until recently, three candidate



multilinear maps were proposed – the GGH scheme [11] on ideal lattices, the CLT
scheme [9] over the integer and the GGH14 [15] on lattices. The multilinear map
is a basic component of some cryptographic primitives such as witness encryption
[14], indistinguishability obfuscation and functional encryption [12], etc.

Recently, multilinear maps met extremely strong challenges. CLT schcme was
completely broken by “zerozing algorithm” [6]. Two patches [13, 5] were proposed
very soon after the CLT was broken. But Coron et al. [10] stated that these two
patches were still unsafe. Then, they described a new multilinear map over the inte-
ger [8]. Not long after the CLT scheme was completely broken, the GGH scheme was
also under attack. Hu and Jia constructed a modified encoding/decoding algorithm
[17] and designed a weak-DL attack to break the MDDH assumption which is the
security basis of many schemes. There isn’t any patch that can fix this weakness.
To construct a secure and efficient multilinear map is still a worthwhile work. This
also highlights the study of finding a wonderful self-bilinear map.

Lee [19] designed the first candidate self-bilinear map. But Cheon and Lee [7]
remarked that Lee’s map is not essentially self-bilinear. They also proved the impos-
sibility that the secure self-bilinear map can’t be constructed over cyclic group of
known prime order. The computational Diffie-Hellman (CDH) assumption collapses
because the map itself reveals much information about the underlying group. To
avoid this, Yamakawa et al. [22] chose the signed quadratic residue group QR+

n of
Z∗

n to be the underlying group. The order of QR+
n is composite and unknown. The

factoring assumption is a basic hardness assumption in their security proof.

Unlike other’s work, we prefer to build self-bilinear maps over generic sets instead
of cyclic groups. A new concept OWES is defined to describe the generic sets that
can be used to build self-bilinear maps. In order to complete the security proof,
some hard problems are assumed to be hard in the OWES. We show that the
graded encoding system (GES) is an instance of the OWES. Based on the GGH
grade encoding system, a concrete construction of the self-bilinear map is proposed.
We also discussed the security of the concrete scheme.

Through the work of self-bilinear maps from iO, we find that multilinear maps
can be built by making use of iO. On the contrary, it’s like a paradox that the first iO
was designed from multilinear maps. Coincidentally, some recent works try to study
the relationship between the multilinear map and the obfuscation. Paneth et al. [20]
defined a variant of secret sampling multilinear map. They named it the polynomial
jigsaw puzzle. The polynomial jigsaw puzzle can be used to construct iO and iO
implies the polynomial jigsaw puzzle. Albrecht et al. [1] proposed a multilinear map
scheme from obfuscation. These work are not similar to ours. Whether multilinear
map and obfuscation are essentially the same conception is still an open problem
to discuss.

We organize this paper as follows. The cryptographic tools and notations we
used in this paper are introduced in Section 2. We proposed a generic construction
of self-bilinear map based on OWES and iO in Section 4. In Section 5, we build a
concrete self-bilinear map from GGH graded encoding system and iO. We analyse
the EDP in Section 6.



2 Preliminaries

In this section, we describe notations used in this paper, review the iO, and propose
the new concept of OWES. We also present the formal definition of the variant of
self-bilinear maps and multilinear maps.

2.1 Notations

We use Z to denote the set of all integer numbers, F to denote a field. Z[x] to denote
all polynomials with coefficients in Z. Let [n] be the set {x ∈ Z|1 ≤ x ≤ n} and
[0,n] be the set {x ∈ Z|0 ≤ x ≤ n}. λ is the secure parameter. We use e← DS,σ to
denote that e is sampled from the discrete distribution with mean 0 and standard
deviation σ in set S. {xi}ni=1 represent the set {x1, · · · , xn}. If ā is an element in a
residue class ring R/I, then a is its representation in R.

2.2 Indistinguishability Obfuscation

Definition 1 (Indistinguishability Obfuscator). A uniform PPT machine iO
is called an indistinguishability obfuscator for a circuit class Cλ if the following
conditions are satisfied:

– For security parameters λ ∈ N, all C ∈ Cλ, and all inputs x, we have that

Pr[C′(x) = C(x) : C′ ← iO(λ,C)] = 1

– For any (not necessarily uniform) PPT distinguisher D, there exists a negligible
function α such that the following holds: For all security parameters λ ∈ N , and
all pairs of circuits C0, C1 ∈ Cλ, we have that if C0(x) = C1(x) for all inputs x,
then

|Pr[D(iO(λ,C0)) = 1]− Pr[D(iO(λ,C1)) = 1]| ≤ α(λ)

Informally speaking, iO can make two circuits or functions which have the same
size and achieve the same goal be computationally indistinguishable.

3 Self-bilinear maps and One Way Encoding Systems

Below we define formally our notion of self-bilinear maps from OWES and iO. To
make the analogy and differences from self-bilinear maps more explicit, we begin by
recalling the definition of self-bilinear maps of Cheon and Lee [7].

Definition 2 (Self-bilinear map). For a cyclic group G of order p, a map e :
G×G→ G is self-bilinear, if it has the following properties.

– For all g1, g2 ∈ G and integer a ∈ Zp, it holds that

e(ga1 , g2) = e(g1, g
a
2 ) = e(g1, g2)

a.

– The map e is non-degenerate, i.e, if g1, g2 are generators of G, then e(g1, g2) is
a generator of G.



3.1 One Way Encoding Systems

We define the new concept of One Way Encoding Systems (OWES) to summarize all
the necessary properties to build self-bilinear maps. These properties were refined
from cryptographic cyclic groups. Firstly, we generalize the ag ∈ G as an encoding
of ring element ā ∈ Zord(n), where a is a representation of ā. The encoding algorithm
is define as f(x) = xg. We’ll regard the ring as the plaintext space, and all possible
encodings as the encoding space. Secondly, in order to simulate the cyclic group
operation ag+bg = (a+b)g, the encoding system have to be additive homomorphic.
Thirdly, Observing the valid self-bilinear map operation e((a + b)g, γg) = (a +
b)γe(g, g), we find that the self-bilinear map system doesn’t need the plaintext
space to be additively cyclic. So we extend the plaintext space to any finite ring with
identity. The encodings space will not always be a cyclic group because of the change.
Fourthly, since the represenctation of the element in plaintext space is not the integer
anymore, we must define a new manipulation “⊗” between representations and
encodings. Namely, if x is a representation of an element in the plaintext space and
h is an encoding, then x⊗ g is a new encoding. Such manipulation is similar to the
scalar multiplication in linear spaces. Finally, for cryptographical use, given f and
f(a), it should be hard to compute x. Moreover, given f , f(a), f(b), to distinguish
f(ab) from a random encoding should be hard. As a conclusion of all discussed
above, here comes the formal definition of OWES and its hardness assumptions.

Assume that (S0,+, ·) is a finite ring with identity (‘·’ will be omitted for sim-
plicity), S1 is a set with addition operation “⊕”, f : S0 → S1 is a surjection. (‘·’
will be omitted for simplicity))

Definition 3 (OWES). An One Way Encoding System consits of S0, S1 and f ,
with following properties hold:

1. f is additive homomorphic: for a, b ∈ S0, f(a+ b) = f(a)⊗ f(b).
2. Plaintext multiplication ‘⊗’: for a ∈ S0 and f(b) ∈ S1, a⊗ f(b) = f(a · b).
3. f is one way: give f(a), it’s hard to compute a

Moreover, since the self-bilinear map reveal information about the underlying
set, a new hard problem should be hard in the OWES.

Definition 4 (EDP). For OWES (S0, S1, f), the Encoding Division Problem is,
on input the f(ab) ∈ S1 and invertible a ∈ S0, to compute f(b) ∈ S1.

The OWES has a property similar to the linear transformation in linear space.
If we change the f by multiplying it with an element in b ∈ S0, (S0, b ⊗ S1, b ⊗ f)
is also an OWES (But b⊗ S1 6= S1, if b is a zero divisor in S0).

Theorem 1. If (S0, S1, f) is an OWES and the element b ∈ S0, (S0, b⊗ S1, b⊗ f)
is also an OWES.

Proof. The Property 1 and Property 2 obviously hold in (S0, b ⊗ S1, b ⊗ f). We
proof the Property 3 hold below. For simplicity, let f ′ = b ⊗ f . Given f ′(a), If A
can compute a efficiently, we design a algorithm to break Property 3 in (S0, S1, f).



Assume that (S0, S1, f) and b ∈ S0 are the public parameters. The challenger re-
ceives a problem instance f(a). The simulator computes f ′(a) = b⊗ f(a) and sends
f ′(a) to A. A return a with non-negligible probability. So if the Property 3 holds in
(S0, S1, f), it also holds in (S0, b⊗S1, b⊗f). Thus (S0, b⊗S1, b⊗f) is an OWES. ⊓⊔

Self-bilinear map from OWES. The self-bilinear map with auxiliary information
was first defined by Yamakawa et al [22]. We recall the definition with a little
modifications. The Self-bilinear map with auxiliary information consists of efficient
procedures for instance-generation, element-encoding, addition and negation, self-
bilinear map, SBP =(InstGen, Enc, Add, Neg, Map). These procedures are
described below.

Instance Generation. The randomized InstGen(1λ) takes as input the parame-
ter λ, and outputs params, where params is a description of the self-bilinear map
e : S1 × S1 → S1.

Encoding. The Enc(params, a) takes params and a plaintext a ∈ S0, and
outputs the encoding f(a) and the auxiliary information τf(a).

Addition. Given params, two encodings f(a), f(b) ∈ S1, τf(a), τf(b), we have
Add(params, f(a), f(b), τf(a), τf(b)) output the encoding f(a+b), and the auxiliary
information τf(a+b).

Self-bilinear Map. For f(a), f(b) ∈ S1, we have Map(params, f(a), f(b)) =
e(f(a), f(b)).

Hardness Assumptions. Our hardness assumptions are modeled after the discrete-
logarithm, BCDH assumptions in self-bilinear groups. For example, the analog of
discrete-logarithm problem is trying to obtain a from the encoding f(a).

The analog of BCDH in our case roughly says that it is hard to compute map
when somebody is given three or more encodings and the auxiliary information. In
other words, given encodings f(a), f(b), f(c), τf(a), τf(b), τf(c), the c⊗e(f(a), f(b))
can’t be obtained efficiently by BCDH challenger. We formalize the hardness as-
sumption as follows.

Definition 5 (EBCDHP). For a self-bilinear map e : S1 × S1 → S1 and its
underlying OWES (S0, S1, f), the EBCDHP is, on input f(a), f(b), f(c), τf(a), τf(b),
τf(c), to compute c⊗ e(f(a), f(b)).

The EBCDH assumption says that for any setting of parameters, the probability of
solving EBCDHP is negligible.

The OWES can be constructed. We will show in Section 5 that 1-GES (graded
encoding system) of GGH scheme is an OWES. Furthermore, any proposed GES
may satisfy the requirement of OWES by making some minor modifications. Unfor-
tunately, we can’t reduce EDP in GGH scheme to classical hard problems for this
moment, some evidences will exhibit to increase the secure confidence.



4 Generic Construction from OWES and iO

In this section, we construct a self-bilinear map scheme SBP from OWES and iO.

4.1 Our Construction

In the SBP, iO circuits act as the auxiliary information. We describe notations for
circuits on OWES first.

Notation for Circuits on OWES. For the OWES (S0, S1, f) and a1 ∈ S0, Ca1(x)
denotes the circuit that takes x ∈ S1 as input and computes a1 ⊗ x. For circuits
Ca1(x), Ca2(y) whose outputs can be parsed as elements in S1, Plus(Ca1 (x), Ca2(y))
denotes a circuit that computes the sum of outputs of Ca1(x) and Ca2(y).

Now we are ready to to introduce the procedures of of the generic constructing
SBP. The generic construction of self-bilnear map is shown in Fig.1.

Instance Generation: params← InstGen(1λ).
– On input the security parameter λ, initiate an OWES (S0, S1, f).
– Choose an invertible element r ∈ S0 at random.
– Output params = (S0, S1, f, r) as the system parameters.

After the InstGen procedure is executed, the self-bilinear map e is defined
as:

e : S1 × S1 → S1

(f(a1), f(a2)) 7→ f(ra1a2)

Encoding: (f(a), τf(a))← Enc(params, a).

– On input params and a ∈ S0, compute f(a).
– Generate the corresponding τf(a) = iO(Cra)

Self-biliner Map: f(ra1a2)←Map(params, f(a1), τf(a2)).

– On input f(a1), run the obfuscated circuit τf(a2) to compute
τf(a2)(f(a1)) = f(ra1a2).

Addition: (f(a1+a2), τf(a1+a2))← Add(params, f(a1), f(a2), τf(a1), τf(a2)).

– On input f(a1), f(a2) ∈ S1 and the corresponding τf(a1), τf(a2), compute
f(a1 + a2) = f(a1)⊕ f(a2).

– Compute τf(a1+a2) ← iO(Plus(τf(a1), τf(a2)))

Fig. 1. The generic construction of SBP



4.2 Security Analysis of SBP.

We give a polynomial reduction from the EDP to the EBCDHP. In Section 6, we’ll
give an instance of EDP, and analyze its hardness.

Theorem 2. If there is a PPT algorithm A solving the EBCDHP with respect
to SBP efficiently, then there is an algorithm to solve the EDP in the OWES
efficiently.

Proof. We assume that an algorithm A can solve the EBCDHP in SBP. We design
an algorithm C to solve the EDP with high probability by running A as the sub-
routing.

Reduction Algorithm C:

1. O outputs an EDP instance (S′

0, S
′

1, f
′), f ′(rb), r.

2. Compute f ′(r2b) = r ⊗ f ′(rb). Then, set S0 = S′

0, f(x) = x ⊗ f ′(r2b), S1 =
{f(x)|x ∈ S0}. Finally, output params = (S0, S1, f, r). params describes a
SBP. (note that (S0, S1, f) is also an OWES).

3. Choose a′0, a
′

1, a
′

2 ∈ S0 uniformly at random.
4. Compute ra′i + 1 and sets rai = ra′i + 1. Thus, f(ai) = (ra′i + 1) ⊗ f ′(rb), for

i = 0, 1, 2. (note that r is invertible in S0).
5. Generate the auxiliary information τf(ai) = iO(Crai

) = iO(Cra′

i
+1), for i =

0, 1, 2.
6. Send params, {f(ai)}2i=0 and {τf(ai)}2i=0 to A.
7. If A thinks he is playing with a SBP scheme, returns U . Otherwise, A returns

nothing and C aborts.
8. C checks the value of U , if U 6= f(ra0a1a2), aborts.

9. Compute q =
(ra′

1+1)(ra′

2+1)−1
r = ra′1a

′

2 + a′1 + a′2.
10. Compute p = a′0(ra

′

1 + 1)(ra′2 + 1), and output U ′ = U − [p+ q]⊗ f ′(rb).

Correctness: If the reduction algorithm C complete its execution without aborting,
the output U ′ is the answer of EDP (f(rb), b).

U = f(ra0a1a2)
= f ′(ra0a1a2r

2b)
= f ′[a0ra1ra2rb]
= f ′[(a′0 +

1
r )(ra

′

1 + 1)(ra′2 + 1)rb]

= f ′[(a′0(ra
′

1 + 1)(ra′2 + 1) +
(ra′

1+1)(ra′

2+1)
r )rb]

= f ′[(a′0(ra
′

1 + 1)(ra′2 + 1) +
(ra′

1+1)(ra′

2+1)−1
r + 1

r )rb]
U ′ = U ⊖ [p+ q]⊗ f ′(rb)

= U ⊖ [a′0(ra
′

1 + 1)(ra′2 + 1) +
(ra′

1+1)(ra′

2+1)−1
r ]⊗ f ′(rb)

= U ⊖ f ′[(a′0(ra
′

1 + 1)(ra′2 + 1) +
(ra′

1+1)(ra′

2+1)−1
r )rb]

= f ′[(1r )rb]
= f ′(b)



Probability: We analyze the probability that C aborts. In the step 7, A end this
algorithm if the parameters he received is not come from a SBP scheme. According
to the theorem 3.1, (S0, S1, f) is an OWES if (S′

0, S
′

1, f
′) is. The auxiliary iO circuits

in SBP achieved the expected function. So, the probability that algorithm abort
in step 7 is negligible. Since we have assumed that A can solve the EBCDHP in
SBP efficiently, the algorithm C through the step 8 with non-negligible probability.
Thus, the algorithm C will not abort with a non-negligible probability.

Time complexity: We use T (·) to denote the time complexity. Besides the sub-
routing A, the times of manipulations in each step of C is a constant. Assume
that the sum of these constant is t. The time complexity of each manipulation is a
polynomial poly(λ), since they are efficiently computable (addition in a ring etc).
Thus, the time complexity of the algorithm C is bounded by T (C) = t·poly(λ)+T (A).
Since A is assumed to be an efficient algorithm, T (A) is bounded by poly(λ). So,
T (C) = poly(λ) which means C is efficiently computable.

In summary, the algorithm C is a polynomial reduction from EDP to EBCDHP.
Since EDP is hard, the algorithm that can solve EBCDHP doesn’t exist.

Remark In the algorithm C, we compute ra′1a
′

2 + a′1 + a′2 instead of computing
(ra′

1+1)(ra′

2+1)−1
r in step 9. This is because of the uncovered division algorithm in

S0. If S0 is the integer ring or polynomial ring (it has the division algorithm), the
division algorithm may be used reduce the time complexity of the step 9. As the

number of term increase, to compute
∏

n

i=1(ra
′

i
+i)−1

r is much easier.

5 Concrete Construction from GGH and iO

The OWES is not an unpractical concept. The GGH graded encoding system [11] is
an instance of the OWES. We’ll introduce a concrete construction from the graded
encoding system (GES) and iO.

5.1 An Instance of OWES

We can get an instance of the OWES out of the GGH graded encoding system, only
considered the 1-GES. Let r, d, d′ denote the level-0 encodings, c(d) denotes the
level-1 encoding of I + d, where I is the ideal. The four properties of OWES hold
in 1-GES.

1. additive homomorphic: c(d) + c(d
′) = c(d+d′)

2. plaintext multiplication: d⊗ c(d) = c(dd
′)

3. Given the level-1 encoding c(d), it is hard to compute the level-0 encoding d,
where d is a short element in I + d.

The EDP in 1-GES is, given c(rd), r, to compute c(d). It seems that EDP is hard in
1-GES, the further consideration of EDP is in Section 6.



5.2 Construction

Depending on the security parameter λ, we choose the ring R = Z[x]/(xn + 1) and
Rq = R/qR, where q, n, m (mentioned below) are function of λ. Elements in the
underlying ring can be regarded as polynomials. The system encodes elements of a
quotient ring QR = R/I, where I = 〈g〉 and g ∈ R. We will use the symbol c(d) to
denote the encodings of element d. Since 1-GES is an instance of the OWES, we
assume that the notation for circuit on OWES defined in Section 4.1 is still worked
here. The concrete self-bilinear map scheme is shown in Fig.2

Instance Generation: params← InstGen(1λ).
– Take as input the security parameter λ, generate the 1-GES. It is described

by the following parameters. y = [a
z
]q , the level-1 encoding of I + 1. xi =

[ bi
z
]q , i = [m], the re-randomization parameters. xi is the level-1 encoding

of I . The zero testing parameter Pzt = [hz/g]q , where h is “somewhat
small”.

– Choose a random element α← DR,σ′ .
– Choose a random element s← DZm,σ′ , and compute v = s · y.
– Define params = (R/I,Rq, v, {xi}

m
i=1, α, Pzt) and makes them public.

Here, R/I acts as S0 in OWES, Rq plays a role of S1, and v, {xi}
m
i=1 are the

encoding algorithm f . Pzt helps to check whether an element equals to the
other. After the instance generation procedure is executed, the self-bilinear
map e is difined as

e : Rq ×Rq → Rq

(c(d), c(d
′)) 7→ c(αdd′)

Encode: (c(d), τc(d))← Encode(params, d).

– Compute c(d) = [dv +
∑m

i=1 rixi]q , where r ← DZm,σ∗ , σ∗ = 2λ.
– Generate the corresponding auxiliary information τc(d) = iO(Cαd).

Addition: (c(d+d′), τc(d+d′))← Add(params, c(d), c(d
′), τc(d) , τc(d′)).

– Compute c(d+d′) = [c(d) + c(d
′)]q directly.

– Generate the auxiliary information as τ
c(d+d′) ← iO(Plus(τc(d) , τc(d′))).

Self-bilinear Map: c(αdd
′) ←Map(param, c(d), τc(d′)). Run the circuit

τ
c(d

′)(c
(d)) to compute c(αdd′) = [αd′c(d)]q.

isZero(params, c). Output 1 if ||[Pztc
(d)]q || < q3/4, otherwise output 0.

Fig. 2. The concrete construction of SBP



5.3 Setting the Parameters

GGH are noise encodings. The noise level should never be too large. The setting of
parameters should satisfy the basic GGH requirements.

– To sample the g ← DZn,σ, set σ =
√
λn, σ should larger than the smoothing

parameter (η2−λ(Zn)). As a result, the size of g is bounded with ||g|| ≤ σ
√
n =

n
√
λ.

– To sample ai, bi and level-0 elements, set σ = λn3/2. Then, these elements are
bounded by λn2. GGH states that numerator in y and the xi are bounded by
σn4.

– To sample r ← DZn,σ∗ , set σ∗ = 2λ. As a result, the numerator xi is bounded
by ||c|| ≤ 2λ · poly(n).

– The value of k-multilinear map of k encodings is essentially the product of one
level-1 encoding and k− 1 plaintext. Hence the numerate of this final encoding
is bounded by ||c|| ≤ 2λ · poly(n) · (λn3/2)k−1 = λ2λnO(k).

– To get λ-level security against lattice attacks, the dimension n should be roughly
fixed so that q < 2n/λ, which means that n > Õ(κλ2).

– Finally, m should be larger than n log q. m = O(n2) is enough.

5.4 Security Analysis of Concrete Self-bilinear Maps

Modified Encoding/Decoding Attack Hu et al. provided the modified encod-
ing/decoding to solve the MDDHP [17]. In fact, their algorithm analyzed the GGH-
Lite scheme [18]. There is a little difference between the GGHLite and GGH scheme
in the re-randomization procedure. GGLite only contains two re-randomization pa-
rameters x(1) and x(2). These parameters are also the level-1 encodings of I. The
modified encoding/decoding algorithm almost totally solves the MDDHP. If we use

κ-MDDHP to denote the problem corresponding to κ-multilinear maps, c
(d)
k to de-

note the level-k encoding of I + d, {c(di)
1 }κ+1

i=1 is the κ+1 level-1 encodings given by
the κ-MDDHP oracle, then the attack procedure works as follows.

1. Use the weak-DL attack to generate the level-0 encoding d′i of level-1 encoding

c
(di)
1 . Note that d′ is not a short element.

2. Multiply these level-0 encodings together to get the level-0 encoding
∏κ+1

i=1 di.

3. Use the modified encoding/decoding procedure to get a level-κ decoding pztc
(
∏

κ+1
i=1 di)

κ .
4. Extract the high order bits of the result in the step 3.

If level-k encodings encode the same coset of I, the most significant bits of their

decodings are identical. So, these bits can help adversaries distinguish the c
(
∏

κ+1
i=1 di)

κ

and a random level-κ encoding.
The attacking algorithm requires some intermediate parameters. These param-

eters are called special decodings that are obtained as below.

Y = yκ−1x(1)pzt (mod q) = h(1 + ag)κ−1b(1)



X(i) = yκ−2x(i)x(1)pzt (mod q) = h(1 + ag)κ−2(b(i)g)b(1), i = 1, 2

where x(i) = [b(i)g/z], i = 1, 2. y=(1+ ag)/z. The exponent of y brings a limitation
to this procedure. If 0 ≤ κ ≤ 2, κ − 1 or κ − 2 will be smaller than 0. On one
hand, since some elements in the ring Rq are not invertible, yκ−2 can not always
be computed. On the other hand, if y2−κ is invertible in Rq, the invert operations
can’t assure that the coefficient of yκ−2 is smaller than q. The “mod q” operation
couldn’t be omitted on the right sides of the equations above. So, the attacking
procedure can only solve the κ-MDDHP, for κ ≥ 3.

Our self-bilinear map scheme adopts the 1-GES. The parameter κ = 1, which
means “Modified Encoding/Decoding Attack” doesn’t threat our self-bilinear map.

6 Further Consideration to ED

The EDP is a very important hard problem in our scheme. Unfortunately, we don’t
know how to give a reduction from classic hard problem to EDP. We attempted an
extensive cryptanalysis of EDP instead.

6.1 Co-prime in Ring and its Residue Class

In the residue class ring Zp, the element ā is invertible if and only if a is co-prime
with p in Z. The modified Euclidean Algorithm can be used to check whether two
elements in Z are co-prime. Moreover the modified Euclidean Algorithm will output
ā−1 if ā.

In this section. we notice that if we have an algorithm to check the co-prime
relation in R, all the co-prime relation in its residue class can be check. Moreover,
the inversion of the element in R of its residue class ring can be computed by solving
a equation with multiple variables.

At the first glance, we have an algorithm to check the co-prime relation only
if we had the Euclidean algorithm in this ring. Unfortunately, even though we can
check co-prime relation in Z[x] and Q[x], these case in residue class of them are more
complicated so that we can’t do it in directly. But this topic is quite important since
if we want to calculate the inverse of ā ∈ R/〈g〉, we usually find s, t ∈ R such that
sa+ tg = 1, and pick this (s mod g) as the inverse of ā ∈ R/〈g〉.

We obtained a simply and directly conclusion by exploring the procedure which
find inverse of elements in Zq. That is if calculating inverse in Zq, one take use of
Euclidean algorithms in Z. So we have conclusion below.

Theorem 3. Let R/〈g〉 be the residue class ring of R, where g ∈ R. Then ā, b̄ ∈
R/〈g〉 are co-prime if and only if ∃s, t, p ∈ R such that ∀a+ lg ∈ ā and ∀b+ng ∈ b̄,
s(a+ kg) + t(b+ ng) + pg = 1.

Proof. Assume that ⊕ and ⊙ denote the add and multiply in R/〈g〉 respectively.

1. Sufficiency. if ā, b̄ ∈ R/〈g〉 are co-prime, then ∃s̄, t̄ ∈ R/〈g〉 such that

s̄⊙ ā⊕ t̄⊙ b̄ = 1̄



(s+ kg) · (a+ lg) + (t+mg) · (b + ng) = 1 + pg

(s+ kg) · (a+ lg) + (t+mg) · (b + ng)− pg = 1

where k, l,m, n ∈ R. So a + lg and b + ng can denote any element in ā and b̄
respectively, and ∃(s+ kg), (t+mg), (−p) ∈ R to prove the result.

2. necessity. if ∃s, t, p ∈ R such that s(a+ lg) + t(b+ ng) + pg = 1. we have

sa+ tb ≡ 1 mod g

s̄⊙ ā⊕ t̄⊙ b̄ = 1̄

this means s̄, b̄ ∈ R/〈g〉 are co-prime by the definition.

By using this theorem, if we want to compute inversion of ā ∈ R/〈g〉, we simply use
the representation of coset a+ 〈g〉 and find s, t, p ∈ Z[x] such that sa+ tg+ pf = 1,
then s is the a representation of coset a−1 + 〈g〉. But this is a function with three
variants. We wonder how hard it is, especially we limited the norm of s.

6.2 Direct Attack

We discuss the difficulty of EDP in concrete OWES. The EDP in OWES is denoted
as (a, v, c(ab) = abv + rX). Assume that a ∈ A, b ∈ B, A, B are elements in R/I
(here, we don’t use the coset form to denote them). All elements in R/I is invertible,
because that I = 〈g〉 is the prime element in R. Since a is public, the adversary
have two direct idea to solve EDP to get c(b).

1. Divide c(ab) by a using the division algorithm in R.
2. Divide c(ab) by a using the division algorithm in Rq[x].
3. Find short enough a′ ∈ A−1, and compute c′ = [a′c(ab)]q. c

′ is a valid level-1
encoding of element in B.

Case 1. All these elements are regarded as elements in R, or as polynomials with
degree less than n. We will get

abv + rX

a
= bv +

rX

a

rX is an element in I. It can be written as a polynomial rX = k(x)g(x)+ l(x)f(x).
Since a(x) ia random polynomial with degree smaller than n, a(x) ∤ g(x) and a(x) ∤
f(x) with high probability. Moreover, for n is a power of 2, f(x) = xn + 1 is an
irreducible polynomial in Q[X ], so is in Z[X ] and R. Thus, it doesn’t exist k′(x)
and l′(x) that makes rX

a = k′(x)g(x) + l′(x)f(x) with high probability. rX
a /∈ I.

abv+rX
a = bv + rX

a is not a valid level-1 encoding of B.

Case 2. Rq is not a Euclidean ring. There’s no known division algorithm in Rq. If we
want to do the division operation, we have to take use of the relation ship between
Rq and R (Actually, R is not a Euclidean ring, But R is more closer to Z[X ] than
Rq, and Z[X ] is Euclidean ring). So, the analysis is similar to case 1. However, Rq

cause mores problems than R. the modular q operation rise the coefficients up, It’s
even not a valid level-1 encoding sometimes.



Case 3. If the short a′ ∈ A−1 is found, attack method 3 truly can solve EDP. We
try to measure the difficulty of finding a′.

We use f to denote the polynomial f(x) for simplicity. The element in R can
be written as p + kf , where p, k, f ∈ Z[x]. The element in R/I can be written as
p̄+ r̄ḡ, where q̄, r̄, ḡ ∈ R. It can also be written as

(p+ kf) + (r + k′f)(g + k′′f)
= p+ rg + (k′g + k′′f + rk′′)f
= p+ rg + r′f

(1)

all elements in (1) are in Z[X ]. r′ = k′g + k′′f + rk′′. This fact tell us, the element
¯̄p in R/I can be written as p+ rg + r′f , and p ∈ Z[X ] is the representation of ¯̄p.

Thus, to find an element a′ ∈ A(−1), is to find polynomials a′, s, t ∈ Z[X ] that
satisfy the equation below

a′a+ sg + tf = 1 (2)

where f is a public parameter, g is a secret parameter, but GGH state that a
not short representation g′ ∈ 〈g〉 > could be recovered. Equation (2) with three
variables. It seems hard to find a′, s, t that satisfy equation (2), and a′ is a short
polynomial. Since s, t don’t have to be short, adversaries can fix a short a′ and
find any s, t that solve the equation. Since a′ is a random element, the probability
Pr[a′ ∈ A(−1)] = |R/I|−1. |R/I| can be computed as |R/I| = det(g, gx, · · · , gxn−1).
We do believe that |R/I| = O(2λ), because that the |R/I| is the plaintext space
of GGH graded encoding system. If |R/I| is not large enough, the MDL problem
in GGH is not hard any more. Thus, the probability that the short a′ ∈ A−1 is
negligible.

7 Conclusion

We described a new notion called one way encoding system (OWES). By making
use of the indistinguishability obfuscation, we construct a self-bilinear map over the
OWES. The EBCDHP is proved to be hard if the EDP is hard. We also discussed
that the graded encoding system like GGH can be used as an instance of OWES.
After that, a concrete construction from GGH encoding system is proposed. To
increase the confidence of security, we give a simple analysis about EDP in the
polynomial ring and its residue class ring. We believe that the EDP in GGH is as
hard as we need.
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