

Implementation of the SCREAM
 Tweakable Block Cipher in

 MSP430 Assembly Language

William Diehl

George Mason University, Fairfax VA 22033, USA
wdiehl@gmu.edu

Abstract. The encryption mode of the Tweakable Block Cipher (TBC) of the
SCREAM Authenticated Cipher is implemented in the MSP430
microcontroller. Assembly language versions of the TBC are prepared using
both precomputed tweak keys and tweak keys computed “on-the-fly.” Both
versions are compared against published results for the assembly language
version of SCREAM on the ATMEL AVR microcontroller, and against the C
reference implementation in terms of performance and size. The assembly
language version using precomputed tweak keys achieves a speedup of 1.7 and
memory savings of 9 percent over the reported SCREAM implementation in
the ATMEL AVR. The assembly language version using tweak keys computed
“on-the-fly” achieves a speedup of 1.6 over the ATMEL AVR version while
reducing memory usage by 15 percent.

Keywords: Cryptography, encryption, MSP430, assembly, speed, efficiency

1 Introduction

Authenticated ciphers combine the functionality of confidentiality and integrity into one
algorithm. In 2014 the Competition for Authenticated Encryption: Security, Applicability,
and Robustness (CAESAR) called for submission of authenticated cipher candidates [1].
CAESAR candidates are evaluated in terms of security, size, robustness, flexibility, and
performance. Software reference implementations written in C code are required as part of
Rounds One and Two submissions. Many of the Round One submissions contained the
authors’ evaluations in both hardware and software. Additionally, several Round One
submissions investigated the software performance of the authors’ algorithms on various
types of platforms, including high-end CPU and resource-constrained microcontrollers
suitable for embedded applications.

SCREAM (Side-channel resistant authenticated encryption with masking) is one of the
29 CAESAR Round Two candidates. As part of the submission, the SCREAM authors
conducted both hardware and software evaluations in several different configurations, and
listed comparisons in area and performance of known cryptographic block ciphers, such as
AES. As part of the software evaluation, the SCREAM authors conducted evaluations on
high-end CPUs (Cortex A15, Atom, Core i7), and on an 8-bit microcontroller, the ATMEL
AVR ATtiny 45 [2]. This research builds upon the SCREAM authors’ observations by
implementing SCREAM-10 (E) (i.e., SCREAM Tweakable Block Cipher (TBC) encryption
mode consisting of ten steps) on the Texas Instruments TI MSP430 microcontroller. The
MSP430 results are compared to the ATMEL AVR results in terms of size (ROM and RAM
bytes) and performance (clock cycles per block and cycles per byte).

2 MSP430 Microcontroller

2.1 MSP430 Background

The TI MSP430F5529 Launch Pad Evaluation Kit was used in this research. This launch
pad contains the 16-bit MSP430 CPU. The MSP430 can be clocked at speeds up to 25 MHz
given the proper power configurations, however, the default setting of 8 MHz
(corresponding to PMMCoreVx = 0) was used in this research. This configuration
contains 128kB of Flash RAM and 8 kB of RAM. The MSP430, like the ATMEL AVR,
uses a RISC instruction set. However, the MSP430 is a 16-bit processor vice the 8-bit
ATMEL AVR. The MSP430 can address up to 1MB of memory, which requires a 20-bit
address space and use of the MSP430X instruction set. However, only two MSP430X-
specific instructions are used in this research, calla and reta.

The MSP430 uses twelve 16-bit general purpose registers (R4 – R15). Although the

MSP430 is advertised as a RISC instruction set, it utilizes seven addressing modes,
including register, indexed, symbolic, absolute, indirect register, indirect register auto-
increment, and immediate. The latency for operations is variable, with register operations
taking only a single cycle, and ALU operations in absolute mode taking up to six cycles.
However, five-cycle absolute mov.w and six-cycle absolute xor.w operations can still be
advantageous to overall performance, since the overhead of multiple load-and-store
operations is avoided, as well as the overhead of corresponding push and pop commands
[3].

2.2 Related Work

The MSP430 has been used extensively in cryptographic research, in particular for
comparison of light-weight cipher implementations in embedded and wireless sensor
networks. Law et al. compared the performances of five block ciphers in C implementations
on the MSP430 [4]. Cazorla et al. constructed 12 lightweight and five conventional block
cipher implementations in C using the MSP430 [5]. Wenzel-Brenner et al. compared 12
SHA-3 candidates on seven different CPU platforms using C implementations [6].

Other research has measured algorithm performance on the MSP430 using a
combination of C and assembly language. For example, Düll et al. investigated
performance of Elliptic-Curve Cryptography (ECC) using base code written in C but
optimizing high-performance field multiplication in assembly language [7]. Burlow et al.
extensively studied various implementations of block ciphers in both C and assembly
language, and made performance comparisons between implementations [8]. Gouvêa and
López produced high-speed implementations of several authenticated encryption modes of
AES (such as Counter-with-CBC MAC Mode, Galois Counter Mode, Offset Codebook
Mode, etc.) using the MSP430 with the CC430F6137 chip. The authors implemented these
modes in C, with critical functions written in assembly. The authors also compared and
contrasted performance with and without the MSP430’s built-in AES instruction set [9].

 Additionally, Schwabe, Yang, and Yang investigated pure assembly language
implementations of SHA-3 candidates on the ARM11 processor. They noted that assembly
language implementations of some candidates had a speedup of 2 over C implementations,
and emphasized the importance of assembly language in performance evaluations of
cryptographic algorithms [10].

3 Methodology

In support of this research several versions of SCREAM-10 (E) were implemented on the
MSP430. The first version was a C implementation ported directly from the SCREAM
Reference C implementation available at [11], and formatted to run on the MSP430. The
SCREAM authors, in producing their ATMEL AVR implementation, attempted to follow

insofar as possible the benchmarking methodology for hash functions outlined in [12]. This
research is informed by the methodology used in [12], but deviates from this methodology
as it measures block ciphers on the MSP430, not hash functions on the ATMEL AVR.
However, the subsequent implementations of SCREAM-10 (E) in this research are written
entirely in assembly language, and should provide a rational basis for comparison between
ATMEL AVR and MSP430 performance.

The SCREAM authors, as discussed in [2], noted the degradation in performance in their
own implementation resulting from computation of tweak keys “on-the-fly.” Therefore,
one assembly language implementation uses precomputed tweak keys, and another uses
tweak keys computed on-the-fly, thus providing a basis for comparison in terms of size and
performance. In contrast to [9], no comparison with the code using the AES instruction set
is possible, since the SCREAM block cipher does not employ AES.

The two assembly language versions employ registers R8 – R15 as global variables
containing the 128-bit status word, which eliminates the need to save and restore these
registers during function calls. However, this reduces the amount of available registers to
four (R4-R7), which necessitates some saving and restoring of registers, as well as use of
RAM locations for memory-to-memory (i.e., absolute) operations. The MSP430F5529
contains a 32-bit by 32-bit hardware multiplier which was not used in these designs.
Additionally, there is no multiplication operation in the instruction set. This code uses a
look-up table to conduct the finite possible numbers of multiplications required for
computation of the round constants.

This research is conducted in TI CCS Code Composer Studio. Like the TI IAR

Embedded workbench environment, CCS allows for clock cycle measurement in the
debugging mode, which is used to measure cycle counts in this research.

4 Results

The results of the three implementations in comparison to those reported in [2] are shown
in Table 1.

Table 1. Comparison of SCREAM-10 (E) implementations on ATMEL AVR and MSP430

 ROM Bytes RAM
Bytes

Cycles/
block

Cycles/
byte

Cycles/
S Box

Cycles/
L Box

Implementation Code Tables Total
ATMEL AVR

C 1398 2048 3446 160 7646 478 - -
MSP 430

C 2104 1150 3254 254 17296 1081 131 317
Assembly

Precomputed
Tweak Keys

2184 1048 3232 46 4424 277 70 108

Tweak Keys
on-the-fly

2002 1048 3096 46 4752 297 70 108

As expected, the C implementation struggles against all three assembly language

implementations in terms of cycle count, but is generally on par in terms of size. However,
the MSP430 assembly version using precomputed tweak keys exhibits a speedup of 1.7 over
the ATMEL AVR version, and reduces total memory usage by 9 percent. The MSP430
assembly version which computes tweak keys on-the-fly is less efficient, and exhibits a
speedup of 1.6 over the ATMEL AVR.

There are several observations to be made. One observation is that the MSP430
outperforms the ATMEL AVR for this particular application using assembly language.
This is most likely due to the 16-bit MSP430 versus the 8-bit ATMEL AVR, and possibly
due to advantages provided by the variety of addressing modes available in the MSP430.

A second observation is that, as noted by the SCREAM authors in [2], precomputation
of tweak keys in SCREAM is more efficient than tweak keys computed “on-the-fly.” While
this is not universally true for all tweakable block ciphers, the structure of SCREAM lends
itself to easy precomputation of tweak keys, since each tweak key is repeated every three
steps. Precomputation of tweak keys in this case is also memory-efficient, since only 32
additional bytes are required to store all three precomputed tweak keys. Overall, the version
with precomputed tweak keys uses only 4 percent more memory than the version employing
tweak keys on-the-fly, but enjoys a speedup of 1.07. In terms of cycles, 108 cycles are
required for tweak key precomputation, plus approximately 10 cycles per step of recurring
overhead. In contrast, tweak keys computed on-the-fly forego the 108 cycle initial
computation, but require approximately 50 cycles per step.

The third observation supports claims in [2] and [13] that the bitslice construction used
in the S Box is efficient. For example, in the relatively inefficient C implementation, each
step consumes 1729 cycles (averaged over a 10-step implementation). Since there are two
rounds and thus two S Box calls per step, 262 cycles (i.e., 131 cycles per S Box call) are
spent in the S Box out of 1729 cycles per step, or only 15 percent of total cycle count. This
efficiency is achieved by using only xor, and, and not operations for the bitslice S Box,
and no look-up table accesses. The assembly versions reduce the cycle count of each S Box
to 70 cycles per call.

5 Conclusion

The SCREAM Tweakable Block Cipher encryption mode with 10 steps was successfully
implemented on the MSP430 microcontroller using the Reference C code and two assembly
language implementations. The assembly language versions have a significantly reduced
cycle count on the MSP430 in comparison to the ATMEL AVR using similar design
methodology. For this application, precomputation of tweak keys is faster than tweak keys
computed on-the-fly, and uses only slightly more memory. However, this is due to the
simple nature of SCREAM tweak keys, and might not be applicable to Tweakable Block
Ciphers in general. The bitslice and LS-cipher construction used in SCREAM are efficient
in both C and assembly languages.

Future study could involve the implementation of full authenticated cipher candidates
in MSP430 assembly language, comparison of precomputed tweak keys versus tweak keys
computed on-the-fly in other algorithms which support such a comparison, and
implementations of authenticated ciphers on the new TI MSP432 32-bit microcontroller.

References

1. “CAESAR: Competition for Authenticated Encryption: Security, Applicability, and Robustness.”
Internet: http://competitions.cr.yp.to/caesar.html, Jun. 16, 2014 [Jul. 19, 2015].

2. V. Grosso, G. Leurent, F. Standaert, K. Varici, F. Durvaux, L. Gaspar, S. Kerckhof, “SCREAM &
iSCREAM, Side-Channel Resistant Authenticated Encryption with Masking,” Update to Version
2, Internet: http://perso.uclouvain.be/fstandae/SCREAM/SCREAM_update1.pdf, Mar. 1, 2014
[Sep. 15, 2014].

3. “MSP430x5xx and MSP430x6xx Family User's Guide”, Texas Instruments, Internet:
www.ti.com/lit/ug/slau208n/slau208n.pdf, 2008 (Revised 2014) [Jun 26, 2015].

4. Y. Law, J. Doumen, P. Hartel, “Survey and benchmark of block ciphers for wireless sensor
networks. ACM Transactions on Sensor Networks (TOSN), Volume 2, Issue 1, pp. 65-93. ACM,
New York, 2006.

5. M. Cazorla, K. Marquet, M. Minier, “Survey and benchmark of lightweight block ciphers for
wireless sensor networks” in SECRYPT 2013 - Proceedings of the 10th International Conference
on Security and Cryptography, Reykjavik, Iceland, pp. 29-31 July, 2013.

6. C. Wenzel-Brenner, J. Gräf, J. Pham and J.P. Kaps, “XBX Benchmarking Results,” The 3rd SHA-
3 Candidate Conference, Washington, D.C., Mar. 22, 2012.

7. M. Düll, B. Haase, G. Hinterwälder, M. Hutter, C. Paar, A. H. Sánchez and P. Schwabe, “High-
speed Curve25519 on 8-bit, 16-bit, and 32-bit microcontrollers,” Cryptology ePrint Archive,
Report 2015/343, 2015.

8. B. Buhrow, P. Riemer, M. Shea, B. Gilbert, E. Daniel, “Block Cipher Speed and Energy Efficiency
Records on the MSP430: System Design Trade-Offs for 16-bit Embedded Applications,”
Cryptology ePrint Archive, Report 2015/011, 2015.

9. C. Gouvêa and J. López, “High speed implementation of authenticated encryption for the MSP430X
microcontroller,” Proceedings of the 2nd International Conference on Cryptology and Information
Security in Latin America, 2012.

10. P. Schwabe, B. Y. Yang, S. Y. Yang, “SHA-3 on ARM11 Processors”, The 3rd SHA-3 Candidate
Conference, Washington, D.C., Mar. 22, 2012.

11. “SUPERCOP, European Network of Excellence in Cryptology II,” Internet:
(http://bench.cr.yp.to/supercop.html), Sep. 11, 2014 [Sep. 15, 2014].

12. T. Eisenbarth, S. Heyse, I. von Maurich, T. Poeppelmann, J. Rave, C. Reuber, and A. Wild,
“Evaluation of SHA-3 Candidates for 8-bit Embedded Processors,” presented at the National
Institute of Standards and Technology, Second SHA Candidate Conference, Santa Barbara, CA,
2010.

13. V. Grosso, G. Leurent, F.-X. Standaert, and K. Varici, LS-designs: “Bitslice encryption for
efficient masked software implementations.” Proceedings, 21st International Workshop on Fast
Software Encryption (FSE 2014), London, U.K., Mar. 3 – 5, 2014.

