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Abstract

Recently Sarkar (DCC 2014) has proposed a new attack on small decryption
exponent when RSA Modulus is of the form N = prq for r ≥ 2. This variant
is known as Prime Power RSA. The work of Sarkar improves the result of May
(PKC 2004) when r ≤ 5. In this paper, we improve the existing results for
r = 3, 4. We also study partial key exposure attack on Prime Power RSA. Our
result improves the work of May (PKC 2004) for certain parameters.
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Decryption Exponent

1. Introduction

In the domain of public key cryptography, RSA has been the most popular
cipher since its inception in 1978 by Rivest, Shamir and Adleman. Wiener [19]
presented an important result on RSA by showing that one can factor N in
polynomial time if the decryption exponent d < 1

3N
1
4 . Later using the idea of

Coppersmith [6], Boneh and Durfee [4] improved this bound up to d < N0.292.
There are several RSA variants proposed in the literature for efficiency and

security point of view. In this paper, we consider Prime Power RSA, where RSA
modulus N is of the form N = prq where r ≥ 2. The modulus N = p2q was
first used by Fujioka et al. in Eurocrypt 1991 [8]. In Eurocrypt 1998, Okamoto
et al. [16] also used N = p2q to design a public key crypto system.

There are two variants of Prime Power RSA. In the first variant ed ≡ 1 mod
pr−1(p − 1)(q − 1), where as in the second variant ed ≡ 1 mod (p − 1)(q − 1).
In [9], authors proved that polynomial time factorization is possible for the

second variant if d < N
2−
√

2
r+1 .

For the first variant, Takagi in Crypto 1998 [18] proved that when d ≤
N

1
2(r+1) , one can factor N in polynomial time. Later in PKC 2004, May [15]

Email address: sarkar.santanu.bir@gmail.com (Santanu Sarkar)

Preprint submitted to Elsevier August 3, 2015



improved this bound up to d < N
max

{
r

(r+1)2
,( r−1

r+1 )
2
}

. Recently Lu et al. [14]

improve the work of [15]. They show one can factor N when d < N
r(r−1)

(r+1)2 .
Sarkar [17] has considered the polynomial fe(x, y, z) = 1 + x(N − yr −

yr−1z+yr−1) over Ze whose root is (x0, y0, z0) = (b, p, q), where ed = 1+bφ(N)
to analyse the RSA modulus N = prq. In this paper we consider the same
polynomial. But our lattice construction to solve this polynomial is different
from [17]. As a result, we improve the existing works of [15, 17, 14] when
r = 3, 4.

Partial Exposure on d. In Crypto 1996, Kocher [10] first proposed a
novel attack which is known as partial key exposure attack. He showed that an
attacker can get a few bits of d by timing characteristic of an RSA implement-
ing device. Fault attacks [3] and power analysis [11] are other important side
channel attacks in this direction. Boneh, Durfee and Frunkel [2] first proposed
polynomial time algorithms when the attacker knows a few bits of the decryp-
tion exponent. The approach of [2] works only when the upper bound on e is√
N . Later this constraint was removed by Blömer et. al. in Crypto 2003 [1]

and Ernst et. al. in Eurocrypt 2005 [7].
May in PKC 2004 [15] studied partial key exposure attack on Prime Power

RSA. He showed that one can factor N in polynomial time from the knowledge

of d0 where |d − d0| < N
max

{
r

(r+1)2
,( r−1

r+1 )
2
}

when RSA modulus N = prq. Lu
et al. [14] improve the work of [15] and show that factorization of N can be

possible when |d − d0| < N
r(r−1)

(r+1)2 . So in particular, when r = 2, approach
of [15, 14] works when |d − d0| < N0.22. We have improved this bound up to
N0.33. Unfortunately, our method works only when d < N0.67.

Our strategy to solve multivariate modular equation is based on lattice re-
duction [12] followed by Gröbner basis technique. Although our technique works
in practice as noted from the experiments we perform, we need heuristic assump-
tion for theoretical results.

Assumption 1. Our lattice-based construction yields algebraically independent
polynomials. The common roots of these polynomials can be efficiently computed
by using techniques like calculation of the resultants or finding a Gröbner basis.

2. Small Decryption Exponent Attack on Prime Power RSA

In this section we will consider the case when RSA modulus is of the form
N = prq where r ≥ 2.

Theorem 1. Let N = prq be an RSA modulus with p ≈ q ≈ N
1

r+1 . Let
the public exponent e(≈ N) and private exponent d satisfies ed ≡ 1 mod φ(N).
Then under Assumption 1, N can be factored in polynomial time if d ≤ Nτ(r),
where τ(r) is a function of r.

Proof. We have ed ≡ 1 mod φ(N) where N = prq. So we can write ed =
1+b(N−pr−pr−1q+pr−1). Now we want to find the root (x0, y0, z0) = (b, p, q)
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modulo e of the polynomial

fe(x, y, z) = 1 + x(N − yr − yr−1z + yr−1).

Let d ≈ Nδ. Since e is of order N , we have b ≈ Nδ. Let X = Nδ, Y = Z =

N
1

r+1 . Clearly, (X,Y, Z) provides the upper bounds of the elements in the root
(x0, y0, z0), neglecting any small constant. Note that yr0z0 = N . Now we define
a set of polynomials which will be used to construct a lattice.

For integers m, a, t ≥ 0, we consider the following polynomials

gi,j,k(x, y, z) = xiy(r−1)i+kzi+af je (x, y, z)

where i = 0, . . . ,m, j = 0, . . . ,m− i, k = 0, . . . , r and

gi,j,0(x, y, z) = y(r+j)zaf ie(x, y, z)

where i = 0, . . . ,m, j = 1, . . . , t− r.

We replace each occurence of the monomial yrz in gi,j,k by N . Let the new
polynomial be h′i,j,k. Now we want to make the coefficient of the monomial xi+j

yk+(r−1)i+rj−rlzi+a−l in h′i,j,k to be 1, where l = min

{⌊k+(r−1)i+rj
r

⌋
, i + a

}
.

Let A be its coefficient in h′i,j,k. Assume gcd(A, e) = 1. Let AB ≡ 1 mod em.
Now consider the set of polynomials

hi,j,k(x, y, z) = Bh′i,j,k(x, y, z)em−j .

Similarly construct hi,j,0(x, y, z) = Bh′i,j,0(x, y, z)em−i.
Next, we form a lattice L by taking the coefficient vectors of the shift poly-

nomials hi,j,k(xX, yY, zZ) as basis.

Now dimension w of L is given by w =

m∑
i=0

m−i∑
j=0

r∑
k=0

1+

m∑
i=0

t−r∑
j=1

1 =
r + 1

2
m2+

mt + o(m). Let the determinant of L be det(L) = XsxY syZszese . Now sx =
m∑
i=0

m−i∑
j=0

r∑
k=0

(i + j) +

m∑
i=0

t−r∑
j=1

i =
m3(r + 1)

3
+
m2t

2
+ o(m3). Similarly, se =

m3(r+1)
3 + m2t

2 + o(m3).
During the calculations of sy, we assume either m > a or a− t

r < m < a.
Now

sy =

m∑
i=0

m−i∑
j=0

r∑
k=0

(
(r − 1)i+ k + rj − rmin

(⌊
(r − 1)i+ k + rj

r

⌋
, i+ a

))

+

m∑
i=0

t−r∑
j=1

(
ri+ r + j − rmin

(⌊
ri+ r + j

r

⌋
, a

))

=
(3a2m− 3am2 +m3)r2

6
− (2am−m2)rt

2
+
mt2

2

− (a3r3 − 3a2r2t+ 3art2 − t3)

6r
+ o(m3)
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Assuming m ≥ a− t
r , we have

sz =

m∑
i=0

m−i∑
j=0

r∑
k=0

(
i+ a−min

(⌊
(r − 1)i+ k + rj

r

⌋
, i+ a

))

+

m∑
i=0

t−r∑
j=1

(
a−min

(⌊
ri+ r + j

r

⌋
, a

))

=
ma2r3

2 − a3r3

6 + m2ar2

2 + a2tr2

2 + m3r
6 −

at2r
2 + t3

6

r2
+ o(m3).

One gets the root (x0, y0, z0) using lattice reduction over L, if det(L) < emw.
Let a = τ1m and t = τ2m, where τ1, τ2 are non-negative real numbers. Now

putting the values of det(L) and w in the condition det(L) < emw, we need

η(τ1, τ2) = −1

6
δ(2r + 3τ2 + 2) +

1

6
r +

1

2
τ2 −(

3τ21 − 3τ1 + 1
)
r2 − 3(2τ1 − 1)rτ2 + 3τ22
6(r + 1)

+

(τ1r − τ2)
3

( 1
r + 1

r2 )− 3τ2
1 r

3+3τ1r
2+r

r2

6(r + 1)
+

1

6
> 0

For a fixed δ, we will take the partial derivative of η with respect to τ1, τ2

and equate each of them to 0, we get τ1 = − (δ−1)r2+(δ−1)r+1
2 r and

τ2 = −
(δ − 1)r3 + 2 δr2 + δr − 2

√
−(δ − 1)r2 − (2 δ − 1)r − δ + 1r + 1

2 (r + 1)
.

Now put these values of τ1, τ2 in η. Inequality η > 0 gives an upper bound of δ.
Call this upper bound τ(r). So when δ ≤ τ(r), η > 0.

Now when η > 0, we get three polynomials f0, f1, f2 after lattice reduction
such that f0(x0, y0, z0) = f1(x0, y0, z0) = f2(x0, y0, z0) = 0. Under Assumption
1, we can extract x0, y0, z0.

Exact expression of τ(r) in Theorem 1 is very complicated. Hence in Table 1,
we present a few values of τ(r) for different values of r. One can note that from
Table 1, our method will be better than the existing works for r = 3, 4. Also in
Table 2, we present a few numerical values of δ for different values of r,m, a, t.

When r > 4, the existing result is better than our approach. However,
Boneh et al. in Crypto 1999 [5] proved that a fraction of 1

r+1 fraction of bits
of MSBs of p are sufficient for polynomial time factorization. Also for large r,
Elliptic Method Factorization [13] will be efficient because size of primes would
be reduced for larger values of r. Hence for all practical purpose value of r can
not be large.

4



r [15] [17] [14] τ(r)

2 0.222 0.395 0.222 0.395

3 0.250 0.410 0.375 0.461

4 0.360 0.437 0.480 0.508

5 0.444 0.464 0.555 0.545

6 0.510 0.489 0.612 0.574

Table 1: Numerical upper bound of δ for different values of r

r m a t δ Lattice Dimension

3 22 20 49 0.42 2162

4 14 15 48 0.44 1260

5 11 12 44 0.45 936

6 19 26 119 0.52 3730

Table 2: Numerical values of δ for different parameters.

Experimental Results. We have implemented the code in SAGE 5.12 on
a Linux Mint 12. The hardware platform is HP Compaq 6200 Pro MT PC
with a 3.4 Ghz Inter(R) Core i7-2600 CPU. Gröbner basis always contains a
polynomial of the form y−p. Hence we can always extract the root successfully.
We present the experimental results for the following cases: r = 3 and δ is in
the range 0.270 to 0.341; r = 4 and δ = 0.362.

Remark 1. Experimental results presented in [17] are up to δ = 0.27. In
particular, when δ = 0.27, the lattice constructed in [17] is of dimension 220
when r = 3. From the above table we can see that the dimension of the lattice
in this construction is 102 when r = 3 and δ = 0.27.

r m a t δ LD Time in Seconds

LLL Algorithm Gröbner basis

5 3 6 0.270 102 1700.05 120.76

5 4 9 0.288 120 7761.85 1364.29

5 4 10 0.291 126 10347.65 1576.04

3 6 4 8 0.301 147 15875.70 2433.46

6 5 11 0.313 168 47205.86 10018.92

7 5 10 0.325 200 94117.08 13793.54

7 5 12 0.331 216 114720.15 17936.09

8 6 12 0.341 261 345864.51 52022.77

4 7 6 16 0.362 276 340649.58 107403.42

Table 3: Experimental Results for 1024-bit N = prq.
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3. Partial Key Exposure Attack on Prime Power RSA

We will start with the following lemma. Our proof is similar to [1].

Lemma 1. Let N = prq be an RSA modulus with p ≈ q ≈ N
1

r+1 . Let the public
exponent e(≈ N) and private exponent d(≈ Nδ) satisfies ed = 1+bφ(N). Given
an approximation d0 of d with |d−d0| < Nβ, one can find out an approximation

b0 of b such that |b− b0| < Nλ where λ = max

{
β, δ − 1

r+1

}
Proof. Let b0 = b ed0N c. Note that b = ed−1

N−pr−pr−1q+pr−1 .
So∣∣∣∣b− b0∣∣∣∣ ≈ ∣∣∣∣ed0N − ed

N − pr − pr−1q + pr−1

∣∣∣∣
≤ eN |d− d0|

N
(
N − pr − pr−1q + pr−1

) +
ed0
(
pr + pr−1q − pr−1

)
N
(
N − pr − pr−1q + pr−1

)
< Nβ +Nδ+ r

r+1−1

= Nβ +Nδ− 1
r+1

≈ Nλ.

Hence the result.

So from an approximation of d, one can find an approximation of b. We will
use this idea to prove the following result.

Theorem 2. Let N = prq be an RSA modulus with p ≈ q ≈ N
1

r+1 . Let the
public exponent e(≈ N) and private exponent d(≈ Nδ) satisfies ed = 1+ bφ(N).
Given an approximation d0 of d with |d − d0| < Nβ, one can factor N in
polynomial time under Assumption 1 if

λ <
3 r − 2

√
3 r + 3 + 3

3 (r + 1)
,

where λ = max

{
β, δ − r

r+1

}
.

Proof. We have ed ≡ 1 mod φ(N) where N = prq. So we can write ed =
1 + b(N − pr − pr−1q+ pr−1). From Lemma 1, we can find an approximation b0
of b. Let b1 = b− b0. Hence we have ed = 1 + (b0 + b1)(N − pr − pr−1q+ pr−1).
Now we want to find the root (x0, y0, z0) = (b1, p, q) modulo e of the polynomial

fe(x, y, z) = 1 + (b0 + x)
(
N − yr − yr−1z + yr−1

)
.

Let X = Nλ, Y = Z = N
1

r+1 . Clearly, (X,Y, Z) provides the upper bounds
of the elements in the root (x0, y0, z0), neglecting any small constant.

6



For integers m, a, t, we consider the following polynomials

gv,i,0(x, y, z) = yi+rvzaf (m−v)e

where v = 0, . . . ,m, i = 0, . . . , t and

gv,i,j(x, y, z) = xj−min{j,v}yi−j+rmax{j,v}zj+afm−max{j,v}
e

where v = 0, . . . ,m, j = 1, . . . ,m, i = 0, . . . r.

Now we replace each occurrence of the monomial yrz in gv,i,0 by N . Let the
new polynomial be h′v,i,0. Now we want to make the coefficient of the monomial

xm−v yi+rm−rlza−l in h′v,i,0 to be 1, where l = min

{⌊
i+rm
r

⌋
, a

}
. Let A be its

coefficient in h′v,i,0. Assume gcd(A, e) = 1. Let AB ≡ 1 mod em.
Now consider the set of polynomials

hv,i,0(x, y, z) = Bh′v,i,0(x, y, z)ev.

Similarly construct hv,i,j(x, y, z) = Bh′v,i,j(x, y, z)e
max{j,v}.

Next, we form a lattice L by taking the coefficient vectors of the shift poly-
nomials hv,i,j(xX, yY, zZ) as basis.

Now dimension w of L is given by w =

m∑
v=0

t∑
i=0

1+

m∑
v=0

m∑
j=1

r∑
i=0

1 = (r+1)m2+

mt+ o(m2). Let the determinant of L be det(L) = XsxY syZszese .

Now sx =

m∑
v=0

t∑
i=0

(m − v) +

m∑
v=0

m∑
j=1

r∑
i=0

(
m + j − min{j, v} − max{j, v}

)
=

m3(r + 1)

2
+
m2t

2
+ o(m3). Similarly, se = 2m3(r+1)

3 + m2t
2 + o(m3).

Also

sy =

m∑
v=0

t∑
i=0

(
i+ rm− rmin{

⌊ i+ rm

r

⌋
, a}
)

+

m∑
v=0

m∑
j=1

r∑
i=0

(
i− j + rm− rmin{

⌊ i− j + rm

r

⌋
, j + a}

)
=

1

2
m3r2 −m2ar2 +

1

2
ma2r2 +m2tr −matr +

1

2
mt2 + o(m3),

( if a < m or a > m & t > r(a−m))

7



and

sz =

m∑
v=0

t∑
i=0

(
a−min{

⌊ i+ rm

r

⌋
, a}
)

+

m∑
v=0

m∑
j=1

r∑
i=0

(
j + a−min{

⌊ i− j + rm

r

⌋
, j + a}

)
=

ma2r2 + 2m2ar +m3

2r
+ o(m3) ( if a < m or a > m & t > r(a−m))

To find (x0, y0, z0) using lattice reduction over L, we need det(L) < emw. Let
a = τ1m and t = τ2m, where τ1, τ2 are non-negative real numbers. Now putting
the values of det(L) and w in the condition det(L) < emw, required condition is

η(τ1, τ2)=−τ
2
1

2r
+

2r3τ1 +2r2τ1τ2 − r3λ− r2τ2λ− r3

3 − r
2τ2 − rτ22 − 2r2λ−rτ2λ

2r2 + 2r

+
4
3r

2 − 2rτ1 + rτ2 − rλ+ 2
3r − 1

2r2 + 2r
> 0

For a fixed δ, we will take the partial derivative of η with respect to τ1, τ2 and

equate each of them to 0, we get τ1 = − (λ−1)r2+(λ−1)r+2
2 r and τ2 = − r

2

2 (λ− 1)−
λr− λ

2 −
1
2 . Now put these values of τ1, τ2 in η, we have λ < 3 r−2

√
3 r+3+3

3 (r+1) .

In Table 4 we present few numerical values of λ for different values of
r,m, a, t.

r m a t λ Lattice Dimension

2 10 4 0 0.23 341

3 7 5 2 0.26 248

4 10 10 13 0.37 704

5 15 16 29 0.45 1920

6 27 35 89 0.52 7812

Table 4: Numerical values of δ for different parameters.

Note that cryptanalysis using our method is possible if λ < 3 r−2
√
3 r+3+3

3 (r+1) ,

with λ = max

{
β, δ − 1

r+1

}
. As λ < 3 r−2

√
3 r+3+3

3 (r+1) , we have β < 3 r−2
√
3 r+3+3

3 (r+1)

and δ < 1
r+1 + 3 r−2

√
3 r+3+3

3 (r+1) .

In [15], it is proved that if |d − d0| < Nβ where β = max
{

r
(r+1)2 , (

r−1
r+1 )2

}
and d0 is known, one can factor N in polynomial time. Lu et al. [14] improve
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r 2 3 4 5
[14]: β 0.222 0.375 0.480 0.555

Our
β 0.333 0.423 0.484 0.528
δ 0.667 0.673 0.684 0.695

Table 5: Numerical upper bound of β and δ for different values of r

this up to |d − d0| < N
r(r−1)

(r+1)2 . Approach of [15, 14] works even when d is of
order N . However our approach does not work in these cases.

In Table 5, we have compared our bounds with the work of [14]. From

Table 5, it is clear that when δ < 1
r+1 + 3 r−2

√
3 r+3+3

3 (r+1) , our approach is better

than the work of [14] if r < 5. We could not attempt experiments as the lattice
dimension is becoming quite high to show the improvements.

4. Conclusion

In this paper, we have considered the Prime Power RSA, i.e, when RSA
modulus is of the form N = prq. Our new lattice construction improves the
existing attacks for small decryption exponent when r = 3, 4. We also have
studied partial key exposure attack on Prime Power RSA. Our new approach

improves the existing works when 2 ≤ r ≤ 4 if d < N
1

r+1+
3 r−2

√
3 r+3+3

3 (r+1) .
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