Revisiting Prime Power RSA

Santanu Sarkar
Department of Mathematics
Indian Institute of Technology Madras, Sardar Patel Road,
Chennai 600 036, India

Abstract

Recently Sarkar (DCC 2014) has proposed a new attack on small decryption exponent when RSA Modulus is of the form $N=p^{r} q$ for $r \geq 2$. This variant is known as Prime Power RSA. The work of Sarkar improves the result of May (PKC 2004) when $r \leq 5$. In this paper, we improve the existing results for $r=3,4$. We also study partial key exposure attack on Prime Power RSA. Our result improves the work of May (PKC 2004) for certain parameters.

Keywords: Partial Key Exposure, Lattice, Prime Power RSA, Small
Decryption Exponent

1. Introduction

In the domain of public key cryptography, RSA has been the most popular cipher since its inception in 1978 by Rivest, Shamir and Adleman. Wiener [19] presented an important result on RSA by showing that one can factor N in polynomial time if the decryption exponent $d<\frac{1}{3} N^{\frac{1}{4}}$. Later using the idea of Coppersmith [6], Boneh and Durfee [4] improved this bound up to $d<N^{0.292}$.

There are several RSA variants proposed in the literature for efficiency and security point of view. In this paper, we consider Prime Power RSA, where RSA modulus N is of the form $N=p^{r} q$ where $r \geq 2$. The modulus $N=p^{2} q$ was first used by Fujioka et al. in Eurocrypt 1991 [8]. In Eurocrypt 1998, Okamoto et al. [16] also used $N=p^{2} q$ to design a public key crypto system.

There are two variants of Prime Power RSA. In the first variant $e d \equiv 1 \bmod$ $p^{r-1}(p-1)(q-1)$, where as in the second variant $e d \equiv 1 \bmod (p-1)(q-1)$. In [9], authors proved that polynomial time factorization is possible for the second variant if $d<N^{\frac{2-\sqrt{2}}{r+1}}$.

For the first variant, Takagi in Crypto 1998 [18] proved that when $d \leq$ $N^{\frac{1}{2(r+1)}}$, one can factor N in polynomial time. Later in PKC 2004, May [15]

Email address: sarkar.santanu.bir@gmail.com (Santanu Sarkar)
 improve the work of [15]. They show one can factor N when $d<N^{\frac{r(r-1)}{(r+1)^{2}}}$.

Sarkar [17] has considered the polynomial $f_{e}(x, y, z)=1+x\left(N-y^{r}-\right.$ $y^{r-1} z+y^{r-1}$) over \mathbb{Z}_{e} whose root is ($\left.x_{0}, y_{0}, z_{0}\right)=(b, p, q)$, where $e d=1+b \phi(N)$ to analyse the RSA modulus $N=p^{r} q$. In this paper we consider the same polynomial. But our lattice construction to solve this polynomial is different from [17]. As a result, we improve the existing works of $[15,17,14]$ when $r=3,4$.

Partial Exposure on d. In Crypto 1996, Kocher [10] first proposed a novel attack which is known as partial key exposure attack. He showed that an attacker can get a few bits of d by timing characteristic of an RSA implementing device. Fault attacks [3] and power analysis [11] are other important side channel attacks in this direction. Boneh, Durfee and Frunkel [2] first proposed polynomial time algorithms when the attacker knows a few bits of the decryption exponent. The approach of [2] works only when the upper bound on e is \sqrt{N}. Later this constraint was removed by Blömer et. al. in Crypto 2003 [1] and Ernst et. al. in Eurocrypt 2005 [7].

May in PKC 2004 [15] studied partial key exposure attack on Prime Power RSA. He showed that one can factor N in polynomial time from the knowledge of d_{0} where $\left|d-d_{0}\right|<N^{\max \left\{\frac{r}{(r+1)^{2}},\left(\frac{r-1}{r+1}\right)^{2}\right\}}$ when RSA modulus $N=p^{r} q$. Lu et al. [14] improve the work of [15] and show that factorization of N can be possible when $\left|d-d_{0}\right|<N^{\frac{r(r-1)}{(r+1)^{2}}}$. So in particular, when $r=2$, approach of [15, 14] works when $\left|d-d_{0}\right|<N^{0.22}$. We have improved this bound up to $N^{0.33}$. Unfortunately, our method works only when $d<N^{0.67}$.

Our strategy to solve multivariate modular equation is based on lattice reduction [12] followed by Gröbner basis technique. Although our technique works in practice as noted from the experiments we perform, we need heuristic assumption for theoretical results.

Assumption 1. Our lattice-based construction yields algebraically independent polynomials. The common roots of these polynomials can be efficiently computed by using techniques like calculation of the resultants or finding a Gröbner basis.

2. Small Decryption Exponent Attack on Prime Power RSA

In this section we will consider the case when RSA modulus is of the form $N=p^{r} q$ where $r \geq 2$.

Theorem 1. Let $N=p^{r} q$ be an RSA modulus with $p \approx q \approx N^{\frac{1}{r+1}}$. Let the public exponent $e(\approx N)$ and private exponent d satisfies ed $\equiv 1 \bmod \phi(N)$. Then under Assumption 1, N can be factored in polynomial time if $d \leq N^{\tau(r)}$, where $\tau(r)$ is a function of r.

Proof. We have $e d \equiv 1 \bmod \phi(N)$ where $N=p^{r} q$. So we can write $e d=$ $1+b\left(N-p^{r}-p^{r-1} q+p^{r-1}\right)$. Now we want to find the root $\left(x_{0}, y_{0}, z_{0}\right)=(b, p, q)$
modulo e of the polynomial

$$
f_{e}(x, y, z)=1+x\left(N-y^{r}-y^{r-1} z+y^{r-1}\right) .
$$

Let $d \approx N^{\delta}$. Since e is of order N, we have $b \approx N^{\delta}$. Let $X=N^{\delta}, Y=Z=$ $N^{\frac{1}{r+1}}$. Clearly, (X, Y, Z) provides the upper bounds of the elements in the root $\left(x_{0}, y_{0}, z_{0}\right)$, neglecting any small constant. Note that $y_{0}^{r} z_{0}=N$. Now we define a set of polynomials which will be used to construct a lattice.

For integers $m, a, t \geq 0$, we consider the following polynomials

$$
\begin{array}{ccl}
g_{i, j, k}(x, y, z) & = & x^{i} y^{(r-1) i+k} z^{i+a} f_{e}^{j}(x, y, z) \\
& \text { where } & i=0, \ldots, m, j=0, \ldots, m-i, k=0, \ldots, r \text { and } \\
g_{i, j, 0}(x, y, z) & = & y^{(r+j)} z^{a} f_{e}^{i}(x, y, z) \\
& \text { where } & i=0, \ldots, m, j=1, \ldots, t-r .
\end{array}
$$

We replace each occurence of the monomial $y^{r} z$ in $g_{i, j, k}$ by N. Let the new polynomial be $h_{i, j, k}^{\prime}$. Now we want to make the coefficient of the monomial x^{i+j} $y^{k+(r-1) i+r j-r l} z^{i+a-l}$ in $h_{i, j, k}^{\prime}$ to be 1 , where $l=\min \left\{\left\lfloor\frac{k+(r-1) i+r j}{r}\right\rfloor, i+a\right\}$. Let A be its coefficient in $h_{i, j, k}^{\prime}$. Assume $\operatorname{gcd}(A, e)=1$. Let $A B \equiv 1 \bmod e^{m}$.

Now consider the set of polynomials

$$
h_{i, j, k}(x, y, z)=B h_{i, j, k}^{\prime}(x, y, z) e^{m-j}
$$

Similarly construct $h_{i, j, 0}(x, y, z)=B h_{i, j, 0}^{\prime}(x, y, z) e^{m-i}$.
Next, we form a lattice L by taking the coefficient vectors of the shift polynomials $h_{i, j, k}(x X, y Y, z Z)$ as basis.

Now dimension w of L is given by $w=\sum_{i=0}^{m} \sum_{j=0}^{m-i} \sum_{k=0}^{r} 1+\sum_{i=0}^{m} \sum_{j=1}^{t-r} 1=\frac{r+1}{2} m^{2}+$ $m t+o(m)$. Let the determinant of L be $\operatorname{det}(L)=X^{s_{x}} Y^{s_{y}} Z^{s_{z}} e^{s_{e}}$. Now $s_{x}=$ $\sum_{i=0}^{m} \sum_{j=0}^{m-i} \sum_{k=0}^{r}(i+j)+\sum_{i=0}^{m} \sum_{j=1}^{t-r} i=\frac{m^{3}(r+1)}{3}+\frac{m^{2} t}{2}+o\left(m^{3}\right)$. Similarly, $s_{e}=$ $\frac{m^{3}(r+1)}{3}+\frac{m^{2} t}{2}+o\left(m^{3}\right)$.

During the calculations of s_{y}, we assume either $m>a$ or $a-\frac{t}{r}<m<a$.
Now

$$
\begin{aligned}
s_{y}= & \sum_{i=0}^{m} \sum_{j=0}^{m-i} \sum_{k=0}^{r}\left((r-1) i+k+r j-r \min \left(\left\lfloor\frac{(r-1) i+k+r j}{r}\right\rfloor, i+a\right)\right) \\
& +\sum_{i=0}^{m} \sum_{j=1}^{t-r}\left(r i+r+j-r \min \left(\left\lfloor\frac{r i+r+j}{r}\right\rfloor, a\right)\right) \\
= & \frac{\left(3 a^{2} m-3 a m^{2}+m^{3}\right) r^{2}}{6}-\frac{\left(2 a m-m^{2}\right) r t}{2}+\frac{m t^{2}}{2} \\
& -\frac{\left(a^{3} r^{3}-3 a^{2} r^{2} t+3 a r t^{2}-t^{3}\right)}{6 r}+o\left(m^{3}\right)
\end{aligned}
$$

Assuming $m \geq a-\frac{t}{r}$, we have

$$
\begin{aligned}
s_{z}= & \sum_{i=0}^{m} \sum_{j=0}^{m-i} \sum_{k=0}^{r}\left(i+a-\min \left(\left\lfloor\frac{(r-1) i+k+r j}{r}\right\rfloor, i+a\right)\right) \\
& +\sum_{i=0}^{m} \sum_{j=1}^{t-r}\left(a-\min \left(\left\lfloor\frac{r i+r+j}{r}\right\rfloor, a\right)\right) \\
= & \frac{\frac{m a^{2} r^{3}}{2}-\frac{a^{3} r^{3}}{6}+\frac{m^{2} a r^{2}}{2}+\frac{a^{2} t r^{2}}{2}+\frac{m^{3} r}{6}-\frac{a t^{2} r}{2}+\frac{t^{3}}{6}}{r^{2}}+o\left(m^{3}\right) .
\end{aligned}
$$

One gets the root $\left(x_{0}, y_{0}, z_{0}\right)$ using lattice reduction over L, if $\operatorname{det}(L)<e^{m w}$. Let $a=\tau_{1} m$ and $t=\tau_{2} m$, where τ_{1}, τ_{2} are non-negative real numbers. Now putting the values of $\operatorname{det}(L)$ and w in the condition $\operatorname{det}(L)<e^{m w}$, we need

$$
\begin{aligned}
\eta\left(\tau_{1}, \tau_{2}\right)= & -\frac{1}{6} \delta\left(2 r+3 \tau_{2}+2\right)+\frac{1}{6} r+\frac{1}{2} \tau_{2}- \\
& \frac{\left(3 \tau_{1}^{2}-3 \tau_{1}+1\right) r^{2}-3\left(2 \tau_{1}-1\right) r \tau_{2}+3 \tau_{2}^{2}}{6(r+1)}+ \\
& \frac{\left(\tau_{1} r-\tau_{2}\right)^{3}\left(\frac{1}{r}+\frac{1}{r^{2}}\right)-\frac{3 \tau_{1}^{2} r^{3}+3 \tau_{1} r^{2}+r}{r^{2}}}{6(r+1)}+\frac{1}{6}>0
\end{aligned}
$$

For a fixed δ, we will take the partial derivative of η with respect to τ_{1}, τ_{2} and equate each of them to 0 , we get $\tau_{1}=-\frac{(\delta-1) r^{2}+(\delta-1) r+1}{2 r}$ and

$$
\tau_{2}=-\frac{(\delta-1) r^{3}+2 \delta r^{2}+\delta r-2 \sqrt{-(\delta-1) r^{2}-(2 \delta-1) r-\delta+1} r+1}{2(r+1)}
$$

Now put these values of τ_{1}, τ_{2} in η. Inequality $\eta>0$ gives an upper bound of δ. Call this upper bound $\tau(r)$. So when $\delta \leq \tau(r), \eta>0$.

Now when $\eta>0$, we get three polynomials f_{0}, f_{1}, f_{2} after lattice reduction such that $f_{0}\left(x_{0}, y_{0}, z_{0}\right)=f_{1}\left(x_{0}, y_{0}, z_{0}\right)=f_{2}\left(x_{0}, y_{0}, z_{0}\right)=0$. Under Assumption 1 , we can extract x_{0}, y_{0}, z_{0}.

Exact expression of $\tau(r)$ in Theorem 1 is very complicated. Hence in Table 1, we present a few values of $\tau(r)$ for different values of r. One can note that from Table 1, our method will be better than the existing works for $r=3,4$. Also in Table 2, we present a few numerical values of δ for different values of r, m, a, t.

When $r>4$, the existing result is better than our approach. However, Boneh et al. in Crypto 1999 [5] proved that a fraction of $\frac{1}{r+1}$ fraction of bits of MSBs of p are sufficient for polynomial time factorization. Also for large r, Elliptic Method Factorization [13] will be efficient because size of primes would be reduced for larger values of r. Hence for all practical purpose value of r can not be large.

r	$[15]$	$[17]$	$[14]$	$\tau(r)$
2	0.222	0.395	0.222	0.395
3	0.250	0.410	0.375	0.461
4	0.360	0.437	0.480	0.508
5	0.444	0.464	0.555	0.545
6	0.510	0.489	0.612	0.574

Table 1: Numerical upper bound of δ for different values of r

r	m	a	t	δ	Lattice Dimension
3	22	20	49	0.42	2162
4	14	15	48	0.44	1260
5	11	12	44	0.45	936
6	19	26	119	0.52	3730

Table 2: Numerical values of δ for different parameters.

Experimental Results. We have implemented the code in SAGE 5.12 on a Linux Mint 12. The hardware platform is HP Compaq 6200 Pro MT PC with a 3.4 Ghz Inter(R) Core i7-2600 CPU. Gröbner basis always contains a polynomial of the form $y-p$. Hence we can always extract the root successfully. We present the experimental results for the following cases: $r=3$ and δ is in the range 0.270 to $0.341 ; r=4$ and $\delta=0.362$.

Remark 1. Experimental results presented in [17] are up to $\delta=0.27$. In particular, when $\delta=0.27$, the lattice constructed in [17] is of dimension 220 when $r=3$. From the above table we can see that the dimension of the lattice in this construction is 102 when $r=3$ and $\delta=0.27$.

r	m	a	t	δ	LD	Time in Seconds	
						LLL Algorithm	Gröbner basis
3	5	3	6	0.270	102	1700.05	120.76
	5	4	9	0.288	120	7761.85	1364.29
	5	4	10	0.291	126	10347.65	1576.04
	6	4	8	0.301	147	15875.70	2433.46
	6	5	11	0.313	168	47205.86	10018.92
	7	5	10	0.325	200	94117.08	13793.54
	7	5	12	0.331	216	114720.15	17936.09
4	8	6	12	0.341	261	345864.51	52022.77
4	7	6	16	0.362	276	340649.58	107403.42

Table 3: Experimental Results for 1024-bit $N=p^{r} q$.

3. Partial Key Exposure Attack on Prime Power RSA

We will start with the following lemma. Our proof is similar to [1].
Lemma 1. Let $N=p^{r} q$ be an RSA modulus with $p \approx q \approx N^{\frac{1}{r+1}}$. Let the public exponent $e(\approx N)$ and private exponent $d\left(\approx N^{\delta}\right)$ satisfies ed $=1+b \phi(N)$. Given an approximation d_{0} of d with $\left|d-d_{0}\right|<N^{\beta}$, one can find out an approximation b_{0} of b such that $\left|b-b_{0}\right|<N^{\lambda}$ where $\lambda=\max \left\{\beta, \delta-\frac{1}{r+1}\right\}$

Proof. Let $b_{0}=\left\lfloor\frac{e d_{0}}{N}\right\rfloor$. Note that $b=\frac{e d-1}{N-p^{r}-p^{r-1} q+p^{r-1}}$.
So

$$
\begin{aligned}
\left|b-b_{0}\right| & \approx\left|\frac{e d_{0}}{N}-\frac{e d}{N-p^{r}-p^{r-1} q+p^{r-1}}\right| \\
& \leq \frac{e N\left|d-d_{0}\right|}{N\left(N-p^{r}-p^{r-1} q+p^{r-1}\right)}+\frac{e d_{0}\left(p^{r}+p^{r-1} q-p^{r-1}\right)}{N\left(N-p^{r}-p^{r-1} q+p^{r-1}\right)} \\
& <N^{\beta}+N^{\delta+\frac{r}{r+1}-1} \\
& =N^{\beta}+N^{\delta-\frac{1}{r+1}} \\
& \approx N^{\lambda} .
\end{aligned}
$$

Hence the result.
So from an approximation of d, one can find an approximation of b. We will use this idea to prove the following result.

Theorem 2. Let $N=p^{r} q$ be an RSA modulus with $p \approx q \approx N^{\frac{1}{r+1}}$. Let the public exponent $e(\approx N)$ and private exponent $d\left(\approx N^{\delta}\right)$ satisfies ed $=1+b \phi(N)$. Given an approximation d_{0} of d with $\left|d-d_{0}\right|<N^{\beta}$, one can factor N in polynomial time under Assumption 1 if

$$
\lambda<\frac{3 r-2 \sqrt{3 r+3}+3}{3(r+1)}
$$

where $\lambda=\max \left\{\beta, \delta-\frac{r}{r+1}\right\}$.
Proof. We have $e d \equiv 1 \bmod \phi(N)$ where $N=p^{r} q$. So we can write $e d=$ $1+b\left(N-p^{r}-p^{r-1} q+p^{r-1}\right)$. From Lemma 1, we can find an approximation b_{0} of b. Let $b_{1}=b-b_{0}$. Hence we have $e d=1+\left(b_{0}+b_{1}\right)\left(N-p^{r}-p^{r-1} q+p^{r-1}\right)$. Now we want to find the root $\left(x_{0}, y_{0}, z_{0}\right)=\left(b_{1}, p, q\right)$ modulo e of the polynomial

$$
f_{e}(x, y, z)=1+\left(b_{0}+x\right)\left(N-y^{r}-y^{r-1} z+y^{r-1}\right)
$$

Let $X=N^{\lambda}, Y=Z=N^{\frac{1}{r+1}}$. Clearly, (X, Y, Z) provides the upper bounds of the elements in the root $\left(x_{0}, y_{0}, z_{0}\right)$, neglecting any small constant.

For integers m, a, t, we consider the following polynomials

$$
\begin{array}{ccl}
g_{v, i, 0}(x, y, z) & = & y^{i+r v} z^{a} f_{e}^{(m-v)} \\
& \text { where } & v=0, \ldots, m, i=0, \ldots, t \text { and } \\
g_{v, i, j}(x, y, z) & = & x^{j-\min \{j, v\}} y^{i-j+r \max \{j, v\}} z^{j+a} f_{e}^{m-\max \{j, v\}} \\
& \text { where } & v=0, \ldots, m, j=1, \ldots, m, i=0, \ldots r .
\end{array}
$$

Now we replace each occurrence of the monomial $y^{r} z$ in $g_{v, i, 0}$ by N. Let the new polynomial be $h_{v, i, 0}^{\prime}$. Now we want to make the coefficient of the monomial $x^{m-v} y^{i+r m-r l} z^{a-l}$ in $h_{v, i, 0}^{\prime}$ to be 1 , where $l=\min \left\{\left\lfloor\frac{i+r m}{r}\right\rfloor, a\right\}$. Let A be its coefficient in $h_{v, i, 0}^{\prime}$. Assume $\operatorname{gcd}(A, e)=1$. Let $A B \equiv 1 \bmod e^{m}$.

Now consider the set of polynomials

$$
h_{v, i, 0}(x, y, z)=B h_{v, i, 0}^{\prime}(x, y, z) e^{v}
$$

Similarly construct $h_{v, i, j}(x, y, z)=B h_{v, i, j}^{\prime}(x, y, z) e^{\max \{j, v\}}$.
Next, we form a lattice L by taking the coefficient vectors of the shift polynomials $h_{v, i, j}(x X, y Y, z Z)$ as basis.

Now dimension w of L is given by $w=\sum_{v=0}^{m} \sum_{i=0}^{t} 1+\sum_{v=0}^{m} \sum_{j=1}^{m} \sum_{i=0}^{r} 1=(r+1) m^{2}+$ $m t+o\left(m^{2}\right)$. Let the determinant of L be $\operatorname{det}(L)=X^{s_{x}} Y^{s_{y}} Z^{s_{z}} e^{s_{e}}$.

Now $s_{x}=\sum_{v=0}^{m} \sum_{i=0}^{t}(m-v)+\sum_{v=0}^{m} \sum_{j=1}^{m} \sum_{i=0}^{r}(m+j-\min \{j, v\}-\max \{j, v\})=$ $\frac{m^{3}(r+1)}{2}+\frac{m^{2} t}{2}+o\left(m^{3}\right)$. Similarly, $s_{e}=\frac{2 m^{3}(r+1)}{3}+\frac{m^{2} t}{2}+o\left(m^{3}\right)$.

$$
s_{y}=\sum_{v=0}^{m} \sum_{i=0}^{t}\left(i+r m-r \min \left\{\left\lfloor\frac{i+r m}{r}\right\rfloor, a\right\}\right)+
$$

$$
\sum_{v=0}^{m} \sum_{j=1}^{m} \sum_{i=0}^{r}\left(i-j+r m-r \min \left\{\left\lfloor\frac{i-j+r m}{r}\right\rfloor, j+a\right\}\right)
$$

$$
=\frac{1}{2} m^{3} r^{2}-m^{2} a r^{2}+\frac{1}{2} m a^{2} r^{2}+m^{2} t r-m a t r+\frac{1}{2} m t^{2}+o\left(m^{3}\right)
$$

(if $a<m$ or $a>m \& t>r(a-m)$)
and

$$
\begin{aligned}
s_{z}= & \sum_{v=0}^{m} \sum_{i=0}^{t}\left(a-\min \left\{\left\lfloor\frac{i+r m}{r}\right\rfloor, a\right\}\right)+ \\
& \sum_{v=0}^{m} \sum_{j=1}^{m} \sum_{i=0}^{r}\left(j+a-\min \left\{\left\lfloor\frac{i-j+r m}{r}\right\rfloor, j+a\right\}\right) \\
= & \frac{m a^{2} r^{2}+2 m^{2} a r+m^{3}}{2 r}+o\left(m^{3}\right)(\text { if } a<m \text { or } a>m \& t>r(a-m))
\end{aligned}
$$

To find $\left(x_{0}, y_{0}, z_{0}\right)$ using lattice reduction over L, we need $\operatorname{det}(L)<e^{m w}$. Let $a=\tau_{1} m$ and $t=\tau_{2} m$, where τ_{1}, τ_{2} are non-negative real numbers. Now putting the values of $\operatorname{det}(L)$ and w in the condition $\operatorname{det}(L)<e^{m w}$, required condition is

$$
\begin{aligned}
\eta\left(\tau_{1}, \tau_{2}\right)= & -\frac{\tau_{1}^{2}}{2 r}+\frac{2 r^{3} \tau_{1}+2 r^{2} \tau_{1} \tau_{2}-r^{3} \lambda-r^{2} \tau_{2} \lambda-\frac{r^{3}}{3}-r^{2} \tau_{2}-r \tau_{2}^{2}-2 r^{2} \lambda-r \tau_{2} \lambda}{2 r^{2}+2 r} \\
& +\frac{\frac{4}{3} r^{2}-2 r \tau_{1}+r \tau_{2}-r \lambda+\frac{2}{3} r-1}{2 r^{2}+2 r}>0
\end{aligned}
$$

For a fixed δ, we will take the partial derivative of η with respect to τ_{1}, τ_{2} and equate each of them to 0 , we get $\tau_{1}=-\frac{(\lambda-1) r^{2}+(\lambda-1) r+2}{2 r}$ and $\tau_{2}=-\frac{r^{2}}{2}(\lambda-1)-$ $\lambda r-\frac{\lambda}{2}-\frac{1}{2}$. Now put these values of τ_{1}, τ_{2} in η, we have $\lambda<\frac{3 r-2 \sqrt{3 r+3}+3}{3(r+1)}$.

In Table 4 we present few numerical values of λ for different values of r, m, a, t.

r	m	a	t	λ	Lattice Dimension
2	10	4	0	0.23	341
3	7	5	2	0.26	248
4	10	10	13	0.37	704
5	15	16	29	0.45	1920
6	27	35	89	0.52	7812

Table 4: Numerical values of δ for different parameters.
Note that cryptanalysis using our method is possible if $\lambda<\frac{3 r-2 \sqrt{3 r+3}+3}{3(r+1)}$, with $\lambda=\max \left\{\beta, \delta-\frac{1}{r+1}\right\}$. As $\lambda<\frac{3 r-2 \sqrt{3 r+3}+3}{3(r+1)}$, we have $\beta<\frac{3 r-2 \sqrt{3 r+3}+3}{3(r+1)}$ and $\delta<\frac{1}{r+1}+\frac{3 r-2 \sqrt{3 r+3}+3}{3(r+1)}$.

In [15], it is proved that if $\left|d-d_{0}\right|<N^{\beta}$ where $\beta=\max \left\{\frac{r}{(r+1)^{2}},\left(\frac{r-1}{r+1}\right)^{2}\right\}$ and d_{0} is known, one can factor N in polynomial time. Lu et al. [14] improve

	r	2	3	4	5
$[14]:$	β	0.222	0.375	0.480	0.555
Our	β	0.333	0.423	0.484	0.528
	δ	0.667	0.673	0.684	0.695

Table 5: Numerical upper bound of β and δ for different values of r
this up to $\left|d-d_{0}\right|<N^{\frac{r(r-1)}{(r+1)^{2}}}$. Approach of $[15,14]$ works even when d is of order N. However our approach does not work in these cases.

In Table 5, we have compared our bounds with the work of [14]. From Table 5 , it is clear that when $\delta<\frac{1}{r+1}+\frac{3 r-2 \sqrt{3 r+3}+3}{3(r+1)}$, our approach is better than the work of [14] if $r<5$. We could not attempt experiments as the lattice dimension is becoming quite high to show the improvements.

4. Conclusion

In this paper, we have considered the Prime Power RSA, i.e, when RSA modulus is of the form $N=p^{r} q$. Our new lattice construction improves the existing attacks for small decryption exponent when $r=3,4$. We also have studied partial key exposure attack on Prime Power RSA. Our new approach improves the existing works when $2 \leq r \leq 4$ if $d<N^{\frac{1}{r+1}+\frac{3 r-2 \sqrt{3 r+3}+3}{3(r+1)}}$.

References

[1] J. Blömer and A. May. New Partial Key Exposure Attacks on RSA. Crypto 2003, LNCS 2729, pp. 27-43, 2003.
[2] D. Boneh, G. Durfee and Y. Frankel. Exposing an RSA Private Key Given a Small Fraction of its Bits. Asiacrypt 1998, LNCS 1514, pp. 25-34, 1998.
[3] D. Boneh, R. A. DeMillo and R. J. Lipton. On the Importance of Eliminating Errors in Cryptographic Computations. J. Cryptology, 14(2):101119, 2001.
[4] D. Boneh and G. Durfee. Cryptanalysis of RSA with private key d less than $N^{0.292}$. IEEE Trans. on Information Theory, 46(4):1339-1349, 2000.
[5] D. Boneh, G. Durfee and N. Howgrave-Graham. Factoring $N=p^{r} q$ for Large r. Crypto 1999, LNCS 1666, pp. 326-337, 1999.
[6] D. Coppersmith. Small Solutions to Polynomial Equations and Low Exponent Vulnerabilities. Journal of Cryptology, 10(4):223-260, 1997.
[7] M. Ernst, E. Jochemsz, A. May and B. de Weger. Partial key exposure attacks on RSA up to full size exponents. Eurocrypt 2005, LNCS 3494, pp. 371-386, 2005.
[8] A. Fujioka, T. Okamoto and S. Miyaguchi. ESIGN: An Efficient Digital Signature Implementation for Smard Cards. Eurocrypt 1991, LNCS 547, pp. 446-457, 1991.
[9] K. Itoh, N. Kunihiro and K. Kurosawa. Small Secret Key Attack on a Variant of RSA (Due to Takagi). CT-RSA 2008, LNCS 4964, pp. 387-406, 2008.
[10] P. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS and other systems. Crypto 1996, LNCS 1109, pp. 104-113, 1996.
[11] P. C. Kocher, J. Jaffe and B. Jun. Differential Power Analysis. Crypto 1999, LNCS 1666, pp. 388-397, 1999.
[12] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with rational coefficients. Mathematische Annalen, 261:515-534, 1982.
[13] H. W. Lenstra, Jr. Factoring integers with elliptic curves. Annals of Mathematics, 126:649-673, 1987.
[14] Y. Lu, R. Zhang and D. Lin. New Results on Solving Linear Equations Modulo Unknown Divisors and its Applications. IACR Cryptology ePrint Archive, 2014.
[15] A. May. Secret Exponent Attacks on RSA-type Schemes with Moduli $N=p^{r} q$. PKC 2004, LNCS 2947, pp. 218-230, 2004.
[16] T. Okamoto and S. Uchiyama. A New public key cryptosystem as secure as factoring. Eurocrypt 1998, LNCS 1403, pp. 308-318, 1998.
[17] S. Sarkar. Small Secret Exponent Attack on RSA Variant with Modulus $N=p^{r} q$. Designs, Codes and Cryptography, 73(2): 383-392, 2014.
[18] T. Takagi. Fast RSA-type cryptosystem modulo $p^{k} q$. Crypto 1998, LNCS 1462, pp. 318-326, 1998.
[19] M. Wiener. Cryptanalysis of short RSA secret exponents. IEEE Transactions on Information Theory, 36(3):553-558, 1990.

