Functional Encryption for Turing Machines

Prabhanjan Ananth* Amit Sahaif
Department of Computer Science and Department of Computer Science and
Center for Encrypted Functionalities, Center for Encrypted Functionalities,

UCLA, USA UCLA, USA
prabhanjan.va@gmail.com sahai@cs.ucla.edu
Abstract

In this work, we construct an adaptively secure functional encryption for Turing machines scheme, based on
indistinguishability obfuscation for circuits. Our work places no restrictions on the types of Turing machines that
can be associated with each secret key, in the sense that the Turing machines can accept inputs of unbounded
length, and there is no limit to the description size or the space complexity of the Turing machines.

Prior to our work, only special cases of this result were known, or stronger assumptions were required. More
specifically, previous work (implicitly) achieved selectively secure FE for Turing machines with a-priori bounded
input based on indistinguishability obfuscation (STOC 2015), or achieved FE for general Turing machines only
based on knowledge-type assumptions such as public-coin differing-inputs obfuscation (TCC 2015).

A consequence of our result is the first constructions of succinct adaptively secure garbling schemes (even
for circuits) in the standard model. Prior succinct garbling schemes (even for circuits) were only known to be
adaptively secure in the random oracle model.

*This work was partially supported by a grant from the Simons Foundation (#360584 to Prabhanjan Ananth).

tResearch supported in part from a DARPA/ONR PROCEED award, a DARPA/ARL SAFEWARE award, NSF Frontier Award
1413955, NSF grants 1228984, 1136174, 1118096, and 1065276, a Xerox Faculty Research Award, a Google Faculty Research Award,
an equipment grant from Intel, and an Okawa Foundation Research Grant. This material is based upon work supported by the Defense
Advanced Research Projects Agency through the U.S. Office of Naval Research under Contract N00014-11-1-0389. The views expressed
are those of the author and do not reflect the official policy or position of the Department of Defense, the National Science Foundation,
or the U.S. Government.

Contents
1 Introduction

2 Preliminaries

2.1 Functional Encryption for Turing machines L o oL
2.2 (Compact) FE for circuits
2.2.1 Public-Key FE e e
2.2.2 Function-private Private Key FE o oo
3 Adaptive 1-Key 1-Ciphertext FE for TMs
3.1 Semi-Adaptive 2-ary FE for TMs: 1-Key 1-Ciphertext Setting
3.2 Adaptive FE from Semi-Adaptive 2-ary FE for TMs
3.3 Constructing Semi-Adaptive 2-ary FE for TMs: Overview
3.4 Constructing Semi-Adaptive 2-ary FE for TMs: Formal Description
3.4.1 3-stage KLW . . L o L o o e
3.4.2 Construction of 3-stage KLW e
3.4.3 2-ary FE for TMs from 3-stage KLW

4 Adaptive FE for TMs
4.1 Proof of Correctness and Efficiency

5 Proof of Theorem 5

5.1 Proof Overview oL e e
5.2 Formal Proof: Hybrids e
5.3 Formal Proof: Indistinguishability of Hybrids

5.3.1 Proofof Lemma 6 e e e e e

6 Future Directions

A Tools Used in [KLW15]
A.1 Positional Accumulators e e e e
A2 THerators o o e e e e
A.3 Splittable Signatures e e e

B Preliminaries (cont’d)
B.1 Standard Notions o e
B.2 Turing machines L
B.3 Private Key FE for TMs 0 e

1 Introduction

Contemporary cloud-based computing systems demand encryption schemes that go far beyond the traditional
goal of merely securing a communication channel. The notion of functional encryption, first conceived under
the name of Attribute-Based Encryption in [SWO05] and formalized later in the works of [BSW11, O’N10], has
emerged as a powerful form of encryption well-suited to many contemporary applications (see [BSW11, BSW12]
for further discussion of application scenarios for functional encryption). A functional encryption (FE) scheme
allows a user possessing a key associated with a function f to recover the output f(z), given an encryption of
x. The intuitive security guarantee of a FE scheme dictates that the only information about x revealed to the
user is f(z). Furthermore, if the user obtains keys for many functions fi, ... fx, then the user should only learn
fi(x),..., fr(z) and nothing more. It turns out that formalizing security using a simulation-based definition leads
to impossibility results [BSW11, AGVW13]; however, there are sound adaptive indistinguishability-based formu-
lations [BSW11] that also imply simulation-based security in restricted settings [CIJT13]. Following most recent
work on FE [GGH™13, Wat15, GGHZ14, ABSV15], we will focus on achieving this strong indistinguishability-
based notion of security here.
In this work, we address the following basic question:

“Is FE possible for functions described by arbitrary Turing machines?”

Previous work and its limitations. There have been many works on functional encryption over the past few
years but a satisfying answer to this question has remained elusive.

The first constructions of FE considered only limited functions, such as inner product [KSWO08]. The first
constructions of FE that allowed for more general functions considered the setting where the adversary can just
request a single (or a bounded number of) key queries [SS10, GVW12], but only for functions represented by
circuits. A major advance occurred in the work of [GGH™'13], which constructed an FE scheme allowing for
functions specified by arbitrary circuits, with no bound on key queries, based on indistinguishability obfuscation
(i0) for circuits. Since this work, the assumption of iO for circuits has become the staple assumption in this
area.

However, [GGH™13] and other FE results deal with functionalities represented by circuits — and representing
functions as circuits gives rise to two major drawbacks. The first drawback is that a circuit representation takes
the worst case running time on every input. Research to deal with this issue was initiated by Goldwasser et
al. [GKPT13], and there have been several recent works [BGL115, CHJV15, KLW15, CCC*15], that (implicitly
or explicitly) give rise to FE schemes with input-specific runtimes based on iO for circuits.

The second drawback is that the input length of the function is a-priori bounded. In many scenarios, especially

involving large datasets, having an a-priori bound is clearly unreasonable. For example, if functional encryption
is used for allowing a researcher to perform some data analysis on hospital records, then having a bound on
input length would require that there be an a-priori bound, at the time of setting up the encryption scheme, on
the length of encrypted hospital records, which seems quite unreasonable. In general, we would like to represent
the function being computed as a Turing Machine, that can accept inputs of arbitrary length. The problem of
constructing FE schemes which can handle messages of unbounded length has remained largely open: the recent
works of [BGLT15, CHJV15, KLW15] construct iO for Turing Machines only with bounded input length, where
the bound must be specified at the time of obfuscating the Turing Machine. If this iO method is combined,
for example, with the FE construction recipe of [GGH'13], then this would only yield FE for functions with a
bound on input length specified at the time of setting up the FE scheme.
There have been works [BCP14, IPS15] on overcoming the issue of a priori bounded input lengths but these are
based on strong knowledge-type assumptions called differing inputs obfuscation [BGI*T12, BCP14, ABG*13] or
more recently public-coin differing inputs obfuscation [IPS15]. Our main contribution is developing new technical
approaches that allow us to remove the need for such assumptions, and use only iO for circuits'.

Results and Technical Overview. We prove the following informal theorem.
Results and Technical Overview. We prove the following informal theorem.

Theorem 1 (Informal). There exists a public-key FE scheme, assuming the existence of indistinguishability
obfuscation and one-way functions, that satisfies the following properties:

!We stress that despite recent cryptanalytic progress, iO candidates such as [BGK'14] remain beyond the reach of any known
cryptanalytic technique.

There is no a priori bound on the number of functional keys issued.
The secret keys correspond to Turing machines.
It achieves adaptive security.

There is no a priori bound on length of the plaintext and the size of the Turing machine.

AR S

The running time of encryption is independent of the Turing machine size. The running time of the key
generation is independent of the plaintext size.

A corollary of the above theorem is the first construction of succinct adaptively secure garbling schemes for TMs
(with indistinguishability-based security) in the standard model. By succinctness, we mean that the size of the
input encoding is independent of the function (circuit or TM) size. Prior solutions were either shown in the
random oracle model [BHR12, ATKW15] or under restricted settings [BGGT14].

We now give a roadmap for the overall approach and the techniques we use to achieve our result.

To gather some ideas towards achieving our goal of adaptive FE for TMs, we first focus on the simplest
possible scenario of FE for Turing machines: adversary can make only a single ciphertext query and a function
query, and furthermore we work in the secret-key setting. We call a FE scheme satisfying this security notion to
be 1-CT 1-Key Private-key FE.

Initial goal: Adaptive 1-CT 1-Key Private-key FE for TMs. To build an adaptive 1-CT 1-key private-
key FE for TMs scheme, we first take inspiration from the corresponding FE for circuits constructions known in
the literature to see what tools might be helpful here. Sahai and Seyalioglu [SS10] and Gorbunov et al. [GVW12]
give constructions using the tool of randomized encodings (RE) of computation. A randomized encoding is a
representation of a function along with an input that is simpler to compute than the function itself. Further
this representation reveals only the output of the function and nothing else. In other words, given functions
f1, f2 and inputs x1,xs such that fi(x1) = fa(x2), it should be the case that the encoding of (fi,z1) should
be computationally indistinguishable from an encoding of (fa2,z2). Such randomized encodings for TMs were
recently constructed in [BGL115, CHJV15, KLW15], based on iO for circuits.

The essential difference between a randomized encoding and what we need for a 1-CT 1-key FE scheme
concerns two additional features that we would need from the randomized encoding:

e First, we need the randomized encoding to be computable separately for the function and the input. That
is, given only f, it should be possible to compute an encoding f ; and given only z, it should be possible to
compute an encoding &; such that (f, %) constitute a randomized encoding of (f,). We need this because
the ciphertext will be akin to the encoding of the input, whereas the private key will be akin to the encoding
of the function. This is essentially the notion of a decomposable randomized encoding [ATK06].

e Then, more crucially, we also need to strengthen our notion of security: In a standard randomized encoding
scheme, the adversary needs to declare f1, fo, 1,22 all at the beginning, and then we have the guarantee
that (f1,) is computationally indistinguishable to (fs,25). However, for an FE scheme, even with just
“selective” security, the adversary is given the power to adaptively specify at least fi, fo after it has seen
the encodings 7 and 3. More generally, we would like to have security where the adversary can choose
whether it would like to specify fi, fo first or x1, zo first.

It turns out that achieving these two properties is relatively straightforward when dealing with randomized
encodings of circuits using Yao’s garbled circuits [Yao86]. It is not so straightforward for us in the context of
TMs and adaptive security, as we explain below.

To see why our situation is nontrivial and to get intuition about the obstacles we must overcome, let us first
consider a failed attempt to achieve these properties by trying to apply the generic transformation, which was
formalized in the work of Bellare et al. [BHR12], to achieve adaptive security: in this attempt, the new input
encoding and new function encoding will now be (# @ R, S) and (R, f @ S), respectively, where R and S are
random strings. The idea behind this transformation is as follows: no matter what the adversary queries for
(input or function) in the beginning, it is just given two random strings (R, S). When the adversary makes the
other query, the simulator would know at this point both the input and the function. Hence, it would obtain
the corresponding encodings f and Z from the ordinary security of the randomized encoding scheme. Now, the
simulator would respond to the adversary by giving (& @ R, fe S) thus successfully simulating the game. The
problem with this solution for us lies in the sizes of the encodings. If we look at the strings R and .5, they are

as long as the length of & and f respectively. This would mean that the size of the new input encoding (resp.,
new function encoding) depends on the function length (resp., input length) — which violates our main goal of
achieving FE without restrictions on input length!

Revisiting the KLW randomized encoding. In order to achieve our goal, we will need to look at the
specifics of the decomposable RE for TMs construction in [KLW15]. We then develop new ideas specific to the
construction that help us achieve adaptive security. Before we do that, we revisit the KLW randomized encoding
at a high level, sufficient for us to explain the new ideas in our work. The encoding procedure of a Turing
machine M and input x consists of the following two main steps:

1. The storage tape of the TM is initialized with the encryption of x. It then builds an accumulator storage
tree on the ciphertext. The accumulator storage tree resembles a Merkle hash tree with the additional
property that this tree is unconditionally sound for a select portion of the storage. The root of the tree is
then authenticated.

2. A program that computes the next step function of the Turing machine M is then designed. This program
enables computation of M one step at a time. This program has secrets that enable decrypting encrypted
tape symbols and also to perform some checks on the input encrypted symbol. To hide the secrets, this
program is obfuscated.

The decoding just involves running the next message function repeatedly on the computation obtained so far
until the Turing Machine terminates. At this point, the decode algorithm will output whatever the Turing
Machine outputs.

First Step towards Adaptivity: 3-Stage KLW. The main issue with trying to use the random masking
technique was that we were trying to use randomness to mask the entire input encoding or the function encoding,
which could be of unbounded length. So our main goal will be to find a way to achieve adaptivity where
randomness need only be used to mask bounded portions of the encoding.

As a first step towards achieving this, we want to symmetrize how we treat the input x and the function
f. We do this by treating both and f as being inputs to a Universal Turing Machine U, where U is both of
bounded size and is entirely known a-priori, such that U(f,z) = f(x).

That is, we have three algorithms?: InpEnc outputs an encoding of input x, FnEnc outputs an encoding of f,
and UTMEnc outputs a TM encoding of UTM.

A natural approach would be to try to use the KLW scheme sketched above to achieve the goal. The only
difference is that, unlike the original KLW scheme, in the 3-stage KLW scheme, the input encoding is split into
two encodings (InpEnc and FnEnc) and so there must be a way to stitch the input encodings into one. We
develop a mechanism, called combiner, to achieve this goal. A combiner is an algorithm that combines two input
encodings into one input encoding. Furthermore, the combiner algorithm we develop is succinct; it only takes a
portion of the two encodings (of say, © and f) and spits out an element that together with the encodings of
and f represent z||f. Note, however, that the combiner algorithm needs secret information in order to perform
its combining role correctly.

The key to constructing this combiner is the accumulator storage scheme of KLW. Recall that the accumulator
storage on (x||f) was essentially a binary tree on x||f. We modify this accumulator storage such that the storage
tree on (z||f) can be built by first building a storage tree on z, then building a separate independent storage tree
on f, and then joining both these two trees by making them children of a root node. Once we have this tool,
developing our combiner algorithm is easy: the input encoding of x consists of a storage tree on an encryption
of x, encoding of f consists of a storage tree on the encryption of f. The combine algorithm then takes only the
root nodes of both these two trees and creates a new root node which is the parent of these two root nodes. The
combiner then signs on the root node as a means of authenticating the fact that this new root node was created
legally.

We are almost ready to now apply the random masking technique to achieve adaptive security by masking our
new succinct representations. However, there is a problem: the combiner algorithm. In 3-stage KLW, once we
have encodings of x and f, before we can have a randomized encoding, these two encodings need to be combined

2The actual algorithms as presented in the technical section is slightly different. We chose to present it this way in the introduction
for intuitive clarity.

using secret information. This is not allowed in a randomized encoding, where the decode algorithm must be
public.

Getting rid of combiner: 2-ary FE for TMs (1-CT 1-Key setting). Since we need to eliminate the
need for the combiner algorithm, we start by trying to delegate the combine operation to the decoder. We
can attempt to do so by including an obfuscated version of the combiner program as part of the encoding itself,
where obfuscation is needed since the combiner procedure contains some secret values that have to be hidden. By
itself, however, this approach does not work, because the adversary who now possesses the obfuscated combine
program can now illegally combine different storages (other than those corresponding to « and f) — we term this
type of attack as a mized storage attack.

To prevent mixed storage attacks, we use splittable signatures: the challenger can sign the root of the storage
of = as well as the root of the storage of f. The obfuscated program now only outputs the combined value if the
signatures can be verified correctly. By using splittable signatures, we can argue that the adversary is prevented
from mixed storage attacks relying only on indistinguishability obfuscation for circuits.

Once we have the obfuscated combiner program, the next issue is whether the obfuscated combiner should
be included as part of InpEnc or FnEnc. Including it in either of them will cause problems because the simulator
needs to simulate the appropriate parameters in the combiner algorithm and it can do that only after looking
at both the InpEnc and FnEnc queries. Here we can (finally!) apply the random masking technique since the
size of the combiner is independent of the size of the input as well as the function and thus the length of the
random mask needed is small. The resulting scheme that we get is a 2-ary FE [GGG114] for TMs, where the
adversary can only make a single message and key query — note that it is essentially the same as 3-stage KLW
scheme except that it does not have the combiner algorithm.

Using some additional but similar ideas, we can show that the algorithms FnEnc and UTMEnc can be combined
into one encoding. The result is a scheme with an input encoding, function encoding and a decode algorithm with
the security guarantee that the input query and the function query can be made adaptively, which is precisely
the goal we had started off with.

Boosting mechanism: 1-Key 1-CT (private-key) FE to many-key (public-key) FE. Now that we have
achieved the goal of single-ciphertext single-key private key FE for TMs, the next direction is to explore whether
there is any way to combine this with other known tools to obtain a public-key FE with unbounded number of
function queries. We give a mechanism of combining the 1-Key 1-CT FE scheme with other FE schemes that are
defined for circuits to obtain a public-key FE scheme for Turing machines. Further, our resulting FE scheme is
such that it is adaptively secure assuming only that the 1-Key 1-CT FE scheme is adaptively secure. The high
level approach is that the ciphertexts and the functional keys are designed such that every ciphertext-functional
key pair gives rise to a unique instantiation of single-ciphertext single-key private FE. This is reminiscent of the
approach of Waters [Wat15], later revisited by [ABSV15], in the context of constructing adaptively secure FE
for circuits.

Our boosting mechanism, however, diverges in several ways from the previous works of [Watl5, ABSV15].
First, we note that just syntactically, our boosting mechanism is the first such mechanism that uses only 1-Key
1-CT FE as a building block; in contrast, for example, [ABSV15] needed many-Key 1-CT FE as a building block.

Zooming in on the main new idea we develop for our boosting mechanism, we find that it is used exactly
to deal with the fact that unbounded inputs that must be embedded in ciphertexts. Note that all previous
FE schemes placed an a-priori bound on the inputs to be encrypted in ciphertexts. Therefore, to build our
encryption mechanism, we cannot use previous FE encryption to encode inputs. We also cannot directly use
the 1-Key 1-CT FE, since this scheme can only support a single key and a single ciphertext. To resolve this
dilemma, we note that even though previous FE schemes could not handle inputs of unbounded length, previous
FE schemes can handle keys corresponding to arbitrary-length circuits. Therefore, crucially in our boosting
procedure, when encrypting an input z, we actually prepare a circuit H, that has z built into it, and then use
an existing FE scheme to prepare a key corresponding to H,. Here we make use of the Brakerski-Segev [BS14]
transformation to guarantee that the key for H, does not leak x. We utilize a new layer of indirection, where
this circuit H, expects to receive as input the master secret key of a 1-Key 1-CT FE scheme, and then uses this
master secret key to create a 1-Key 1-CT encryption of . In this way, the final FE scheme that we construct
inherits the security of the 1-Key 1-CT encryption scheme, but a fresh and independent instance of the 1-Key
1-CT scheme is created for each pair of (input, function) that is ever considered within our final FE scheme.

Subsequent Work. Recently, Nimishaki, Wichs and, Zhandry [NWZ15] construct a traitor tracing scheme

which allows for embedding user information in the issued keys. One of the main tools used to construct this
primitive is an adaptively secure FE scheme. As a first step, they show how to achieve a traitor tracing scheme
from a private linear broadcast encryption (PLBE) scheme defined for a large identity space. In the next step,
they show how to design a PLBE scheme from adaptive FE.

2 Preliminaries

We denote A to be the security parameter. We say that a function u(\) is negligible if for any polynomial p(\)
it holds that u(A) < 1/p(A) for all sufficiently large A € N. We use the notation negl to denote a negligible
function.

The standard cryptographic notions of pseudorandom functions and symmetric encryption schemes are de-
fined in Appendix B.1. We also recall the definition of Turing machines in the same section. We use the
convention that a Turing machine also outputs the time it takes to execute. As a consequence, if we have
My(x) = My(x) then it means that not only are the outputs same but even the running times are the same.

2.1 Functional Encryption for Turing machines

We now define the notion of functional encryption (FE) for Turing machines. This notion differs from the
traditional notion of FE for circuits (to be defined later) in that the functional keys are associated to Turing
machines as against circuits. Further, the functional keys can be used to decrypt ciphertexts of messages of
arbitrary length and the decryption time depends only the running time of the Turing machine on the message.

A public-key functional encryption scheme, defined for a message space M and a class of Turing machines
F, consists of four PPT algorithms FE = (Setup, KeyGen, Enc, Dec) described as follows.

e Setup(1?): The setup algorithm takes as input the security parameter A in unary and outputs a public
key-secret key pair (PK, MSK).

o KeyGen(MSK, f € F): The key generation algorithm takes as input the master secret key MSK, a Turing
machine f € F 2, and outputs a functional key sk;.

e Enc(PK,m € M): The encryption algorithm takes as input the public key PK, a message m € M and
outputs a ciphertext CT.

o Dec(sky, CT): The decryption algorithm takes as input the functional key sk, a ciphertext CT and outputs
m.

The FE scheme defined above, in addition to correctness and security, needs to satisfy the efficiency property.
All these properties are defined below.

Correctness. The correctness notion of a FE scheme dictates that there exists a negligible function negl()\)
such that for all sufficiently large A € N, for every message m € M, and for every Turing machine f € F it
holds that Pr[f(m) < Dec(KeyGen(MSK, f), Enc(PK,m))] > 1 — negl()\), where (PK, MSK) « Setup(1*), and
the probability is taken over the random choices of all algorithms.

Efficiency. The efficiency property of a public-key FE scheme says that the algorithm Setup on input 1*
should run in time polynomial in A, KeyGen on input the Turing machine f (along with master secret key)
should run in time polynomial in (A,|f]), Enc on input a message m (along with the public key) should run in
time polynomial in (A, |m|). Finally, Dec on input a functional key of f and an encryption of m should run in
time polynomial in (A, |f], ||, timeTM(f, m))).

Security. The security is modeled in the form of a game between the challenger and an (efficient) adversary.
The adversary is allowed to request for an arbitrary number of functional keys from the challenger. In addition,
the adversary can also submit message pairs of the form (mg, m;), where |mg| = |m1| and in return it receives

a ciphertext of my, where b & {0,1} is sampled by the challenger. At the end of the game, the adversary

3We use the same notation to denote the function as well as the Turing machine representing the function f.

outputs a bit &’. The adversary wins the game if & = b and if f(mg) = f(m1), for all Turing machine queries f,
message pair queries (mg, m1). Recall that, we only consider Turing machines which also output the time taken
to execute and hence, f(mg) = f(m1) ensures that the running time of f on mg and m; are the same.

Definition 1. A public-key functional encryption scheme FE = (Setup, KeyGen, Enc, Dec) over a class of Turing
machines F and a message space M is adaptively secure if for any PPT adversary A there exists a negligible
function p(X\) such that for all sufficiently large A\ € N, the advantage of A is defined to be

Adv'E = |Prob[Expt’f (1%, 0) = 1] — Prob[Expt’f (11, 1) = 1]| < u(N),

where for each b € {0,1} and A € N the experiment Expti\E(lA, b), modeled as a game between the challenger and
the adversary A, is defined as follows:

1. The challenger first evecutes Setup(1*) to obtain (PK,MSK). It then sends PK to the adversary.

2. Query Phase I: The adversary submits a Turing machine query f to the challenger. The challenger sends
back sky to the adversary, where sk is the output of KeyGen(MSK, f).

3. Challenge Phase: The adversary submils a message-pair (mg,my) to the challenger. The challenger
checks whether f(mo) = f(m1) for all Turing machine queries f made so far. If this is not the case, the
challenger aborts. Otherwise, the challenger sends back CT = Enc(MSK, my).

4. Query Phase II: The adversary submits a Turing machine query f to the challenger. The challenger
generates sky, where sky is the output of KeyGen(MSK, f). It sends sky to the adversary only if f(mg) =
f(my), otherwise it aborts.

5. The output of the experiment is b, where b’ is the output of A.

We can also consider a weaker notion, termed as selective security, where the adversary has to submit the
challenge message pair at the beginning of the game itself even before it receives the public parameters and such
a FE scheme is said to be selectively secure.

Private Key Setting. We can analogously define the notion of FE for TMs in the private-key setting.
The difference between the public-key setting and the private-key setting is that in the private-key setting, the
encryptor needs to know the master secret key to encrypt the messages. We provide the formal definition of
private-key FE for TMs in Appendix B.3.

2.2 (Compact) FE for circuits
2.2.1 Public-Key FE

One of the building blocks in our construction of FE for TMs is a public-key FE for circuits (i.e., the functions
are represented as circuits). We now recall its definition from [BSW11, O’N10].

A public-key functional encryption (FE) scheme PubFE, defined for a class of functions F = {F)}xen and
message space M = { M }aen, is represented by four PPT algorithms, namely (Setup, KeyGen, Enc, Dec). The
input length of any f € F) is the same as the length of any m € M. The description of these four algorithms
is given below.

e Setup(1?): It takes as input a security parameter A in unary and outputs a public key-secret key pair
(PK, MSK).

o KeyGen(MSK, f € F,): It takes as input a secret key MSK; a function f € Fy and outputs a functional key
skf.

e Enc(PK,m € M,): It takes as input a public key PK, a message m € M and outputs an encryption of m.

e Dec(sky, CT): It takes as input a functional key sk¢, a ciphertext CT and outputs m.

We require the FE scheme to satisfy the efficiency property in addition to the traditional properties of correctness
and security.

Correctness. The correctness property says that there exists a negligible function negl(A) such that for all
sufficiently large A € N, for every message m € My, and for every function f € F, it holds that Pr[f(m) «
Dec(KeyGen(MSK, f),Enc(PK,m))] > 1 — negl()\), where (PK, MSK) < Setup(1*), and the probability is taken
over the random choices of all algorithms.

Efficiency. At a high level, the efficiency property says that the setup and the encryption algorithm is
independent of the size of the circuits for which functional keys are produced. More formally, the running time
of the setup algorithm, Setup(1*) is a polynomial in just the security parameter A and the encryption algorithm,
Enc(PK,m) is a polynomial in only the security parameter A and length of the message, |m/|.

An FE scheme that satisfies the above efficiency property is termed as compact FE. It was shown by [AJ15,
BV15] that 1O is implied by (sub-exponentially hard) compact FE. However, we don’t place any sub exponential
hardness requirement on compact FE in our work.

Remark 1. We note that the definitions of FE for circuits commonly used in the literature do not have the
above efficiency property.

Security. The security definition is modeled as a game between the challenger and the adversary as before.

Definition 2. A public-key functional encryption scheme FE = (Setup, KeyGen, Enc, Dec) over a function space
F ={Fa}ren and a message space M = { My }ren is an adaptively-secure public-key functional encryp-
tion scheme if for any PPT adversary A there exists a negligible function uw(\) such that for all sufficiently
large A € N, the advantage of A is defined to be

Adv'E = |Prob[Exptf (1%, 0) = 1] — Prob[Expt’f (1%, 1) = 1]| < u(N),

where for each b € {0,1} and X € N the experiment Exptff(l’\, b), modeled as a game between the challenger and
the adversary A, is defined as follows:

1. The challenger first evecutes Setup(1?) to obtain (PK,MSK). It then sends PK to the adversary.

2. Query Phase I: The adversary submits a function query f to the challenger. The challenger sends back
sky to the adversary, where sky is the output of KeyGen(MSK, f).

3. Challenge Phase: The adversary submits a message-pair (mg,my) to the challenger. The challenger
checks whether f(mg) = f(ma) for all function queries f made so far. If this is not the case, the challenger
aborts. Otherwise, the challenger sends back CT = Enc(MSK,my).

4. Query Phase II: The adversary submits a function query f to the challenger. The challenger generates

sky, where sky is the output of KeyGen(MSK, f). It sends sky to the adversary only if f(mo) = f(m1),
otherwise it aborts.

5. The output of the experiment is b', where V' is the output of A.

We define the FE scheme to be selectively secure if the adversary has to declare the challenge message pair even
before it receives the public parameters.

2.2.2 Function-private Private Key FE

We now give an analogous definition of FE for circuits in the private-key setting. In particular, we focus on the
private-key FE that is function-private.

A function-private private-key functional encryption (FE) scheme PubFE, defined for a class of functions
F = {Fx}ren and message space M = { M }\en, is represented by four PPT algorithms, namely (PrivFE.Setup,
PrivFE.KeyGen, PrivFE.Enc, PrivFE.Dec). The input length of any f € F) is the same as the length of any
m € M.

We give the description of the four algorithms below.

e PrivFE.Setup(1?): It takes as input a security parameter A in unary and outputs a secret key PrivFE.MSK.

e PrivFE.KeyGen(PrivFE.MSK, f € F,): It takes as input a secret key PrivFE.MSK| a function f € F) and
outputs a functional key PrivFE.sky.

o PrivFE.Enc(PrivFE.MSK, m € M,): It takes as input a secret key PrivFE.MSK; a message m € M, and
outputs an encryption of m.

o PrivFE.Dec(PrivFE.sky, CT): It takes as input a functional key PrivFE.sky, a ciphertext CT and outputs .

We require the above function-private private key FE scheme to satisfy the correctness, efficiency and the function
privacy properties of the above FE scheme.

Correctness. The correctness notion of a function-private private-key FE scheme dictates that there exists
a negligible function negl(A) such that for all sufficiently large A € N, for every message m € M, and for every
function f € Fy it holds that Pr[f(m) < PrivFE.Dec(PrivFE.KeyGen(PrivFE.MSK, f), PrivFE.Enc(PrivFE.MSK,
m))] > 1—negl(\), where PrivFE.MSK ¢ PrivFE.Setup(1%), and the probability is taken over the random choices
of all algorithms.

Efficiency. At a high level, the efficiency property says that the setup algorithm and the encryption algorithm
is independent of the size of the circuits for which functional keys are produced. More formally, the running
time of PrivFE.Setup(1?) is just a polynomial in the security parameter \, and PrivFE.Enc(PrivFE.MSK,m) is a
polynomial in only the security parameter A and length of the message, |m]|.

Function Privacy. We now recall the definition of function privacy in private key FE as defined by Brakerski,
and Segev [BS14]. In the security game of function privacy, a function query made by the adversary is a pair of
functions and in response it receives a functional key corresponding to either of the two functions. As long as
both the functions are such that they do not split the challenge message-pairs, the adversary should not be able
to tell which function was used to generate the functional key. That is, the output of the left function on the
left message should be the same as the output of the right function on the right message.

Note that the function privacy property below subsumes the usual notion of security (when only one function
is submitted).

Definition 3. A private-key functional encryption scheme PubFE = (PrivFE.Setup, PrivFE.KeyGen, PrivFE.Enc,
PrivFE.Dec) over a function space F = {Fx}ren and a message space M = {My}ren is a function-private
adaptively-secure private-key FE scheme if for any PPT adversary A there exists a negligible function u(\)
such that for all sufficiently large X € N, the advantage of A is defined to be

Advi®FE = |Prob[Expt ™7 E(1*,0) = 1] — Prob[Expt}™*FE (1%, 1) = 1]| < u(N),

where for each b € {0,1} and A € N the experiment Expt';{’bFE(l/\7 b), modeled as a game between the challenger

and the adversary A, is defined as follows:

1. The challenger first executes PrivFE.MSK <« PrivFE.Setup(1*). The adversary then makes the following
message queries and function queries in no particular order.

o Message queries: The adversary submits a message-pair (mg,my) to the challenger. In return, the

challenger sends back CT = PrivFE.Enc(PrivFE.MSK, m5).

e Function queries: The adversary then makes functional key queries. For every function-pair query
(fo, f1), the challenger sends PrivFE.sky, to the adversary, where PrivFE.sky, is the output of PrivFE.KeyGen(
PrivFE.MSK, f,) only if fo(mo) = fi(m1), for all message-pair queries (mg, m1). Otherwise, it aborts.

2. The output of the experiment is b', where b/ is the output of A.

We define a function-private private key FE to be selectively secure if the adversary has to declare all the
challenge message pairs at the beginning of the security game.

Remark 2. We note that we can define a private-key FE scheme without the function privacy property, analogous
to the public-key FE.

10

Single-key setting. A single-key function-private functional encryption scheme (in the private-key setting)
is a functional encryption scheme, where the adversary in the security game (either selective or adaptive) is
allowed to query for only one function. There are several known constructions [SS10, GVW12, GKP112] but
none of them satisfy the efficiency property of our FE definition — in particular, the size of the ciphertexts in
these constructions grow with the circuit size (for which functional keys are computed). We later describe how
to obtain a single-key scheme that indeed satisfies the efficiency property.

3 Adaptive 1-Key 1-Ciphertext FE for TMs

One of the main tools in our constructions is a single-key single-ciphertext FE for TMs in the private key
setting. In the security game, the adversary only gets to make a single message and function query. Since we are
interested in adaptive security, the message and the function query can be made in any order. In the language of
randomized encodings (RE), this primitive is nothing but an adaptively secure succinct decomposable RE. The
formal definition of single-ciphertext single-key FE for TMs is provided below.

In the adaptive security game of single-ciphertext single-key FE, the adversary can only make a single function
query and a single challenge message query. We define this notion for the case when the functions are represented
by Turing machines.

Definition 4 (Single-ciphertext Single-key Private-key FE for TMs). A private-key functional encryption scheme
OneCTKey = (OneCTKey.Setup, OneCTKey.KeyGen, OneCTKey.Enc, OneCTKey.Dec) for Turing machines over a
function space F = {Fa}ren and a message space M = {Mj}ren is an adaptively-secure single-ciphertext
single-key private-key FE scheme for Turing machines if for any PPT adversary A there exists a negli-
gible function uw(\) such that the advantage of A is defined to be

Adva T = [Prob[Expt Q™ T¢Y (11, 0) = 1] — Prob[Expt 3" ™% (1}, 1) = 1]| < pu(N),

where for each b € {0,1} and A\ € N the experiment Expti"eCTKey(lA, b), modeled as a game between the challenger

and the adversary A, is defined as follows:
1. The challenger first evecutes OneCTKey.Setup(1*) to obtain OneCTKey.MSK.

2. Query Phase I: The adversary can submit a single Turing machine query f to the challenger during this
phase. The challenger generates OneCTKey.sky, where OneCTKey.sky is the output of OneCTKey.KeyGen(
OneCTKey.MSK, f). It then sends OneCTKey.sky to the adversary. We emphasize that the adversary can
only make at most one function query in this phase.

3. Challenge Phase: The adversary submits a message pair (mg,m1) to the challenger. The challenger
generates CT = OneCTKey.Enc(OneCTKey.MSK,my). If f(mg) = f(m1) for a Turing machine query f
made in Query Phase I, the challenger sends CT to the adversary. Otherwise, it aborts. We emphasize
that the adversary can make at most one message query in this phase.

4. Query Phase II: If the adversary has already made a Turing machine query during Query Phase I then the
adversary can make no more Turing machine queries during this phase. Otherwise, the adversary can sub-
mit a Turing machine query f to the challenger during this phase. The challenger generates OneCTKey.sky,
where OneCTKey.sk; is the output of OneCTKey.KeyGen(OneCTKey.MSK, f). If f(mg) = f(m1), for the
message query (mg,m1), it sends OneCTKey.sky to the adversary and otherwise, it aborts. As in Query
Phase I, we emphasize that the adversary can only make at most one Turing machine query in this phase.

5. The output of the experiment is b', where b/ is the output of A.

As before, we can define a single-ciphertext single-key private-key FE to be selectively-secure if the adversary
has to declare the challenge message pair even before he submits the function query.

We now proceed to build this tool based on iO and one-way functions. Towards this end, we first consider the
notion of private key multi-ary functional encryption (FE) [GGGT14] for TMs. Multi-ary FE is a generalization
of FE where the functions can take more than one input. We are interested in the restricted setting when the
adversary only makes a single function and message query. Moreover, we restrict ourselves to the 2-ary setting,

11

i.e., the arity of the functions is 2. We refer to this notion as 2-ary FE for TMs. We describe this notion formally
in Section 3.1.

Prior to this work, we knew how to construct this only based on (public coins) differing inputs obfuscation.
Later we show how to construct this primitive assuming just iO for circuits and one-way functions.

3.1 Semi-Adaptive 2-ary FE for TMs: 1-Key 1-Ciphertext Setting

The formal description of the 2-ary FE for TMs is given below. A 2-ary FE for a class of Turing machines F
consists of four PPT algorithms, 2FE = (2FE.Setup, 2FE.Enc, 2FE.KeyGen, 2FE.Dec), as described below.

e 2FE.Setup(1*): On input the security parameter), the algorithm 2FE.Setup outputs a master secret key
2FE.MSK.

o 2FE.KeyGen(2FE.MSK, M): On input the master secret key 2FE.MSK and Turing machine M € F, it
outputs the key 2FE.sky,.

e 2FE.Enc(2FE.MSK, z,b): On input the master secret key 2FE.MSK, message z € {0,1}* and position
b€ {0,1}, it outputs 2FE.CT,.

Remark 3. The bit b essentially indicates the position with respect to which the message needs to be
encrypted. For convenience sake, we refer to the first position as the 0" position and the second position
as the 1% position.

o 2FE.Dec(2FE.skys, 2FE.CT,,2FE.CT,): On input the functional key 2FE.skys and ciphertexts 2FE.CT, and
2FE.CT,, it outputs the value z.

For the above notion to be interesting, a 2-ary FE for TMs scheme is required to satisfy the following correctness,
efficiency and security properties.

Correctness: This property ensures that the output of 2FE.Dec(2FE.skys, 2FE.CT,, 2FE.CT,)) is always M (z,y)
where (i) 2FE.MSK <« 2FE.Setup(1%), (ii) 2FE.skys <« 2FE.KeyGen(2FE.MSK, M), (iii) 2FE.CT, « 2FE.Enc(
2FE.MSK, z,0) and (iv) 2FE.CT, + 2FE.Enc(2FE.MSK, y,1).

Efficiency: This property says that the size of the ciphertexts (resp., functional key) depend solely on the size of
the message (resp., machine) and the security parameter. That is, the complexity of 2FE.Enc(2FE.MSK, x,b) is a
polynomial in (A, |z|) and the complexity of 2FE.KeyGen(2FE.MSK, M) is a polynomial in (A, |M]). Furthermore,
we require that the complexity of 2FE.Dec(2FE.skas, 2FE.CT,, 2FE.CT,)) is just a polynomial in (A, |z|, |y|, | M|, t),
where ¢ is the time taken by M to execute on the input (z,y).

Semi-Adaptive Security: The security guarantee states that the adversary cannot distinguish joint ciphertexts
of (xg,yo) from the joint ciphertexts of (z1,y1) given the functional key of M, as long as M (xg,y0) = M (x1,y1).
Note that we adopt the convention that the Turing machine also outputs its running time and thus this alone
ensures that the execution time of M (z,yo) is the same as the execution time of M (z1,y1).

Depending on the order of the message and the Turing machine queries the adversary can make, there are
many ways to model the security of a 2-ary FE scheme. We adopt the notion where the adversary can make the
message queries corresponding to 0" and 1% position in an adaptive manner but the TM query should be made
only after both the message queries. We term this notion semi-adaptive security.

Suppose A be any PPT adversary. We define an experiment Expt gsemiaa below.

ExptifmiAd(l’\):
1. The challenger first executes 2FE.Setup(1*) to obtain 2FE.MSK. It then chooses a bit b at random.

2. The following two bullets are executed in an arbitrary order (depending on the choice of the adversary).

e The adversary submits the message query (xg,x1), corresponding to 0" position, to the challenger.
The challenger responds with 2FE.CT, <« 2FE.Enc(2FE.MSK, z(,0) if b = 0 else it responds with
2FE.CT, < 2FE.Enc(2FE.MSK, 1, 0).

12

e The adversary submits the message query (yo,¥1), corresponding to 15 position, to the challenger.
The challenger responds with 2FE.CT, < 2FE.Enc(2FE.MSK, yo,1) if b = 0 else it responds with
2FE.CT, < 2FE.Enc(2FE.MSK, y1,1).

3. After both the message queries, the adversary then submits a Turing machine M to the challenger. The
challenger aborts if either (i) M (xo,yo) # M(x1,y1) or (ii) |xg| # |x1| or (iii) |yo| # |y1|- If it has not
aborted, it executes 2FE.sky; < 2FE.KeyGen(2FE.MSK, M). Tt then sends 2FE.sky; to the adversary.

4. The adversary outputs b’.

The experiment outputs 1 if b = ¥, otherwise it outputs 0.

We now define the semi-adaptive security notion.
Definition 5. A 2-ary FE scheme is semi-adaptive secure if for any PPT adversary A, we have that the
probability that the output of the experiment Exptifm'Ad is 1 is at most 1/2 + negl(\), for any negligible function
negl.

3.2 Adaptive FE from Semi-Adaptive 2-ary FE for TMs

We now show how to achieve adaptively secure single-ciphertext single-key FE starting from a semi-adaptively
secure 2-ary FE for TMs. Recall that in the semi-adaptive security game of 2-ary FE, the key query can be made
only after the message queries but however, the message queries corresponding to the first and the second position
can be made in an adaptive manner. This leads to the main idea behind our construction — symmetrization of
the input and the TM. That is, the adaptive FE functional key of a machine M is the 2-ary FE encryption of
M w.r.t the 1°¢ position and the adaptive FE encryption of a message m is essentially the 2-ary FE encryption
of m w.r.t the 0" position. This takes care of the adaptivity issue. To facilitate the execution of M on m, a
2-ary FE key of a universal TM (UTM) is also provided. The question is whether we include the 2-ary FE key
of UTM in the ciphertext or the functional key. This is crucial because the UTM key can only be provided by
the challenger after seeing the queries corresponding to both the 0 and 1% position. To solve this issue, we
additively secret share the UTM key across both the ciphertext and the functional key. This gives the challenger
leeway to provide a random string as part of the response to the first query and by providing the appropriate
secret share in the second response it can reveal the UTM key — at this point the challenger has seen both m
and M. The formal scheme is described next.

Consider a 2-ary FE for TMs, denoted by 2FE = (2FE.Setup, 2FE.KeyGen, 2FE.Enc, 2FE.Dec), for a class of
Turing machines F. We construct a single-ciphertext single-key FE, OneCTKey, for the same class F.

Denote by UTM = UTM,, the universal Turing machine, that takes as input a Turing machine M, message
m and outputs M (m) if it halts within 2* steps else it outputs L. Further, we denote by £yTm to be the length
of the output of a 2FE key of UTM.

OneCTKey.Setup(1?): On input the security parameter), it first executes 2FE.Setup(1?) to obtain the master

secret key 2FE.MSK. It also picks a random string R in {0,1}*™. It outputs the secret key OneCTKey.MSK =
(2FE.MSK, R) as the master secret key.

OneCTKey.KeyGen(OneCTKey.MSK, M € F): On input the master secret key OneCTKey.MSK = (2FE.MSK, R),
and a Turing machine M € F, it executes 2-ary FE encryption of M w.r.t 0" position, 2FE.Enc(2FE.MSK, M, 0),
to obtain 2FE.CT ;. It then computes a 2-ary FE key of UTM by generating 2FE.skytm < 2FE.KeyGen(2FE.MSK,
UTM,). Finally, it outputs the functional key OneCTKey.skys = (2FE.CT 5z, 2FE.skytm @ R).

OneCTKey.Enc(OneCTKey.MSK,; m): On input the master secret key OneCTKey.MSK = (2FE.MSK| R), and mes-
sage m, it generates a 2-ary FE encryption of m by executing 2FE.CT,,, - 2FE.Enc(2FE.MSK, m, 1). It outputs
the ciphertext OneCTKey.CT = (2FE.CT,,, R).

OneCTKey.Dec(OneCTKey.sky;, OneCTKey.CT): On input the functional key OneCTKey.sky; = (2FE.CTy, S)
and ciphertext OneCTKey.CT = (2FE.CT,,,R). It computes S @ R to obtain 2FE.skytm. It then executes
2FE.Dec(2FE.skytm, 2FE.CT 57, 2FE.CT,;,) to obtain z. Finally, it outputs z.

Theorem 2. The scheme OneCTKey satisfies correctness, efficiency and adaptive security properties.

13

Proof. We prove the correctness, efficiency and adaptive security properties below.

Correctness. Suppose the master secret key OneCTKey.MSK = (2FE.MSK, R) is the output of OneCTKey.Setup(
1*). And let the ciphertext OneCTKey.CT = (2FE.CT,,,R), be the output of OneCTKey.Enc on input (
OneCTKey.MSK, m). Further let the functional key OneCTKey.skys, parsed as (2FE.CT s, S), be the output
of OneCTKey.KeyGen, where (i) S = 2FE.skytm @ R, (ii) 2FE.skytm < 2FE.KeyGen(2FE.MSK, UTM,) and (iii)
2FE.CTjs < 2FE.Enc(2FE.MSK, M, 0). Then, from the correctness property of the 2-ary FE, we have the output
of the decryption algorithm 2FE.Dec on input (2FE.skytm, 2FE.CT s, 2FE.CT,,,) to be M (m). Thus, we have the
output of the decryption algorithm OneCTKey.Dec on input (OneCTKey.sk¢, OneCTKey.CT).

Efficiency. We need to argue about the efficiency of the key generation, encryption as well as the decryption
procedures.

e The running time of OneCTKey.Setup is essentially the running time of 2FE.Setup which is a polynomial
in A

e Observe that the execution time of 2FE.Enc(2FE.MSK, M,0) is a polynomial in (A, |M]|). Further the
execution time of 2FE.KeyGen(2FE.MSK,UTM,) is polynomial in A\. Thus the total execution time of
OneCTKey.KeyGen(OneCTKey.MSK, M € F) is a polynomial in (A, M).

e The execution time of OneCTKey.Enc(OneCTKey.MSK,m) is a polynomial in (), |m|), since the running
time of 2FE.Enc(2FE.MSK,m, 1) is a polynomial in (X, |m]).

e The running time of OneCTKey.Dec(OneCTKey.skys, OneCTKey.CT) is a polynomial in (A, |m|, | f|, t), where
t is the running time of M(m). This follows from the fact that the running time of 2FE.Dec(2FE.skytm,
2FE.CT s, 2FE.CT,,) is a polynomial in (A, |m|, |M]|,t).

Adaptive Security. We need to argue that the FE scheme OneCTKey that we constructed above is indeed
an adaptively secure single-ciphertext single-key FE. More formally, we prove the following. The proof of the
theorem essentially follows from the security of the 2-ary FE scheme.

Lemma 1. Assuming the security of 2-ary FE 2FE, the scheme OneCTKey is adaptively secure.

Proof. Suppose OneCTKey is not adaptively secure, that is, there exists a PPT adversary A that breaks the
security of OneCTKey. We then design a reduction B that internally runs the adversary .4 and breaks the security
of 2FE.

The reduction B essentially simulates the role of the challenger in the security game of OneCTKey and at the
same time takes the role of the adversary in the game of 2FE. Depending on the order in which the adversary
makes the function and the message query, there are two cases.

1. Adversary first submits a TM query: Suppose the adversary submits the TM query M to B. The
reduction then sends (M, M) as a message query w.r.t 0" position to the challenger of 2FE. In return it
receives the ciphertext 2FE.CT ;. It then sends the functional key (2FE.CT s, R) to A, where R is picked
at random from {0,1}*v™™. The reduction then receives the input pair (mg,m;) from the adversary A.
The reduction then submits the message query (mq, m1) w.r.t the 15¢ position to the challenger of 2FE. In
response to this query, it receives the ciphertext 2FE.CT,,. Then, B sends the universal Turing machine
UTM, as a key query to the challenger and it receives the functional key 2FE.skytpm. The reduction then
sends the challenge ciphertext (2FE.CT,,, R @ 2FE.skytm) to A.

2. Adversary first submits a message query: Suppose the adversary submits the message pair query
(mo,m1) to B. The reduction B then forwards this message query (mg,m;) w.r.t the 15! position to
the challenger of 2FE. In return it receives 2FE.CT,,. The reduction then sends the challenge ciphertext
(2FE.CT,,, R) to the adversary A, where R is a random string of length {0,1}*™. The adversary then
sends the Turing machine M to B, who then composes the message query (M, M) w.r.t 0** position and
sends it to the challenger of 2FE. The reduction B receives back the ciphertext 2FE.CT ;. B also submits,
as a key query, the universal Turing machine UTMy, to the challenger of 2FE. In response, it receives

2FE.skyrwm. Finally, the reduction sends the functional key (2FE.CTys, UTM,) to A.

14

In both the cases, we note that the distribution of the functional key and the challenge ciphertext as produced by
B is identical to the distribution as produced according to the scheme. Thus, if A breaks the security of OneCTKey
with non-negligible probability then B breaks the security of OneCTKey with non-negligible probability. O

O

3.3 Constructing Semi-Adaptive 2-ary FE for TMs: Overview

Lets begin with the following simple idea: the 2-ary FE encryption of w.r.t 0" position will just be a standard

public key encryption of zy. Since this encryption should not be malleable, we provide an authentication of the
ciphertext. Similarly, the 2-ary FE encryption of y w.r.t 15 position is also a public key encryption of y along
with its authentication. The functional key of M is an obfuscated program that takes as input an encrypted
tape symbol; decrypts it; executes the next message function and then outputs an encryption of the new symbol.
The evaluation is performed by executing next message function one step at a time while updating the storage
tape which is initialized to the encryptions of x and y along with their respective authentications.

This however suffers from consistency issues. An adversary could re-use encrypted storage tape values of the
current tape in the future steps. It would seem that using signatures to bind the time step to the tape symbol
should solve this problem. In fact, if we had virtual black box obfuscation this idea would work. However,
we are stuck with indistinguishability obfuscation and it is not clear how to make this work — signatures in
general aren’t compatible with iO because signatures guarantee computational soundness whereas iO demands
information theoretic soundness. Looking back at the literature, we notice that Koppula-Lewko-Waters had to
deal with similar issues in their recent work on randomized encodings (RE)* for TMs [KLW15]. The template of
their construction comprises of two components as described below. The actual construction of KLW has more
intricate details involved from what is presented below but to keep the discussion at an intuitive level, we choose
to describe it this way.

Let M and x be the input to the encoding procedure.

e Storage tree: Encrypt z using a public key encryption scheme. Initialize the work tape with this cipher-
text. Compute a storage tree on this ciphertext. The root of the storage tree along with the current time
step (which is initially 0) is then signed using a signature scheme. This signature serves as an authentication
of the work tape and the current time step.

o Obfuscated next message program: The obfuscated program takes as input an encrypted tape symbol
(leaf node), its path to the root of the storage tree and the signature on the root. It performs few checks
to test whether the encrypted tape symbol is valid. It then decrypts the encrypted tape symbol, computes
the next message function of the TM M and then re-encrypts the output tape symbol. Finally, it computes
the new root of the storage tree (this can be done by just having the appropriate path from the new tape
symbol leading up to the root) and signs it.

There are two main hurdles in using the above template for our construction of 2-ary FE for TMs: (i) the TM
only takes a single input in the above template whereas in our setting the TM takes two inputs. Moreover, we
require that the TM and the inputs are encoded separately and, (ii) the security notion considered by KLW is
weak-selective — the adversary is required to declare both the TM and the input at the beginning of the game.
On the other hand the security notion we consider is stronger. Because of these two main reasons, we employ
new techniques to achieve our construction.

Ciphertext combiner mechanism. As remarked earlier, we require that the TM and the inputs are
encoded separately. We exploit the fact that inherently KLW has two components — storage tree and obfuscated
next message program — that depend upon the input and the TM separately. But note that we have two inputs
and so we need to further split the storage tree component. The tree structure automatically allows for such
a decomposition. We compute a storage tree on the (encrypted) 0" position input and another tree on the
(encrypted) 1%t position input. We can then combine the roots of both the trees, during the decryption phase,
to obtain a new root. But the root of the new tree needs to be authenticated and this operation needs to be
public. We could provide the decryptor the signing key but then we end up sacrificing security!

*A randomized encoding of a machine M and input x is an encoding of M (x) that takes much less time to compute than M(z).
Furthermore, the encoding should only reveal M (z) and nothing more.

15

To overcome this problem, we provide a combiner program, as part of one of the ciphertexts, that takes as
input two nodes in the tree and outputs a new node along with a signature. This signature is signed using a
signing key which is part of the combiner program. Of course the combiner program needs to be obfuscated to
hide the signing key. As we will see later in the actual construction, we require “iO-compatible” signatures a.k.a
splittable signatures scheme of KLW to make this idea work.

While using combiner seems to solve the problem, the next question is in which ciphertext do we include the
combiner? We will see next that this becomes crucial for our proof of security.

Ensuring semi-adaptivity. Suppose we decide to include the combiner as part of the 0" ciphertext. In
line with the techniques used in proving the security using iO, we require that in the proof of security we hardwire
the resulting (combined) root node in the combiner. But this is not possible if the 0" position challenge message
is requested before the 1% position challenge message. The same problem occurs if we include the combiner as
part of the 1%¢ position ciphertext — the adversary can now query for the 1%¢ position challenge ciphertext first
and then query the 0" position challenge message.

This conundrum can be tackled by using deniable encryption. We can compute a deniable encryption of com-
biner in one ciphertext and in the other ciphertext we open the deniable ciphertext. This gives us the flexibility
to open the ciphertext to whatever message we want depending on the adversary’s queries. While this solves the
problem, we can replace deniable encryption with a much simpler tool — one-time pad! We compute a one-time
pad of the combiner with randomness R in one ciphertext and the other ciphertext contains just R. This solves
our problem just like the case of deniable encryption.

We present a high level and a simplified description of the 2-ary FE scheme below. The formal description is
more involved and is presented in Section 3.4 where we present the construction in a modular fashion by first
describing an intermediate primitive that we call 3-stage KLW.

1. Setup: Generate a master signing key-verification key pair (SK,VK). Also generate two auxiliary signa-
ture key-verification key pairs (SK,,VK,) and (SK,,VK,). Generate the public parameters PP of the
storage tree. Compute a random string R of appropriate length. The public key is PP while the master
secret key is (SK,,SK,,VK,,VK,,SK, VK, R).

2. Key generation of M: Generate an obfuscated next message program of M whose functionality is as in
the above high level description. The pair (SK,V K) is hardwired inside the obfuscated program.

3. Encryption of 2 w.r.t 0'* position: Compute a storage tree on x. Sign the root of the tree rt, using
S K, to obtain o,. Compute the obfuscated combiner program S = Comb® R whose description is as given
above. Output (rty,os,5).

4. Encryption of y w.r.t 15 position: Compute a storage tree on y. Sign the root of the tree rt, using
SK, to obtain o,. Output (rty,o,, R).

5. Decryption: First, compute S@® R to recover Comb. Then execute Comb on inputs ((rtz, oz) , (rty, oy)) to
obtain the joint root rt accompanied by the signature ¢ computed using SK. Once this is done, using the
joint tree and obfuscated next message program of M, execute the decode procedure of KLW to recover
the answer.

3.4 Constructing Semi-Adaptive 2-ary FE for TMs: Formal Description

The randomized encodings construction of [KLW15] is the starting point of our construction. However, to achieve
our goal, we need to make several modifications to their construction. To present things in a more modular way,
we identify a primitive that is “closest” to the construction of KLW. We call this primitive, 3-stage KLW. This
notion is similar to the notion of 2-ary FE for TMs (in the single-key single-ciphertext) setting except that
there is an algorithm called “Combine” that enables combining two encryptions (we call them encodings in the
following description) into one ciphertext.

We provide a construction of 3-stage KLW which builds on the RE construction of [KLW15]. Using this
primitive, we show how to obtain 2-ary FE for TMs.

16

3.4.1 3-stage KLW

We first describe the syntax of 3-stage KLW scheme. The scheme we construct is denoted by 3StgKLW. It con-
sists of 4 PPT algorithms, namely (3StgKLW.Setup, 3StgKLW.Encode, 3StgKLW.Combine, 3StgKLW.TMEncode,
3StgKLW.Decode).

e Setup algorithm, 3StgKLW.Setup(1*): It takes as input security parameter A and it outputs the secret
parameters 3StgKLW .sk.

e Input encoding algorithm, 3StgKLW.Encode(3StgKLW.sk, z,b): It takes as input secret parameters
3StgKLW.sk, input x, bit b and outputs an encoding T = (Z, acc,).

e Combiner algorithm, 3StgKLW.Combine(3StgKLW.sk, acc,,acc,): It takes as input secret parameters
3StgKLW.sk, accumulator values acc,, acc,, and outputs joint accumulator value accj|,-

e TM encoding algorithm, 3StgKLW.TMEncode(3StgKLW.sk, M): It takes as input secret parameters
3StgKLW.sk, Turing machine M and outputs an encoding M.
e Decode algorithm, 3S5tgKLW.Decode(Z, 7, acc, |y, M) It takes as input, encodings T, ¥, joint accumulator

values accy|y, TM encoding M, and outputs z.

The above scheme is required to satisfy the correctness, efficiency and security properties.

Correctness. Suppose the output of 3StgKLW.Encode(3StgKLW.sk, z,0) is & = (Z, acc,) and the output of
3StgKLW.Encode(3StgKLW sk, y, 1) is ¥ = (¥, acc,). And let the output of the combine algorithm 3StgKLW.Combine
on input (3StgKLW.sk, acc,,acc,) be accy),. Further let the output of 3StgkKLW.TMEncode(3S5tgKLW.sk, M) be
the TM encoding M. Then the output of the decode algorithm 3StgKLW.Decode on input (Z, 1, accy),, M) is
always M (z,y).

Yy

Efficiency. A 3-stage KLW scheme is required to satisfy the following efficiency properties:

e The running time of 3StgKLW.Encode on input (3StgKLW.sk, z, b) is a polynomial in the security parameter
A and the length of the instance, |z|.

o The running time of 3StgKLW.Combine on input (3StgKLW.sk,acc,,acc,) is a polynomial in the security
parameter A. In particular, the run time does not depend on the length of x or y that were used to generate
the parameters acc, and accy.

e The running time of 3StgKLW.TMEncode on input (3StgKLW.sk, M) is a polynomial in the security param-
eter A and size of the Turing machine, |M|.

e The running time of 3StgkLW.Decode on input (z, ,acc,,, M) is a polynomial in the security parameter
A, |M],|z| and ¢, where t is the running time of M on input (z,y).

Semi-Adaptive Security. The above 3-stage KLW scheme satisfies the following semi-adaptive security
property. This notion is identical to the semi-adaptive security notion defined in the context of 2-ary FE for
TMs. In the game, adversary can request for input encodings, denoted by (xg,yo) and (x1,¥1), in an adaptive
manner. The response to these queries are made by the challenger by encoding x; and y;, where the bit b is
picked at random. After this, the challenger sends the joint accumulator value (of encodings of x and y) to the
adversary. The adversary then queries for a TM M to the challenger who then responds with an encoding of M.
The game ends with the adversary guessing the bit b.
The game is formally described below. We denote by A, the adversary in the experiment below.

EXPtasthLW,A(l’\a b):

1. The challenger runs 3StgKLW.Setup(1*) to obtain 3StgKLW.sk. It then picks a challenge bit b at random.

2. The following two bullets are executed in an arbitrary order (depending on the choice of the adversary).

e The adversary submits the message query (xq,;), corresponding to 0" position to the challenger.
The challenger responds with (Zg,accy,) if b = 0 else it responds with (T, accy,).

17

e The adversary submits the message query (yo,¥1), corresponding to 15! position to the challenger.
The challenger responds with (¥, acc,,) if b = 0 else it responds with (g1, accy,).

3. The challenger then sends the combined encodings, acc,, |, to the adversary.

4. The adversary then submits the Turing machine query M to the challenger. The challenger first checks if
M(zo,y0) = M(x1,y1). If the check does not go through, it aborts. Otherwise, the challenger sends the

TM encoding M to the adversary.
5. The adversary outputs bit &'.
We say that the adversary wins the game Exptagygw(1%) if o = b.

Definition 6. The 3-stage KLW scheme is secure if the adversary wins in E><pt35th|_V\,7A(1A7 b) with probability
at most 1/2 + negl(\).

3.4.2 Construction of 3-stage KLW

The starting point of our construction is the succinct randomized encodings® construction of [KLW15]. In general,
it is not clear how to generically transform a succinct randomized encodings scheme into a 2-stage scheme but we
will make use of the special structure satisfied by the construction of [KLW15] to achieve our goal. We describe
the encoding scheme of Koppula et al. at a high level below.

Structure of Koppula et al. [KLW15]. Let the input to the encoding procedure be the Turing machine
M and input x.

1. The encoding scheme begins by generating the encryption and the decryption keys of a public-key encryp-
tion scheme. It then encrypts the input x, bit by bit, using the public key encryption scheme, to obtain a
tuple of ciphertexts.

2. The encoding scheme then initializes the parameters of the accumulator and the iterator scheme. This is
done using the accumulator setup SetupAcc (Refer to 2) and iterator setup Setupltr (Refer to 2). Positional
accumulators allow for compressing work tape into a small accumulator value just like a collision-resilient
hash function. However, unlike a traditional collision-resilient hash function, it is possible to program the
accumulator such that a hash value information theoretically binds a tape symbol.

3. The ciphertexts computed in Bullet 1 are then accumulated using the storage of the accumulator. This
process is carried out using the helper algorithms of the accumulator scheme. The resulting storage that is
in the form of a tree has an associated accumulator value, which is nothing but the root of the tree. This
storage will be part of the encoding.

4. The accumulator value along with the iterator value and the initial state is then signed using a splittable
signature scheme.

5. Finally, a program is designed that computes the next step function of the Turing machine M, that is to
be encoded. This program also performs additional checks to ensure that a malicious adversary does not
input incorrect values. These checks are carried out using accumulator, iterator and splittable signatures.
In order to hide these checks, the program is then obfuscated. This completes the encoding process.

We first make some observations about the structure of the KLW scheme as stated above. The first observation
is that the storage computed in Bullet 3 need not be part of the encoding. This is because this storage can
be recomputed by the decoding algorithm using the ciphertexts and the public parameters of the accumulator
scheme. The second observation is that the Bullets 1-4 do not depend on the Turing machine M to be encoded
and at the same time, Bullet 5 does not depend on the input x. Using this observation, we can split the encoding
procedure into two sub procedures, one for input encoding of x and the other for TM encoding of M.

In addition to the above simplifications, we make one modification to the structure of the scheme. Recall
that in a 2-ary FE scheme, we should be able to split the input into two parts with the ability to encode each

SWe note that the construction of Koppula et al. was proven secure with respect to a notion that is termed as machine hiding
encodings. However, as observed in Section 7.3 (of their ePrint version), the same construction can be shown to be a secure succinct
randomized encoding.

18

part separately and then there should be a mechanism to combine both these encodings. To do this, we should
be able to split the storage, handled by the accumulator scheme, and later be able to join the storage together.
Fortunately, the accumulator scheme constructed by KLW already has this property. The storage in the scheme
of KLLW is in the form of a tree. Joining two storage components paramounts to joining two trees into one tree
with a new root node.

We now formally describe the scheme that incorporates the simplifications and the modification described above.
We denote the 3-stage KLW scheme we construct to be 3StgKLW. The tools used in the below construc-
tion are as follows: an indistinguishability obfuscator iO for polynomial sized circuits, accumulator scheme
(SetupAcc, EnforceRead, EnforceWrite, PrepRead, PrepWrite, VerifyRead, WriteStore, Update), iterator scheme
(Setupltr,ltrEnforce, lterate) and a splittable signature scheme represented by (SetupSpl, SignSpl, VerSpl, SplitSpl,
SignSplAbo). In addition we use a puncturable pseudorandom function family and a public key encryption
scheme, (PKE.Setup, PKE.Enc, PKE.Dec).

3StgKLW.Setup(1*): It first samples puncturable PRF keys Kp and K4. Kg will be used for computing an
encryption of the symbol and state, and K4 to compute the secret key/verification key for signature scheme.
Let (r0,1,70,2,70,3) = PRF(KE,0). It then executes the following:

e PKE setup. Generate (pk,sk) = PKE.Setup(1*;7¢1). It computes CT < PKE.Enc(pk, qo).

o Accumulator setup. Compute (PPacc, Wo, 5?57:30) + SetupAcc(1*,T).
e [lterator setup. Compute (PPyy,vg) < Setupltr(1*, 7).
Finally, output the secret key 3StgKLW.sk = (Kg, K 4, PPacc, PP, 00, CTgt).

3StgKLW.Encode(3StgKLW.sk, 2, b): Parse the input secret key 3StgKLW.sk as (Kg, K4, PPacc, PPy, vo, CTst).
It then computes the following. Let {np = |z|.

e Encrypt the input tape. It encrypts each bit of x separately; that is, it computes CT, = PKE.Enc(pk, x;)
for 1 <4 < fjp,. Denote by CT, to be the tuple (CTq, ..., CTg,np).

o Compute the storage tree on the input tape. These ciphertexts are ‘accumulated’ using the accumulator.
It computes store; = WriteStore(PPacc, store;_1,j —1,(CT;,0)), auzr; = PrepWrite(PPacc, store;