
Secure Binary Field Multiplication⋆

Hwajeong Seo1, Chien-Ning Chen2, Zhe Liu2, Yasuyuki Nogami3,
Taehwan Park1, Jongseok Choi1, and Howon Kim1⋆⋆

1 Pusan National University,
School of Computer Science and Engineering,

San-30, Jangjeon-Dong, Geumjeong-Gu, Busan 609–735, Republic of Korea
{hwajeong,pth5804,jschoi85,howonkim}@pusan.ac.kr

2 Nanyang Technological University,
Physical Analysis & Cryptographic Engineering (PACE),

{chienning}@ntu.edu.sg
3 University of Luxembourg,

Laboratory of Algorithmics, Cryptology and Security (LACS),
6, rue R. Coudenhove-Kalergi, L–1359 Luxembourg-Kirchberg, Luxembourg

{zhe.liu}@uni.lu
4 Okayama University,

Graduate School of Natural Science and Technology,
3-1-1, Tsushima-naka, Kita, Okayama, 700-8530, Japan

{yasuyuki.nogami}@okayama-u.ac.jp

Abstract. Binary field multiplication is the most fundamental build-
ing block of binary field Elliptic Curve Cryptography (ECC) and Ga-
lois/Counter Mode (GCM). Both bit-wise scanning and Look-Up Table
(LUT) based methods are commonly used for binary field multiplication.
In terms of Side Channel Attack (SCA), bit-wise scanning exploits inse-
cure branch operations which leaks information in a form of timing and
power consumption. On the other hands, LUT based method is regarded
as a relatively secure approach because LUT access can be conducted in
a regular and atomic form. This ensures a constant time solution as well.
In this paper, we conduct the SCA on the LUT based binary field multi-
plication. The attack exploits the horizontal Correlation Power Analysis
(CPA) on weights of LUT. We identify the operand with only a power
trace of binary field multiplication. In order to prevent SCA, we also
suggest a mask based binary field multiplication which ensures a regular
and constant time solution without LUT and branch statements.

Keywords: Binary Field Multiplication, Embedded Processors, Side
Channel Attack, Horizontal Correlation Power Analysis

⋆ This work was partly supported by Institute for Information & communica-
tions Technology Promotion(IITP) grant funded by the Korea government (MSIP)
(No.10043907, Development of high performance IoT device and Open Platform
with Intelligent Software) and the MSIP (Ministry of Science, ICT and Future Plan-
ning), Korea, under the ITRC(Information Technology Research Center) support
program (IITP-2015-H8501-15-1017) supervised by the IITP(Institute for Informa-
tion & communications Technology Promotion).

⋆⋆ Corresponding Author

2 Authors Suppressed Due to Excessive Length

1 Introduction

Elliptic Curve Cryptography (ECC) scalar multiplication (point addition and
doubling) consists of field arithmetic including addition/subtraction, multipli-
cation/squaring and inversion [9]. Of these operations, multiplication/squaring
is the most performance-critical operations of point addition and doubling. Any
efforts spent in optimizing these operations are deserved. The binary field mul-
tiplication is normally established with a combination of exclusive-or and bit-
shift operations. The advanced binary field implementations achieved remark-
ably good performance by reducing the number of partial products and replacing
bit operations into consecutive look-up table accesses known as Lopez et al.’s
method [12, 14, 17]. The alternative approach, Block-Comb based multiplication,
is introduced in [18]. Several operands are grouped in block-wise and multiple
operands are computed at once. Later, an unbalanced fashion of Block-Comb
method is presented by Seo et al. in [15]. This method increases the size of
block by exploiting the additional registers with instruction set level optimiza-
tion techniques and then computes the multiplication in block-wise way as like
former Block-Comb approaches. There is nice way to reduce the multiplication
overheads into sub-quadratic complexity known as Karatsuba algorithm. This
method efficiently replaces multiplication into several addition and subtraction
operations. There exist several papers which have considered the Karatsuba’s
technique for speeding-up the performance of binary field multiplication over
embedded processors. Lopez et al. in [12] conducts Karatsuba multiplication
with look-up table accesses. This trial reduces the number of multiplication but
it increases overheads for constructing the look-up table which is beyond bene-
fits of Karatsuba approach. Oliveira et al. in [14] also mentioned that Lopez et
al.’s normal method is faster than Karatsuba’s multiplication by a factor of 44%.
Recently, an alternative combination of Karatsuba algorithm and Block-Comb
method is introduced [16]. The method exploits 3-term Karatsuba and reduces
3 63-bit partial products out of 9. The results show high performance gains in
163-bit Koblitz curve. There is relatively few number of papers considering Side
Channel Attack (SCA) on these binary field multiplication. While the fastest
implementations over embedded processors were a quite important factor in the
past, because implementations of binary field ECC over embedded processor
were too slow due to limited computing power and storages. However without
secure implementations against side channel attack, practical applications are
limited [3, 2, 11]. In this paper, we explore all binary field multiplication on em-
bedded processors in terms of side channel attack and show the vulnerability
of LUT based binary field multiplication as well. Lastly, we introduce a secure
mask based binary field multiplication.

Summary of Research Contributions

The main contributions of our work are summarized as follows.

1. Side channel attacks on LUT based binary field multiplication.We present
side channel attacks on consecutive memory access patterns. We used hor-

Secure Binary Field Multiplication 3

izontal Correlation Power Analysis (CPA) on weights of LUT. The method
successfully extracts the correlation co-efficient from power traces of binary
field multiplication and identifies the operands used in the operations.

2. Develop the secure binary field multiplication techniques. Unlike previous
binary field multiplication methods, we designed a new mask based binary
field multiplication. Since this regular and atomic method is branch-free and
LUT-free, proposed method is much secure against simple power analysis
than previous approaches. In order to boost the performance, we exploit
several levels of Karatsuba multiplication.

The remainder of this paper is organized as follows. In Section 2, we overview
the previous binary field multiplication methods. In Section 3, we point out the
vulnerability of previous approaches in terms of side channel attack and show
our side channel attack results on LUT based binary field multiplication. In
Section 4, we present a mask based binary field multiplication. Finally, Section
5 concludes the paper.

2 Binary Field Multiplications

The look-up table based binary field multiplication, introduced in [12, 14], re-
places the bit operations into look-up table access operations. In order to utilize
the method, we should compute the look-up table by one operand and place
them into memory as pre-computed results. Typically, the range is chosen to 4,
indicating a 4-bit value (0x0∼0xf) for 16 (24) cases. The look-up table occupies
memory size at least 16×m, where m is size of operands. After generating the
look-up table with target operand, we access the look-up table by 4-bit wise
and then update intermediate results with the pre-computed results from LUT,
thereby reducing complex shift or bit-wise exclusive-or operations. The alterna-
tive approach is Block-Comb method. The method executes consecutive bit-wise
exclusive-or on intermediate results under condition of bit setting by block-wise
[18]. In every session, one bit of block is tested from the least significant to the
most significant bits. If the bit is set to 1, the intermediate results are updated by
block-wise operand. After then intermediate result is left-shifted by 1-bit to align
the location of result. This process is iterated by size of word. Since, whole pro-
cesses are conducted in block-wise fashion, the intermediate result and operand
bit test are handled efficiently. The unbalanced Block-Comb method optimizes
the utilization of general purpose registers [15] to retain more operands into
registers. A key feature of the method is the computation of partial products
using extra bits in operands. After bit test of the operand, the least significant
bit of the operand is not used anymore. We can store the carry bit of intermedi-
ate result into the least significant bit of operand. The advantage of exploiting
additional registers is that we can compute partial products in large block size,
which reduces the number of block-wise partial products. Karatsuba method is
a general technique to reduce the complexity of multiplication with small num-
ber of addition operations. In [19], Karatsuba method is applied to Lopez et

4 Authors Suppressed Due to Excessive Length

al.’s method but it increases overheads for constructing the look-up table in on-
line which is beyond benefits of Karatsuba approach. Oliveira et al. in [14] also
mentioned that original Lopez et al.’s method is faster than Karatsuba’s multi-
plication by a factor of 44%. Since Karatsuba method divides long integers into
half and conducts multiplication operations on them, as many as we divide mul-
tiplication blocks, the pre-computation costs significantly increase. Block-Comb
method is grouping several bytes of the operand into a block and then computes
the multiplication in block-wise fashion. A Karatsuba Block-Comb (KBC) firstly
groups the operand and then Karatsuba multiplication is conducted in block-
wise fashion. However, the Block-Comb approach is vulnerable toward timing
attacks. The computation time is highly relied on bit setting. In order to remove
the timing information, constant time solution was introduced. In the method,
each bit is evaluated and conduct operations in a regular timing. If the bit is
set, it conduct bit-wise exclusive-or with operand. Otherwise it conducts bit-wise
exclusive-or with zero register. Even though this method eliminates the timing
information, it still leaks power consumption from branch operations.

3 Side Channel Attacks on Binary Field Multiplications

Real world multiplication can be conducted with dedicated 8-, 16-, or 32-bit mul-
tipliers of Arithmetic Logic Unit (ALU). In terms of binary field multiplication,
high-end processors such as ARM and Intel chip-sets support polynomial mul-
tiplier. However, low-end 8-bit and 16-bit embedded processors do not support
polynomial multiplications yet. In order to get acceptable speed performance
over low-end devices, previous binary field multiplication operations exploit the
basic logical operations or LUT computations. However, the works mainly focus
on speed optimizations rather than secure implementations which expose infor-
mation leakages. In this paper, we conduct the side channel attacks on binary
field multiplication over the popular embedded board named ARDUINO UNO with
the 8-bit 16MHz AVR microcontroller Atmega328p. An AVR processor, such as
the Atmel ATmega series, features 32 general-purpose registers, of which six are
used for pointers. In particular, the register pair (R26,R27) is aliased as X pointer,
the register pair (R28,R29) is aliased as Y pointer, and the register pair (R30,R31)
is aliased as Z pointer. The AVR microcontrollers have separate memories and
buses for program and data. It has a total of 133 instructions and each instruc-
tion has a fixed latency. Ordinary arithmetic/logical instructions (e.g. add) are
executed in a single clock cycle, while a mul instruction takes two clock cycles,
and also load/store instructions take two cycles. Most of the software imple-
mentation on AVR processors is written in both mixed C and Assembly code.
The function-call specifies that the first three 16-bit arguments (e.g., pointers)
are passed in register pairs (R24, R25), (R22,R23), and (R21,R20). It further-
more specifies that registers R2-R17, R28, and R29 are “called- saved” registers,
and the register R1 is assumed by the compiler to always contain zero thus
has to be set to zero before returning from a function. In order to measure the
power consumption of AVR processor, we manipulate the circuit to get the chip’s

Secure Binary Field Multiplication 5

Table 1. AVR program codes for constant time binary field multiplication

Constant time with NOP Constant time with ZERO Register

SBRS B0,0 NOPIN: SBRS B0,0 ZEROIN:

RJMP NOPIN NOP RJMP ZEROIN EOR C0, ZERO

EOR C0, A0 NOP EOR C0, A0 EOR C1, ZERO

EOR C1, A1 NOP EOR C1, A1 EOR C2, ZERO

EOR C2, A2 NOP EOR C2, A2 EOR C3, ZERO

EOR C3, A3 NOP EOR C3, A3 EOR C4, ZERO

EOR C4, A4 NOP EOR C4, A4 EOR C5, ZERO

EOR C5, A5 NOP EOR C5, A5 EOR C6, ZERO

EOR C6, A6 NOP EOR C6, A6 NOP

RJMP NOPOUT NOPOUT: RJMP ZEROOUT ZEROOUT:
-100

-50

0

50

100

150

1

3
7

7
3

1
0
9

1
4
5

1
8
1

2
1
7

2
5
3

2
8
9

3
2
5

3
6
1

3
9
7

4
3
3

4
6
9

5
0
5

5
4
1

5
7
7

6
1
3

6
4
9

6
8
5

7
2
1

7
5
7

7
9
3

8
2
9

8
6
5

9
0
1

9
3
7

9
7
3

1
0
0
9

1
0
4
5

1
0
8
1

1
1
1
7

1
1
5
3

1
1
8
9

1
2
2
5

1
2
6
1

1
2
9
7

1
3
3
3

1
3
6
9

1
4
0
5

1
4
4
1

1
4
7
7

1
5
1
3

1
5
4
9

1
5
8
5

1
6
2
1

1
6
5
7

1
6
9
3

1
7
2
9

1
7
6
5

1
8
0
1

1
8
3
7

1
8
7
3

N
O

R
M

A
L
IZ

E
D

 V
O

L
T
A

G
E

 D
R

O
P

TIME(NANO SEC)

Y N Y N Y N

-150

-100

-50

0

50

100

150

1
4
0

7
9

1
1
8

1
5
7

1
9
6

2
3
5

2
7
4

3
1
3

3
5
2

3
9
1

4
3
0

4
6
9

5
0
8

5
4
7

5
8
6

6
2
5

6
6
4

7
0
3

7
4
2

7
8
1

8
2
0

8
5
9

8
9
8

9
3
7

9
7
6

1
0
1
5

1
0
5
4

1
0
9
3

1
1
3
2

1
1
7
1

1
2
1
0

1
2
4
9

1
2
8
8

1
3
2
7

1
3
6
6

1
4
0
5

1
4
4
4

1
4
8
3

1
5
2
2

1
5
6
1

1
6
0
0

1
6
3
9

1
6
7
8

1
7
1
7

1
7
5
6

1
7
9
5

1
8
3
4

1
8
7
3

1
9
1
2

1
9
5
1

1
9
9
0

2
0
2
9

2
0
6
8

N
O

R
M

A
L
IZ

E
D

 V
O

L
T
A

G
E

 D
R

O
P

TIME(NANO SEC)

NOP XOR NOP XOR NOP XOR

-150

-100

-50

0

50

100

150

1

3
7

7
3

1
0
9

1
4
5

1
8
1

2
1
7

2
5
3

2
8
9

3
2
5

3
6
1

3
9
7

4
3
3

4
6
9

5
0
5

5
4
1

5
7
7

6
1
3

6
4
9

6
8
5

7
2
1

7
5
7

7
9
3

8
2
9

8
6
5

9
0
1

9
3
7

9
7
3

1
0
0
9

1
0
4
5

1
0
8
1

1
1
1
7

1
1
5
3

1
1
8
9

1
2
2
5

1
2
6
1

1
2
9
7

1
3
3
3

1
3
6
9

1
4
0
5

1
4
4
1

1
4
7
7

1
5
1
3

1
5
4
9

1
5
8
5

1
6
2
1

1
6
5
7

1
6
9
3

1
7
2
9

1
7
6
5

1
8
0
1

1
8
3
7

1
8
7
3

N
O

R
M

A
L
IZ

E
D

 V
O

L
T
A

G
E

 D
R

O
P

TIME(NANO SEC)

ZERO XOR ZERO XOR ZERO XOR

-100

-50

0

50

100

150

1

3
7

7
3

1
0
9

1
4
5

1
8
1

2
1
7

2
5
3

2
8
9

3
2
5

3
6
1

3
9
7

4
3
3

4
6
9

5
0
5

5
4
1

5
7
7

6
1
3

6
4
9

6
8
5

7
2
1

7
5
7

7
9
3

8
2
9

8
6
5

9
0
1

9
3
7

9
7
3

1
0
0
9

1
0
4
5

1
0
8
1

1
1
1
7

1
1
5
3

1
1
8
9

1
2
2
5

1
2
6
1

1
2
9
7

1
3
3
3

1
3
6
9

1
4
0
5

1
4
4
1

1
4
7
7

1
5
1
3

1
5
4
9

1
5
8
5

1
6
2
1

1
6
5
7

1
6
9
3

1
7
2
9

1
7
6
5

1
8
0
1

1
8
3
7

1
8
7
3

N
O

R
M

A
L
IZ

E
D

 V
O

L
T
A

G
E

 D
R

O
P

TIME(NANO SEC)

Y N Y N Y N

-150

-100

-50

0

50

100

150

1
4
0

7
9

1
1
8

1
5
7

1
9
6

2
3
5

2
7
4

3
1
3

3
5
2

3
9
1

4
3
0

4
6
9

5
0
8

5
4
7

5
8
6

6
2
5

6
6
4

7
0
3

7
4
2

7
8
1

8
2
0

8
5
9

8
9
8

9
3
7

9
7
6

1
0
1
5

1
0
5
4

1
0
9
3

1
1
3
2

1
1
7
1

1
2
1
0

1
2
4
9

1
2
8
8

1
3
2
7

1
3
6
6

1
4
0
5

1
4
4
4

1
4
8
3

1
5
2
2

1
5
6
1

1
6
0
0

1
6
3
9

1
6
7
8

1
7
1
7

1
7
5
6

1
7
9
5

1
8
3
4

1
8
7
3

1
9
1
2

1
9
5
1

1
9
9
0

2
0
2
9

2
0
6
8

N
O

R
M

A
L
IZ

E
D

 V
O

L
T
A

G
E

 D
R

O
P

TIME(NANO SEC)

NOP XOR NOP XOR NOP XOR

-150

-100

-50

0

50

100

150

1

3
7

7
3

1
0
9

1
4
5

1
8
1

2
1
7

2
5
3

2
8
9

3
2
5

3
6
1

3
9
7

4
3
3

4
6
9

5
0
5

5
4
1

5
7
7

6
1
3

6
4
9

6
8
5

7
2
1

7
5
7

7
9
3

8
2
9

8
6
5

9
0
1

9
3
7

9
7
3

1
0
0
9

1
0
4
5

1
0
8
1

1
1
1
7

1
1
5
3

1
1
8
9

1
2
2
5

1
2
6
1

1
2
9
7

1
3
3
3

1
3
6
9

1
4
0
5

1
4
4
1

1
4
7
7

1
5
1
3

1
5
4
9

1
5
8
5

1
6
2
1

1
6
5
7

1
6
9
3

1
7
2
9

1
7
6
5

1
8
0
1

1
8
3
7

1
8
7
3

N
O

R
M

A
L
IZ

E
D

 V
O

L
T
A

G
E

 D
R

O
P

TIME(NANO SEC)

ZERO XOR ZERO XOR ZERO XOR

Fig. 1. Power traces for (left) NOP operations and (right) ZERO register based constant
time binary field multiplication

power consumption with less noise. The power consumption of the AVR micro-
controller is measured by LeCroy WaveRunner 610Zi oscilloscope with AP033
active differential probe at the sampling rate 10G/s.

Firstly, Block-Comb variants including original Block-Comb, unbalanced Block-
Comb and Karatsuba Block-Comb need to check the bit setting of the operands.
If the bit is set, the operands are added to intermediate results. If the bit is
not set, the whole operations are skipped. This irregular form of program leaks
timing information because it has different timing pattern between branched
or non-branched cases. In order to hide timing information, we can ensure con-
stant time solutions by inserting the NOP or adding ZERO operations for branched
cases. In Table 3, the AVR program codes for constant time binary field multi-
plication are described. It consumes same clock cycles with padding operations.
However both approaches leak another important information namely power
consumption. In Figure 1, the power traces of both methods are drawn. For
NOP based operations, it vividly shows low power consumption than exclusive-or
operations. For alternative approach based on ZERO register, it relatively con-
sumes more power than NOP based approaches but it still shows different power
consumption patterns compared with normal exclusive-or operation.

6 Authors Suppressed Due to Excessive Length

Algorithm 1 Lopez et al. multiplication in F2m [12]

Require: A = A[0, ..., n− 1], B = B[0, ..., n− 1] where word size is 8-bit.
Ensure: C = C[0, ..., 2n− 1].
1: Compute T = U ·B for all polynomials U of degree lower than t = 4-bit.
2: C[0, ..., 2n− 1]← 0
3: for k from 0 by 1 to n− 1 do
4: u← A[k]≫ t
5: for j from 0 by 1 to n− 1 do
6: C[j + k]← C[j + k]⊕ T (u)[j]
7: end for
8: end for
9: C ← C · 2t
10: for k from 0 by 1 to n− 1 do
11: u← A[k] mod 2t

12: for j from 0 by 1 to n− 1 do
13: C[j + k]← C[j + k]⊕ T (u)[j]
14: end for
15: end for
16: return C

On the other hands, Lopez et al.’s look-up table approach is relatively secure
against simple power analysis than that of Block-Comb variants, because the
method does not have branch statements and only consists of regular memory
access operations. This nice property does not leak the irregular form of tim-
ing and power consumption. However, Messerges et al. showed that the power
consumption of a smart card depends on the activity on both data and address
bus [13]. Chen showed the method to identify the memory address from power
consumption of consecutive memory accesses and distinguish the multiplication
and squaring operations from the multiplication always based exponentiation al-
gorithm [4]. The horizontal correlation analysis computes the correlation factor
on segments corresponding to the atomic operations and extracts secret infor-
mation [5]. This attack successfully finds the secret keys of RSA crypto systems
from power traces.

In this paper, we attack the LUT based binary field multiplication, which
has high relations between memory access pattern and weights of operands be-
cause LUT is written in online by referring the operand values and it is read
by referring the another operand values. In Algorithm 1, Lopez’s binary field
multiplication consists of online LUT construction based on the operand (B)
and consecutive LUT accesses by using another operand (A) as an offset. In
Step 1, LUT is generated by multiplying the operands (B) and degree (t). The
degree determines the size of LUT (2t)5. From Step 4, higher 4-bit of operands
(A) are extracted by degree (t) and then the higher value (u) is used as index

5 Normally the degree (t) is set to 4 to get 16 cases because degree 8 needs too large
LUT (28 = 256). Since the other degrees including (5, 6, 7) are not the power of
two, they are inefficient over 8, 16 or 32-bit machine.

Secure Binary Field Multiplication 7

Fig. 2. Power traces of Lopez et al. method (1⃝, 2⃝) LUT construction, (3⃝) 4-bit wise
binary field multiplication with LUT

of LUT (T). In Step 6, the LUT variables are added to intermediate results
(C). Same procedures are conducted again for lower 4-bit of (A). In Figure 4,
the power traces of Lopez et al. with degree 4 are described. The Section 1⃝ is
constructing the LUT with variable (0, 1, 2, 4, 8) and Section 2⃝ is constructing
the LUT with remaining variables (3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15). The Sec-
tion 3⃝ is conducting the 4-bit wise binary field multiplication with LUT. Since,
the LUT is based on operands (A), the power consumption is highly relied on
weights of operands. In Table 2, the source codes for look-up table construction
is described. The LUT construction conducts consecutive memory store. The
ST instruction, transferring the data from register to memory storages, takes 2
clock cycles. This instruction consumes certain pattern of power consumption
depending on weights of data, because bit one or zero generates different power
consumption. If we extract current data patterns from power consumption, we
can identify the operands used for building LUT. With the leakage information,
we can identify the scalar addition and doubling from scalar multiplication where
the information is the secret key of ECDH operations.

In order to show the practical attack results, we target the smallest field
namely sect113r1. If we succeed in attacks on the smallest field, we can readily
extend to larger binary fields such as 128, 163, 193, 233, 239, 283, 409 and 571-bit.
The 113-bit binary field multiplication over 8-bit processor needs 14 (⌈ 113

8 ⌉) bytes
to store one element of LUT. For side channel attack, we collected power traces of
look-up table construction cases including 0x1, 0x3, 0x5, 0x7, 0x09, 0xb,

0xd, 0xf from 1⃝ and 2⃝ in Figure 4. Each case consists of 14 memory store
operations. In one round of multiplication, we can collect 112 (8×14) operations
and we conduct the horizontal correlation power analysis with their weights. We
compute the correlation factor on segments corresponding to the atomic LUT
access operations and identify the specific operands. AVR processor uses data
bus when it stores byte-wise data from registers to memory. This causes certain
power consumption patterns depending on the weights of passing data. The idea
is to calculate the Pearson Correlation Coefficient ρ between power consumption
and the HammingWeight of the LUT namely HWLUT (Ai). If it accesses the LUT

8 Authors Suppressed Due to Excessive Length

Table 2. AVR program codes for LUT computations of Lopez et al.

Look up table construction for 0x01 and 0x02 cases

ST Z+, A0 ST Z+, A9 ROL A3 ROL A12 ST Z+, A6

ST Z+, A1 ST Z+, A10 ROL A4 ROL A13 ST Z+, A7

ST Z+, A2 ST Z+, A11 ROL A5 ROL A14 ST Z+, A8

ST Z+, A3 ST Z+, A12 ROL A6 ST Z+, A0 ST Z+, A9

ST Z+, A4 ST Z+, A13 ROL A7 ST Z+, A1 ST Z+, A10

ST Z+, A5 ST Z+, A14 ROL A8 ST Z+, A2 ST Z+, A11

ST Z+, A6 LSL A0 ROL A9 ST Z+, A3 ST Z+, A12

ST Z+, A7 ROL A1 ROL A10 ST Z+, A4 ST Z+, A13

ST Z+, A8 ROL A2 ROL A11 ST Z+, A5 ST Z+, A14

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

1
7

4
1

4
7

2
2

0
2

9
3

3
6

6
4

3
9

5
1

2
5

8
5

6
5

8
7

3
1

8
0

4
8

7
7

9
5

0
1

0
2

3
1

0
9

6
1

1
6

9
1

2
4

2
1

3
1

5
1

3
8

8
1

4
6

1
1

5
3

4
1

6
0

7
1

6
8

0
1

7
5

3
1

8
2

6
1

8
9

9
1

9
7

2
2

0
4

5
2

1
1

8
2

1
9

1
2

2
6

4
2

3
3

7
2

4
1

0
2

4
8

3
2

5
5

6

TIME(NANO SEC)Correct Wrong Wrong

PEARSON CORRELATION
COEFFICIENT
WITH WEIGHT OF LUT

Fig. 3. Correlation value of weights and power consumptions

by using i-th operand (A) at the time t, there will be a higher coefficient ρ. In
the correlation graph of Figure 3, we found distinguished three peaks colored in
blue. The other lines show wrong estimations with wrong LUT and weights.

4 Secure Binary Field Multiplication

In Section 3, we explored the vulnerability of existing binary field multiplication
methods. The main vulnerabilities of existing approaches are branch statements
and predicable memory access patterns based on the weights of memory. In
order to reduce the information leakages, we introduce a Masked Block-Comb
method. The method avoids the branch operation and even LUT accesses but it
uses an operand masking to conduct the regular and atomic form of binary field
multiplication.

In Algorithm 2, 32-bit wise MBC multiplication is introduced. In Step 3,
i-th bit of operand A[j] is stored in BIT variable. In Step 4, zero value is
subtracted from BIT and borrow bit is stored into T1 variable. In Step 5, zero
value is subtracted from T1. This outputs 0 if T1 is zero and if not it outputs

Secure Binary Field Multiplication 9

Algorithm 2 Masked Block Comb on 32-bit

Require: Two 32-bit operands A and B
Ensure: C(64-bit)= A ·B
1: for i from 7 by 1 to 0 do
2: for j from 3 by 1 to 0 do
3: BIT = A[j]&(1≪ i)
4: {T1, T0} = 0−BIT
5: MASK = 0− T1
6: for k from 3 by 1 to 0 do
7: C[k + j] = C[k + j]⊕ (B[k]&MASK)
8: end for
9: end for
10: C = C ≪ 1
11: end for
12: return C

Table 3. AVR program codes for masked block comb multiplication

Constant time with masked operand

LDI BIT, 0X80 SUB ZERO, BIT AND M0, BIT EOR C0, M0

AND BIT, A0 SBC BIT, BIT AND M1, BIT EOR C1, M1

CLR ZERO MOVW M0, B0 AND M2, BIT EOR C2, M2

MOVW M2, B2 AND M3, BIT EOR C3, M3

0xff. After then Step 7, operand B[k] is masked with variable MASK and then
conduct Block-Comb style multiplication. This operation is conducted by the
number of block size (4, 32-bit). After then intermediate results C is left shifted
by 1-bit and this process is iterated by 7 times more. The detailed source code
is available in Table 3. We set the bit with LDI operation and then conduct AND
with operand A0. If the bit is set, the (SBC BIT, BIT) operation outputs 0xff.
After then this masking bit are used for AND operation with operand B. If the
BIT is 0xff, masked operand M is operand B. If not masked operand M is set
to zero variable. The computed masked operand M is finally bit-wise exclusive-
ored with intermediate results C. Since MBC method exploits many masking
process, it shows low performance results than previous approaches. In order
to boost the performance, we adopted the asymptotically faster multiplication
namely Karatsuba multiplication.

In Algorithm 3, 64-bit wise Karatsuba Masked Block-Comb method is intro-
duced. We selected 64-bit for practical usages because size of binary field ECC
is multiple of 64-bit and modern processors including INTEL and ARM provide
64-bit polynomial multiplication. This means our method can readily adopt the
other 64-bit optimization techniques to the embedded processors as well [7, 8,
6]. In Step 1, 32-bit wise MSK multiplication is conducted on A[3 ∼ 0] and
B[3 ∼ 0] and outputs lower part of intermediate results (L[7 ∼ 0]). In Step 2,
higher part (H[7 ∼ 0]) are computed by multiplying A[7 ∼ 4] and B[7 ∼ 4].
In Step 3, high and low part of operands A and B are bit-wise exclusive-ored

10 Authors Suppressed Due to Excessive Length

Algorithm 3 64-bit Karatsuba Block Comb

Require: An eight 8-bit operand A(64-bit) and B(64-bit)
Ensure: C(128-bit)= A ·B
1: L[7 ∼ 0] = (A[3 ∼ 0]×32−bit B[3 ∼ 0])
2: H[7 ∼ 0] = (A[7 ∼ 4]×32−bit B[7 ∼ 4])
3: M [7 ∼ 0] = ((A[7 ∼ 4]⊕A[3 ∼ 0])×32−bit (B[7 ∼ 4]⊕B[3 ∼ 0]))
4: M [7 ∼ 0] = M [7 ∼ 0]⊕ L[7 ∼ 0]⊕H[7 ∼ 0]
5: C = H[7 ∼ 0] · 264 ⊕M [7 ∼ 0] · 232 ⊕ L[7 ∼ 0]
6: return C

-100

-50

0

50

100

150

1

3
7

7
3

1
0
9

1
4
5

1
8
1

2
1
7

2
5
3

2
8
9

3
2
5

3
6
1

3
9
7

4
3
3

4
6
9

5
0
5

5
4
1

5
7
7

6
1
3

6
4
9

6
8
5

7
2
1

7
5
7

7
9
3

8
2
9

8
6
5

9
0
1

9
3
7

9
7
3

1
0
0
9

1
0
4
5

1
0
8
1

1
1
1
7

1
1
5
3

1
1
8
9

1
2
2
5

1
2
6
1

1
2
9
7

1
3
3
3

1
3
6
9

1
4
0
5

1
4
4
1

1
4
7
7

1
5
1
3

1
5
4
9

1
5
8
5

1
6
2
1

1
6
5
7

1
6
9
3

1
7
2
9

1
7
6
5

1
8
0
1

1
8
3
7

1
8
7
3

N
O

R
M

A
L
IZ

E
D

 V
O

LT
A

G
E

 D
R

O
P

TIME(NANO SEC)

Y N Y N Y N

-150

-100

-50

0

50

100

150

1
4
0

7
9

1
1
8

1
5
7

1
9
6

2
3
5

2
7
4

3
1
3

3
5
2

3
9
1

4
3
0

4
6
9

5
0
8

5
4
7

5
8
6

6
2
5

6
6
4

7
0
3

7
4
2

7
8
1

8
2
0

8
5
9

8
9
8

9
3
7

9
7
6

1
0
1
5

1
0
5
4

1
0
9
3

1
1
3
2

1
1
7
1

1
2
1
0

1
2
4
9

1
2
8
8

1
3
2
7

1
3
6
6

1
4
0
5

1
4
4
4

1
4
8
3

1
5
2
2

1
5
6
1

1
6
0
0

1
6
3
9

1
6
7
8

1
7
1
7

1
7
5
6

1
7
9
5

1
8
3
4

1
8
7
3

1
9
1
2

1
9
5
1

1
9
9
0

2
0
2
9

2
0
6
8

N
O

R
M

A
L
IZ

E
D

 V
O

LT
A

G
E

 D
R

O
P

TIME(NANO SEC)

NOP XOR NOP XOR NOP XOR

-150

-100

-50

0

50

100

150

1

3
7

7
3

1
0
9

1
4
5

1
8
1

2
1
7

2
5
3

2
8
9

3
2
5

3
6
1

3
9
7

4
3
3

4
6
9

5
0
5

5
4
1

5
7
7

6
1
3

6
4
9

6
8
5

7
2
1

7
5
7

7
9
3

8
2
9

8
6
5

9
0
1

9
3
7

9
7
3

1
0
0
9

1
0
4
5

1
0
8
1

1
1
1
7

1
1
5
3

1
1
8
9

1
2
2
5

1
2
6
1

1
2
9
7

1
3
3
3

1
3
6
9

1
4
0
5

1
4
4
1

1
4
7
7

1
5
1
3

1
5
4
9

1
5
8
5

1
6
2
1

1
6
5
7

1
6
9
3

1
7
2
9

1
7
6
5

1
8
0
1

1
8
3
7

1
8
7
3

N
O

R
M

A
L
IZ

E
D

 V
O

LT
A

G
E

 D
R

O
P

TIME(NANO SEC)

ZERO XOR ZERO XOR ZERO XOR

Fig. 4. Power traces of proposed method

and then the operands are multiplied to output middle part (M [7 ∼ 0]). In
Step 4, higher and lower parts are bit-wise exclusive-ored with middle part. It
Step 5, all intermediate results are bit-wise exclusive-ored. Total 64-bit Karat-
suba Masked Block-Comb needs 1926 clock cycles. In order to construct binary
field multiplication for sect163k1 and sect233k1 with 64-bit API, we need 192
and 256-bit multiplications. For 163-bit multiplication we adopt three terms
Karatsuba multiplication. The method reduces the three multiplication out of
nine multiplication operations. For 233-bit multiplication we conduct four terms
Karatsuba multiplication. Firstly we construct 128-bit binary field multiplica-
tion with 1 level Karatsuba with 64-bit 1 level Karatsuba and then this 128-bit
multiplication is used for 1 level of 256-bit multiplication. Totally three levels of
Karatsuba multiplication is used.

As like previous Block-Comb variants, we also collected the power traces of
proposed methods. The detailed descriptions are available in Figure 4. The red
blocks represent one round of Table 3. The operation consists of register based
operations and there is no consecutive memory accesses. For this reason, the
power traces do not leak information through timing and power consumption
that is common vulnerabilities of Block-Comb methods. Since MBC method

Secure Binary Field Multiplication 11

Table 4. Clock cycles for 163- and 233-bit multiplication on binary fields.

Method Technique Vulnerability Clock Cycle

163-bit binary field multiplication

Kargl et al. [10] 4-bit wise Lookup Table LUT access 5,057
Aranha et al. [1] 4-bit wise Lookup Table LUT access 4,508
Seo et al. [15] Unbalanced Block Comb Branch op. 4,346
Seo et al. [16] Karatsuba Block Comb Branch op. 3,274
Seo et al. [16] Constant Karatsuba Block Comb Branch op. 5,005

Proposed Method Masked Karatsuba Block Comb - 14,445

233-bit binary field multiplication

Aranha et al. [1] 4-bit wise Lookup Table LUT access 8,314
Proposed Method Masked Karatsuba Block Comb - 20,537

does not access memory in consecutive way, our SCA on LUT does not work
properly. In Figure 4, the symbols including Y and N represent 0xff mask and
0x00 mask, respectively. In Table 4, performance of binary field multiplication is
described. LUT based approach exploits 4-bit wise lookup table accesses but it
leaks memory access pattern as we pointed out in this paper. In terms of Block-
Comb method, it shows the highest performance. However it is not constant
time solution and branch operation leaks power consumption information. The
constant Karatusba Block-Comb method is even an atomic solution but it is
still based on branch operation which leaks power consumption information.
Our proposed method namely masked Karatsuba Block-Comb method shows
the lowest speed performance but it does not include vulnerabilities found in
existing approaches. Furthermore, our method is easily scalable with Karatsuba
approaches. The overheads from 163 to 233 is only 1.4 but previous works are
1.8. For this reason, our method would be better choice for large operands.

5 Conclusion

In this paper, we conduct side channel attacks on LUT based binary field mul-
tiplication by collecting the power traces from LUT accesses. We also presented
the novel binary field multiplication namely masked Karatsuba Block-Comb.
This method exploits masking method to get regular form of results which is
also easily scalable for large operands. Our future works are attacking the other
algorithms based on LUT such as window methods for exponentiation and scalar
multiplication. It is also worth to note that binary field squaring is also using
constant look-up table and our attack would be available in this case as well.
Furthermore, for higher performance we will try to optimize the current im-
plementation techniques for practical applications. Lastly but not least we will
evaluate performance of GCM and other ECC primitives with proposed secure
binary field multiplication.

12 Authors Suppressed Due to Excessive Length

References

1. D. F. Aranha, R. Dahab, J. López, and L. B. Oliveira. Efficient implementation of
elliptic curve cryptography in wireless sensors. Adv. in Math. of Comm., 4(2):169–
187, 2010.

2. E. Brier, C. Clavier, and F. Olivier. Correlation power analysis with a leakage
model. In Cryptographic Hardware and Embedded Systems-CHES 2004, pages 16–
29. Springer, 2004.

3. S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi. Towards sound approaches to
counteract power-analysis attacks. In Advances in CryptologyCRYPTO99, pages
398–412. Springer, 1999.

4. C.-N. Chen. Memory address side-channel analysis on exponentiation. In ICISC
2014. 2014.

5. C. Clavier, B. Feix, G. Gagnerot, M. Roussellet, and V. Verneuil. Horizontal corre-
lation analysis on exponentiation. In Information and Communications Security,
pages 46–61. Springer, 2010.

6. C. P. Gouvêa and J. López. Implementing gcm on armv8. In Topics in Cryptology—
CT-RSA 2015, pages 167–180. Springer, 2015.

7. S. Gueron. Aes-gcm software performance on the current high end cpus as a
performance baseline for caesar competition.

8. S. Gueron and M. E. Kounavis. Intel R⃝ carry-less multiplication instruction and
its usage for computing the gcm mode. Intel white paper (September 2012), 2010.

9. D. Hankerson, S. Vanstone, and A. J. Menezes. Guide to elliptic curve cryptogra-
phy. Springer, 2004.

10. A. Kargl, S. Pyka, and H. Seuschek. Fast arithmetic on atmega128 for elliptic
curve cryptography. IACR Cryptology ePrint Archive, 2008:442, 2008.

11. P. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In Advances in
CryptologyCRYPTO99, pages 388–397. Springer, 1999.

12. J. López and R. Dahab. High-speed software multiplication in f2m. In Progress in
CryptologyINDOCRYPT 2000, pages 203–212. Springer, 2000.

13. T. S. Messerges, E. A. Dabbish, and R. H. Sloan. Investigations of power analysis
attacks on smartcards. In USENIX workshop on Smartcard Technology, volume 17,
page 17, 1999.

14. L. B. Oliveira, D. F. Aranha, C. P. Gouvêa, M. Scott, D. F. Câmara, J. López, and
R. Dahab. Tinypbc: Pairings for authenticated identity-based non-interactive key
distribution in sensor networks. Computer Communications, 34(3):485–493, 2011.

15. H. Seo, Y. Lee, H. Kim, T. Park, and H. Kim. Binary and prime field multipli-
cation for public key cryptography on embedded microprocessors. Security and
Communication Networks, 7(4):774–787, 2014.

16. H. Seo, Z. Liu, J. Choi, and H. Kim. Karatsuba–block-comb technique for elliptic
curve cryptography over binary fields. Security and Communication Networks,
2015.

17. S. C. Seo, D.-G. HAN, H. C. Kim, and S. HONG. Tinyecck: Efficient elliptic curve
cryptography implementation over gf(2m) on 8-bit micaz mote. IEICE transactions
on information and systems, 91(5):1338–1347, 2008.

18. M. Shirase, Y. Miyazaki, T. Takagi, and D.-G. HAN. Efficient implementation of
pairing-based cryptography on a sensor node. IEICE transactions on information
and systems, 92(5):909–917, 2009.

19. P. Szczechowiak, L. B. Oliveira, M. Scott, M. Collier, and R. Dahab. Nanoecc:
Testing the limits of elliptic curve cryptography in sensor networks. In Wireless
sensor networks, pages 305–320. Springer, 2008.

