
Extended Nested Dual System Groups, Revisited

Junqing Gong∗ Jie Chen† Xiaolei Dong‡ Zhenfu Cao§ Shaohua Tang¶

October 7, 2015

Abstract

The notion of extended nested dual system groups (ENDSG) was recently proposed by Hofheinz et al. [PKC
2015] for constructing almost-tight identity based encryptions (IBE) in the multi-instance, multi-ciphertext
(MIMC) setting. However only a composite-order instantiation was proposed and more efficient prime-order
instantiations are absent. The paper fills the blank by presenting two constructions.

We revise the definition of ENDSG and realize it using prime-order bilinear groups based on Chen and
Wee’s prime-order instantiation of nested dual system groups [CRYPTO 2013]. This yields the first almost-
tight IBE in the prime-order setting achieving weak adaptive security in MIMC scenario under the d-linear
(d-Lin) assumption. We further enhanced the revised ENDSG to capture stronger security notions for IBE,
including B-weak adaptive security and full adaptive security. We show that our prime-order instantiation is
readily B-weak adaptive secure and full adaptive secure without introducing extra assumption.

We then try to find better solution by fine-tuning ENDSG again and realizing it using the technique of
Chen, Gay, and Wee [EUROCRYPT 2015]. This leads to an almost-tight secure IBE in the same setting with
better performance than our first result, but the security relies on a non-standard assumption, d-linear as-
sumption with auxiliary input (d-LinAI) for an even positive integer d. However we note that, the 2-LinAI
assumption is implied by the external decisional linear (XDLIN) assumption. This concrete instantiation could
also be realized using symmetric bilinear groups under standard decisional linear assumption.

Keywords: Identity based encryptions, Dual system groups, Tight security, Security model, Prime-order bi-
linear groups

∗Department of Computer Science and Engineering, Shanghai Jiao Tong University. Email: gongjunqing@126.com
†Shanghai Key Laboratory of Multidimensional Information Processing and Shanghai Key Lab of Trustworthy Computing, East China

Normal University. Email: S080001@e.ntu.edu.sg
‡Shanghai Key Lab for Trustworthy Computing, East China Normal University. Email: dongxiaolei@sei.ecnu.edu.cn
§Shanghai Key Lab for Trustworthy Computing, East China Normal University. Email: zfcao@sei.ecnu.edu.cn
¶School of Computer Science & Engineering, South China University of Technology. Email: shtang@IEEE.org

1

mailto:gongjunqing@126.com
mailto:S080001@e.ntu.edu.sg
mailto:dongxiaolei@sei.ecnu.edu.cn
mailto:zfcao@sei.ecnu.edu.cn
mailto:shtang@IEEE.org

Contents

1 Introduction 3
1.1 Background and Problem . 3
1.2 Motivation and Observation . 3
1.3 Contributions and Techniques . 4
1.4 Comparison and Discussion . 6
1.5 Related Work . 7
1.6 Independent Work . 7
1.7 Outline . 8

2 Preliminaries 8
2.1 Notations . 8
2.2 Identity Based Encryptions . 8

3 Revisiting Extended Nested Dual System Groups 9

4 Instantiating ENDSG from d-Linear Assumption 11
4.1 Prime-order Bilinear Groups and Computational Assumptions . 11
4.2 Construction . 13
4.3 Left Subgroup Indistinguishability 1 . 14
4.4 Left Subgroup Indistinguishability 2 . 16
4.5 Generalized Many-Tuple Lemma . 19
4.6 Nested-hiding Indistinguishability . 20

5 Concrete IBE from d-Linear Assumption 21

6 Achieving Stronger Security Guarantee 22
6.1 Warmup: Achieving B-weak Adaptive Security . 23
6.2 Computational Non-degeneracy and Full Adaptive Security . 23
6.3 Computational Non-degeneracy from d-Linear Assumption . 24

7 Fine-Tuning Extended Nested Dual System Groups from Section 3 27

8 Instantiating ENDSG from d-Linear Assumption with Auxiliary Input 28
8.1 d-Linear Assumption with Auxiliary Input . 29
8.2 Construction . 30
8.3 Left subgroup indistinguishability 1 . 31
8.4 Left subgroup indistinguishability 2 . 33
8.5 Left subgroup indistinguishability 3 . 36
8.6 Nested-hiding indistinguishability . 37
8.7 Computational Non-degeneracy . 40

9 Concrete IBE from d-Linear Assumption with Auxiliary Input 43

A More about Bilinear Groups and Related Assumptions 46
A.1 d-Lifted Linear Assumption [JR14] . 46
A.2 External Decision Linear Assumption [ACD+12] . 46
A.3 Symmetric Bilinear Groups and Decisional Linear Assumption . 46
A.4 Generic Security for d-Linear Assumption with Auxiliary Input . 46

B IBE from Revised ENDSG in Section 3 48
B.1 Construction . 48
B.2 Security Proof . 49

C IBE from Fine-tuned ENDSG in Section 7 51
C.1 Construction . 51
C.2 Security Proof . 52

2

1 Introduction

1.1 Background and Problem

Recently we have witnessed a breakthrough of proof technique in the field of functional encryptions. In
2009, Waters [Wat09] proposed a new proof paradigm for identity based encryptions (IBE), called dual system
technique, and obtained the first adaptively secure IBE with short public key in the standard model whose
security relies on a static assumption and the security loss is O(q) where q is the number of key extraction
queries. From a high-level view, the dual system technique works with two copies of some target cryptographic
primitive such as IBE. The first copy is put into the so-called normal space and acts as the real system, while
the second copy is put into the so-called semi-functional space and only used in the proof. Furthermore, the
independence of the two spaces (say, orthogonality under pairing operations) allows us to make some changes
in the semi-functional space for proof but still maintain the correctness in the normal space. It is worth noting
that the new technique permits the simulator to reply all queries made by the adversary and avoids the security
loss caused by the classical partition technique [BF01, BB04a, Wat05].

The revolution was then spreading across the field of functional encryptions. In particular, the dual system
technique has been applied for establishing adaptive security of various types of functional encryptions, rang-
ing from simple functionality, such as IBE [BKP14, CW14, JR13, CW13, Lew12, CLL+12, RCS12] to expressive
and complicated functionality, like ABE and IPE [LOS+10, LW12, OT12, Att14, CW14, Wee14, AY15, CGW15].
Some of them applied the dual system technique in a modular and abstract fashion such as Wee’s predicate
encoding [Wee14] and Attrapadung’s pairing encoding [Att14].

The dual system technique also helped us to go further. Chen and Wee [CW13] combined the dual system
technique with the proof idea underlying the Naor-Reingold pseudorandom function [NR04] and achieved
the first almost-tight IBE from standard assumption in the standard model. The security loss is O(n) where n
the length of identities, and unrelated to the number of key extraction queries anymore. They established the
real system in the normal space and a mirror one in the semi-functional space for proof as the original dual
system technique [Wat09]. However, instead of dealing with key extraction queries (in the semi-functional
space) separately as Waters [Wat09], they handled all (i.e., q) secret keys as a whole in the next step following
the proof strategy of Naor and Reingold [NR04]. In detail, we may imagine the master secret key as a truly
random function taking identities as input. Starting from the original master secret key whose domain is just
{ε}, the proof argues that we can double the domain size until it reaches the size of the identity space if
identities are encoded in a bit-by-bit fashion [Wat05]. For identity space {0, 1}n, only n steps are required.
Finally, the property of the random function allows us to information-theoretically hide the challenge message.

Recent work by Hofheinz et al. [HKS15] extended Chen and Wee’s result [CW13] and achieved almost
tightness in the multi-instance, multi-ciphertext (MIMC) setting where the adversary simultaneously attacks
multiple challenge identities in multiple IBE instances. In Chen and Wee’s paradigm [CW13], the ith step that
increases the domain size from 2i−1 to 2i can only handle the situation where all challenge ciphertexts share
the same ith bit, which no longer holds in MIMC setting. The proposed solution [HKS15] is to further split
the semi-functional space into two independent (in some sense) subspaces, labelled by ∧ and ∼ respectively.
The ith step starts from ciphertexts with ∧-semi-functional component. We then move the semi-functional
components in all ciphertexts for identities whose ith bit is 1 to the ∼-semi-functional space. At this moment,
(1) in the ∧-semi-functional space, all ciphertexts share the same ith bit 0; (2) in the ∼-semi-functional
space, all ciphertexts share the same ith bit 1, which means that one can now applied Chen and Wee’s proof
strategy [CW13] in both subspaces separately.

Unfortunately, only an instantiation using composite-order bilinear groups was proposed in [HKS15]. Our
goal is to realize a fully and almost-tightly secure IBE in MIMC setting using prime-order bilinear groups. We
emphasize that it is not just a theoretical interest to pursue such a solution. Most schemes (including [HKS15])
using composite-order bilinear groups base their security on the Subgroup Decision Assumption [BWY11] which
implies the hardness of factoring the group order. This forces us to work with elliptic curve groups with
quite large, say 1024 bits, base field when implementing the scheme. In contrast, for constructions in the
prime-order setting, we could employ smaller base field, say 160 bits, without sacrificing the security level.
Although the construction now becomes complex in general, this still brings us a considerable advantage in
both computation and space efficiency.

1.2 Motivation and Observation

Hofheinz et al.’s work [HKS15] roughly follows the style of [CW13]. In particular, they first extended the
notion of Nested Dual System Groups (NDSG) proposed by Chen and Wee [CW13], then proposed a general
IBE construction from the extended NDSG (ENDSG) in MIMC setting, and finally presented an instantiation
of ENDSG using composite-order bilinear groups. Therefore it is sufficient for our purpose to realize ENDSG

3

using prime-order bilinear groups and apply the general transformation in [HKS15]. However we observe that
the definition of ENDSG in [HKS15] sets too strong requirements on algebraic structure of underlying groups,
which makes it hard to be instantiated using existing techniques for prime-order bilinear groups.

An ENDSG describes a set of abstract groups with a bunch of structural and computational requirements
supporting Hofheinz et al.’s proof strategy. We roughly recall1 that an ENDSG defined in [HKS15] consists

of five algorithms: SampP, SampG, SampH, ÛSampG, and åSampG. Informally, the first algorithm generates
a set of groups G,H,GT of order N (as well as other parameters) and the other four algorithms are used to
sample random elements from some subgroup of G or H (which are associated with ciphertexts and secret
keys, respectively, in the context of IBE). We emphasize that they required that

– Groups G and H are generated by some g ∈ G and h ∈ H, respectively. (From the specification of group
generator G.)

– The outputs of SampG, ÛSampG, and åSampG are distributed uniformly over the generators of different
nontrivial subgroups of Gn+1 of coprime order, respectively. (From the G-subgroups.)

However, nearly all techniques realizing dual system technique in the prime-order setting employs vector
spaces over Fp (for a prime p) to simulate group G and H [Lew12, LW12, OT12, CW13, CW14, CGW15].
Meanwhile subgroups of G and H are naturally simulated by its subspaces. Firstly, since a vector space is an
additive group but not cyclic in general, neither G nor H is cyclic. Secondly, any d-dimensional subspace has

pd vectors, thus the orders of the outputs of SampG, ÛSampG, and åSampG must share a common factor p. In
a word, techniques based on vector spaces by no means meets the requirements shown above.

Fortunately, we observe that both requirements are applied nowhere but to provide random self-reducibility
of computational requirements (including LS1, LS2, NH) when they proved “ENDSG implies IBE”. For example,
the Left-subgroup indistinguishability 1 (LS1) said that, for any (PP, SP) ← SampP(k, n), the following two
distributions are computationally indistinguishable.

�

g : g← SampG(PP)
	

and
n

g · bg : g← SampG(PP), bg←ÛSampG(PP, SP)
o

.

Given T which is either g or g · bg, the simulator (in the proof) can sample s← Z∗N and generate another inde-
pendent problem instance T s following the two requirements we have reviewed. We note that this property is
crucial for achieving almost-tight reduction in MIMC setting where the adversary is able to enquire more than
one challenge ciphertext. This suggests that, if we adapt the ENDSG to support such random self-reducibility
explicitly, it will still imply an IBE in MIMC setting and the limitations on underlying groups may be removed.
As this happens, many existing techniques in the prime-order setting can now be applied to realize ENDSG
and finally derives an almost-tight IBE in MIMC setting using prime-order bilinear groups.

1.3 Contributions and Techniques

In this paper, we revise the definition of ENDSG, and show that the revised ENDSG not only implies an IBE
in MIMC setting but also can be almost-tightly instantiated using prime-order bilinear groups. Putting them
together, we obtain an almost-tight IBE in the same setting from prime-order bilinear groups. In particular, we
proposed two instantiations: the first one is proven secure under the d-linear assumption (d-Lin), while the
second one is proven secure under a stronger assumption, d-linear assumption with auxiliary input, d-LinAI
for short, but achieves shorter keys and ciphertexts.

Revisiting Extended Nested Dual System Groups. Our ENDSG is defined mainly in the spirit of [HKS15]
but with the difference that we provide (in requirements like LS1) enough independently-sampled subgroup
elements directly instead of assuming some special algebraic structure. As an example, we define LS1 as: for
any (PP, SP)← SampP(k, n), the following two distributions are computationally indistinguishable.

n

¦

g j

©

j∈[q] : g j ← SampG(PP)
o

and
n

¦

g j · bg j

©

j∈[q] : g j ← SampG(PP), bg j ←ÛSampG(PP, SP)
o

.

Here the parameter q depends on the number of challenge ciphertexts. This makes the definition more general
and allows us to realize the notion using diverse algebra frameworks, especially prime-order bilinear groups.
On the other hand, it still almost-tightly implies a fully secure IBE in MIMC setting. The construction and the
proof are nearly the same as [HKS15].

To be fair, Hofheinz et al.’s definition is more convenient in the sense that any instantiation of ENDSG
immediately results in an almost-tight IBE in MIMC setting. In contrast, an instantiation of our definition with

1The notation is slightly different from [HKS15].

4

loose security reduction (say, with security loss O (q)) clearly can not lead to tightly secure IBE. Hence, when
working with our definition, we should not jump to the conclusion before checking the tightness. We also
remark that we do not negate prime-order instantiations of Hofheinz et al.’s ENDSG.

Instantiation from d-Linear Assumption. We implement our revised ENDSG by extending the prime-order
instantiation of NDSG by Chen and Wee [CW13]. The security only relies on the d-Lin assumption and the
security loss is O (d) and independent of the number of samples, say q, given to the adversary. By the generic
construction [HKS15] (also c.f. Appendix B), we obtain the first almost-tight IBE in MIMC setting in the
prime-order setting and fill the blank left by Hofheinz et al. [HKS15].

Technically, we extend the basis from 2d × 2d matrix used in [CW13] to 3d × 3d matrix in order to
accommodate the additional semi-functional space. In detail, the first d-dimension subspace is the normal
space, the next d-dimension subspace is the ∧-semi-functional space, and the last d-dimension subspace is the
∼-semi-functional space.

The main challenge is to realize the Left Subgroup Indistinguishability 2 (LS2) property (c.f. Section 3).
Roughly, we must prove that g · bg (sampled from the normal space and ∧-semi-functional space of G) and
g ·eg (sampled from the normal space and ∼-semi-functional space of G) are computationally indistinguishable
even when the adversary can access to bh∗ · eh∗ ∈ H where bh∗ ∈ H is orthogonal to the normal and ∼-semi-
functional space of G and eh∗ ∈ H to the normal and ∧-semi-functional space of G. To simulate bh∗ · eh∗, we
further extend the subspace of bh∗ and eh∗ from 1-dimension to d-dimension which allows us to utilize the
technique for proving right subgroup indistinguishability property of Chen-Wee’s prime-order instantiation of
dual system groups [CW14]. So as to support this technical extension and conform to our revision, we model

the process of sampling bh∗ and eh∗ as two algorithms ÛSampH
∗

and åSampH
∗

respectively, and give adversary
adequate samples in related computational requirements.

Achieving Stronger Security Guarantee. Hofheinz et al. [HKS15] achieved weak security from their ENDS-
G where the adversary is allowed to make single challenge query for each identity in each instance. They
introduced a variant of the BDDH assumption (s-BDDH) and proved the full security of their original construc-
tion where the above restriction on the adversary is removed. This additional computational requirement is
realized under the dual system bilinear DDH assumption (DS-BDDH).

The revisions we have made do not involve the s-BDDH assumption, and the resulting ENDSG only leads to
weak security. Motivated by and based on our prime-order instantiation, we investigate two flavors of stronger
security: B-weak and full adaptive security. The former model allows adversary to make at most B challenge
queries for each identity in each instance where B is a prior bound, while the latter one sets no limitation on
the number of challenge queries on a single identity, i.e., polynomially many queries are allowed.

For each of them, we follow Hofheinz et al.’s method. Concretely, to achieve stronger security, we only
need to enhance the non-degeneracy property in our revised ENDSG (see Section 3) and updating the indis-
tinguishability between Game3 and Game4 (reviewed in Section 6, c.f. Appendix B) in Hofheinz et al.’s proof
to make it sound in stronger models, where the non-degeneracy property is applied. We then prove that our
instantiation of ENDSG under the d-Lin assumption (see Section 4) satisfies the enhanced non-degeneracy
property. The two results together imply an IBE with stronger security guarantee and almost-tight reduction
in MIMC setting. In particular,

1. We enhance the non-degenerate property to B-bounded version which states that the non-degeneracy
property holds even when a single bh∗ works with B bg0’s where B is a prior bound. It is easy to show that
our instantiation under the d-Lin assumption is d-bounded non-degenerated unconditionally.

2. We enhance the non-degeneracy property to computational version which is essentially similar to the
s-BDDH assumption [HKS15] and states that the non-degeneracy property holds even when a single
bh∗ works with polynomially many bg0’s. Luckily, we can prove that our instantiation is computationally
non-degenerated under the d-Lin assumption, and no additional assumption is required.

Towards More Efficient Instantiation. Having obtained the first construction, we continue to purse more
efficient solutions. One possible method is to reduce the dimension of two semi-functional spaces. Because we
hope to continue to base our construction on the standard d-Lin assumption, we found the attempt gives rise
to two technical problems due to the lack of space.

– We can not prove Left Subgroup Indistinguishability 2 (LS2) property using the technique provided by
Chen and Wee in [CW14]. In particular, the simulator will need some elements in another source group
to simulate bh∗ ·eh∗ which is not given in the standard d-Lin assumption.

5

– We can not prove Computational Non-degeneracy (ND) property as before since neither bg0 nor bh has
enough space to program the d-Lin problem during the simulation.

The second issue is easy to solve by the observation that there are two semi-functional spaces and we
only use one of them so far. We first define a variant of computational non-degeneracy property taking the
∼ semi-functional space into account. Then if two semi-functional spaces together has at least d dimensions,
this computational non-degeneracy property should be proved as before. On the other hand, from the view of
IBE, we could use the pseudo-randomness of e(bg0 · eg0,bh∗ ·eh∗) to prove the security (from Game3 to Game4,
c.f. Appendiex B) instead of just e(bg0,bh∗). To make the intuition explicit and general, we define three Left-
subgroup indistinguishability (LS) requirements as: (1) LS1: g ≈ g · bg · eg; (2) LS2: g · bg · eg ≈ g · eg; (3) LS3:
g · bg · eg≈ g · bg, where ≈ stands for “computationally indistinguishable”.

In contrast, the first issue is seemingly hard to circumvent. Therefore, we decide to prove the LS2 property
under an enhanced d-Lin assumption where we give adversary more elements on another source group for
simulating bh∗ · eh∗, which is called d-linear assumption with auxiliary input (d-LinAI, c.f. Section 8) for an
even positive integer d. Even though this assumption is non-standard in general, we point out that the concrete
assumption with d = 2 is implied by the external decision linear assumption (XDLIN) [ACD+12] (c.f. Section 9
and Appendix A.2), which has been formally introduced and used to build other cryptographic primitives.

We further fine-tune the ENDSG by hiding public parameters for SampH from the adversary when defining
computational requirements, including LS1, LS2, LS3, NH, and ND. We argue that the absence of this part of
public parameters will not arise difficulty in building IBE since they always correspond to the master secret
key which is not necessary to be public according to the security model. Instead, we give the adversary enough
samples from Hn+1 which is sufficient for answering key extraction queries in the proof of “ENDSG implies
IBE”. We hope it will bring us a simple, clean and efficient solution.

In summary, we have fine-tuned the ENDSG in three aspects: (1) update non-degeneracy requirement; (2)
re-define LS requirements; (3) hide parameters for SampH. We describe the fine-tuned ENDSG in Section 7
and verify in Appendix C that these modifications won’t prevent ENDSG from almost-tightly deriving a fully
secure IBE in MIMC setting.

The start point of instantiating the fine-tuned ENDSG is the prime-order instantiation of dual system groups
recently proposed by Chen et al. [CGW15], which is quite simple due to a new basis randomizing technique.
We technically work with 2d × 2d matrix and generate the basis using the dual pairing vector space method
[OT08, OT09, LOS+10]. The first d-dimension subspace is normal space, the remaining two d/2-dimension
subspaces act as ∧ semi-functional subspace and ∼ semi-functional subspace, respectively. Note that the latter
two are now smaller but enough for our proof (the entire semi-functional space has d dimension). Finally, the
basis is then randomized following [CGW15]. Here we always assume positive integer d is even.

The security of this instantiation is almost tightly reduced to the d-LinAI assumption, which leads to an
almost-tightly secure IBE in MIMC setting with full security and higher efficiency than our first construction.
As we have mentioned, the concrete IBE with d = 2 is based on the XDLIN [ACD+12]. This also suggests
that this concrete construction can be further adapted to work with symmetric bilinear groups and the security
is now based on the decisional linear assumption in the symmetric setting, which is well-established and has
been extensively used in many sub-field of cryptography.

1.4 Comparison and Discussion

We make a comparison among existing almost-tightly secure IBE schemes in MIMC setting in terms of
time and space efficiency. The details are shown in Table 1. Our comparison involves the composite-order
construction by Hofheinz et al. [HKS15], the prime-order construction in Section 5 based on the decisional
linear (DLIN, 2-Lin) and symmetric external Diffie-Hellman (SXDH, 1-Lin) assumption, and the prime-order
construction from Section 9 based on the XDLIN (2-LinAI) assumption. As a base line, we also consider the
efficiency of prime-order construction by Chen and Wee [CW13] and Blazy et al. [BKP14], which is not built
for MIMC setting.

Hofheinz et al.’s construction (see the third row) works with a symmetric bilinear group whose order is the
product of four distinct primes, the sizes of group elements are much larger, and exponentiation operations and
pairing operations are much more expensive. Therefore the overall efficiency is not acceptable even though
the numbers of group elements in MSK, SK and CT are smaller and Enc and Dec require less exponentiation
operations and pairing operations.

When instantiating our first instantiation (see the fourth row) under the DLIN assumption, each group
element in G and H is a 6-dimension vector over G1 and G2, respectively. When instantiating under the SXDH
assumption, each group element in G and H is a 3-dimension vector over G1 and G2, respectively. Compared
with Blazy et al.’s construction [BKP14], both size of MPK, SK and CT and cost of Enc and Dec are (at least)
doubled in our construction. On the other hand, in our second instantiation based on the XDLIN assumption

6

Scheme |G| Assum.
|MPK| |SK| |CT| TEnc TDec MIMC

G1/G GT G2/G G1/G GT E1/E ET P

[CW13] P
d-Lin 2d2(2n+ 1) d 4d 4d 1 4d2 d 4d

%DLIN 16n+ 8 2 8 8 1 16 2 8
SXDH 4n+ 2 1 4 4 1 4 1 4

[BKP14]
P

d-Lin (2n+ 1)d2 + d d 2d + 1 2d + 1 1 2d2 + 1 d 2d + 1
%DLIN 8n+ 6 2 5 5 1 9 2 5

SXDH 2n+ 2 1 3 3 1 3 1 3

[HKS15] C Static 2n+ 1 1 2 2 1 2 1 2 "

Sec. 5 P
d-Lin 3d2(2n+ 1) d 6d 6d 1 6d2 d 6d

"DLIN 24n+ 12 2 12 12 1 24 2 12
SXDH 6n+ 3 1 6 6 1 6 1 6

Sec. 9 P
d-LinAI 2d2(2n+ 1) d 4d 4d 1 4d2 d 4d

"XDLIN 16n+ 8 2 8 8 1 16 2 8

Table 1: Comparing Efficiency among existing and proposed almost-tight IBE schemes. n is the length of identities.
Column |MPK|, |SK|, and |CT| show the size of master public keys, user’s secret keys and ciphertexts, respectively. Each sub-
column contains the number of elements in G, G1, G2, and GT . Column TEnc and TDec show encryption and decryption cost,
respectively. Each sub-column E, E1, and ET shows the number of exponentiations on group G, G1, and GT , respectively,
and sub-column P shows the number of pairings. Column “Assum.” shows the underlying assumption. “Static” means
static assumptions in the composite-order bilinear group. Column “|G|” indicates the group order, “P” for prime and “C”
for composite order, respectively.

(see the last row), each group element in G and H is a vector of 4-dimension over G. Although the resulting
IBE is still less efficient than Blazy et al.’s construction [BKP14] under the DLIN assumption, the stronger
computational assumption (i.e., XDLIN) helps us to narrow the gap. We may view this as a tradeoff between
strength of security and efficiency without changing the security model. We leave it as an open problem to
find more efficient fully secure IBE with tight reduction in MIMC setting, especially from standard d-linear
assumption.

1.5 Related Work

Dual System Groups and Its Variants. Chen and Wee proposed the notion of dual system group [CW14],
which captures key algebraic structure supporting the dual system technique. They used this abstract primitive
to obtain an HIBE scheme with constant-size ciphertext using prime-order bilinear groups. The nested dual
system group, an variant of dual system groups, was proposed by Chen and Wee [CW13] to reach almost-tight
adaptively secure IBE in the standard model. Chen, Gay, and Wee [CGW15] combined the dual system group
with predicate encodings and obtained a more general framework leading to a lot of constructions in the
prime-order setting. Very recent work by Gong et al. [GCTC15] extended the concept of dual system group to
build an unbounded HIBE [LW11, Lew12] with shorter ciphertexts in the prime-order setting.

Identity Based Encryption. The notion of identity based encryptions was introduced by Shamir [Sha84] in
1984. The first practical realization was proposed by Boneh and Franklin [BF01] using bilinear groups and
Cocks [Coc01] using quadratic residue. Both of them rely on the heuristic random oracle model. Since then
several practical solutions in the standard model were proposed, including Boneh-Boyen’s IBE [BB04b, BB04a],
Waters’ IBE [Wat05], and Gentry’s IBE [Gen06]. In 2009, Waters [Wat09] proposed a new proof methodology,
the dual system encryption, and presented an IBE scheme with short public key and proved its security under
several simple assumptions in the standard model. Recently, Chen and Wee [CW13] achieved almost-tight IBE
by utilizing the dual system technique in a novel way. Very recently, Blazy et al.[BKP14] built the connection
between IBEs and affine message authentication code which is a symmetric primitive. IBE can also be realized
using other algebra framework such as lattices [GPV08, ABB10a, ABB10b].

1.6 Independent Work

The independent work by Attrapadung, Hanaoka, and Yamada [AHY15] also involves several constructions
of almost-tight IBE in MIMC setting. They developed an elegant framework for building almost-tight IBE in
MIMC setting from the so-called broadcast encoding, which is a special form of Attrapadung’s pairing encod-
ing [Att14], and obtained a series of almost-tight IBE schemes with various properties (including sub-linear
size master public key and anonymous version) using both composite-order and prime-order bilinear groups.
Their results and ours partially overlap. Their scheme with constant-size ciphertext in prime-order group (i.e.,

7

Φprime
cc) is similar to our second construction based on the XDLIN assumption shown in Section 9. In fact, they

share the same performance in terms of the size of ciphertexts and secret keys and running time of Enc and
Dec. However we note that we also provide an generalization of this construction but proven secure under
the non-standard d-LinAI assumption. Furthermore, our first construction in Section 5 is full adaptively secure
under the d-Lin assumption, which is a more general and weaker assumption than the XDLIN used by both
Attrapadung et al.’s and our second constructions.

1.7 Outline

The paper is organized as follows: Section 2 presents necessary background. Section 3 gives our revised
definition of ENDSG. We realize our revised ENDSG in the prime-order setting in Section 4 and investigate how
to update our ENDSG and its prime-order instantiation to achieve higher security level in Section 6. A derived
concrete IBE is presented in Section 5. The next two sections are devoted to gain more efficient solutions. We
fine-tune the notion of ENDSG in Section 7 and present a prime-order realization in Section 8. The resulting
concrete IBE is shown in Section 9.

2 Preliminaries

2.1 Notations

For a finite set S, we use s ← S to denote the process of picking s from S at random. For any n ∈ Z+, we
take [n] as the brief representation of set {1, . . . , n}. For a probabilistic algorithm Alg, y ← Alg(x; r) means
that we run the algorithm Alg on input x and randomness r, and then assign the result to variable y . We may
omit r for brevity when it is clear from the context. Algλ(x) means we run Alg for λ times using independent
random coins. Fixed an input x , we may view Alg(x; r) as a random variable and use [Alg(x; r)] to indicate
its support, i.e., the set of all possible outputs of algorithm Alg on input x . “p.p.t.” stands for “probabilistic
polynomial time”.

We use ord(G) to denote the order of group G. Let ei denote the vector with 1 on the ith position and 0
elsewhere and hei with h ∈ G be a vector over G with h on the ith position and 1 elsewhere. For two vectors
g := (g1, . . . , gn) ∈ Gn and g′ := (g ′1, . . . , g ′n) ∈ Gn, we define g · g′ = (g1 · g ′1, . . . , gn · g ′n) ∈ Gn where “·” on
the right-hand side is the group operation of G. For any vector x = (x1, . . . , xn) and i ∈ [n], we define x−i as
a vector (x1, . . . , x i−1,⊥, x i+1, . . . , xn) whose ith position is unknown (we take ⊥ as a placeholder), and x|i as
its prefix of length i, i.e., x|i := (x1, . . . , x i).

2.2 Identity Based Encryptions

Algorithms. An IBE scheme in the multi-instance setting consists of five p.p.t. algorithms defined as follows2.
(1) The parameter generation algorithm Param(1k, SYS) takes as input a security parameter k ∈ Z+ in its unary
form and a system-level parameter SYS, and outputs a global parameter GP. (2) The setup algorithm Setup(GP)
takes as input a global parameter GP, and outputs a master public/secret key pair (MPK, MSK). (3) The key
generation algorithm KeyGen(MPK, MSK,y) takes as input a master public key MPK, a master secret key MSK and
an identity y, and outputs a secret key SKy for the identity. (4) The encryption algorithm Enc(MPK,x, M) takes as
input a master public key MPK, an identity x and a message M, outputs a ciphertext CTx for the message under
the identity. (5) The decryption algorithm Dec(MPK, SK, CT) takes as input a master public key MPK, a secret key
SK and a ciphertext CT, outputs a message M or a failure symbol ⊥.

The so-called “multi-instance setting” indicates that we are considering a collection of IBE instances estab-
lished under the same global parameter GP. We leave the system-level parameter SYS undefined for generality.
It may depend on concrete constructions or application scenarios.

Correctness. Roughly speaking, the correctness says that, for any IBE instance equipped with a legal master
public/secret key pair, any secret key honestly generated using the master secret key for some identity should
be able to recover the message from a ciphertext for the same identity under the master public key. Formally,
for any parameter k ∈ Z+, any SYS, any GP ∈ [Param(1k, SYS)], any (MPK, MSK) ∈ [Setup(GP)], any identity x,
and any message M, it holds that

Pr [Dec(MPK,KeyGen(MPK, MSK,x),Enc(MPK,x, M)) = M]¾ 1− 2−Ω(k).
2The definition shown here is slightly different from that in [HKS15]. We combine the (system-level) public parameter pp and

secret parameter sp in [HKS15] as a global parameter GP. This global parameter is only fed to algorithm Setup to create fresh master
public/secret key pairs. And all the other algorithms just take MPK, a local parameter, as input instead of pp, a global one. The adaptation
is purely conceptual and made for clarity. The security model (given below) is tuned accordingly.

8

The probability space is defined by the random coins consumed by algorithm KeyGen and Enc.

Adaptive Security in the Multi-instance, Multi-ciphertext Setting. Roughly, the adaptive security in the
multi-instance, multi-ciphertext setting extends the traditional adaptive security model for IBE [BF01] in the
sense that the adversary can access to multiple IBE instances (obtaining master public key and users’ keys)
and attack multiple ciphertexts (i.e., challenge ciphertexts), which is formalized by Hofheinz et al. [HKS15].
Ideally, the adversary is free to choose the challenge instance, the challenge identity and the challenge message
pair. Hofheinz et al. [HKS15] also identified a weaker variant in which only one challenge ciphertext is allowed
for each challenge identity in each challenge instance, and called the ideal one full security.

We review the experiment ExpIBE
A (k,λ, qK , qC , qR) between a challenger C and an adversary A [HKS15],

which captures both the weaker and full security notion.

Setup. C gets GP← Param(1k, SYS) and creates (MPKι, MSKι)← Setup(GP) for ι ∈ [λ]. All master public keys
�

MPKι
	

ι∈[λ] are sent to A . C also chooses a secret random bit β ∈ {0,1} and initializes QK and QC as
empty sets.

Query. A is allowed to make two types of queries: key extraction queries and challenge queries. C answers
every queries as follows:

– For each key extraction query (ι,y), C returns SK ← KeyGen(MPKι, MSKι,y) and updates QK :=
QK ∪ {(ι,y)};

– For each challenge query (ι∗,x∗, M∗0, M∗1), C returns CT∗ ← Enc(MPKι∗ ,x
∗, M∗β) and updates QC :=

QC ∪ {(ι∗,x∗)}.

Guess. A outputs its guess β ′ ∈ {0, 1}.

We say an adversaryA wins experiment ExpIBE
A (k,λ, qK , qC , qR), denoted by ExpIBE

A (k,λ, qK , qC , qR) = 1, if and
only if (1) β = β ′, (2) QK ∩QC = ;, (3) A made at most qK key extraction queries, (4) there are at most
qC challenge identities, and (5) for each of them, there exist at most qR challenge ciphertexts. We define the
advantage ofA as

AdvIBE
A (k,λ, qK , qC , qR) =

�

�Pr[ExpIBE
A (k,λ, qK , qC , qR) = 1]− 1/2

�

� .

The probability space is defined by random coins consumed by both C and A . An IBE is (λ, qK , qC , qR)-
adaptively-secure if, for any p.p.t. adversary A the advantage AdvIBE

A (k,λ, qK , qC , qK) is bounded by 2−Ω(k).
Clearly, the (λ, qk, qC , qR)-adaptive security with unbounded qR is consistent with the full security, while the
(λ, qk, qC , 1)-adaptive security is exactly the weak security. Furthermore, we define B-weak adaptive security,
an intermediate security notion between them, as (λ, qK , qC , B)-adaptive security for a priori bound B ¾ 1.

3 Revisiting Extended Nested Dual System Groups

This section revises the ENDSG proposed by Hofheinz et al. [HKS15]. Our main goal is to reduce the de-
pendence on some special algebraic structure which hinders the development of more instantiations, especially
those using prime-order bilinear groups. (See Section 1.) We show our revised ENDSG followed by a series of
remarks clarifying motivations and reasons behind several technical decisions. As discussed in Section 1, key
points are: (1) removing special group requirements; (2) explicitly providing samples in each computational
assumption; (3) generalizing subgroup of bh∗ and eh∗.

Syntax. Our revised ENDSG consists of eight p.p.t. algorithms defined as follows:

– SampP(1k, n): Output: (1) PP containing (a) group description (G,H,GT) and an admissible bilinear
map e : G×H → GT ; (b) an efficient linear map µ defined on H; (c) an efficient sampler for H and
Zord(H), respectively; (d) public parameters for SampG and SampH. (2) SP containing secret parameters

forÛSampG,åSampG, ÛSampH
∗

and åSampH
∗
.

– SampGT: Im(µ)→GT .

– SampG(PP): Output g=
�

g0, g1, . . . , gn
�

∈Gn+1.

– SampH(PP): Output h=
�

h0, h1, . . . , hn
�

∈Hn+1.

– ÛSampG(PP, SP): Output bg=
�

bg0, bg1, . . . , bgn
�

∈Gn+1.

9

– åSampG(PP, SP): Output eg=
�

eg0, eg1, . . . , egn
�

∈Gn+1.

– ÛSampH
∗
(PP, SP): Output bh∗ ∈H.

– åSampH
∗
(PP, SP): Output eh∗ ∈H.

The first four algorithms are used in the real system, while the remaining ones are defined for the proof. The
notation SampG0 refers to the first element in the output of SampG, i.e., g0. The notational convention also

applies to SampH,ÛSampG, andåSampG.

Correctness. For all k, n ∈ Z+ and all (PP, SP) ∈ [SampP(1k, n)], it is required that:

(Projective.) For all h ∈H and all possible randomness s, SampGT(µ(h); s) = e(SampG0(PP; s), h).

(Associative.) For all (g0, g1, . . . , gn) ∈ [SampG(PP)] and all (h0, h1, . . . , hn) ∈ [SampH(PP)], e(g0, hi) =
e(gi , h0) for i ∈ [n].

Security. For all k, n ∈ Z+ and all (PP, SP) ∈ [SampP(1k, n)], it is required that:

(Orthogonality.) For all bh∗ ∈ [ÛSampH
∗
(PP, SP)] and all eh∗ ∈ [åSampH

∗
(PP, SP)],

1. µ(bh∗) = µ(eh∗) = 1;

2. e(bg0,eh∗) = 1 for all bg0 ∈ [ÛSampG0(PP, SP)];

3. e(eg0,bh∗) = 1 for all eg0 ∈ [åSampG0(PP, SP)];

The first requirement implies that e(g0,eh∗) = e(g0,bh∗) = 1 for all g0 ∈ [SampG0(PP)] by the projective
property (c.f. Section 3.2 in [CW13]).

(Non-degeneracy.) Over the probability space defined by bg0 ←ÛSampG0(PP, SP), with overwhelming proba-

bility 1− 2−Ω(k), e(bg0,bh∗) is distributed uniformly over GT when sampling bh∗←ÛSampH
∗
(PP, SP).

(H-subgroup.) The output of SampH(PP) is distributed uniformly over some subgroup of Hn+1, while those

of ÛSampH
∗
(PP, SP) and åSampH

∗
(PP, SP) are distributed uniformly over some subgroup of H.

(Left subgroup indistinguishability 1 (LS1).) For any p.p.t. adversaryA , the following advantage function
is negligible in k,

AdvLS1
A (k, q) :=

�

�Pr[A (D, T0) = 1]− Pr[A (D, T1) = 1]
�

� ,

where

D := (PP) , T0 :=
¦

g j

©

j∈[q] , T1 :=
�

g j · bg j

�

j∈[q]

and g j ← SampG(PP) and bg j ←ÛSampG(PP, SP).

(Left subgroup indistinguishability 2 (LS2).) For any p.p.t. adversaryA , the following advantage function
is negligible in k,

AdvLS2
A (k, q, q′) :=

�

�Pr[A (D, T0) = 1]− Pr[A (D, T1) = 1]
�

� ,

where

D :=
�

PP,
n

bh∗j ·eh
∗
j

o

j∈[q+q′]
,
n

g′j · bg
′
j

o

j∈[q]

�

, T0 :=
¦

g j · bg j

©

j∈[q] , T1 :=
�

g j · eg j

�

j∈[q]

andbh∗j ←ÛSampH
∗
(PP, SP),eh∗j ←åSampH

∗
(PP, SP), g′j ← SampG(PP), bg′j ←ÛSampG(PP, SP), g j ← SampG(PP),

bg j ←ÛSampG(PP, SP), and eg j ←åSampG(PP, SP).

(Nested-hiding indistinguishability (NH).) For all η ∈ [bn/2c] and any p.p.t. adversary A , the following
advantage function is negligible in k,

AdvNH(η)
A (k, q, q′) :=

�

�Pr[A (D, T0) = 1]− Pr[A (D, T1) = 1]
�

� ,

10

where
D :=

�

PP,
n

bh∗j
o

j∈[q+q′]
,
n

eh∗j
o

j∈[q+q′]
,
¦

(bg j)−(2η−1)

©

j∈[q] ,
¦

(eg j)−2η

©

j∈[q]

�

,

T0 :=
¦

h j

©

j∈[q′] , T1 :=
�

h j · (bh∗∗j)
e2η−1 · (eh∗∗j)

e2η

�

j∈[q′]

and bh∗j ← ÛSampH
∗
(PP, SP), eh∗j ← åSampH

∗
(PP, SP), bg j ←ÛSampG(PP, SP), eg j ←åSampG(PP, SP), h j ←

SampH(PP), bh∗∗j ←ÛSampH
∗
(PP, SP), eh∗∗j ←åSampH

∗
(PP, SP). We further define

AdvNH
A (k, q, q′) := max

η∈[bn/2c]

n

AdvNH(η)
A (k, q, q′)

o

.

Remark 1 (notations) The ENDSG is mainly defined for building IBE. We remark that, in the description of LS1,
LS2, and NH, the parameter q and q′ roughly corresponds to the maximum number of challenge ciphertexts and
key extraction queries, respectively.

Remark 2 (sampling bh∗ and eh∗, and H-subgroup) We model the process of sampling over subgroup generated

by bh∗ and eh∗ (in [HKS15]) as algorithm ÛSampH
∗

and åSampH
∗
, respectively. This allows us to employ more

complex algebraic structure (say, extending the subspaces from one dimension to higher one), which is crucial for
our prime-order instantiation in Section 4. Due to its generality, the H-subgroup property must be extended to

take both ÛSampH
∗

and åSampH
∗

into account.

Remark 3 (G-subgroup and H-subgroup) Since we provide adequate samples of Gn+1 directly in the last three
computational security requirements and further re-randomization is not necessary in the proof, the G-subgroup
in the original definition could be safely removed. However this won’t let the revised ENDSG free from H-subgroup
property. The simulator still need the property to re-randomize T0 or T1 in NH(η) using SampH(PP) to maintain
the consistency of truly random functions on two identities sharing the same η-bit prefix.

On one hand, our revised definition for ENDSG is essentially consistent with Hofheinz et al.’s defini-
tion [HKS15]. In particular, it is not hard to see that one may use Hofheinz et al.’s ENDSG [HKS15] to
realize this revised version. Therefore their instantiation using composite-order bilinear groups can also be
taken as an instantiation of the revised version above. On the other hand, although our revised definition
is more general, it still almost-tightly implies an IBE in MIMC setting. In fact, the construction, the security
result and its proof are nearly the same as those presented in [HKS15]. One may consider them as rewriting
Hofheinz et al.’s results [HKS15] in the language of our revised ENDSG. We present the construction and s-
ketch of the proof in Appendix B for completeness. It is worth noting that the construction only achieves weak
adaptive security. We will show how to enhance non-degeneracy to reach full adaptive security in Section 6.

4 Instantiating ENDSG from d-Linear Assumption

We give an instantiation of our revised ENDSG (defined in Section 3) using prime-order bilinear groups
based on the technique of Chen and Wee [CW13]. Following the generic construction proposed in [HKS15]
(c.f. Appendix B), this yields the first fully and almost-tight secure IBE in MIMC setting using prime-order
bilinear groups. (See Section 5.)

4.1 Prime-order Bilinear Groups and Computational Assumptions

A prime-order (asymmetric) bilinear group generator GrpGen(1k) takes security parameter 1k as input
and outputs G := (p, G1, G2, GT , e), where G1, G2 and GT are finite cyclic groups of prime order p, and e :
G1×G2→ GT is a non-degenerated and efficiently computable bilinear map. We let g1, g2 and gT := e(g1, g2)
be a generator of G1, G2 and GT , respectively. We state the (standard) d-linear assumption (d-Lin for short) in
G1 (see Assumption 1), the analogous assumption in G2 can be defined by exchanging the role of G1 and G2.

Assumption 1 (d-Linear Assumption in G1) For any p.p.t. adversary A , the following advantage function is
negligible in k,

Advd-Lin
A (k) :=

�

�Pr[A (D, T0) = 1]− Pr[A (D, T1) = 1]
�

� ,

where
D :=

�

G , g1, g2, ga1
1 , . . . , gad

1 , gad+1
1 , ga1s1

1 , . . . , gad sd
1

�

,

11

T0 := gad+1(s1+···+sd)
1 , T1 := g

ad+1(s1+···+sd)+ sd+1

1

and G := (p, G1, G2, GT , e)← GrpGen(1k), s1, . . . , sd ← Zp, and a1, . . . , ad , ad+1, sd+1← Z∗p.

“Matrix-in-the-exponent" Notation. For an m × n matrix X = (x i, j) over Zp and a group element g of G
(which may be G1, G2 or GT), we define gX := (g x i, j) which is an m× n matrix over G. We naturally extend
the domain of pairing e: given two matrices A and B over Zp whose multiplication is well-defined, we define

e(gA
1 , gB

2) := e(g1, g2)A
>B, which is a matrix (of proper size) over GT . As a special case, for vectors x and y

over Zp of the same length, we have e(gx
1 , gy

2) := e(g1, g2)x
>y ∈ GT , the standard inner product 〈x,y〉 in the

exponent. We will use 0 to denote both vectors and matrices with only zero entries when it’s size is clear from
the context; if necessary, we may give out its dimension or size in the subscript.

An extended version of d-Lifted Linear Assumption. We describe an extension of the d-Lifted Linear (d-
LLin) assumption [JR14] (c.f. Appendix A.1) for improving the readability of our proofs, which is called
(d,`, q)-Lifted Linear Assumption, and (d,`, q)-LLin for short. As usual, we just show the assumption in G1
and the counterpart in G2 is readily derived. The extension is made in two steps: we first consider ` correlated
challenges, and then consider q independent copies of it, i.e., its q-fold [EHK+13].

Assumption 2 ((d,`, q)-Lifted Linear Assumption in G1) For any p.p.t. adversaryA , the following advantage
function is negligible in k,

Adv(d,`,q)-LLin
A (k) :=

�

�Pr[A (D, T0) = 1]− Pr[A (D, T1) = 1]
�

� ,

where
D :=

�

G , g1, g2, ga1
1 , . . . , gad

1 ,
n

g
bi, j

1

o

i∈[`], j∈[d]
,
¦

g
a1s1, j

1 , . . . , g
ad sd, j

1

©

j∈[q]

�

,

T0 :=
n

g
bi,1s1, j+···+bi,d sd, j

1

o

i∈[`], j∈[q]
, T1 :=

(

g
bi,1s1, j+···+bi,d sd, j+ sd+i, j

1

)

i∈[`], j∈[q]

and G := (p, G1, G2, GT , e)← GrpGen(1k), a1, . . . , ad , bi, j ← Z∗p, s1, j , . . . , sd, j ← Zp, sd+i, j ← Z∗p.

We show that the (d,`, q)-LLin assumption is tightly implied by the standard d-Lin assumption (see Lem-
ma 1). We remark that, since ` corresponds to a relatively small parameter, say 2, in our construction and
q corresponds to the number of adversary’s queries which may be 230, we will prove Lemma 1 under the
assumption that ` < q for simplicity.

Lemma 1 (d-Lin⇒ (d,`, q)-LLin) For any p.p.t. adversaryA , there exists an adversaryB such that

Adv(d,`,q)-LLin
A (k)¶ ` ·Advd-Lin

B (k) + 1/(p− 1),

and Time(B)≈ Time(A) + `2d · poly(k) where poly(k) is independent of Time(A).

Proof. We may prove the lemma in two steps. Following [JR14] and [CW13], one can prove that, for any
p.p.t. adversaryA , there exists an adversaryB with Time(B)≈ Time(A) + `d · poly(k) such that

Adv(d,`,1)-LLin
A (k)¶ Advd-Lin

B (k).

Applying Lemma 1 in [EHK+13], we have that, for any p.p.t. adversary A , there exists an adversary B with
Time(B)≈ Time(A) + `2d · poly(k) such that

Adv(d,`,q)-LLin
A (k)¶ ` ·Adv(d,`,1)-LLin

B (k) + 1/(p− 1).

Putting them together, one may deduce the lemma immediately.
We now give the proof of the first claim. For simplicity, we discard the subscript j related to parameter q

when considering (d,`, 1)-LLin. Given a d-Lin problem instance
�

g1, g2, ga1
1 , . . . , gad

1 , gad+1
1 , ga1s1

1 , . . . , gad sd
1 , gad+1(s1+···+sd)+sd+1

1

�

as input where sd+1 are either 0 or uniformly chosen from Z∗p, adversaryB works as follows:

12

Simulating a1, . . . , ad and s1, . . . , sd . We implicitly define ai := ai and si := si for all i ∈ [d]. The ai and si on
the left-hand side refers to those in the (d,`, 1)-LLin problem instance we want to simulate, while those
on the right-hand side come from the d-Lin problem instance.

Simulating g
bi, j

1 for i ∈ [`], j ∈ [d]. Sample γi ,δi, j ← Z∗p for all i ∈ [`] and j ∈ [d] and implicitly set bi, j :=
γiad+1 +δi, ja j . Therefore we can simulate

g
bi, j

1 :=
�

gad+1
1

�γi ·
�

g
a j

1

�δi, j .

Simulating the Challenge. For any i ∈ [`], we observe that

bi,1s1 + · · ·+ bi,dsd = (γiad+1 +δi,1a1)s1 + · · ·+ (γiad+1 +δi,d ad)sd

= γiad+1(s1 + · · ·+ sd) + (δi,1a1s1 + · · ·+δi,d adsd).

We can simulate the challenge as

g
bi,1s1+···+bi,d sd+sd+i

1 :=
�

gad+1(s1+···+sd)+sd+1
1

�γi
·
�

ga1s1
1

�δi,1 · · ·
�

gad sd
1

�δi,d .

Analysis. Thanks to the entropy of δi, j , the simulation of bi, j is perfect. If sd+1 = 0, we can see that sd+i = 0
for all i ∈ [`]; if sd+1← Z∗p, we implicitly set sd+i := sd+1γi . (The ad+1 on the left-hand side and the right-hand
side is for the (d,`, 1)-LLin and d-Lin assumption, respectively.) Observe that, since all γi are hidden by δi, j ,
all sd+i are independently and uniformly distributed over Zp. Therefore we proved our first claim. �

4.2 Construction

Our construction is based on the prime-order instantiation of NDSG by Chen and Wee [CW13] and works
with 3d × 3d matrices under the d-Lin assumption. (For more motivation, see Section 1). We let πL(·), πM(·),
and πR(·) be functions mapping from a 3d × 3d matrix to its left-most d columns, the middle d columns, and
the right-most d columns, respectively. Algorithms of our revised ENDSG are shown as follows.

– SampP(1k, n): Generate (p, G1, G2, GT , e) ← GrpGen(1k) and define (G,H,GT , e) := (G3d
1 , G3d

2 , GT , e).
Sample B,R← GL3d(Zp) and A1, . . . ,An← Z3d×3d

p . Set B∗ := (B−1)>. Define

D := πL(B), Di = πL(BAi); E := πM(B), Ei = πM(BAi);
D∗ := B∗R, D∗i = B∗A>i R; F := πR(B), Fi = πR(BAi);

where i ∈ [n]. Define µ(gk
2) := e(gD

1 , gk
2) = e(g1, g2)D

>k for all k ∈ Z3d
p . Output

PP :=

�

gD
1 , gD1

1 , . . . , gDn
1

gD∗
2 , g

D∗1
2 , . . . , g

D∗n
2

�

and SP :=

�

gπM(B∗)
2 , gE

1 , gE1
1 , . . . , gEn

1

gπR(B∗)
2 , gF

1 , gF1
1 , . . . , gFn

1

�

.

We assume PP always contains G,H,GT , e,µ.

– SampGT(gp
T): Sample s← Zd

p and output gs>p
T ∈ GT .

– SampG(PP): Sample s← Zd
p and output

�

gDs
1 , gD1s

1 , . . . , gDns
1

�

∈ (G3d
1)

n+1.

– SampH(PP): Sample r← Z3d
p and output

�

gD∗r
2 , g

D∗1r
2 , . . . , g

D∗nr
2

�

∈ (G3d
2)

n+1.

– ÛSampG(PP, SP): Sample bs← Zd
p and output

�

gEbs
1 , gE1bs

1 , . . . , gEnbs
1

�

∈ (G3d
1)

n+1.

– åSampG(PP, SP): Sample es← Zd
p and output

�

gFes
1 , gF1es

1 , . . . , gFnes
1

�

∈ (G3d
1)

n+1.

– ÛSampH
∗
(PP, SP): Sample br← Zd

p and output gπM(B∗)br
2 ∈ G3d

2 .

– åSampH
∗
(PP, SP): Sample er← Zd

p and output gπR(B∗)er
2 ∈ G3d

2 .

13

Correctness. We may check all correctness requirements as follows:

(Projective.) For all k ∈ Z3d
p and all s ∈ Zd

p , we have that

SampGT(µ(gk
2); s) = e(g1, g2)

s>(D>k) = e(gDs
1 , gk

2) = e(SampG0(PP; s), gk
2).

The second equality follows the fact that s>(D>k) = (Ds)>k.

(Associative.) For all s ∈ Zd
p and all r ∈ Z3d

p , we have, for all i ∈ [n],

e(gDs
1 , g

D∗i r
2) = e(g1, g2)

s̄>B>(B∗A>i R)r = e(g1, g2)
s̄>(BAi)>(B∗R)r = e(gDis

1 , gD∗r
2),

where s̄ := (s
0) ∈ Z3d

p . The first and the last equality follow the definition of πL(·) while the second

equality uses the fact that B>(B∗A>i R) = (B>B∗)A>i R= A>i R= A>i (B
>B∗)R= (BAi)>(B∗R).

Security. We may check the following security requirements:

(Orthogonality.) For all br,er,bs,es ∈ Zd
p , we check that

1. µ(gπM(B∗)br
2) = e(g1, g2)πL(B)

>πM(B∗)br = e(g1, g2)0d×dbr = (1, . . . , 1)> ∈ Gd
T ;

2. µ(gπR(B∗)er
2) = e(g1, g2)πL(B)

>πR(B∗)er = e(g1, g2)0d×der = (1, . . . , 1)> ∈ Gd
T ;

3. e(gπM(B)bs
1 , gπR(B∗)er

2) = e(g1, g2)
bs>πM(B)

>πR(B∗)er = e(g1, g2)
bs>0d×der = 1GT

;

4. e(gπR(B)es
1 , gπM(B∗)br

2) = e(g1, g2)
es>πR(B)

>πM(B∗)br = e(g1, g2)
es>0d×dbr = 1GT

.

The second equality of them follows the fact that πL(B)
>πM(B∗) = πL(B)

>πR(B∗) = πM(B)
>πR(B∗) =

πR(B)
>πM(B∗) = 0d×d .

(Non-degeneracy.) For all bs ∈ Zd
p and br ∈ Zd

p , we have that

e(gEbs
1 , gπM(B∗)br

2) = e(g1, g2)
bs>πM(B)

>πM(B∗)br = e(g1, g2)
bs>br.

With probability 1 − 1/pd , sampling bs ← Zd
p results in bs 6= 0, in which case the inner product bs>br is

distributed uniformly over Zp and therefore e(gEbs
1 , gπM(B∗)br

2) is distributed over GT when picking br← Zd
p .

(H-subgroup.) This follows from the fact that Z3d
p (for algorithm SampH) and Zd

p (for algorithm ÛSampH
∗

and åSampH
∗
) are additive groups.

We check the remaining security properties (LS1, LS2, and NH) in the following subsections.

4.3 Left Subgroup Indistinguishability 1

We may rewrite the LS1 advantage function AdvLS1
A (k, q) as follows:

AdvLS1
A (k, q) :=

�

�Pr[A (D, T0) = 1]− Pr[A (D, T1) = 1]
�

� ,

where
D := (PP), T0 :=

¦

g j

©

j∈[q] , T1 :=
¦

g j · bg j

©

j∈[q] ,

and

PP :=

gπL(B)
1 , gπL(BA1)

1 , . . . , gπL(BAn)
1

gB∗R
2 , g

B∗A>1 R
2 , . . . , g

B∗A>n R
2

!

;

g j :=
�

g
B

 s j
0d
0d

!

1 , g
BA1

 s j
0d
0d

!

1 , . . . , g
BAn

 s j
0d
0d

!

1

�

;

g j · bg j :=
�

g
B

s j

bs j
0d

1 , g
BA1

s j

bs j
0d

1 , . . . , g
BAn

s j

bs j
0d

1

�

;

for s j ,bs j ← Zd
p .

14

Lemma 2 ((d, d, q)-LLin⇒ LS1) For any p.p.t. adversaryA , there exists an adversaryB such that

AdvLS1
A (k, q)¶ Adv(d,d,q)-LLin

B (k),

and Time(B)≈ Time(A) + qd2 · poly(k, n) where poly(k, n) is independent of Time(A).

Proof. Given an instance of (d, d, q)-LLin problem (i.e., set `= d)
�

g1, g2, ga1
1 , . . . , gad

1 ,
n

g
bi, j

1

o

i, j∈[d]
,
¦

g
a1s1, j

1 , . . . , g
ad sd, j

1

©

j∈[q] ,
n

g
bi,1s1, j+···+bi,d sd, j+sd+i, j

1

o

i∈[d], j∈[q]

�

as input where all sd+i, j are either 0 or uniformly chosen from Z∗p, adversaryB works as follows:

Programming s j and bs j for j ∈ [q]. AdversaryB implicitly sets

s j = (s1, j , . . . , sd, j)
> and bs j = (sd+1, j , . . . , s2d, j)

>.

Programming B,B∗,A1, . . . ,An,R. Define W ∈ Z3d×3d
p as

W :=

a1
. . .

ad

b1,1 · · · b1,d 1
...

...
. . .

bd,1 · · · bd,d 1
1

...
1

and set W∗ := (W−1)>. Sample B̄, R̄← GL3d(Zp) and set B̄∗ := (B̄−1)>. Also sample Ā1, . . . , Ān← Z3d×3d
p ,

and implicitly set
(B,B∗) := (B̄W, B̄∗W∗), R :=W>R̄, Ai :=W−1ĀiW,

for i ∈ [n]. Observe that B,B∗,R and all Ai are distributed properly, and we have

BAi = B̄ĀiW, B∗R= B̄∗R̄, B∗A>i R= B̄∗Ā>i R̄.

Simulating PP. AlgorithmB can simulate

gπL(B)
1 = gπL(B̄W)

1 = g B̄πL(W)
1 and gπL(BAi)

1 = gπL(B̄ĀiW)
1 = g B̄ĀiπL(W)

1 ,

gB∗R
2 = g B̄∗R̄

2 and g
B∗A>1 R
2 = g

B̄∗Ā>i R̄
2 ,

for i ∈ [n] using the knowledge of gπL(W)
1 and B̄, B̄∗, Ā1, . . . , Ān, R̄.

Simulating the challenge. AlgorithmB simulate the challenge as

g
B

s j

bs j
0d

1 = g
B̄W

s j

bs j
0d

1 and g
BAi

s j

bs j
0d

1 = g
B̄ĀiW

s j

bs j
0d

1

for i ∈ [n] using the knowledge of B̄, Ā1, . . . , Ān and

g
W

s j

bs j
0d

1 = g

a1s1, j

...
ad sd, j

b1,1s1, j+···+b1,d sd, j+sd+1, j

...
bd,1s1, j+···+bd,d sd, j+s2d, j

0d

1 .

15

Analysis. Observe that if all sd+i, j = 0, then all bs j = 0 and the output challenge is distributed as
¦

g j

©

j∈[q];

otherwise, if all sd+i, j ← Z∗p, then all bs j ← (Z∗p)
d and the output challenge is distributed as

¦

g j · bg j

©

j∈[q].

Therefore we may conclude that AdvLS1
A (k, q)¶ Adv(d,d,q)-LLin

B (k). �

Corollary 1 (d-Lin⇒ LS1) For any p.p.t. adversaryA , there exists an adversaryB such that

AdvLS1
A (k, q)¶ d ·Advd-Lin

B (k) + 1/(p− 1),

and Time(B)≈ Time(A) + qd2 · poly(k, n) where poly(k, n) is independent of Time(A).

4.4 Left Subgroup Indistinguishability 2

We may rewrite the LS2 advantage function AdvLS2
A (k, q, q′) as follows:

AdvLS2
A (k, q, q′) :=

�

�Pr[A (D, T0) = 1]− Pr[A (D, T1) = 1]
�

� ,

where
D :=

�

PP,
n

bh∗j ·eh
∗
j

o

j∈[q+q′]
,
n

g′j · bg
′
j

o

j∈[q]

�

, T0 :=
¦

g j · bg j

©

j∈[q] , T1 :=
¦

g j · eg j

©

j∈[q] .

and

PP :=

gπL(B)
1 , gπL(BA1)

1 , . . . , gπL(BAn)
1

gB∗R
2 , g

B∗A>1 R
2 , . . . , g

B∗A>n R
2

!

;

bh∗j ·eh
∗
j := g

B∗

0d
br j

er j

2 ;

g′j · bg
′
j :=

�

g

B

s′j
bs′j
0d

1 , g

BA1

s′j
bs′j
0d

1 , . . . , g

BAn

s′j
bs′j
0d

1

�

;

g j · bg j :=
�

g
B

s j

bs j
0d

1 , g
BA1

s j

bs j
0d

1 , . . . , g
BAn

s j

bs j
0d

1

�

;

g j · eg j :=
�

g
B

s j
0d
es j

1 , g
BA1

s j
0d
es j

1 , . . . , g
BAn

s j
0d
es j

1

�

;

for br j ,er j , s
′
j ,bs
′
j , s j ,bs j ,es j ← Zd

p .

Lemma 3 ((d, d, q)-LLin⇒ LS2) For any p.p.t. adversaryA , there exists an adversaryB such that

AdvLS2
A (k, q, q′)¶ 2 ·Adv(d,d,q)-LLin

B (k),

and Time(B)≈ Time(A) + (q+ q′)d2 · poly(k, n) where poly(k, n) is independent of Time(A).

Overview of the Proof. We will prove Lemma 3 using hybrid argument consisting of two steps with the help
of an auxiliary distribution T1/2 =

¦

g j · bg j · eg j

©

j∈[q] where

g j · bg j · eg j := (g
B

s j

bs j

es j

1 , g

BA1

s j

bs j

es j

1 , . . . , g

BAn

s j

bs j

es j

1).

In particular, we prove that, given D, distribution T0 and T1/2 are computational indistinguishable under the
(d, d, q)-LLin assumption (see Lemma 4), and so do T1/2 and T1 (see Lemma 5). These immediately prove
Lemma 3.

Lemma 4 (from T0 to T1/2) For any p.p.t. adversaryA , there exists an adversaryB such that

�

�Pr[A (D, T0) = 1]− Pr[A (D, T1/2) = 1]
�

�¶ Adv(d,d,q)-LLin
B (k),

and Time(B)≈ Time(A) + (q+ q′)d2 · poly(k, n) where poly(k, n) is independent of Time(A).

16

Proof. Given an instance of (d, d, q)-LLin problem (i.e., set `= d)
�

g1, g2, ga1
1 , . . . , gad

1 ,
n

g
bi, j

1

o

i, j∈[d]
,
¦

g
a1s1, j

1 , . . . , g
ad sd, j

1

©

j∈[q] ,
n

g
bi,1s1, j+···+bi,d sd, j+sd+i, j

1

o

i∈[d], j∈[q]

�

as input where all sd+i, j are either 0 or uniformly chosen from Z∗p, adversaryB works as follows:

Programming bs j and es j for j ∈ [q]. AdversaryB implicitly sets

bs j = (s1, j , . . . , sd, j)
> and es j = (sd+1, j , . . . , s2d, j)

>.

Programming B,B∗,A1, . . . ,An,R. We define W ∈ Z3d×3d
p as

W :=

1
...

1
a1

. . .
ad

b1,1 · · · b1,d 1
...

...
. . .

bd,1 · · · bd,d 1

and set W∗ := (W−1)>. Sample3 B̄, R̄ ← GL3d(Zp) and set B̄∗ := (B̄−1)>. Also sample Ā1, . . . , Ān ←
Z3d×3d

p , and implicitly set

(B,B∗) := (B̄W, B̄∗W∗), R :=W>R̄, Ai :=W−1ĀiW,

for i ∈ [n]. Observe that B,B∗,R and all Ai are distributed properly, and we have

BAi = B̄ĀiW, B∗R= B̄∗R̄, B∗A>i R= B̄∗Ā>i R̄.

Simulating PP. B can simulate

gπL(B)
1 = gπL(B̄W)

1 = g B̄πL(W)
1 and gπL(BAi)

1 = gπL(B̄ĀiW)
1 = g B̄ĀiπL(W)

1 ,

gB∗R
2 = g B̄∗R̄

2 and g
B∗A>i R
2 = g

B̄∗Ā>i R̄
2 ,

for i ∈ [n] using the knowledge of πL(W) and B̄, B̄∗, Ā1, . . . , Ān, R̄.

Simulating bh∗j ·eh
∗
j for j ∈ [q+ q′]. It is not hard to compute W∗ ∈ Z3d×3d

p as

W∗ :=

1
...

1
a−1

1 −a−1
1 b1,1 · · · −a−1

1 bd,1
. . .

...
...

a−1
d −a−1

d b1,d · · · −a−1
d bd,d

1
...

1

.

For all j ∈ [q+ q′], we sample r̄ j ← Z2d
p and implicitly set

0d
br j
er j

= (W∗)−1

�

0d
r̄ j

�

=W>
�

0d
r̄ j

�

.

3In our symbol system, a variable with a bar on the top, say B̄, is sampled by the simulator (i.e.,B) and is completely known to it.

17

Since the right-bottom 2d×2d sub-matrix of W∗ is full-rank with overwhelming probability, both br j and
er j are distributed properly andB can simulate

bh∗j ·eh
∗
j = g

B∗

0d
br j

er j

2 = g

B̄∗W∗

0d
br j

er j

2 = g
B̄∗
�0d

r̄ j

�

2

using the knowledge of B̄∗ and r̄ j .

Simulating g′j · bg
′
j for j ∈ [q]. AlgorithmB can simulate

g

B

s′j
bs′j
0d

1 = g

B̄W

s′j
bs′j
0d

1 and g

BAi

s′j
bs′j
0d

1 = g

B̄ĀiW

s′j
bs′j
0d

1

for i ∈ [n] by sampling s′j ,bs
′
j ← Z

d
p and using the knowledge of gW

1 and B̄, Ā1, . . . , Ān.

Simulating the challenge. AlgorithmB can simulate

g

B

s j

bs j

es j

1 = g

B̄W

s j

bs j

es j

1 and g

BAi

s j

bs j

es j

1 = g

B̄ĀiW

s j

bs j

es j

1

using the knowledge of B̄, Ā1, . . . , Ān and

g

W

s j

bs j

es j

1 = g

s j
a1s1, j

...
ad sd, j

b1,1s1, j+···+b1,d sd, j+sd+1, j

...
bd,1s1, j+···+bd,d sd, j+s2d, j

1 where s j ← Zd
p .

Analysis. Observe that if all sd+i, j = 0, then all es j = 0 and the output challenge is distributed as
¦

g j · bg j

©

j∈[q];

in the other case, if all sd+i, j ← Z∗p, then alles j ← (Z∗p)
d and the output challenge is distributed as

¦

g j · bg j · eg j

©

j∈[q].

Therefore we may conclude that
�

�Pr[A (D, T0) = 1]− Pr[A (D, T1/2) = 1]
�

�¶ Adv(d,d,q)-LLin
B (k). �

Lemma 5 (from T1/2 to T1) For any p.p.t. adversaryA , there exists an adversaryB such that
�

�Pr[A (D, T1/2) = 1]− Pr[A (D, T1) = 1]
�

�¶ Adv(d,d,q)-LLin
B (k),

and Time(B)≈ Time(A) + (q+ q′)d2 · poly(k, n) where poly(k, n) is independent of Time(A).

Proof. The proof is similar to that for Lemma 4. Given an instance of (d, d, q)-LLin problem (i.e., set `= d)
�

g1, g2, ga1
1 , . . . , gad

1 ,
n

g
bi, j

1

o

i, j∈[d]
,
¦

g
a1s1, j

1 , . . . , g
ad sd, j

1

©

j∈[q] ,
n

g
bi,1s1, j+···+bi,d sd, j+sd+i, j

1

o

i∈[d], j∈[q]

�

as input where all sd+i, j are either 0 or uniformly chosen from Z∗p, adversary B behaves as in the proof of
Lemma 4 with the differences that:

Programming bs j and es j for j ∈ [q]. AdversaryB implicitly sets

bs j = (s2d, j , . . . , sd+1, j)
> and es j = (sd, j , . . . , s1, j)

>.

Defining W. AdversaryB defines W ∈ Z3d×3d
p as

W :=

1
...

1
1 bd,d · · · bd,1

. . .
...

...
1 b1,d · · · b1,1

ad
. . .

a1

.

18

Then algoirthmB can program B,B∗,A1, . . . ,An,R and simulate all entries in PP,
n

bh∗j ·eh
∗
j

o

j∈[q+q′]
,
n

g′j · bg
′
j

o

j∈[q]
as well as the challenge following the strategies proving Lemma 4. Observe that, if all sd+i, j = 0, then all bs j = 0
and the output challenge is distributed as

¦

g j · eg j

©

j∈[q]; in the other case, if all sd+i, j ← Z∗p, then all es j ← (Z∗p)
d

and the output challenge is distributed as
¦

g j · bg j · eg j

©

j∈[q]. �

Corollary 2 (d-Lin⇒ LS2) For any p.p.t. adversaryA , there exists an adversaryB such that

AdvLS2
A (k, q, q′)¶ 2d ·Advd-Lin

B (k) + 2/(p− 1),

and Time(B)≈ Time(A) + (q+ q′)d2 · poly(k, n) where poly(k, n) is independent of Time(A).

4.5 Generalized Many-Tuple Lemma

The proof of the nested-hiding indistinguishability property requires a generalized version of many-tuple
lemma shown in [CW13]. Instead of the d-Lin assumption, this subsection is going to establish a generalized
version from the (d, d, d)-LLin assumption.

Lemma 6 (Generalized Many-Tuple Lemma) There exists an efficient algorithm that on input q ∈ Z+, a finite
cyclic group G generated by g ∈ G and

�

g, ga1 , . . . , gad ,
¦

g bi, j
©

i, j∈[d] ,
�

ga1 r1, j , . . . , gad rd, j
	

j∈[d] ,
¦

g bi,1 r1, j+···+bi,d rd, j+rd+i, j
©

i, j∈[d]

�

,

outputs
�

gVZ, gZ
�

for some matrix V ∈ Zd×d
p along with

¦�

gt j , gVt j+τ j
�©

j∈[q] ,

where t j ← Zd
p , Z is an invertible diagonal matrix, and all τ j are either 0d or uniformly distributed over Zd

p
depending on whether all rd+i, j are 0 or uniformly distributed over Zp.

Proof. The algorithm works as follows:

Programming V and Z. We implicitly define V,Z ∈ Zd×d
p and P ∈ Zd×2d

p as follows

V :=

r1,1 · · · rd,1
...

...
r1,d · · · rd,d

and Z :=

a1
. . .

ad

,

and

P :=

a1 b1,1 · · · bd,1
. . .

...
...

ad b1,d · · · bd,d

.

It is not hard to see that we can compute gVZ, gZ, gP, and

gC :=

ga1 r1,1 · · · gad rd,1 g b1,1 r1,1+···+b1,d rd,1+rd+1,1 · · · g bd,1 r1,1+···+bd,d rd,1+r2d,1

...
...

...
...

ga1 r1,d · · · gad rd,d g b1,1 r1,d+···+b1,d rd,d+rd+1,d · · · g bd,1 r1,d+···+bd,d rd,d+r2d,d

.

Generating q tuples. For each j ∈ [q], sample t̄ j ← Z2d
p and output

�

gt j , gVt j+τ j
�

:=
�

gPt̄ j , gCt̄ j
�

.

Analysis. Observe that, if all rd+i, j = 0, we have known that gC = gVP and thus τ j = 0d ; otherwise, when all
rd+i, j ← Zp, we may write gC = gVP+T where

T=

0 · · · 0 rd+1,1 · · · r2d,1
...

...
...

...
0 · · · 0 rd+1,d · · · r2d,d

∈ Zd×2d
p ,

and thus implicitly set τ j = Tt̄ j . Clearly, we have
�

t j
τ j

�

=
�

P
T

�

t̄ j .

Since
� P

T
�

is full-rank with overwhelming probability, t j and τ j are distributed independently. �

19

4.6 Nested-hiding Indistinguishability

We may rewrite the NH advantage function AdvNH(η)
A (k, q, q′) for all η ∈ [bn/2c] as follows:

AdvNH(η)
A (k, q, q′) := |Pr[A (D, T0) = 1]− Pr[A (D, T1) = 1]|,

where
D :=

�

PP,
n

bh∗j
o

j∈[q+q′]
,
n

eh∗j
o

j∈[q+q′]
,
n

�

bg j

�

−(2η−1)

o

j∈[q]
,
n

�

eg j

�

−2η

o

j∈[q]

�

,

T0 :=
¦

h j

©

j∈[q′] , T1 :=
n

h′j
o

j∈[q′]
.

and

PP :=

gπL(B)
1 , gπL(BA1)

1 , . . . , gπL(BAn)
1

gB∗R
2 , g

B∗A>1 R
2 , . . . , g

B∗A>n R
2

!

;

bh∗j := g
πM(B∗)br j

2 , eh∗j := g
πR(B∗)er j

2 ;

bg j :=
�

g
πM(B)bs j

1 , g
πM(BA1)bs j

1 , · · · , g
πM(BAn)bs j

1

�

;

eg j :=
�

g
πR(B)es j

1 , g
πR(BA1)es j

1 , . . . , g
πR(BAn)es j

1

�

;

h j :=
�

g
B∗Rr j

2 , g
B∗A>1 Rr j

2 , . . . , g
B∗A>2η−1Rr j

2 , g
B∗A>2ηRr j

2 , . . . , g
B∗A>n Rr j

2

�

;

h′j :=
�

g
B∗Rr j

2 , g
B∗A>1 Rr j

2 , . . . , g
B∗A>2η−1Rr j+πM(B∗)bγ j

2 , g
B∗A>2ηRr j+πR(B∗)eγ j

2 , . . . , g
B∗A>n Rr j

2

�

;

where br j ,er j ,bs j ,es j ,bγ j ,eγ j ← Zd
p and r j ← Z3d

p .

Lemma 7 ((d, d, d)-LLin⇒ NH) For any η ∈ [bn/2c] and for any p.p.t. adversaryA , there exists an adversary
B such that

AdvNH(η)
A (k, q, q′)¶ Adv(d,d,d)-LLin

B (k),

and Time(B)≈ Time(A) + (q+ q′)d2 · poly(k, n) where poly(k, n) is independent of Time(A).

Proof. Given an instance of (d, d, d)-LLin problem (on G2)
�

g1, g2, ga1
2 , . . . , gad

2 ,
n

g
bi, j

2

o

i, j∈[d]
,
¦

g
a1 r1, j

2 , . . . , g
ad rd, j

2

©

j∈[d] ,
n

g
bi,1 r1, j+···+bi,d rd, j+rd+i, j

2

o

i, j∈[d]

�

,

where all rd+i, j are either 0 or uniformly chosen from Z∗p, adversaryB works as follows:

Generating 2q′ tuples. Algorithm B runs the algorithm described in Lemma 6 on the input 2q′, group G2,
and the (d, d, d)-LLin instance, and obtains

�

gVZ
2 , gZ

2

�

and
n�

g
t j

2 , g
Vt j+τ j

2

�o

j∈[2q′]
.

Programming B,B∗,R,A1, . . . ,An. Sample B ← GL3d(Zp) and set B∗ := (B−1)>. Sample Ai ← Z3d×3d
p for all

i ∈ [n] \ {2η− 1,2η}. Sample Ā2η−1, Ā2η← Z3d×3d
p , R̄← GL3d(Zp) and implicitly set

A2η−1 := Ā2η−1 +

0 0 0
0 V> 0
0 0 0

, A2η := Ā2η +

0 0 0
0 0 0
0 0 V>

, and R :=

I 0 0
0 Z 0
0 0 Z

R̄,

where I is the d-by-d identity matrix and 0 is the d-by-d zero matrix.

Simulating PP. Algorithm B can simulate gπL(B)
1 and gπL(BAi)

1 = gBπL(Ai)
1 for i ∈ [n] using the knowledge of

B,πL(A1), . . . ,πL(An). Note that we have πL(A2η−1) = πL(Ā2η−1) and πL(A2η) = πL(Ā2η), which are

known to B . Algorithm B can also simulate gB∗R
2 and g

B∗A>i R
2 for i ∈ [n] \ {2η − 1,2η} using the

knowledge of gZ
2 and B∗, R̄ as well as Ai . Finally, it can simulate

g
B∗A>2η−1R

2 = g
B∗Ā>2η−1

� I 0 0
0 Z 0
0 0 Z

�

R̄+B∗
�0 0 0

0 VZ 0
0 0 0

�

R̄

2 and g
B∗A>2ηR

2 = g
B∗Ā>2η

� I 0 0
0 Z 0
0 0 Z

�

R̄+B∗
�0 0 0

0 0 0
0 0 VZ

�

R̄

2

using the knowledge of
�

gVZ
2 , gZ

2

�

and B∗, Ā2η−1, Ā2η and R̄.

20

Simulating bh∗j and eh∗j for j ∈ [q+ q′]. AlgorithmB can simulate

bh∗j = g
πM(B∗)br j

2 and eh∗j = g
πR(B∗)er j

2

by sampling br j ,er j ← Zd
p and using the knowledge of B∗.

Simulating
n

�

bg j

�

−(2η−1)

o

j∈[q]
and

n

�

eg j

�

−2η

o

j∈[q]
for j ∈ [q]. AlgorithmB can simulate

g
πM(B)bs j

1 and g
πM(BAi)bs j

1 = g
BπM(Ai)bs j

1 ,

for i ∈ [n] \ {2η− 1} and j ∈ [q] by sampling bs j ← Zd
p and using the knowledge of B and πM(Ai) for

i ∈ [n] \ {2η− 1}. We note that πM(A2η) = πM(Ā2η) is know to B , but πM(A2η−1) containing secret
matrix V is not. In a similar manner, algorithmB can also simulate

g
πR(B)es j

1 and g
πR(BAi)es j

1 = g
BπR(Ai)es j

1 ,

for i ∈ [n] \ {2η} and j ∈ [q] by sampling es j ← Zd
p and using the knowledge of B and πR(Ai) for

i ∈ [n]\{2η}. We note that πR(A2η−1) = πR(Ā2η−1) is know toB , but πR(A2η) containing secret matrix
V is not.

Simulating the challenge. For each j ∈ [q′],B samples r̄ j ← Zd
p and implicitly sets r j by

Rr j :=
�

r̄ j
t2 j−1
t2 j

�

.

AdversaryB can simulate

g
B∗Rr j

2 = g

B∗

r̄ j
t2 j−1
t2 j

2 and g
B∗A>i Rr j

2 = g

B∗A>i

r̄ j
t2 j−1
t2 j

2 ,

for i ∈ [n] \ {2η− 1, 2η} using the knowledge of g
t2 j−1

2 , g
t2 j

2 , B∗ and Ai , and simulate

g
B∗A>2η−1Rr j+πM(B∗)bγ j

2 = g

B∗Ā>2η−1

r̄ j
t2 j−1
t2 j

+πM(B∗)(Vt2 j−1+τ2 j−1)

2

g
B∗A>2ηRr j+πR(B∗)eγ j

2 = g

B∗Ā>2η

r̄ j
t2 j−1
t2 j

+πR(B∗)(Vt2 j+τ2 j)

2

using the knowledge of
�

g
t2 j−1

2 , g
Vt2 j−1+τ2 j−1

2

�

and
�

g
t2 j

2 , g
Vt2 j+τ2 j

2

�

as well as B∗, Ā2η−1, Ā2η. Here we

implicitly set bγ j = τ2 j−1 and eγ j = τ2 j .

Analysis. Observe that if all rd+i, j = 0, then bγ j = eγ j = 0 and the output challenge is distributed as
¦

h j

©

j∈[q′];

otherwise, if all rd+i, j ← Z∗p, then bγ j ,eγ j ← (Z∗p)
d and the output challenge is distributed as

n

h′j
o

j∈[q′]
. Therefore

we may conclude that AdvNH(η)
A (k, q, q′)¶ Adv(d,d,d)-LLin

B (k). �

Corollary 3 (d-Lin⇒ NH) For any p.p.t. adversaryA , there exists an adversaryB such that

AdvNH(η)
A (k, q, q′)¶ d ·Advd-LLin

B (k) + 1/(p− 1),

and Time(B)≈ Time(A) + (q+ q′)d2 · poly(k, n) where poly(k, n) is independent of Time(A).

5 Concrete IBE from d-Linear Assumption

This section describe the concrete IBE scheme derived from our prime-order instantiation in Section 4
following Hofheinz et al.’s framework (c.f. Appendix B). Let GrpGen be the bilinear group generator described
in Section 4.1 and πL(·) be the function mapping from a 3d × 3d matrix to its left-most d columns.

21

– Param(1k, n): Run (p, G1, G2, GT , e)← GrpGen(1k). Sample B,R← GL3d(Zp) and A1, . . . ,A2n← Z3d×3d
p ,

and set B∗ := (B−1)>. Output

GP :=

p, G3d
1 , G3d

2 , GT , e;
gπL(B)

1 , gπL(BA1)
1 , . . . , gπL(BA2n)

1

gB∗R
2 , g

B∗A>1 R
2 , . . . , g

B∗A>2nR
2

!

.

– Setup(GP): Sample k← Z3d
p and output4

MPK :=
�

p, G3d
1 , G3d

2 , GT , e; e(g1, g2)
πL(B)

>k, gπL(B)
1 , gπL(BA1)

1 , . . . , gπL(BA2n)
1

�

;

MSK :=
�

gk
2 , gB∗R

2 , g
B∗A>1 R
2 , . . . , g

B∗A>2nR
2

�

.

– KeyGen(MPK, MSK,y): Let y= (y1, . . . , yn) ∈ {0, 1}n. Sample r← Z3d
p and output

SKy :=
�

K0 := gB∗Rr
2 , K1 := g

k+B∗(A2−y1
+···+A2n−yn)

>Rr
2

�

.

– Enc(MPK,x, M): Let x= (x1, . . . , xn) ∈ {0, 1}n and M ∈GT . Sample s← Zd
p and output

CTx :=
�

C0 := gπL(B)s
1 , C1 := g

πL(B(A2−x1
+···+A2n−xn))s

1 , C2 := e(g1, g2)
s>πL(B)

>k · M
�

.

– Dec(MPK, SK, CT): Let SK = (K0, K1) and CT = (C0, C1, C2). Output M := C2 · e(C1, K0)/e(C0, K1).

6 Achieving Stronger Security Guarantee

This section will investigate two flavors of stronger adaptive security: B-weak and full adaptive security (see
Section 2) by enhancing the non-degeneracy property and updating the indistinguishability between Game3
and Game4 in Hofheinz et al.’s proof. Before we begin to work, we first recall Game3 and Game4 in Hofheinz
et al.’s proof (c.f. Appendix B) where the non-degeneracy is utilized. In Game3, challenger C answers all
key extraction queries and all challenge queries using type-n semi-functional secret keys and type-(∧, n) semi-
functional ciphertexts, respectively. More formally, the experiment between challenger C and adversary A
proceeds as follows:

Setup. C samples (PP, SP)← SampP(1k, 2n) and MSKι ←H (using PP) for all ι ∈ [λ], and returns
�

MPKι := (PP,µ(MSKι)
	

ι∈[λ]

to adversaryA . Then pick β ← {0, 1}. During the experiment, C maintains two random functions

bRn : [λ]× {0,1}n→ [ÛSampH
∗
(PP, SP)] and eRn : [λ]× {0,1}n→ [åSampH

∗
(PP, SP)].

Key extraction queries. On query (ι,y), let y = (y1, . . . , yn) ∈ {0,1}n. C samples h :=
�

h0, h1, . . . , h2n
�

←
SampH(PP) and outputs

SK :=

h0, MSKι · bRn(ι,y) · eRn(ι,y) ·
n
∏

i=1

h2i−yi

!

and updates QK :=QK ∪
��

ι,y
�	

.

Challenge queries. On query (ι∗,x∗, M∗0, M∗1), let x∗ = (x∗1, . . . , x∗n) ∈ {0, 1}n. C samples
�

g0, g1, . . . , g2n
�

←
SampG(PP) and

�

bg0, bg1, . . . , bg2n
�

←ÛSampG(PP, SP) and outputs

CT∗ :=

g0 · bg0,
n
∏

i=1

�

g2i−x∗i
· bg2i−x∗i

�

, e(g0 · bg0, MSKι∗) · e(bg0, bRn(ι
∗,x∗)) · M∗β

!

,

and updates QC :=QC ∪ {(ι∗,x∗)}.

Guess. A outputs its guess β ′ ∈ {0, 1}.

Note that the boxed term have been re-written following the orthogonality property of our revised NDSG.
Game4 is identical to Game3 except that the boxed term is independently and uniformly distributed over GT
for each challenge ciphertext.

4We only put necessary entries for Enc into MPK, while entries from GP (or PP) for running KeyGen are put into MSK.

22

6.1 Warmup: Achieving B-weak Adaptive Security

Recall that the original non-degeneracy property said that:

(Non-degeneracy (Recalled).) Over the probability space defined by bg0←ÛSampG0(PP, SP), with overwhelm-

ing probability 1−2−Ω(k), e(bg0,bh∗) is distributed uniformly overGT when samplingbh∗←ÛSampH
∗
(PP, SP).

We observe that bh∗ in our prime-order instantiation (see Section 4) actually contains higher entropy than those
in Hofheinz et al.’s composite-order instantiation [HKS15]. In particular, bh∗ is uniformly distributed over a d-
dimension subspace of G3d

2 containing pd elements (vectors), while e(bg0,bh∗) is an element in GT containing
just p elements. This suggests that, given e(bg0,bh∗), there may be leftover entropy in bh∗, and our prime-order
instantiation may achieve stronger non-degeneracy even relying on no computational assumption.

To formally investigate the above idea, we describe the notion of B-bounded non-degeneracy which roughly
ensures the non-degeneracy even when a single bh∗ is paired with at most B bg0’s.

(B-bounded non-degeneracy.) Over the probability space defined by (bg0,1, . . . , bg0,B)←ÛSampG
B

0 (PP, SP), with
overwhelming probability 1− 2−Ω(k), (e(bg0,1,bh∗), . . . , e(bg0,B,bh∗)) is distributed uniformly over GB

T when

sampling bh∗←ÛSampH
∗
(PP, SP).

It is obvious that the ENDSG with B-bounded non-degeneracy almost-tightly implies a B-weak adaptively
secure IBE in MIMC setting. We now prove that our prime-order instantiation in Section 4 indeed reaches this
stronger version of non-degeneracy.

Lemma 8 Our prime-order instantiation of ENDSG in Section 4 based on the d-Lin assumption is d-bounded
non-degenerated.

Proof. The proof is just a simple statistical argument extended from the proof for the original non-degeneracy.
For bs1, . . . ,bsd ← Zd

p and br← Zd
p , we have that

e(gEbs1
1 , gπM(B∗)br

2)
...

e(gEbsd
1 , gπM(B∗)br

2)

=

e(g1, g2)
bs>1 πM(B)

>πM(B∗)br

...
e(g1, g2)

bs>d πM(B)
>πM(B∗)br

=

e(g1, g2)
bs>1 br

...
e(g1, g2)

bs>d br

= e(g1, g2)

bs>1
...
bs>d

br

.

With probability at least 1−1/(p−1), the matrix (bs1, . . . ,bsd)> is full-rank over Zp, in which case (bs1, . . . ,bsd)>br
is distributed uniformly over Zd

p when picking br← Zd
p . �

Therefore, when we build our instantiation with parameter d > 1, we obtain an IBE with strictly stronger
security guarantee which ensures the confidentiality of at most d ciphertexts for single identity. As a special
case, if we set d = 1 (i.e., the SXDH assumption), the resulting IBE is still weak adaptive secure.

6.2 Computational Non-degeneracy and Full Adaptive Security

The attempt in the previous subsection more or less suggests that it is probably inevitable to introduce
additional computational argument in order to achieve fully adaptive security where a single bh∗ can be paired
with polynomially many bg0’s without violating the non-degeneracy property.

As a first step, we describe a computational version of non-degeneracy which is essentially similar to the
s-BDDH assumption [HKS15]. Following the style of our revised ENDSG (in Section 3), our definition is more
general than the s-BDDH assumption.

(Computational non-degeneracy (ND).) For any p.p.t. adversary A , the following advantage function is
negligible in k,

AdvND
A (k, q, q′, q′′) :=

�

�Pr[A (D, T0) = 1]− Pr[A (D, T1) = 1]
�

� ,

where
D :=

�

PP,
n

bh∗j ·eh
∗
j

o

j∈[q′]
,
¦

bg j, j′
©

j∈[q], j′∈[q′′]

�

,

T0 :=
n

e(bg0, j, j′ ,bh
∗∗
j)
o

j∈[q], j′∈[q′′]
, T1 :=

¦

R j, j′
©

j∈[q], j′∈[q′′]

andbh∗j ←ÛSampH
∗
(PP, SP),eh∗j ←åSampH

∗
(PP, SP),bh∗∗j ←ÛSampH

∗
(PP, SP), bg j, j′ =

�

bg0, j, j′ , bg1, j, j′ , . . . , bgn, j, j′
�

←
ÛSampG(PP, SP) and R j, j′ ←GT .

23

Let AdvGame3
A (k,λ, qK , qC , qR) and Adv

Game4
A (k,λ, qK , qC , qR) be the advantage function of adversary A in

Game3 and Game4, respectively, in the full adaptive security model. We prove Lemma 9 showing that the
computational non-degeneracy property implies that Game3 and Game4 are indistinguishable. It suffice to
conclude that an ENDSG with computational non-degeneracy property tightly implies a fully adaptively secure
IBE in MIMC setting.

Lemma 9 (from Game3 to Game4) For any p.p.t. adversaryA , there exists an adversaryB such that
�

�

�Adv
Game3
A (k,λ, qK , qC , qR)−Adv

Game4
A (k,λ, qK , qC , qR)

�

�

�¶ AdvND
B (k, qK , qC , qR),

and Time(B)≈ Time(A) + (qK + qCqR) · poly(k, n) where poly(k, n) is independent of Time(A).

Proof. Given
�

PP,
n

bh∗j ·eh
∗
j

o

j∈[qK]
,
¦

bg j, j′
©

j∈[qC], j′∈[qR]
,
¦

T j, j′
©

j∈[qC], j′∈[qR]

�

where bg j, j′ =
�

bg0, j, j′ , bg1, j, j′ , . . . , bg2n, j, j′
�

and each T j, j′ is either e(bg0, j, j′ ,bh
∗∗
j) or uniformly distributed over GT ,

algorithmB does:

Setup. Sample MSKι ←H (using PP) for all ι ∈ [λ], and output

�

MPKι := (PP,µ(MSKι))
	

ι∈[λ] .

Then algorithmB picks a secret random bit β ← {0, 1}.

Key extraction queries. On the jth query (ι,y), sample h :=
�

h0, h1, . . . , h2n
�

← SampH(PP). If query (ι,y)
has been made before, say the j′th query (j′ < j) for the first time, set MSK = MSKι ·bh∗j′ ·eh

∗
j′ ; otherwise,

set MSK = MSKι ·bh∗j ·eh
∗
j . Output

SK :=

h0, MSK ·
n
∏

i=1

h2i−yi

!

.

Here we implicitly set bRn(ι,y) :=bh∗j and eRn(ι,y) :=eh∗j if the query has not been made yet.

Challenge queries. On input (ι∗,x∗, M∗0, M∗1), we let the query be the j′th occurrence of pair (ι∗,x∗), which
is the jth distinct pair we have met, and x∗ = (x∗1, . . . , x∗n) ∈ {0,1}n. B samples (g0, g1, . . . , g2n) ←
SampG(PP) and outputs

CT∗ =

g0 · bg0, j, j′ ,
n
∏

i=1

(g2i−x∗i
· bg2i−x∗i , j, j′), e(g0 · bg0, j, j′ , MSKι∗) · T j, j′ · M∗β

!

.

Here we implicitly set bRn(ι∗,x∗) :=bh∗∗j .

Guess. B outputs 1 ifA ’s guess equals β , and outputs 0 in the other case.

Analysis. Observe that, if T j, j′ = e(bg0, j, j′ ,bh
∗∗
j), then the boxed term equals e(g0 ·bg0, j, j′ , MSKι∗)·e(bg0, j, j′ ,bh

∗∗
j)·M

∗
β ,

the simulation is identical to Game3; otherwise, if all T j, j′ are uniformly distributed over GT , then the boxed
term is independently and uniformly distributed over GT and the simulation is identical to Game4. Therefore

we may conclude that
�

�

�Adv
Game3
A (k,λ, qK , qC , qR)−Adv

Game4
A (k,λ, qK , qC , qR)

�

�

�¶ AdvND
B (k, qK , qC , qR). �

6.3 Computational Non-degeneracy from d-Linear Assumption

We now prove that the prime-order instantiation proposed in Section 4 has realized the computational non-
degeneracy. And this immediately implies that the concrete IBE scheme shown in Section 5 is fully adaptively
secure in MIMC setting with almost-tight reduction.

We rewrite the ND advantage function AdvND
A (k, q, q′, q′′) as follows:

AdvND
A (k, q, q′, q′′) :=

�

�Pr[A (D, T0) = 1]− Pr[A (D, T1) = 1]
�

� ,

where
D :=

�

PP,
n

bh∗j ·eh
∗
j

o

j∈[q′]
,
¦

bg j, j′
©

j∈[q], j′∈[q′′]

�

,

24

T0 :=
n

e(bg0, j, j′ ,bh
∗∗
j)
o

j∈[q], j′∈[q′′]
, T1 :=

n

e(bg0, j, j′ ,bh
∗∗
j) · bR j, j′

o

j∈[q], j′∈[q′′]

and

PP :=

gπL(B)
1 , gπL(BA1)

1 , . . . , gπL(BAn)
1

gB∗R
2 , g

B∗A>1 R
2 , . . . , g

B∗A>n R
2

!

;

bh∗j ·eh
∗
j := g

B∗

0d
br′j
er′j

2 ;

bg j, j′ :=
�

g
πM(B)bs j, j′

1 , g
πM(BA1)bs j, j′

1 , . . . , g
πM(BAn)bs j, j′

1

�

;

e(bg0, j, j′ ,bh
∗∗
j) := e(g

πM(B)bs j, j′

1 , g
πM(B∗)br j

2) = e(g1, g2)
bs>

j, j′
br j ;

bR j, j′ := e(g1, g2)
bγ j, j′ ;

where br′j ,er
′
j ,br j ,bs j, j′ ← Zd

p and bγ j, j′ ← Zp.

Lemma 10 ((d, 1, qq′′)-LLin⇒ ND) For any p.p.t. adversaryA , there exists an adversaryB such that

AdvND
A (k, q, q′, q′′)¶ Adv(d,1,qq′′)-LLin

B (k),

and Time(B)≈ Time(A) + (qq′′ + q′)d2 · poly(k, n) where poly(k, n) is independent of Time(A).

Overview of the Proof. From the observation that all bh∗∗j = g
πM(B∗)br j

2 are independently distributed and will
never be given toA individually, we essentially prove a stronger result:

“Given D, g
bs>

j, j′
br j

1 are computationally indistinguishable from g
bs>

j, j′
br j+bγ j, j′

1 .”

It is direct to based the pseudo-randomness of the challenge terms on the (d, q, q′′)-LLin assumption. However
the assumption is reduced to d-Lin assumption with reduction loss O (q). In order to obtain a tight reduction,
we further rewrite the challenge term as

g
bs>

j, j′
br j

1 = g
bs>

j, j′
V> r̄ j

1 = g
r̄>j Vbs j, j′

1

where V is a (d+1)×d matrix over Zp of rank d and r̄ j ← Zd+1
p . Clearly, we implicitly define br j := V>r̄ j . Since

the matrix V is shared by all br j ’s in challenge terms, we could now deal with polynomially many distinct br j ’s
uniformly which results in a proof with constant security loss.
Proof. Given an instance of (d, 1, qq′′)-LLin problem (i.e., set `= 1 and q = qq′′)

�

g1, g2, ga1
1 , . . . , gad

1 ,
n

g bi
1

o

i∈[d]
,
¦

g
a1s1, j, j′

1 , . . . , g
ad sd, j, j′

1

©

j∈[q], j′∈[q′′] ,
n

g
b1s1, j, j′+···+bd sd, j, j′+sd+1, j, j′

1

o

j∈[q], j′∈[q′′]

�

as input where all sd+1, j, j′ are either 0 or uniformly chosen from Z∗p, adversaryB works as follows:

Programming bs j, j′ for j ∈ [q], j′ ∈ [q′]. AdversaryB implicitly sets bs j, j′ = (s1, j, j′ , . . . , sd, j, j′)>.

Programming B,B∗,A1, . . . ,An,R. Define W ∈ Z3d×3d
p as

W :=

1
...

1
a1

. . .
ad

1
...

1

25

and set W∗ := (W−1)>. Sample B̄, R̄← GL3d(Zp) and set B̄∗ := (B̄−1)>. Also sample Ā1, . . . , Ān← Z3d×3d
p ,

and implicitly set
(B,B∗) := (B̄W, B̄∗W∗), R :=W>R̄, Ai :=W−1ĀiW,

for i ∈ [n]. Observe that B,B∗,R and all Ai are distributed properly, and we have

BAi = B̄ĀiW, B∗R= B̄∗R̄, B∗A>i R= B̄∗Ā>i R̄.

Simulating PP. AlgorithmB can simulate

gπL(B)
1 = gπL(B̄W)

1 = g B̄πL(W)
1 and gπL(BAi)

1 = gπL(B̄ĀiW)
1 = g B̄ĀiπL(W)

1 ,

gB∗R
2 = g B̄∗R̄

2 and g
B∗A>1 R
2 = g

B̄∗Ā>i R̄
2 ,

for i ∈ [n] using the knowledge of πL(W) and B̄, B̄∗, Ā1, . . . , Ān, R̄.

Simulating bh∗j ·eh
∗
j for j ∈ [q′]. It is not hard to compute W∗ ∈ Z3d×3d

p as

W∗ :=

1
...

1
a−1

1
. . .

a−1
d

1
...

1

.

For all j ∈ [q+ q′], we sample r̄ j ← Z2d
p and implicitly set

0d
br j
er j

= (W∗)−1

�

0d
r̄ j

�

=W>
�

0d
r̄ j

�

.

Since the right-bottom 2d×2d sub-matrix of W∗ is full-rank with overwhelming probability, both br j and
er j are distributed properly andB can simulate

bh∗j ·eh
∗
j = g

B∗

0d
br j

er j

2 = g

B̄∗W∗

0d
br j

er j

2 = g
B̄∗
�0d

r̄ j

�

2

using the knowledge of B̄∗ and r̄ j .

Simulating bg j, j′ for j ∈ [q], j′ ∈ [q′]. AlgorithmB can simulate

g

B

0d
bs j, j′

0d

1 = g

B̄W

0d
bs j, j′

0d

1 and g

BAi

0d
bs j, j′

0d

1 = g

B̄ĀiW

0d
bs j, j′

0d

1

for i ∈ [n] using the knowledge of B̄, Ā1, . . . , Ān and

g

W

0d
bs j, j′

0d

1 = g

0d
a1s1, j, j′

...
ad sd, j, j′

0d

1 .

Simulating the challenge. Define an additional matrix V ∈ Z(d+1)×d
p of rank d as

V :=

a1
. . .

ad
b1 · · · bd

.

26

For all j ∈ [q], algorithmB samples r̄ j ← Zd+1
p and implicitly set br>j := r̄>j V. AlgorithmB simulates

g
br>j bs j, j′+bγ j, j′

1 = g

r̄>j

a1s1, j, j′

...
ad sd, j, j′

b1s1, j, j′+···+bd sd, j, j′+sd+1, j, j′

1

using the knowledge of
n

g
a1s1, j, j′

1 , . . . , g
ad sd, j, j′

1 , g
b1s1, j, j′+···+bd sd, j, j′+sd+1, j, j′

1

o

, and outputs e(g
br>j bs j, j′+bγ j, j′

1 , g2).

Analysis. Observe that, if sd+1, j, j′ = 0, then the output challenge is distributed as T0 where bγ j, j′ = 0; if
sd+1, j, j′ ← Z∗p, then the output challenge is distributed as

e(g
r̄>j (Vbs j, j′+ed+1sd+1, j, j′)
1 , g2) = e(g1, g2)

bs>
j, j′
br j · e(g1, g2)

sd+1, j, j′e
>
d+1 r̄ j

which is identical to T1 where bγ j, j′ := sd+1, j, j′e
>
d+1r̄ j (in the box) is uniformly distributed over Zp. Therefore

we may conclude that AdvND
A (k, q, q′, q′′)¶ Adv(d,1,qq′′)-LLin

B (k). �

Corollary 4 (d-Lin⇒ ND) For any p.p.t. adversaryA , there exists an adversaryB such that

AdvND
A (k, q, q′, q′′)¶ Advd-Lin

B (k) + 1/(p− 1),

and Time(B)≈ Time(A) + (qq′′ + q′)d2 · poly(k, n) where poly(k, n) is independent of Time(A).

7 Fine-Tuning Extended Nested Dual System Groups from Section 3

In this section, we begin our work on exploring more efficient instantiation of ENDSG leading to more
efficient IBE. Our fine-tuning is based on the ENDSG shown in Section 3 equipped with computational non-
degeneracy defined in Section 6. We show in Appendix C that the ENDSG after fine-tuning tightly implies an
IBE in MIMC setting by showing the construction and the sketch of the proof.

Syntax. The fine-tuned ENDSG consists of eight p.p.t. algorithms defined as follows:

– SampP(1k, n): Output (1) PP containing (a) group description (G,H,GT) and an admissible bilinear
map e : G×H → GT ; (b) an efficient linear map µ defined on H; (c) an efficient sampler for H and
Zord(H), respectively; (d) public parameters for SampG; (2) HP containing parameters for SampH; (3) SP

containing secret parameters forÛSampG,åSampG, ÛSampH
∗

and åSampH
∗
.

– SampGT: Im(µ)→GT .

– SampG(PP): Output g=
�

g0, g1, . . . , gn
�

∈Gn+1.

– SampH(PP, HP): Output h=
�

h0, h1, . . . , hn
�

∈Hn+1.

– ÛSampG(PP, SP): Output bg=
�

bg0, bg1, . . . , bgn
�

∈Gn+1.

– åSampG(PP, SP): Output eg=
�

eg0, eg1, . . . , egn
�

∈Gn+1.

– ÛSampH
∗
(PP, SP): Output bh∗ ∈H.

– åSampH
∗
(PP, SP): Output eh∗ ∈H.

Correctness and Security. For all k, n ∈ Z+ and all (PP, HP, SP) ∈ [SampP(1k, n)], the projective, associative,
orthogonality, and H-subgroup requirement are identical to those defined in Section 3.

(Left subgroup indistinguishability 1 (LS1).) For any p.p.t. adversaryA , the following advantage function
is negligible in k,

AdvLS1
A (k, q, q′) :=

�

�Pr[A (D, T0) = 1]− Pr[A (D, T1) = 1]
�

� ,

where

D :=
�

PP,
¦

h j

©

j∈[q′]

�

, T0 :=
¦

g j

©

j∈[q] , T1 :=
�

g j · bg j · eg j

�

j∈[q]

and g j ← SampG(PP), bg j ←ÛSampG(PP, SP), eg j ←åSampG(PP, SP), and h j ← SampH(PP, HP).

27

(Left subgroup indistinguishability 2 (LS2).) For any p.p.t. adversaryA , the following advantage function
is negligible in k,

AdvLS2
A (k, q, q′) :=

�

�Pr[A (D, T0) = 1]− Pr[A (D, T1) = 1]
�

� ,

where
D :=

�

PP,
n

bh∗j ·eh
∗
j

o

j∈[q+q′]
,
n

g′j · bg
′
j · eg

′
j

o

j∈[q]
,
¦

h j

©

j∈[q′]

�

,

T0 :=
�

g j · bg j · eg j

�

j∈[q]
, T1 :=

¦

g j · eg j

©

j∈[q] ,

andbh∗j ←ÛSampH
∗
(PP, SP),eh∗j ←åSampH

∗
(PP, SP), g′j ← SampG(PP), bg′j ←ÛSampG(PP, SP), eg′j ←åSampG(PP, SP),

g j ← SampG(PP), bg j ←ÛSampG(PP, SP), eg j ←åSampG(PP, SP), and h j ← SampH(PP, HP).

(Left subgroup indistinguishability 3 (LS3).) For any p.p.t. adversaryA , the following advantage function
is negligible in k,

AdvLS3
A (k, q, q′) :=

�

�Pr[A (D, T0) = 1]− Pr[A (D, T1) = 1]
�

� ,

where
D :=

�

PP,
n

bh∗j ·eh
∗
j

o

j∈[q+q′]
,
n

g′j · eg
′
j

o

j∈[q]
,
¦

h j

©

j∈[q′]

�

,

T0 :=
�

g j · bg j · eg j

�

j∈[q]
, T1 :=

¦

g j · bg j

©

j∈[q] ,

andbh∗j ←ÛSampH
∗
(PP, SP),eh∗j ←åSampH

∗
(PP, SP), g′j ← SampG(PP), eg′j ←åSampG(PP, SP), g j ← SampG(PP),

bg j ←ÛSampG(PP, SP), eg j ←åSampG(PP, SP), and h j ← SampH(PP, HP).

(Nested-hiding indistinguishability (NH).) For all η ∈ [bn/2c] and any p.p.t. adversary A , the following
advantage function is negligible in k,

AdvNH(η)
A (k, q, q′) :=

�

�Pr[A (D, T0) = 1]− Pr[A (D, T1) = 1]
�

� ,

where
D :=

�

PP,
n

bh∗j
o

j∈[q+q′]
,
n

eh∗j
o

j∈[q+q′]
,
¦

(bg j)−(2η−1)

©

j∈[q] ,
¦

(eg j)−2η

©

j∈[q] , {h
′
j} j∈[q′]

�

,

T0 :=
¦

h j

©

j∈[q′] , T1 :=
�

h j · (bh∗∗j)
e2η−1 · (eh∗∗j)

e2η

�

j∈[q′]

and bh∗j ← ÛSampH
∗
(PP, SP), eh∗j ← åSampH

∗
(PP, SP), bg j ←ÛSampG(PP, SP), eg j ←åSampG(PP, SP), h j ←

SampH(PP, HP), bh∗∗j ←ÛSampH
∗
(PP, SP), eh∗∗j ←åSampH

∗
(PP, SP), and h′j ← SampH(PP, HP). We further

define
AdvNH

A (k, q, q′) := max
η∈[bn/2c]

n

AdvNH(η)
A (k, q, q′)

o

.

(Computational non-degeneracy (ND).) For any p.p.t. adversary A , the following advantage function is
negligible in k,

AdvND
A (k, q, q′, q′′) :=

�

�Pr[A (D, T0) = 1]− Pr[A (D, T1) = 1]
�

� ,

where
D :=

�

PP,
n

bh∗j ·eh
∗
j , h j

o

j∈[q′]
,
¦

bg j, j′ · eg j, j′
©

j∈[q], j′∈[q′′]

�

,

T0 :=
n

e(bg0, j, j′ · eg0, j, j′ ,bh
∗∗
j ·eh

∗∗
j)
o

j∈[q], j′∈[q′′]
, T1 :=

¦

R j, j′
©

j∈[q], j′∈[q′′] .

and bh∗j ←ÛSampH
∗
(PP, SP), eh∗j ←åSampH

∗
(PP, SP), h j ← SampH(PP, HP), bh∗∗j ←ÛSampH

∗
(PP, SP), eh∗∗j ←

åSampH
∗
(PP, SP), bg j, j′ =

�

bg0, j, j′ , bg1, j, j′ , . . . , bgn, j, j′
�

←ÛSampG(PP, SP), eg j, j′ =
�

eg0, j, j′ , eg1, j, j′ , . . . , egn, j, j′
�

←
åSampG(PP, SP), and R j, j′ ← GT .

8 Instantiating ENDSG from d-Linear Assumption with Auxiliary Input

The section present an instantiation of fine-tuned ENDSG in Section 7 using prime-order bilinear groups.
This yields an almost-tight IBE in MIMC setting using prime-order bilinear groups following the generic con-
struction shown in Appendix C. We describe this IBE and its variants in Section 9.

28

8.1 d-Linear Assumption with Auxiliary Input

We assume a prime-order bilinear group generator GrpGen(1k) as defined in Section 4, which takes security
parameter 1k as input and outputs group description G := (p, G1, G2, GT , e). The d-linear assumption in G1
with auxiliary input in G2 (d-LinAI) is defined as follows, the analogous assumption in G2 can be defined by
exchanging the role of G1 and G2. We prove the assumption holds in the generic model [Sho97] in Section A.4.
Note that we always let d be an even positive integer.

Assumption 3 (d-Linear Assumption in G1 with Auxiliary Input in G2) For any p.p.t. adversary A , the fol-
lowing advantage function is negligible in k,

Advd-LinAI
A (k) :=

�

�Pr[A (D, AUX, T0) = 1]− Pr[A (D, AUX, T1) = 1]
�

� ,

where
D :=

�

G , g1, g2, ga1
1 , . . . , gad

1 , gad+1
1 , ga1s1

1 , . . . , gad sd
1

�

AUX :=
�

g
aa−1

1 ad+1

2 , . . . , g
aa−1

d/2ad+1

2 , ga
2

�

T0 := gad+1(s1+···+sd)
1 , T1 := g

ad+1(s1+···+sd)+ sd+1

1

and G := (p, G1, G2, GT , e)← GrpGen(1k), s1, . . . , sd ← Zp, a1, . . . , ad , ad+1, sd+1← Z∗p and a := a1 · · · ad/2.

As we have done in Section 4, we also define an natural extension of the above assumption, i.e., (d,`, q)-
Lifted Linear Assumption in G1 with Auxiliary Input in G2 ((d,`, q)-LLinAI). The relation between them is shown
in Lemma 11. We point out that this assumption implies the (d,`, q)-LLin assumption.

Assumption 4 ((d,`, q)-Lifted Linear Assumption in G1 with Auxiliary Input in G2) For any p.p.t. adver-
saryA , the following advantage function is negligible in k,

Adv(d,`,q)-LLinAI
A (k) :=

�

�Pr[A (D, AUX, T0) = 1]− Pr[A (D, AUX, T1) = 1]
�

� ,

where
D :=

�

G , g1, g2, ga1
1 , . . . , gad

1 ,
n

g
bi, j

1

o

i∈[`], j∈[d]
,
¦

g
a1s1, j

1 , . . . , g
ad sd, j

1

©

j∈[q]

�

,

AUX :=
�

§

g
aa−1

j bi, j

2

ª

i∈[`], j∈[d/2]
, ga

2

�

T0 :=
n

g
bi,1s1, j+···+bi,d sd, j

1

o

i∈[`], j∈[q]
, T1 :=

(

g
bi,1s1, j+···+bi,d sd, j+ sd+i, j

1

)

i∈[`], j∈[q]

and G := (p, G1, G2, GT , e)← GrpGen(1k), a1, . . . , ad , bi, j ← Z∗p, a := a1 · · · ad/2, s1, j , . . . , sd, j ← Zp, sd+i, j ← Z∗p.

Lemma 11 (d-LinAI⇒ (d,`, q)-LLinAI) For any p.p.t. adversaryA , there exists an adversaryB such that

Adv(d,`,q)-LLinAI
A (k)¶ ` ·Advd-LinAI

B (k) + 1/(p− 1),

and Time(B)≈ Time(A) + `2d · poly(k) where poly(k) is independent of Time(A).

Proof. The proof is similar to that for Lemma 1. We first prove that, for any p.p.t. adversary A , there exists
an adversaryB with Time(B)≈ Time(A) + `d · poly(k) such that

Adv(d,`,1)-LLinAI
A (k)¶ Advd-LinAI

B (k).

We can deduce the lemma by applying the idea of Lemma 1 in [EHK+13].
We now give the proof of the claim. For simplicity, we discard the subscript j related to parameter q when

considering (d,`, 1)-LLinAI. Given a d-LinAI problem instance
�

g1, g2, ga1
1 , . . . , gad

1 , gad+1
1 , ga1s1

1 , . . . , gad sd
1 , g

aa−1
1 ad+1

2 , . . . , g
aa−1

d/2ad+1

2 , ga
2 , gad+1(s1+···+sd)+sd+1

1

�

as input where sd+1 are either 0 or uniformly chosen from Z∗p, adversaryB works as follows:

Simulating a1, . . . , ad and s1, . . . , sd . Set ai := ai and implicitly define si := si for all i ∈ [d].

29

Simulating g
bi, j

1 for i ∈ [`], j ∈ [d]. Sample γi ,δi, j ← Z∗p for all i ∈ [`] and j ∈ [d] and simulate

g
bi, j

1 :=
�

gad+1
1

�γi ·
�

g
a j

1

�δi, j .

Simulating AUX. AlgorithmB can simulate ga
2 directly. Observe that, for all i ∈ [`], j ∈ [d/2], we have

aa−1
j bi, j = aa−1

j (γiad+1 +δi, ja j) = γiaa−1
j ad+1 +δi, ja.

Therefore we can simulate

g
aa−1

j bi, j

2 =
�

g
aa−1

j ad+1

2

�γi

·
�

ga
2

�δi, j .

Simulating the Challenge. Similar to Lemma 11, we can simulate the challenge as

g
bi,1s1+···+bi,d sd+sd+i

1 :=
�

gad+1(s1+···+sd)+sd+1
1

�γi
·
�

ga1s1
1

�δi,1 · · ·
�

gad sd
1

�δi,d .

Note that AUX is simulated perfectly and also reveal no information on γi . Therefore we have prove the claim
following the analysis of Lemma 1. �

8.2 Construction

The construction is based on Okamoto and Takashima’s DPVS [OT08, OT09, LOS+10] and Chen, Gay and
Wee’s new method for randomizing the basis [CGW15]. We let πL(·), πM(·), and πR(·) be functions mapping
from a 2d × 2d matrix to its left-most d columns, the next d/2 columns, and the right-most d/2 columns,
respectively. Note that we always consider d as an even positive integer. Algorithms of the fine-tuned ENDSG are
shown as follows.

– SampP(1k, n): Generate (p, G1, G2, GT , e) ← GrpGen(1k) and define (G,H,GT , e) := (G2d
1 , G2d

2 , GT , e).
Sample D← GL2d(Zp) and set D∗ := (D−1)>. Define

A= πL(D), bA= πM(D), eA= πR(D);
B= πL(D∗), bB= πM(D∗), eB= πR(D∗);

Define µ(gk
2) := e(gA

1 , gk
2) = e(g1, g2)A

>k for all k ∈ Z2d
p . Sample W1, . . . ,Wn← Z2d×2d

p and output

PP :=
�

p,G,H,GT , e,µ; gA
1 , g

W>1 A
1 , . . . , g

W>n A
1

�

HP :=
�

gB
2 , gW1B

2 , . . . , gWnB
2

�

SP :=

gbB2 , gbA1 , g
W>1 bA
1 , . . . , g

W>n bA
1

geB2 , geA1 , g
W>1 eA
1 , . . . , g

W>n eA
1

!

.

We assume PP always contains G,H,GT , e,µ.

– SampGT(gp
T): Sample s← Zd

p and output gs>p
T ∈ GT .

– SampG(PP): Sample s← Zd
p and output

�

gAs
1 , g

W>1 As
1 , . . . , g

W>n As
1

�

∈ (G2d
1)

n+1.

– SampH(PP, HP): Sample r← Zd
p and output

�

gBr
2 , gW1Br

2 , . . . , gWnBr
2

�

∈ (G2d
2)

n+1.

– ÛSampG(PP, SP): Sample bs← Zd/2
p and output

�

gbAbs1 , g
W>1 bAbs
1 , . . . , g

W>n bAbs
1

�

∈ (G2d
1)

n+1.

– åSampG(PP, SP): Sample es← Zd/2
p and output

�

geAes1 , g
W>1 eAes
1 , . . . , g

W>n eAes
1

�

∈ (G2d
1)

n+1.

– ÛSampH
∗
(PP, SP): Sample br← Zd/2

p and output gbBbr2 ∈ G2d
2 .

– åSampH
∗
(PP, SP): Sample er← Zd/2

p and output geBer2 ∈ G2d
2 .

30

Correctness and Security. We may check several correctness and security properties as follows:

(Projective.) For all k ∈ Z2d
p and all s ∈ Zd

p , we have that

SampGT(µ(gk
2); s) = e(g1, g2)

s>(A>k) = e(g1, g2)
(As)>k = e(gAs

1 , gk
2) = e(SampG0(PP; s), gk

2).

(Associative.) For all s ∈ Zd
p and all r ∈ Zd

p , we have that

e(gAs
1 , gWiBr

2) = e(g1, g2)
s>A>WiBr = e(g1, g2)

(W>i As)>Br = e(g
W>i As
1 , gBr

2), ∀i ∈ [n].

(Orthogonality.) For all br,er,bs,es ∈ Zd/2
p , we check that

1. µ(gbBbr2) = e(g1, g2)A
>
bBbr = e(g1, g2)0d×(d/2)br = (1, . . . , 1)> ∈ Gd

T ;

2. µ(geBer2) = e(g1, g2)A
>
eBer = e(g1, g2)0d×(d/2)er = (1, . . . , 1)> ∈ Gd

T ;

3. e(gbAbs1 , geBer2) = e(g1, g2)
bs>bA>eBer = e(g1, g2)

bs>0(d/2)×(d/2)er = 1GT
;

4. e(geAes1 , gbBbr2) = e(g1, g2)
es>eA>bBbr = e(g1, g2)

es>0(d/2)×(d/2)br = 1GT
.

(H-subgroup.) This follows from the fact that Zd
p (for algorithm SampH) and Zd/2

p (for algorithm ÛSampH
∗

and åSampH
∗
) are additive groups.

We check the remaining security properties (LS1, LS2, LS3, NH and ND) in the following subsections. We
prove LS2 and LS3 property under the (d,`, q)-LLinAI assumption, while others are still proven under the
(d,`, q)-LLin assumption which is further implied by the (d,`, q)-LLinAI assumption.

8.3 Left subgroup indistinguishability 1

We may rewrite the LS1 advantage function AdvLS1
A (k, q, q′) as follows:

AdvLS1
A (k, q, q′) :=

�

�Pr[A (D, T0) = 1]− Pr[A (D, T1) = 1]
�

� ,

where

D :=
�

PP,
¦

h j

©

j∈[q′]

�

, T0 :=
¦

g j

©

j∈[q] , T1 :=
�

g j · bg j · eg j

�

j∈[q]

and

PP :=
�

gA
1 , g

W>1 A
1 , . . . , g

W>n A
1

�

;

h j :=
�

g
Br j

2 , g
W1Br j

2 , . . . , g
WnBr j

2

�

;

g j :=
�

g
As j

1 , g
W>1 As j

1 , . . . , g
W>n As j

1

�

;

g j · bg j · eg j :=
�

g
As j+bAbs j+eAes j

1 , g
W>1 (As j+bAbs j+eAes j)
1 , . . . , g

W>n (As j+bAbs j+eAes j)
1

�

;

for r j , s j ← Zd
p and bs j ,es j ← Zd/2

p .

Lemma 12 ((d, d, q)-LLin⇒ LS1) For any p.p.t. adversaryA , there exists an adversaryB such that

AdvLS1
A (k, q, q′)¶ Adv(d,d,q)-LLin

B (k),

and Time(B)≈ Time(A) + (q+ q′)d2 · poly(k, n) where poly(k, n) is independent of Time(A).

Proof. Given an instance of (d, d, q)-LLin problem (i.e., set `= d)
�

g1, g2, ga1
1 , . . . , gad

1 ,
n

g
bi, j

1

o

i, j∈[d]
,
¦

g
a1s1, j

1 , . . . , g
ad sd, j

1

©

j∈[q] ,
n

g
bi,1s1, j+···+bi,d sd, j+sd+i, j

1

o

i∈[d], j∈[q]

�

as input where all sd+i, j are either 0 or uniformly chosen from Z∗p, adversaryB works as follows:

31

Programming s j , bs j and es j for j ∈ [q]. AdversaryB implicitly sets

s j =
�

s1, j , . . . , sd, j

�>
, bs j =

�

sd+1, j , . . . , s3d/2, j

�>
, es j =

�

s(3d/2+1), j , . . . , s2d, j

�>
.

Programming D,D∗,W1, · · · ,Wn. Define V ∈ Z2d×2d
p as

V :=

a1
. . .

ad

b1,1 · · · b1,d 1
...

...
. . .

bd/2,1 · · · bd/2,d 1
bd/2+1,1 · · · bd/2+1,d 1

...
...

. . .
bd,1 · · · bd,d 1

.

Sample D̄← GL2d(Zp) and let D̄∗ := (D̄−1)>. Define

D := D̄V and D∗ := D̄∗V∗.

Sample W1, . . . ,Wn← Z2d×2d
p . Observe that D,D∗ and all Wi for i ∈ [n] are distributed properly.

Simulating PP. AlgorithmB can simulate

gA
1 = gπL(D̄V)

1 = gD̄πL(V)
1 and g

W>i A
1 = g

W>i πL(D̄V)
1 = g

W>i D̄πL(V)
1

for i ∈ [n] using the knowledge of gπL(V)
1 and D̄,W1, . . . ,Wn.

Simulating h j for j ∈ [q′]. It is not hard to compute V∗ ∈ Z2d×2d
p as

V∗ :=

a−1
1 −a−1

1 b1,1 · · · −a−1
1 bd/2,1 −a−1

1 bd/2+1,1 · · · −a−1
1 bd,1

. . .
...

...
...

...
a−1

d −a−1
d b1,d · · · −a−1

d bd/2,d −a−1
d bd/2+1,d · · · −a−1

d bd,d

1
...

1
1

.. .
1

.

For all j ∈ [q′], we sample r̄ j ← Zd
p and implicitly set

πL(V
∗)r j =

�

r̄ j
0d

�

.

Since the upper d × d sub-matrix of πL(V∗) is full-rank with overwhelming probability, all r j are dis-
tributed properly andB can simulate

g
Br j

2 = g
πL(D̄∗V∗)r j

2 = g
D̄∗πL(V∗)r j

2 and g
WiBr j

2 = g
WiπL(D̄∗V∗)r j

2 = g
Wi D̄

∗πL(V∗)r j

2

using the knowledge of D̄∗, W1, . . . ,Wn and r̄ j .

Simulating the challenge. AlgorithmB computes the challenge

g
As j+bAbs j+eAes j

1 = g

D̄V

s j

bs j

es j

1 and g
W>i (As j+bAbs j+eAes j)
1 = g

W>i D̄V

s j

bs j

es j

1

32

for i ∈ [n] using the knowledge of D̄,W1, . . . ,Wn as well as

g

V

s j

bs j

es j

1 = g

a1s1, j

...
ad sd, j

b1,1s1, j+···+b1,d sd, j+sd+1, j

...
bd,1s1, j+···+bd,d sd, j+s2d, j

1 .

Analysis. Observe that if sd+i, j = 0, then bs j = es j = 0d/2 and the output challenge is distributed as
¦

g j

©

j∈[q];

otherwise, if sd+i, j ← Z∗p, then bs j ,es j ← (Z∗p)
d/2 and the output challenge is distributed as

¦

g j · bg j · eg j

©

j∈[q].

Therefore we may conclude that AdvLS1
A (k, q, q′)¶ Adv(d,d,q)-LLin

B (k). �

Corollary 5 (d-Lin⇒ LS1) For any p.p.t. adversaryA , there exists an adversaryB such that

AdvLS1
A (k, q, q′)¶ d ·Advd-Lin

B (k) + 1/(p− 1),

and Time(B)≈ Time(A) + (q+ q′)d2 · poly(k, n) where poly(k, n) is independent of Time(A).

8.4 Left subgroup indistinguishability 2

We may rewrite the LS2 advantage function AdvLS2
A (k, q, q′) as follows:

AdvLS2
A (k, q, q′) :=

�

�Pr[A (D, T0) = 1]− Pr[A (D, T1) = 1]
�

� ,

where
D :=

�

PP,
n

bh∗j ·eh
∗
j

o

j∈[q+q′]
,
n

g′j · bg
′
j · eg

′
j

o

j∈[q]
,
¦

h j

©

j∈[q′]

�

,

T0 :=
�

g j · bg j · eg j

�

j∈[q]
, T1 :=

¦

g j · eg j

©

j∈[q]

and

PP :=
�

gA
1 , g

W>1 A
1 , . . . , g

W>n A
1

�

;

bh∗j ·eh
∗
j := g

bBbr j+eBer j

2 ;

g′j · bg
′
j · eg

′
j :=

�

g
As′j+bAbs

′
j+eAes

′
j

1 , g
W>1
�

As′j+bAbs
′
j+eAes

′
j

�

1 , . . . , g
W>n
�

As′j+bAbs
′
j+eAes

′
j

�

1

�

;

h j :=
�

g
Br j

2 , g
W1Br j

2 , . . . , g
WnBr j

2

�

;

g j · bg j · eg j :=
�

g
As j+bAbs j+eAes j

1 , g
W>1 (As j+bAbs j+eAes j)
1 , . . . , g

W>n (As j+bAbs j+eAes j)
1

�

;

g j · eg j :=
�

g
As j+eAes j

1 , g
W>1 (As j+eAes j)
1 , . . . , g

W>n (As j+eAes j)
1

�

;

for br j ,er j ,bs j ,es j ,bs
′
j ,es
′
j ← Z

d/2
p and r j , s j , s

′
j ← Z

d
p .

Lemma 13 ((d, d/2, q)-LLinAI⇒ LS2) For any p.p.t. adversaryA , there exists an adversaryB such that

AdvLS2
A (k, q, q′)¶ Adv(d,d/2,q)-LLinAI

B (k),

and Time(B)≈ Time(A) + (q+ q′)d2 · poly(k, n) where poly(k, n) is independent of Time(A).

Proof. Given an instance of (d, d/2, q)-LLinAI problem (i.e., set `= d/2)
�

g1, g2, ga1
1 , . . . , gad

1 ,
n

g
bi, j

1

o

i∈[d/2], j∈[d]
,
¦

g
a1s1, j

1 , . . . , g
ad sd, j

1

©

j∈[q] ,
n

g
bi,1s1, j+···+bi,d sd, j+sd+i, j

1

o

i∈[d/2], j∈[q]

�

along with auxiliary input

AUX =
�

§

g
aa−1

1 bi,1

2 , . . . , g
aa−1

d/2 bi,d/2

2

ª

i∈[d/2]
, ga

2

�

, where a = a1 · · · ad/2

as input where all sd+i, j are either 0 or uniformly chosen from Z∗p, adversaryB works as follows:

33

Programming s j , bs j and es j for j ∈ [q]. Sample s̄ j ← Zd/2
p . AdversaryB implicitly sets

s j =
�

s̄>j , s1, j , . . . , s(d/2), j
�>

, bs j =
�

s(d+1), j , . . . , s(3d/2), j

�>
, es j =

�

s(d/2+1), j , . . . , sd, j

�>
.

Programming D,D∗,W1, · · · ,Wn. Define V ∈ Z2d×2d
p as

V :=

1
...

1
a1

. . .
ad/2

b1,1 · · · b1,d/2 1 b1,d/2+1 · · · b1,d
...

...
. . .

...
...

bd/2,1 · · · bd/2,d/2 1 bd/2,d/2+1 · · · bd/2,d

ad/2+1
. . .

ad

.

Sample D̄← GL2d(Zp) and let D̄∗ := (D̄−1)>. Define

D := D̄V and D∗ := D̄∗V∗.

Sample W1, . . . ,Wn← Z2d×2d
p . Observe that D,D∗ and all Wi for i ∈ [n] are distributed properly.

Simulating PP. AlgorithmB can simulate

gA
1 = gπL(D̄V)

1 = gD̄πL(V)
1 and g

W>i A
1 = g

W>i πL(D̄V)
1 = g

W>i D̄πL(V)
1 ,

for i ∈ [n] using the knowledge of gπL(V)
1 and D̄,W1, . . . ,Wn.

Simulating bh∗j ·eh
∗
j for j ∈ [q+ q′]. It is not hard to compute V∗ ∈ Z2d×2d

p as

V∗ :=

1
...

1
a−1

1 −a−1
1 b1,1 · · · −a−1

1 bd/2,1
. . .

...
...

a−1
d/2 −a−1

d/2 b1,d/2 · · · −a−1
d/2 bd/2,d/2

1
...

1
−a−1

d/2+1 b1,d/2+1 · · · −a−1
d/2+1 bd/2,d/2+1 a−1

d/2+1
...

...
. . .

−a−1
d b1,d · · · −a−1

d bd/2,d a−1
d

.

Observe that distribution
n

πM(V∗)br j +πR(V∗)er j :br j ,er j ← Zd/2
p

o

is identical to
n

V̄∗r̄ j : r̄ j ← Zd
p

o

where

34

V̄∗ ∈ Z2d×d
p is defined as

V̄∗ =

−aa−1
1 b1,1 · · · −aa−1

1 bd/2,1
...

...
−aa−1

d/2 b1,d/2 · · · −aa−1
d/2 bd/2,d/2

a
. . .

a
1

...
1

.

AlgorithmB can simulate

bh∗j ·eh
∗
j = g

bBbr j+eBer j

2 = g
D̄∗(πM(V∗)br j+πR(V∗)er j)
2 = g

D̄∗V̄∗ r̄ j

2

by sampling r̄ j ← Zd
p and using the knowledge of D̄∗ and g V̄∗

2 , i.e., AUX.

Simulating h j for j ∈ [q′]. For all j ∈ [q′], we sample r̄ j ← Zd
p and implicitly set

πL(V
∗)r j =

�

r̄ j
0d

�

.

Since the upper d × d sub-matrix of πL(V∗) is full-rank with overwhelming probability, all r j are dis-
tributed properly andB can simulate

g
Br j

2 = g
πL(D̄∗V∗)r j

2 = g
D̄∗πL(V∗)r j

2 and g
WiBr j

2 = g
WiπL(D̄∗V∗)r j

2 = g
Wi D̄

∗πL(V∗)r j

2

using the knowledge of D̄∗, W1, . . . ,Wn and r̄ j .

Simulating g′j · bg
′
j · eg

′
j for j ∈ [q]. AlgorithmB can simulate

g
As′j+bAbs

′
j+eAes

′
j

1 = g

D̄V

s′j
bs′j
es′j

1 and g
W>i (As′j+bAbs

′
j+eAes

′
j)

1 = g

W>i D̄V

s′j
bs′j
es′j

1 ,

for i ∈ [n] by sampling s′j ← Z
d
p , bs′j ,es

′
j ← Z

d/2
p for all j ∈ [q] and using the knowledge of gV

1 and
D̄,W1, . . . ,Wn.

Simulating the challenge. AlgorithmB computes

g
As j+bAbs j+eAes j

1 = g

D̄V

s j

bs j

es j

1 and g
W>i (As j+bAbs j+eAes j)
1 = g

W>i D̄V

s j

bs j

es j

1

for i ∈ [n] using the knowledge of D̄,W1, . . . ,Wn and

g

V

s j

bs j

es j

1 = g

s̄ j
a1s1, j

...
ad/2sd/2, j

b1,1s1, j+···+b1,d sd, j+sd+1, j

...
bd/2,1s1, j+···+bd/2,d sd, j+s3d/2, j

ad/2+1s(d/2+1), j

...
ad sd, j

1 .

35

Analysis. Observe that if sd+i, j = 0, then bs j = 0d/2 and the output challenge is distributed as
¦

g j · eg j

©

j∈[q];

in the other case, if sd+i, j ← Z∗p, then bs j ← (Z∗p)
d/2 and the output challenge is distributed as

¦

g j · bg j · eg j

©

j∈[q].

Therefore we may conclude that AdvLS2
A (k, q, q′)¶ Adv(d,d/2,q)-LLinAI

B (k). �

Corollary 6 (d-LLinAI⇒ LS2) For any p.p.t. adversaryA , there exists an adversaryB such that

AdvLS2
A (k, q, q′)¶ d/2 ·Advd-LinAI

B (k) + 1/(p− 1),

and Time(B)≈ Time(A) + (q+ q′)d2 · poly(k, n) where poly(k, n) is independent of Time(A).

8.5 Left subgroup indistinguishability 3

We may rewrite the LS3 advantage function AdvLS3
A (k, q, q′) as follows:

AdvLS3
A (k, q, q′) :=

�

�Pr[A (D, T0) = 1]− Pr[A (D, T1) = 1]
�

� ,

where
D :=

�

PP,
n

bh∗j ·eh
∗
j

o

j∈[q+q′]
,
n

g′j · eg
′
j

o

j∈[q]
,
¦

h j

©

j∈[q′]

�

,

T0 :=
�

g j · bg j · eg j

�

j∈[q]
, T1 :=

¦

g j · bg j

©

j∈[q]

and

PP :=
�

gA
1 , g

W>1 A
1 , . . . , g

W>n A
1

�

;

bh∗j ·eh
∗
j := g

bBbr j+eBer j

2 ;

g′j · eg
′
j :=

�

g
As′j+eAes

′
j

1 , g
W>1
�

As′j+eAes
′
j

�

1 , . . . , g
W>n
�

As′j+eAes
′
j

�

1

�

;

h j :=
�

g
Br j

2 , g
W1Br j

2 , . . . , g
WnBr j

2

�

;

g j · bg j · eg j :=
�

g
As j+bAbs j+eAes j

1 , g
W>1 (As j+bAbs j+eAes j)
1 , . . . , g

W>n (As j+bAbs j+eAes j)
1

�

;

g j · bg j :=
�

g
As j+bAbs j

1 , g
W>1 (As j+bAbs j)
1 , . . . , g

W>n (As j+bAbs j)
1

�

;

for br j ,er j ,bs j ,es j ,es
′
j ← Z

d/2
p and r j , s j , s

′
j ← Z

d
p .

Lemma 14 ((d, d/2, q)-LLinAI⇒ LS3) For any p.p.t. adversaryA , there exists an adversaryB such that

AdvLS3
A (k, q, q′)¶ Adv(d,d/2,q)-LLinAI

B (k),

and Time(B)≈ Time(A) + (q+ q′)d2 · poly(k, n) where poly(k, n) is independent of Time(A).

Proof. The proof is similar to that for Lemma 13. Given an instance of (d, d/2, q)-LLinAI problem
�

g1, g2, ga1
1 , . . . , gad

1 ,
n

g
bi, j

1

o

i∈[d/2], j∈[d]
,
¦

g
a1s1, j

1 , . . . , g
ad sd, j

1

©

j∈[q] ,
n

g
bi,1s1, j+···+bi,d sd, j+sd+i, j

1

o

i∈[d/2], j∈[q]

�

along with auxiliary input

AUX =
�

§

g
aa−1

1 bi,1

2 , . . . , g
aa−1

d/2 bi,d/2

2

ª

i∈[d/2]
, ga

2

�

, where a = a1 · · · ad/2

as input where all sd+i, j are either 0 or uniformly chosen from Z∗p, adversary B behaves as in the proof of
Lemma 13 with the differences that:

Programming s j , bs j and es j for j ∈ [q]. Sample s̄ j ← Zd/2
p . AdversaryB implicitly sets

s j =
�

s̄>j , s1, j , . . . , sd/2, j

�>
, bs j =

�

sd/2+1, j , . . . , sd, j

�>
, es j =

�

sd+1, j , . . . , s3d/2, j

�>
.

36

Programming V. Define matrix V ∈ Z2d×2d
p as

V :=

1
...

1
a1

. . .
ad/2

ad/2+1
. . .

ad

b1,1 · · · b1,d/2 b1,d/2+1 · · · b1,d 1
...

...
...

...
. . .

bd/2,1 · · · bd/2,d/2 bd/2,d/2+1 · · · bd/2,d 1

.

Algorithm B may program D,D∗ and W1, . . . ,Wn, then simulate PP,
n

bh∗j ·eh
∗
j

o

,
n

g′j · eg
′
j

o

,
¦

h j

©

as well as the
challenge by the strategies used in the proof of Lemma 13. �

Corollary 7 (d-LinAI⇒ LS3) For any p.p.t. adversaryA , there exists an adversaryB such that

AdvLS3
A (k, q, q′)¶ d/2 ·Advd-LinAI

B (k) + 1/(p− 1),

and Time(B)≈ Time(A) + (q+ q′)d2 · poly(k, n) where poly(k, n) is independent of Time(A).

8.6 Nested-hiding indistinguishability

We may rewrite the NH advantage function AdvNH(η)
A (k, q, q′) for all η ∈ [bn/2c] as follows:

AdvNH(η)
A (k, q, q′) :=

�

�Pr[A (D, T0) = 1]− Pr[A (D, T1) = 1]
�

� ,

where
D :=

�

PP,
n

bh∗j
o

j∈[q+q′]
,
n

eh∗j
o

j∈[q+q′]
,
¦

(bg j)−(2η−1)

©

j∈[q] ,
¦

(eg j)−2η

©

j∈[q] , {h
′
j} j∈[q′]

�

,

T0 :=
¦

h j

©

j∈[q′] , T1 :=
n

h j · (bh∗∗j)
e2η−1 · (eh∗∗j)

e2η

o

j∈[q′]

and

PP :=
�

gA
1 , g

W>1 A
1 , . . . , g

W>n A
1

�

;

bh∗j := g
bBbr′j
2 , eh∗j := g

eBer′j
2 ;

bg j :=
�

g
bAbs j

1 , g
W>1 bAbs j

1 , . . . , g
W>n bAbs j

1

�

;

eg j :=
�

g
eAes j

1 , g
W>1 eAes j

1 , . . . , g
W>n eAes j

1

�

;

h′j :=
�

g
Br′j
2 , g

W1Br′j
2 , . . . , g

WnBr′j
2

�

;

h j · (bh∗∗j)
e2η−1 · (eh∗∗j)

e2η :=
�

g
Br j

2 , g
W1Br j

2 , . . . , g
W2η−1Br j+bBbr j

2 , g
W2ηBr j+eBer j

2 , . . . , g
WnBr j

2

�

;

for br′j ,er
′
j ,bs j ,es j ,br j ,er j ← Zd/2

p and r j , r
′
j ← Z

d
p .

Lemma 15 ((d, d, d)-LLin⇒ NH) For any η ∈ [bn/2c] and for any p.p.t. adversaryA , there exists an adversary
B such that

AdvNH(η)
A (k, q, q′)¶ Adv(d,d,d)-LLin

B (k),

and Time(B)≈ Time(A) + (q+ q′)d2 · poly(k, n) where poly(k, n) is independent of Time(A).

37

Proof. Given an instance of (d, d, d)-LLin problem (on G2)
�

g1, g2, ga1
2 , . . . , gad

2 ,
n

g
bi, j

2

o

i, j∈[d]
,
¦

g
a1 r1, j

2 , . . . , g
ad rd, j

2

©

j∈[d] ,
n

g
bi,1 r1, j+···+bi,d rd, j+rd+i, j

2

o

i, j∈[d]

�

,

where all rd+i, j are either 0 or uniformly chosen from Z∗p, adversaryB works as follows:

Generating q′ tuples. Algorithm B runs the algorithm described in Lemma 6 on the input q′, group G2, and
the (d, d, d)-LLin instance, and obtains

�

gVZ
2 , gZ

2

�

and
n�

g
t j

2 , g
Vt j+τ j

2

�o

j∈[q′]
.

Recall that V,Z ∈ Zd×d
p and t j ,τ j ∈ Zd

p . Then sample q′ additional tuples

§�

g
t′j
2 , g

Vt′j
2

�ª

j∈[q′]

where t′j is randomly distributed over Zd
p using

�

gVZ
2 , gZ

2

�

.

Programming D,D∗ and W1, . . . ,Wn. Algorithm B samples (D,D∗)← GL2d(Zp) such that D>D∗ = I. Sample
W1, . . . ,W2(η−1),W̄2η−1,W̄2η,W2(η+1)−1 . . . ,Wn← Z2d×2d

p and implicitly set

W2η−1 = W̄2η−1 +
�

bB
�

�02d×(d/2)
��

V
�

�0d×d

�

and W2η = W̄2η +
�

02d×(d/2)
�

�
eB
��

V
�

�0d×d

�

We note that the resulting W2η−1 and W2η are uniformly distributed over Z2d×2d
p .

Programming PP. AlgorithmB can simulate

gA
1 = gπL(D)

1 and g
W>i A
1 = g

W>i πL(D)
1

for i ∈ [n] \ {2η− 1, 2η} using the knowledge of D and W1, . . . ,W2η−2,W2η+1, . . . ,Wn. Observe that

W>2η−1A = W̄>2η−1A+
�

V>

0d×d

�

�

bB>

0(d/2)×2d

�

A= W̄>2η−1A,

W>2ηA = W̄>2ηA+
�

V>

0d×d

�

�

0(d/2)×2d
eB>

�

A= W̄>2ηA,

following the fact that bB>A= eB>A= 0(d/2)×d . HenceB can also simulate

g
W>2η−1A

1 = g
W̄>2η−1πL(D)
1 and g

W>2ηA

1 = g
W̄>2ηπL(D)
1

just using the knowledge of W̄2η−1, W̄2η and D.

Simulating bh∗j and eh∗j for j ∈ [q+ q′]. AlgorithmB can simulate

bh∗j = g
bBbr′j
2 = g

πM(D∗)br′j
2 and eh∗j = g

eBer′j
2 = g

πR(D∗)er′j
2 ,

by sampling br′j ,er
′
j ← Z

d/2
p and using the knowledge of D∗.

Simulating (bg j)−(2η−1) for j ∈ [q]. AlgorithmB can simulate

g
bAbs j

1 = g
πM(D)bs j

1 and g
W>i bAbs j

1 = g
W>i πM(D)bs j

1

for i ∈ [n] \ {2η − 1, 2η} by sampling bs j ← Zd/2
p and using the knowledge of D and W1, . . . ,W2η−2,

W2η+1, . . . ,Wn. Observe that

W>2ηbA= W̄>2ηbA+
�

V>

0d×d

�

�

0(d/2)×2d
eB>

�

bA= W̄>2ηbA,

38

from the fact that eB>bA= 0(d/2)×(d/2). Therefore the algorithmB can simulate

g
W>2ηbAbs j

1 = g
W̄>2ηbAbs j

1 = g
W̄>2ηπM(D)bs j

1

using the knowledge of W̄2η and D as well as bs j we have picked. We note that algorithm B can not

compute g
W>2η−1

bAbs j

1 since

W>2η−1
bA= W̄>2η−1

bA+
�

V>

0d×d

�

�

bB>

0(d/2)×2d

�

bA= W̄>2η−1
bA+

�

V>

0d×d

��

I(d/2)×(d/2)
0(d/2)×(d/2)

�

which contains the upper d/2 rows of secret matrix V.

Simulating (eg j)−2η for j ∈ [q]. The simulation strategy is similar to the above. In particular, algorithm B
can simulate

g
eAes j

1 = g
πR(D)es j

1 and g
W>i eAes j

1 = g
W>i πR(D)es j

1

for i ∈ [n] \ {2η − 1, 2η} by sampling es j ← Zd/2
p and using the knowledge of D and W1, . . . ,W2η−2,

W2η+1, . . . ,Wn. Observe that

W>2η−1
eA= W̄>2η−1

eA+
�

V>

0d×d

�

�

bB>

0(d/2)×2d

�

eA= W̄>2η−1
eA,

from the fact that bB>eA= 0(d/2)×(d/2). Therefore the algorithmB can simulate

g
W>2η−1

eAes j

1 = g
W̄>2η−1

eAes j

1 = g
W̄>2η−1πR(D)es j

1

using the knowledge of W̄2η−1 and D as well as es j we have picked. We note that algorithm B can not

compute g
W>2ηeAes j

1 since

W>2ηeA= W̄>2ηeA+
�

V>

0d×d

�

�

0(d/2)×2d
eB>

�

eA= W̄>2ηeA+
�

V>

0d×d

��

0(d/2)×(d/2)
I(d/2)×(d/2)

�

which contains the lower d/2 rows of secret matrix V.

Simulating h′j for all j ∈ [q′]. Let T := BB
−1

where B and B are the upper and lower d × d sub-matrix of
B. Because B = πL(D∗) is sampled by the simulator, it can efficiently compute the matrix T. Since the
sub-matrix B is full-rank with overwhelming probability, we may implicitly sample

Br′j =

�

t′j
Tt′j

�

.

In such a case, algorithmB can simulate

g
Br′j
2 = g

�

t′j
Tt′j

�

2 and g
WiBr′j
2 = g

Wi

�

t′j
Tt′j

�

2

for i ∈ [n] \ {2η− 1, 2η} using g
t′j
2 and the knowledge of T,W1, . . . ,W2η−2,W2η+1, . . . ,Wn. Observe that

W2η−1Br′j = W̄2η−1

�

t′j
Tt′j

�

+
�

bB
�

�02d×(d/2)
��

V
�

�0d×d

�

�

t′j
Tt′j

�

= W̄2η−1

�

t′j
Tt′j

�

+
�

bB
�

�02d×(d/2)
�

Vt′j;

W2ηBr′j = W̄2η

�

t′j
Tt′j

�

+
�

02d×(d/2)
�

�
eB
��

V
�

�0d×d

�

�

t′j
Tt′j

�

= W̄2η

�

t′j
Tt′j

�

+
�

02d×(d/2)
�

�
eB
�

Vt′j .

Therefore algorithmB can simulate

g
W2η−1Br′j
2 = g

W̄2η−1

�

t′j
Tt′j

�

+(bB|02d×(d/2))Vt′j

2 and g
W2ηBr′j
2 = g

W̄2η

�

t′j
Tt′j

�

+(02d×(d/2)|eB)Vt′j

2

using
�

g
t′j
2 , g

Vt′j
2

�

and the knowledge of W̄2η−1,W̄2η and D∗ which is used to derive bB, eB and T.

39

Simulating the challenge. The challenge is produced following the method for simulating h′j but using tuples
n�

g
t j

2 , g
Vt j+τ j

2

�o

j∈[q′]
instead of

§�

g
t′j
2 , g

Vt′j
2

�ª

j∈[q′]
. In particular, we implicitly set

Br j =
�

t j
Tt j

�

.

Following the above observation, algorithmB can simulate

g
Br j

2 = g

�

t j
Tt j

�

2 and g
WiBr j

2 = g
Wi

�

t j
Tt j

�

2

for i ∈ [n] \ {2η− 1, 2η} using g
t j

2 and the knowledge of T,W1, . . . ,W2η−2,W2η+1, . . . ,Wn, and simulate

g
W2η−1Br j+bBbr j

2 = g
W̄2η−1

�

t j
Tt j

�

+(bB|02d×(d/2))(Vt j+τ j)
2 and g

W2ηBr j+eBer j

2 = g
W̄2η

�

t j
Tt j

�

+(02d×(d/2)|eB)(Vt j+τ j)
2

using
�

g
t j

2 , g
Vt j+τ j

2

�

and the knowledge of W̄2η−1,W̄2η and D∗ which is used to derive bB, eB and T.

Analysis. Observe that, we implicitly set
�

br j
er j

�

= τ j

when simulating the challenge. Therefore, if rd+i, j = 0, then τ j = 0d and the output challenge has the same
distribution as

¦

h j

©

j∈[q′]; on the other hand, if rd+i, j ← Z∗p, then τ j ← (Z∗p)
d and the output challenge is

distributed as
n

h j · (bh∗∗j)
e2η−1 · (eh∗∗j)

e2η

o

j∈[q′]
. We may conclude that AdvNH(η)

A (k, q, q′)¶ Adv(d,d,d)-LLin
B (k). �

Corollary 8 (d-Lin⇒ NH) For any p.p.t. adversaryA , there exists an adversaryB such that

AdvNH
A (k, q, q′)¶ d ·Advd-Lin

B (k) + 1/(p− 1),

and Time(B)≈ Time(A) + (q+ q′)d2 · poly(k, n) where poly(k, n) is independent of Time(A).

8.7 Computational Non-degeneracy

We may rewrite the ND advantage function as:

AdvND
A (k, q, q′, q′′) := |Pr[A (D, T0) = 1]− Pr[A (D, T1) = 1]|,

where
D :=

�

PP,
n

bh∗j ·eh
∗
j , h j

o

j∈[q′]
,
¦

bg j, j′ · eg j, j′
©

j∈[q], j′∈[q′′]

�

,

T0 :=
n

e(bg0, j, j′ · eg0, j, j′ ,bh
∗∗
j ·eh

∗∗
j)
o

j∈[q], j′∈[q′′]
,

T1 :=
n

e(bg0, j, j′ · eg0, j, j′ ,bh
∗∗
j ·eh

∗∗
j) · bR j, j′

o

j∈[q], j′∈[q′′]
.

and

PP :=
�

gA
1 , g

W>1 A
1 , . . . , g

W>n A
1

�

;

bh∗j ·eh
∗
j := g

bBbr′j+eBer
′
j

2 ;

h j :=
�

g
Br j

2 , g
W1Br j

2 , . . . , g
WnBr j

2

�

;

bg j, j′ · eg j, j′ :=
�

g
bAbs j, j′+eAes j, j′

1 , g
W>1 (bAbs j, j′+eAes j, j′)
1 , . . . , g

W>n (bAbs j, j′+eAes j, j′)
1

�

;

e(bg0, j, j′ · eg0, j, j′ ,bh
∗∗
j ·eh

∗∗
j) := e(g

bAbs j, j′+eAes j, j′

1 , g
bBbr j+eBer j

2) = e(g1, g2)
(bs>

j, j′
,es>

j, j′
)
�

br j

er j

�

;

bR j, j′ := e(g1, g2)
bγ j, j′ ;

for br′j ,br
′
j ,bs j, j′ ,br j ,es j, j′ ,er j ← Zd/2

p , r j ← Zd
p and bγ j, j′ ← Zp.

40

Lemma 16 ((d, 1, qq′′)-LLin⇒ ND) For any p.p.t adversaryA , there exists an adversaryB such that

AdvND
A (k, q, q′, q′′)¶ Adv(d,1,qq′′)-LLin

B (k),

and Time(B)≈ Time(A) + (qq′′ + q′)d2 · poly(k, n) where poly(k, n) is independent of Time(A).

Proof. The proof follows the main idea of that of Lemma 10. Given an instance of (d, 1, qq′′)-LLin problem
�

g1, g2, ga1
1 , . . . , gad

1 ,
n

g bi
1

o

i∈[d]
,
¦

g
a1s1, j, j′

1 , . . . , g
ad sd, j, j′

1

©

j∈[q], j′∈[q′′] ,
n

g
b1s1, j, j′+···+bd sd, j, j′+sd+1, j, j′

1

o

j∈[q], j′∈[q′′]

�

as input where all sd+1, j, j′ are either 0 or uniformly chosen from Z∗p, adversaryB works as follows:

Programming bs j, j′ and es j, j′ for j ∈ [q], j′ ∈ [q′′]. AdversaryB implicitly sets

bs j, j′ =
�

s1, j, j′ , . . . , sd/2, j, j′
�>

and es j, j′ =
�

sd/2+1, j, j′ , . . . , sd, j, j′
�>

.

Programming D,D∗,W1, · · · ,Wn. We define U ∈ Z2d×2d
p as

U :=

1
...

1
a1

. . .
ad/2

ad/2+1
. . .

ad

.

Sample D̄← GL2d(Zp) and let D̄∗ := (D̄−1)>. Define

D := D̄U and D∗ := D̄∗U∗.

Sample W1, . . . ,Wn← Z2d×2d
p . Observe that D,D∗ and all Wi for i ∈ [n] are distributed properly.

Simulating PP. AlgorithmB can simulate

gA
1 = gπL(D̄U)

1 = gD̄πL(U)
1 and g

W>i A
1 = g

W>i πL(D̄U)
1 = g

W>i D̄πL(U)
1

for i ∈ [n] using the knowledge of πL(U) and D̄,W1, . . . ,Wn.

Simulating bh∗j ·eh
∗
j for j ∈ [q′]. It is not hard to compute U∗ ∈ Z2d×2d

p as

U∗ :=

1
...

1
a−1

1
. . .

a−1
d/2

a−1
d/2+1

. . .
a−1

d

.

For all j ∈ [q′], we sample r̄ j ← Zd
p and implicitly set

0d
br′j
er′j

= (U∗)−1

�

0d
r̄ j

�

.

41

Since the right-most d × d sub-matrix of U∗ is full-rank with overwhelming probability, both br′j and er′j
are distributed properly andB can simulate

bh∗j ·eh
∗
j = g

bBbr′j+eBer
′
j

2 = g

D̄∗U∗

0d
br′j
er′j

2 = g
D̄∗
�0d

r̄ j

�

2

using the knowledge of D̄∗ and r̄ j .

Simulating h j for all j ∈ [q′]. AlgorithmB may compute HP :=
�

gB
2 , gW1B

2 , . . . , gWnB
2

�

where

gB
2 = gπL(D̄∗U∗)

2 = gD̄∗πL(U∗)
2 and gWiB

2 = gWiπL(D̄∗U∗)
2 = gWi D̄

∗πL(U∗)
2

for i ∈ [n] using the knowledge of D̄∗, πL(U∗) and W1, . . . ,Wn. This allows it to simulate h j by running
SampH(PP, HP).

Simulating bg j, j′ · eg j, j′ for j ∈ [q], j′ ∈ [q′]. AlgorithmB can simulate

g
bAbs j, j′+eAes j, j′

1 = g

D̄U

0d
bs j, j′

es j, j′

1 and g
W>i
�

bAbs j, j′+eAes j, j′
�

1 = g

W>i D̄U

0d
bs j, j′

es j, j′

1

using the knowledge of D̄,W1, . . . ,Wn and

g

U

0d
bs j, j′

es j, j′

1 = g

0d
a1s1, j, j′

...
ad sd, j, j′

1 .

Simulating the challenge. Define an additional matrix V of rank d as

V :=

a1
. . .

ad
b1 · · · bd

∈ Z(d+1)×d
p .

For all j ∈ [q], algorithmB samples r̄ j ← Zd+1
p and implicitly set

�

br>j ,er>j
�

:= r̄>j V. ThenB computes

g

�

br>j ,er>j
�

�

bs j, j′

es j, j′

�

+bγ j, j′

1 = g

r̄>j

a1s1, j, j′

...
ad sd, j, j′

b1s1, j, j′+···+bd sd, j, j′+sd+1, j, j′

1

using the knowledge of
n

g
a1s1, j, j′

1 , . . . , g
ad sd, j, j′

1 , g
b1s1, j, j′+···+bd sd, j, j′+sd+1, j, j′

1

o

and outputs e(g

�

br>j ,er>j
�

�

bs j, j′

es j, j′

�

+bγ j, j′

1 , g2).

Analysis. Observe that, if sd+1, j, j′ = 0, then the output challenge is distributed as

e(g
r̄>j V

�

bs j, j′

es j, j′

�

1 , g2) = e(g1, g2)
(bs>

j, j′
,es>

j, j′
)
�

br j

er j

�

,

which is identical to T0 where bγ j, j′ := 0; if sd+1, j, j′ ← Z∗p, then the output challenge is distributed as

e(g
r̄>j

�

V

�

bs j, j′

es j, j′

�

+ed+1sd+1, j, j′

�

1 , g2) = e(g1, g2)
(bs>

j, j′
,es>

j, j′
)
�

br j

er j

�

· e(g1, g2)
sd+1, j, j′e

>
d+1 r̄ j ,

which is identical to T1 where bγ j, j′ := sd+1, j, j′e
>
d+1r̄ j (in the box) is uniformly distributed over Zp. Therefore

we may conclude that AdvND
A (k, q, q′, q′′)¶ Adv(d,1,qq′′)-LLin

B (k). �

Corollary 9 (d-Lin⇒ ND) For any p.p.t adversaryA , there exists an adversaryB such that

AdvND
A (k, q, q′, q′′)¶ Advd-Lin

B (k) + 1/(p− 1),

and Time(B)≈ Time(A) + (qq′′ + q′)d2 · poly(k, n) where poly(k, n) is independent of Time(A).

42

9 Concrete IBE from d-Linear Assumption with Auxiliary Input

This section present an concrete IBE scheme derived from our prime-order instantiation in Section 8 and
the generic construction in Appendix C which is an adaptation of Hofheinz et al.’s (c.f. Section B). Let GrpGen
be the bilinear group generator described in Section 4.1 and πL(·) be the function mapping from a 2d × 2d
matrix to its left-most d columns.

– Param(1k, n): Run (p, G1, G2, GT , e)← GrpGen(1k). Sample D← GL2d(Zp) and W1, . . . ,W2n ← Z2d×2d
p ,

and set D∗ := (D−1)>. Output

GP :=

p, G2d
1 , G2d

2 , GT , e; gπL(D)
1 , g

W>1 πL(D)
1 , . . . , g

W>2nπL(D)
1

gπL(D∗)
2 , gW1πL(D∗)

2 , . . . , gW2nπL(D∗)
2

!

.

– Setup(GP): Sample k← Z2d
p and output

MPK :=
�

p, G2d
1 , G2d

2 , GT , e; e(g1, g2)
πL(D)

>k, gπL(D)
1 , g

W>1 πL(D)
1 , . . . , g

W>2nπL(D)
1

�

;

MSK :=
�

gk
2 , gπL(D∗)

2 , gW1πL(D∗)
2 , . . . , gW2nπL(D∗)

2

�

.

– KeyGen(MPK, MSK,y): Let y= (y1, . . . , yn) ∈ {0, 1}n. Sample r← Zd
p and output

SKy :=
�

K0 := gπL(D∗)r
2 , K1 := g

k+(W2−y1
+···+W2n−yn)πL(D∗)r

2

�

.

– Enc(MPK,x, M): Let x= (x1, . . . , xn) ∈ {0, 1}n and M ∈GT . Sample s← Zd
p and output

CTx :=
�

C0 := gπL(D)s
1 , C1 := g

(W2−x1
+···+W2n−xn)

>πL(D)s
1 , C2 := e(g1, g2)

s>πL(D)
>k · M

�

.

– Dec(MPK, SK, CT). Let SK = (K0, K1) and CT = (C0, C1, C2). Output M := C2 · e(C1, K0)/e(C0, K1).

One may argue that the d-LinAI assumption is not standard and quite complex. We show that, when setting
d = 2, we obtain the following concrete assumption.

Assumption 5 (2-LinAI) For any p.p.t. adversaryA , the following advantage function is negligible in k,

Adv2-LinAI
A (k) :=

�

�Pr[A (D, AUX, T0) = 1]− Pr[A (D, AUX, T1) = 1]
�

� ,

where
D :=

�

G , g1, g2, ga1
1 , ga2

1 , ga3
1 , ga1s1

1 , ga2s2
1

�

, AUX :=
�

ga3
2 , ga1

2

�

,

T0 := ga3(s1+s2)
1 , T1 := ga3(s1+s2)+s3

1

and G := (p, G1, G2, GT , e)← GrpGen(1k) and s1, s2← Zp, a1, a2, a3, s3← Z∗p.

It is easy to verify that this special instantiation is implied by the External Decision Linear Assumption [ACD+12]
(c.f. Appendix A.2). Motivated by this observation, we remark that we may build the above IBE system using
symmetric bilinear pairings and base the security on the well-known and standard Decisional Linear Assump-
tion (c.f. Appendix A.3), where G1 = G2 and auxiliary input AUX in G2 is automatically revealed to the
adversary.

Acknowledgement. We want to thank Hoeteck Wee for helpful discussions and the anonymous reviewers of
AsiaCrypt 2015 for helpful comments on an earlier draft of this paper. This work is supported by the National
Natural Science Foundation of China (Grant Nos. 61472142, 61411146001, 61321064, 61371083, 61373154,
61172085, 61170080, U1135004), 973 Program (No. 2014CB360501), Science and Technology Commission
of Shanghai Municipality (Grant Nos. 14YF1404200, 13JC1403500), the Specialized Research Fund for the
Doctoral Program of Higher Education of China through the Prioritized Development Projects under Grant
20130073130004, Guangdong Provincial Natural Science Foundation (No. 2014A030308006), Guangdong
Province Universities and Colleges Pearl River Scholar Funded Scheme (2011).

43

References

[ABB10a] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the standard model. In
Advances in Cryptology - EUROCRYPT 2010, pages 553–572, 2010. 7

[ABB10b] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Lattice basis delegation in fixed dimension and
shorter-ciphertext hierarchical IBE. In Advances in Cryptology - CRYPTO 2010, pages 98–115, 2010.
7

[ACD+12] Masayuki Abe, Melissa Chase, Bernardo David, Markulf Kohlweiss, Ryo Nishimaki, and Miyako
Ohkubo. Constant-size structure-preserving signatures: Generic constructions and simple assump-
tions. In Advances in Cryptology–ASIACRYPT 2012, pages 4–24. Springer, 2012. 2, 6, 43, 46

[AHY15] Nuttapong Attrapadung, Goichiro Hanaoka, and Shota Yamada. A framework for identity-based
encryption with almost tight security. IACR Cryptology ePrint Archive, 2015. 7

[Att14] Nuttapong Attrapadung. Dual system encryption via doubly selective security: Framework, fully
secure functional encryption for regular languages, and more. In Advances in Cryptology - EURO-
CRYPT 2014, pages 557–577, 2014. 3, 7

[AY15] Nuttapong Attrapadung and Shota Yamada. Duality in abe: Converting attribute based encryption
for dual predicate and dual policy via computational encodings. In Topics in Cryptology—CT-RSA
2015, pages 87–105. Springer, 2015. 3

[BB04a] Dan Boneh and Xavier Boyen. Efficient selective-id secure identity-based encryption without ran-
dom oracles. In Advances in Cryptology - EUROCRYPT 2004, pages 223–238, 2004. 3, 7

[BB04b] Dan Boneh and Xavier Boyen. Secure identity based encryption without random oracles. In Ad-
vances in Cryptology - CRYPTO 2004, pages 443–459, 2004. 7

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Advances in Cryptology–
CRYPTO 2004, pages 41–55. Springer, 2004. 46

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil pairing. In Advances
in Cryptology - CRYPTO 2001, pages 213–229, 2001. 3, 7, 9

[BKP14] Olivier Blazy, Eike Kiltz, and Jiaxin Pan. (hierarchical) identity-based encryption from affine mes-
sage authentication. In Advances in Cryptology–CRYPTO 2014, pages 408–425. Springer, 2014. 3,
6, 7

[BWY11] Mihir Bellare, Brent Waters, and Scott Yilek. Identity-based encryption secure against selective
opening attack. In TCC 2011, pages 235–252, 2011. 3

[CGW15] Jie Chen, Romain Gay, and Hoeteck Wee. Improved dual system abe in prime-order groups via
predicate encodings. In Advances in Cryptology-EUROCRYPT 2015, pages 595–624. Springer, 2015.
3, 4, 6, 7, 30

[CLL+12] Jie Chen, Hoon Wei Lim, San Ling, Huaxiong Wang, and Hoeteck Wee. Shorter IBE and signatures
via asymmetric pairings. In Pairing-Based Cryptography - Pairing 2012, pages 122–140, 2012. 3

[Coc01] Clifford Cocks. An identity based encryption scheme based on quadratic residues. In Cryptography
and Coding, 8th IMA International Conference, Cirencester, UK, December 17-19, 2001, Proceedings,
pages 360–363, 2001. 7

[CW13] Jie Chen and Hoeteck Wee. Fully, (almost) tightly secure IBE and dual system groups. In Advances
in Cryptology - CRYPTO 2013 - Part II, pages 435–460, 2013. 3, 4, 5, 6, 7, 10, 11, 12, 13, 19

[CW14] Jie Chen and Hoeteck Wee. Dual system groups and its applications - compact HIBE and more.
IACR Cryptology ePrint Archive, 2014:265, 2014. 3, 4, 5, 7

[EHK+13] Alex Escala, Gottfried Herold, Eike Kiltz, Carla Rafols, and Jorge Villar. An algebraic framework
for diffie-hellman assumptions. In Advances in Cryptology–CRYPTO 2013, pages 129–147. Springer,
2013. 12, 29

[GCTC15] Junqing Gong, Zhenfu Cao, Shaohua Tang, and Jie Chen. Extended dual system group and shorter
unbounded hierarchical identity based encryption. Designs, Codes and Cryptography, 2015. DOI
10.1007/s10623-015-0117-z. 7

44

[Gen06] Craig Gentry. Practical identity-based encryption without random oracles. In Advances in Cryptology
- EUROCRYPT 2006, pages 445–464, 2006. 7

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new crypto-
graphic constructions. In Proceedings of the 40th Annual ACM Symposium on Theory of Computing,
pages 197–206, 2008. 7

[HKS15] Dennis Hofheinz, Jessica Koch, and Christoph Striecks. Identity-based encryption with (almost)
tight security in the multi-instance, multi-ciphertext setting. In Public-Key Cryptography - PKC 2015,
2015. 3, 4, 5, 6, 7, 8, 9, 11, 23, 48, 49, 51, 52

[JR13] Charanjit S. Jutla and Arnab Roy. Shorter quasi-adaptive NIZK proofs for linear subspaces. In
Advances in Cryptology - ASIACRYPT 2013 -Part I, pages 1–20, 2013. 3

[JR14] Charanjit S Jutla and Arnab Roy. Switching lemma for bilinear tests and constant-size nizk proofs
for linear subspaces. In Advances in Cryptology–CRYPTO 2014, pages 295–312. Springer, 2014. 2,
12, 46

[Lew12] Allison B. Lewko. Tools for simulating features of composite order bilinear groups in the prime
order setting. In Advances in Cryptology - EUROCRYPT 2012, pages 318–335, 2012. 3, 4, 7

[LOS+10] Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent Waters. Fully
secure functional encryption: Attribute-based encryption and (hierarchical) inner product encryp-
tion. In Advances in Cryptology - EUROCRYPT 2010, pages 62–91, 2010. 3, 6, 30

[LW11] Allison Lewko and Brent Waters. Unbounded hibe and attribute-based encryption. In Advances in
Cryptology–EUROCRYPT 2011, pages 547–567. Springer, 2011. 7

[LW12] Allison B. Lewko and Brent Waters. New proof methods for attribute-based encryption: Achieving
full security through selective techniques. In Advances in Cryptology - CRYPTO 2012, pages 180–
198, 2012. 3, 4

[NR04] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-random func-
tions. J. ACM, 51(2):231–262, 2004. 3

[OT08] Tatsuaki Okamoto and Katsuyuki Takashima. Homomorphic encryption and signatures from vector
decomposition. In Pairing-Based Cryptography–Pairing 2008, pages 57–74. Springer, 2008. 6, 30

[OT09] Tatsuaki Okamoto and Katsuyuki Takashima. Hierarchical predicate encryption for inner-products.
In Advances in Cryptology–ASIACRYPT 2009, pages 214–231. Springer, 2009. 6, 30

[OT12] Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure unbounded inner-product and attribute-
based encryption. In Advances in Cryptology - ASIACRYPT 2012, pages 349–366, 2012. 3, 4

[RCS12] Somindu C. Ramanna, Sanjit Chatterjee, and Palash Sarkar. Variants of waters’ dual system prim-
itives using asymmetric pairings - (extended abstract). In Public Key Cryptography - PKC 2012,
pages 298–315, 2012. 3

[Sha84] Adi Shamir. Identity-based cryptosystems and signature schemes. In Advances in Cryptology, Pro-
ceedings of CRYPTO ’84, pages 47–53, 1984. 7

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Advances in
Cryptology–EUROCRYPT 97, pages 256–266. Springer, 1997. 29, 46

[Wat05] Brent Waters. Efficient identity-based encryption without random oracles. In Advances in Cryptol-
ogy - EUROCRYPT 2005, pages 114–127, 2005. 3, 7

[Wat09] Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE under simple assump-
tions. In Advances in Cryptology - CRYPTO 2009, pages 619–636, 2009. 3, 7

[Wee14] Hoeteck Wee. Dual system encryption via predicate encodings. In Theory of Cryptography 2014,
pages 616–637, 2014. 3

45

A More about Bilinear Groups and Related Assumptions

A.1 d-Lifted Linear Assumption [JR14]

We assume a prime-order (asymmetric) bilinear group generator GrpGen(1k) taking security parameter 1k

as input and outputting G := (p, G1, G2, GT , e). We state the d-Lifted Linear Assumption in G1 as follows, the
analogous assumption in G2 can be defined by exchanging the role of G1 and G2.

Assumption 6 (d-Lifted Linear Assumption in G1) For any p.p.t. adversaryA , the following advantage func-
tion is negligible in k,

Advd-Lin
A (k) :=

�

�Pr[A (D, T0) = 1]− Pr[A (D, T1) = 1]
�

� ,

where
D :=

�

G , g1, g2, ga1
1 , . . . , gad

1 , g b1
1 , · · · , g bd

1 , ga1s1
1 , . . . , gad sd

1

�

,

T0 := g b1s1+···+bd sd
1 , T1 := g

b1s1+···+bd sd+ sd+1

1

and G := (p, G1, G2, GT , e)← GrpGen(1k), a1, . . . , ad , b1, · · · , bd ← Z∗p, s1, . . . , sd ← Zp, sd+1← Z∗p.

A.2 External Decision Linear Assumption [ACD+12]

We assume a prime-order (asymmetric) bilinear group generator GrpGen(1k) taking security parameter 1k

as input and outputting G := (p, G1, G2, GT , e). We state the external decisional linear assumption in G1 as
follows, the analogous assumption in G2 can be defined by exchanging the role of G1 and G2.

Assumption 7 (External Decision Linear Assumption in G1) For any p.p.t. adversary A , the following ad-
vantage function is negligible in k,

AdvXDLIN
A (k) :=

�

�Pr[A (D, T0) = 1]− Pr[A (D, T1) = 1]
�

� ,

where

D :=
�

G , g1, g2,
ga1

1 , ga2
1 , ga3

1 , ga1s1
1 , ga2s2

1
ga1

2 , ga2
2 , ga3

2 , ga1s1
2 , ga2s2

2

�

, T0 := ga3(s1+s2)
1 , T1 := g

a3(s1+s2)+ s3

1

and G := (p, G1, G2, GT , e)← GrpGen(1k), s1, s2← Zp and a1, a2, a3, s3← Z∗p.

A.3 Symmetric Bilinear Groups and Decisional Linear Assumption

A prime-order symmetric bilinear group generator sGrpGen(1k) takes security parameter 1k as input and
outputs G := (p, G, GT , e), where G and GT are finite cyclic groups of prime order p, and e : G × G → GT is a
non-degenerated and efficiently computable bilinear map. We let g and gT := e(g, g) be a generator of G and
GT , respectively. We state the decisional linear assumption as follows.

Assumption 8 (Decisional Linear Assumption) For any p.p.t. adversaryA , the following advantage function
is negligible in k,

AdvDLIN
A (k) :=

�

�Pr[A (D, T0) = 1]− Pr[A (D, T1) = 1]
�

� ,

where

D :=
�

G , g, ga1 , ga2 , ga3 , ga1s1 , ga2s2
�

, T0 := ga3(s1+s2), T1 := g
a3(s1+s2)+ s3

and G := (p, G, GT , e)← sGrpGen(1k), s1, s2← Zp and a1, a2, a3, s3← Z∗p.

A.4 Generic Security for d-Linear Assumption with Auxiliary Input

This section shows that the d-linear assumption with auxiliary input defined in Section 8 holds in the
generic group model [Sho97]. In the model, each group element (in G1, G2, or GT) is associated with an ar-
bitrary string with no structure, therefore equality of two elements can be detected by adversaryA . However
group operations and pairing operations are done through respective oracles. We prove the following lemma
based on the proof for the DLIN assumption [BBS04].

46

Lemma 17 (Generic Security for d-LinAI) LetA be an algorithm that solves the d-linear problem with auxil-
iary input in the generic group model. Assume that ξ1, ξ2, ξT are random encoding functions for G1, G2, GT . If
A makes a total of at most q queries to the oracles computing the group action in G1, G2, GT and the bilinear
pairing e, then
�

�

�

�

�

�

Pr

A

p, ξ1(1), ξ1(a1), . . . ,ξ1(ad), ξ1(ad+1),
ξ2(1), ξ2(a), ξ2(aa−1

1 ad+1), . . . ,ξ2(aa−1
d/2ad+1),

ξ1(a1s1), . . . ,ξ1(adsd), ξ1(t0), ξ1(t1)

= b

−

1

2

�

�

�

�

�

�

¶
(d/4+ 1)(q+ 5d/2+ 6)2

2p
,

where a1, . . . , ad , ad+1, s1, . . . , sd , sd+1 ← Z∗p, a := a1 · · · ad/2, b ← {0,1}, tb := ad+1(s1 + · · ·+ sd), and t1−b :=
ad+1(s1 + · · ·+ sd) + sd+1. (Note that aa−1

i ad+1 = a1 · · · ai−1ai+1 · · · ad/2ad+1 for i ∈ [d/2] actually contain no
inverse of element at all.)

Proof. We first describe an algorithmB answeringA ’s oracle queries. AlgorithmB maintains three lists:

L1 :=
¦

(F1,i ,ξ1,i) : i ∈ [τ1]
©

, L2 :=
¦

(F2,i ,ξ2,i) : i ∈ [τ2]
©

, LT :=
¦

(FT,i ,ξT,i) : i ∈ [τT]
©

,

where F∗,∗ ∈ Zp[A1, . . . , Ad , Ad+1, S1, . . . , Sd , Sd+1, T0, T1] and ξ∗,∗ ∈ {0, 1}∗. AlgorithmB proceeds as follows.

Initialize. AlgorithmB sets

F1,1 := 1, F1,2 := A1, . . . , F1,d+1 := Ad , F1,d+2 := Ad+1,
F2,1 = 1, F2,2 := A1 · · ·Ad/2, F2,3 := A2 · · ·Ad/2Ad+1, . . . , F2,d/2+2 := A1 · · ·Ad/2−1Ad+1,
F1,d+3 := A1S1, . . . , F1,2d+2 := AdSd , F1,2d+3 := T0, F1,2d+4 := T1.

Set ξ1,i for i ∈ [2d+4] and ξ2,i for i ∈ [d/2+2] to be distinct strings from {0,1}∗. Send ξ1,i and ξ2,i to
adversaryA . We let τ1 = 2d + 4, τ2 = d/2+ 2, and τT = 0.

Group Operation. On input (ξ1,i ,ξ1, j ,Type) where i, j ∈ [τ1] and Type ∈ {Mult,Div}, compute F1,τ1+1 :=
F1,i ± F1, j according to parameter Type. If there exists k ∈ [τ1] such that F1,τ1+1 = F1,k, set ξ1,τ1+1 :=
ξ1,k; otherwise, pick a new string (different from all existing ξ1,i) for ξ1,τ1+1. Return ξ1,τ1+1 to adver-
sary A , and update L1 := L1 ∪ {(F1,τ1+1,ξ1,τ1+1)} and τ1 := τ1 + 1. We also answer query of form
(ξ2,i ,ξ2, j ,Type) for G2 and (ξT,i ,ξT, j ,Type) for GT in the same way as above.

Pairing Operation. On input (ξ1,i ,ξ2, j) where i ∈ [τ1] and j ∈ [τ2], compute FT,τT+1 := F1,i · F2, j . If there
exists k ∈ [τT] such that FT,τT+1 = FT,k, set ξT,τT+1 := ξT,k; otherwise, pick a new string (different from
all existing ξT,i) for ξT,τT+1. Return ξT,τT+1 to adversaryA , and update LT :=LT ∪ {(FT,τT+1,ξT,τT+1)}
and τT := τT + 1.

Finalize. When adversary A returns a bit b′, algorithm B samples a1, . . . , ad , ad+1, s1, . . . , sd , sd+1 ←
Z∗p, b ← {0,1} and assigns A1 := a1, . . . , Ad := ad , Ad+1 := ad+1, S1 := s1, . . . , Sd := sd , Sd+1 :=
sd+1, Tb := ad+1(s1 + · · ·+ sd), T1−b := ad+1(s1 + · · ·+ sd) + sd+1.

We now argue that the last step of the simulation, i.e., assigning all arguments in polynomials, did not
violate the equality relation in our simulation. At first, we see that the assignments for T0 and T1 have
deviated from our simulation where both of them should be independent of other arguments. We may view,
from the polynomial-level, that Tb := Ad+1(S1 + · · ·+ Sd) and T1−b := Ad+1(S1 + · · ·+ Sd) + Sd+1. Since Sd+1
appears nowhere else, the argument T1−b is still independent and won’t break the equality relation we have
established. It remains to investigate the other case.

We claim that Tb remains independent (from polynomial-level) even if it is now algebraically connected to
other arguments. By the (bi-)linearity, we just need to consider the initial elements in L1 and all combination
(pairing) of initial elements in L1 and L2. Firstly, since Ad+1Si never appears in L1, adversary A can not
derive Tb from initial elements of L1 (not including Tb itself) by group operations. In other word, it preserves
the equality relation inL1. Secondly, we observe that pairing Tb with initial elements inL2 results polynomials
with one of the following terms

Ad+1Sd , A1 · · ·Ad/2Ad+1Sd , A1 · · ·Ad/2A2
d+1Sd/Ai , i ∈ [d/2].

To obtain these terms without Tb,A must ask pairing operation oracle with first parameter being ξ1,2d+2 (i.e.,
AdSd) since this is the only terms with Sd . However it will introduce an additional term Ad into the result
because no element in L2 can cancel it out through pairing. Therefore we can say the equality relation in LT
is also preserved.

Next, we see that our assignments for all polynomials may also violate the equality relation. In particular,
we consider the following events, denoted by Coll, there exist i, j such that

47

– F1,i(a1, . . . , ad , ad+1, s1, . . . , sd , sd+1) = F1, j(a1, . . . , ad , ad+1, s1, . . . , sd , sd+1) but F1,i 6= F1, j; or

– F2,i(a1, . . . , ad , ad+1, s1, . . . , sd , sd+1) = F2, j(a1, . . . , ad , ad+1, s1, . . . , sd , sd+1) but F2,i 6= F2, j; or

– FT,i(a1, . . . , ad , ad+1, s1, . . . , sd , sd+1) = FT, j(a1, . . . , ad , ad+1, s1, . . . , sd , sd+1) but FT,i 6= FT, j .

It is not hard to see that if the event occurs two different polynomials should be recognized as identical after
assignment. Since total degree of polynomials inL1 is at most 2, and this parameter is at most d/2 and d/2+2
in L2 and LT , respectively, the probability of the event is bounded as

Pr[Coll]¶
�

τ1

2

�

2

p
+
�

τ2

2

�

d/2

p
+
�

τT

2

�

d/2+ 2

p
¶
(d/4+ 1)(q+ 5d/2+ 6)2

p
,

following the Schwartz-Zippel Lemma.
We observe that if Coll did not occur, the simulation is perfect and the adversary A can guess b correctly

with probability 1/2, since b is picked afterA have guessed it. Therefore we have

|Pr[A = b]− 1/2| ¶ |Pr[A = b|Coll]Pr[Coll] + Pr[A = b|¬Coll] (1− Pr[Coll])− 1/2|
¶ |Pr[A = b|Coll]Pr[Coll]− 1/2 Pr[Coll]|
¶ |1/2 Pr[Coll]|¶ (d/4+ 1)(q+ 5d/2+ 6)2/2p.

This proved the lemma. �

B IBE from Revised ENDSG in Section 3

We have claimed that our revised ENDSG (in Section 3) implies an almost-tight IBE in the multi-instance,
multi-ciphertext setting. Both construction and its security proof are nearly the same as those described
in [HKS15]. For completeness and reference, we present both the construction and the organization of its
proof in this section.

B.1 Construction

We assume the identity space is {0,1}n for some n ∈ Z+ and let n be system-level parameter SYS.

– Param(1k, n). Sample (PP, SP)← SampP(1k, 2n) and output

GP := PP.

We assume that GP also contains k and n.

– Setup(GP). Sample MSK←H and output

MPK :=
�

PP,µ(MSK)
�

and MSK.

– KeyGen(MPK, MSK,y). Let y= (y1, . . . , yn) ∈ {0, 1}n. Sample

�

h0, h1, . . . , h2n
�

← SampH(PP)

and output
SKy :=

�

K0 := h0, K1 := MSK · h2−y1
· · ·h2n−yn

�

.

– Enc(MPK,x, M). Let x= (x1, . . . , xn) ∈ {0, 1}n and M ∈GT . Sample random coin s and compute

�

g0, g1, . . . , g2n
�

← SampG(PP; s) and g ′T ← SampGT(µ(MSK); s).

Output
CTx :=

�

C0 := g0, C1 := g2−x1
· · · g2n−xn

, C2 := g ′T · M
�

.

– Dec(MPK, SK, CT). Let SK =
�

K0, K1
�

and CT =
�

C0, C1, C2
�

. Output

M := C2 ·
e(C1, K0)
e(C0, K1)

.

48

Correctness. For any x= (x1, . . . , xn) ∈ {0,1}n, one may check that

e(C1, K0)
e(C0, K1)

=
e(g2−x1

· · · g2n−xn
, h0)

e(g0, MSK · h2−y1
· · ·h2n−yn

)
=
�

e(g0, MSK)
�−1 =

�

g ′T
�−1

,

where the second equality follows the associative property, and the last one follows the projective property.

B.2 Security Proof

We just present here the main theorem and the sequence of games with definitions for various auxil-
iary algorithms and distributions. One may easily derive the detailed proofs according to Hofheinz et al.’s
proof [HKS15].

Theorem 1 Assuming an extended nested dual system group defined as Section 3, the IBE scheme shown above
is weak adaptively secure in the multi-instance, multi-ciphertext setting. More concretely, for any adversary A
making at most qK key extraction queries and at most qC challenge queries for pairwise distinct challenge identity
against at most λ instances, there exist adversariesB1,B2, andB3 such that

AdvIBE
A (k,λ, qK , qC , 1)¶ AdvLS1

B1
(k, qC) + 2n ·AdvLS2

B2
(k, qC , qK) + n ·AdvNH

B3
(k, qC , qK) + 2−Ω(k),

where maxi∈[3]Time(Bi)≈ Time(A) + (λ+ qC + qK) · poly(k, n) and poly(k, n) is independent of Time(A).

Auxiliary Algorithms. We describe two auxiliary algorithms:

– KeyGen(PP, MSK,y; t). Let MSK ∈H, y=
�

y1, . . . , yn
�

∈ {0,1}n, and t=
�

T0, T1, . . . , T2n
�

∈H2n+1, output

SKy :=
�

K0 := T0, K1 := MSK · T2−y1
· · · T2n−yn

�

.

– Enc(PP,x, M; MSK, t). Let MSK ∈ H, x =
�

x1, . . . , xn
�

∈ {0, 1}n, M ∈ GT , and t =
�

T0, T1, . . . , T2n
�

∈ G2n+1,
output

CTx :=
�

C0 := T0, C1 := T2−x1
· · · T2n−xn

, C2 := e(T0, MSK) · M
�

.

Auxiliary Distributions. We first define two families of random functions {bRi}i∈[0,n] and {eRi}i∈[0,n] where

bRi : [λ]× {0, 1}i → [ÛSampH
∗
(PP, SP)] and eRi : [λ]× {0,1}i → [åSampH

∗
(PP, SP)]

for all i ∈ [0, n]. For simplicity, we may feed a n-bit string into bRi(ι, ·) and eRi(ι, ·). In such a case, we view the
i-bit prefix of the input as actual input and simply neglect the remaining bits.

Secondly, for all (PP, SP) ∈ [SampP(1k, 2n)], all MSK ∈ H, all ι ∈ [λ], all x =
�

x1, . . . , xn
�

∈ {0,1}n, and all
M ∈GT , we define four forms of ciphertext Enc(MPK,x, M) in the ιth instance with MPK := (PP,µ(MSK)):

(Normal ciphertext.)
Enc(PP,x, M; MSK,g),

where g← SampG(PP); more explicitly, the distribution is

g0,
n
∏

i=1

g2i−x i
, e(g0, MSK) · M

!

,

where
�

g0, g1, . . . , g2n
�

← SampG(PP). By the projective property, the distribution is indeed identical to
the output of real encryption algorithm Enc.

(Pseudo-normal ciphertext.)
Enc(PP,x, M; MSK,g · bg),

where g← SampG(PP) and bg←ÛSampG(PP, SP); more explicitly, the distribution is

g0 · bg0,
n
∏

i=1

�

g2i−x i
· bg2i−x i

�

, e(g0 · bg0, MSK) · M

!

,

where
�

g0, g1, . . . , g2n
�

← SampG(PP) and
�

bg0, bg1, . . . , bg2n
�

←ÛSampG(PP, SP).

49

(Semi-functional type-(∧, i) ciphertexts for i ∈ [0, n].)

Enc(PP,x, M; MSK · bRi(ι,x) · eRi(ι,x),g · bg),

where g← SampG(PP) and bg←ÛSampG(PP, SP); more explicitly, the distribution is

g0 · bg0,
n
∏

j=1

�

g2 j−x j
· bg2 j−x j

�

, e(g0 · bg0, MSK · bRi(ι,x)) · M

 ,

where
�

g0, g1, . . . , g2n
�

← SampG(PP) and
�

bg0, bg1, . . . , bg2n
�

←ÛSampG(PP, SP). We note that eRi(ι,x)
vanishes due to the orthogonality property.

(Semi-functional type-(∼, i) ciphertexts for i ∈ [0, n].)

Enc(PP,x, M; MSK · bRi(ι,x) · eRi(ι,x),g · eg),

where g← SampG(PP) and eg←åSampG(PP, SP); more explicitly, the distribution is

g0 · eg0,
n
∏

j=1

�

g2 j−x j
· eg2 j−x j

�

, e(g0 · eg0, MSK · eRi(ι,x)) · M

 ,

where
�

g0, g1, . . . , g2n
�

← SampG(PP) and
�

eg0, eg1, . . . , eg2n
�

←åSampG(PP, SP). We note that bRi(ι,x)
vanishes due to the orthogonality property.

Finally, for all (PP, SP) ∈ [SampP(1k, 2n)], all MSK ∈ H, all ι ∈ [λ], and all y =
�

y1, . . . , yn
�

∈ {0, 1}n, we
define two forms of secret key KeyGen(MPK, MSK,y) in the ιth instance with MPK := (PP,µ(MSK)):

(Normal secret key.)
KeyGen(PP, MSK,y;h),

where h← SampH(PP); more explicitly, the distribution is

h0, MSK ·
n
∏

i=1

h2i−yi

!

,

where
�

h0, h1, . . . , h2n
�

← SampH(PP).

(Semi-functional type-i secret key for i ∈ [0, n].)

KeyGen(PP, MSK · bRi(ι,y) · eRi(ι,y),y;h),

where h← SampH(PP); more explicitly, the distribution is

h0, MSK · bRi(ι,y) · eRi(ι,y) ·
n
∏

i=1

h2i−yi

!

,

where
�

h0, h1, . . . , h2n
�

← SampH(PP).

Game Sequence. The proof requires a sequence of games defined as follows.

– Game0 is identical to the original experiment in Section 2.

– Game1 is identical to Game0 except that all challenge ciphertexts are pseudo-normal.

– Game2.i.0 (i ∈ [n+ 1]) is identical to Game1 except that all secret keys are type-(i − 1) semi-functional
and all challenge ciphertexts are type-(∧, i− 1) semi-functional.

– Game2.i.1 (i ∈ [n]) is identical to Game2.i.0 except that

– all challenge ciphertexts for identities whose ith bit is 1 are type-(∼, i− 1) semi-functional.

– Game2.i.2 (i ∈ [n]) is identical to Game2.i.1 except that

50

– all secret keys are type-i semi-functional;

– all challenge ciphertexts for identities whose ith bit is 0 are type-(∧, i) semi-functional;

– all challenge ciphertexts for identities whose ith bit is 1 are type-(∼, i) semi-functional.

– Game3 is identical to Game2.(n+1).0.

– Game4 is identical to Game3 except that all challenge ciphertexts are for random messages.

We sketch the proof. We first move from Game0 to Game1 using the LS1 property. We note that Game2.1.0
is the same as Game1 just with conceptual difference. For i ∈ [n], we move from Game2.i.0 to Game2.i.1 using
the LS2 property, and move from Game2.i.1 to Game2.i.2 using the NH property, and move from Game2.i.2 to
Game2.(i+1).0 again using the LS2 property. Then we stop the loop at Game2.(n+1).0 which is defined as Game3.
We finally prove that Game3 and Game4 are statistically indistinguishable from the non-degeneracy property. It
is clear that all challenge ciphertexts in the last game are irrelevant to challenge messages and the adversary’s
advantage is exactly 0. The main theorem is now proved by combining all above results together.

C IBE from Fine-tuned ENDSG in Section 7

We fine-tuned our revised ENDSG in Section 7. This section is devoted to showing that it also implies an
almost-tight IBE in the multi-instance, multi-ciphertext setting. In particular, the construction is almost the
same as those shown in Appendix B and thus similar to that in [HKS15], but the proof is slightly different.

C.1 Construction

We assume the identity space is {0,1}n for some n ∈ Z+ and let n be system-level parameter SYS.

– Param(1k, n). Sample (PP, HP, SP)← SampP(1k, 2n) and output

GP := (PP, HP).

We assume that GP also contains k and n.

– Setup(GP). Sample MSK0←H and output

MPK :=
�

PP,µ(MSK0)
�

and MSK :=
�

HP, MSK0
�

.

– KeyGen(MPK, MSK,y). Let y= (y1, . . . , yn) ∈ {0, 1}n. Sample

�

h0, h1, . . . , h2n
�

← SampH(PP, HP)

and output
SKy :=

�

K0 := h0, K1 := MSK0 · h2−y1
· · ·h2n−yn

�

.

– Enc(MPK,x, M). Let x= (x1, . . . , xn) ∈ {0, 1}n and M ∈GT . Sample random coin s and compute

�

g0, g1, . . . , g2n
�

← SampG(PP; s) and g ′T ← SampGT(µ(MSK0); s).

Output
CTx :=

�

C0 := g0, C1 := g2−x1
· · · g2n−xn

, C2 := g ′T · M
�

.

– Dec(MPK, SK, CT). Let SK = (K0, K1) and CT = (C0, C1, C2). Output

M := C2
e(C1, K0)
e(C0, K1)

.

Correctness. For any x= (x1, . . . , xn) ∈ {0,1}n, one may check that

e(C1, K0)
e(C0, K1)

=
e(g2−x1

· · · g2n−xn
, h0)

e(g0, MSK0 · h2−y1
· · ·h2n−yn

)
=
�

e(g0, MSK0)
�−1 =

�

g ′T
�−1

,

where the second equality follows the associative property, and the last one follows the projective property.

51

C.2 Security Proof

As before, we just present here the main theorem and the sequence of games. One may easily derive the
detailed proofs according to Hofheinz et al.’s proof [HKS15]. Due to the similarity, we will borrow a lot of
definitions from Appendix B.

Theorem 2 Assume an extended nested dual system group defined as Section 7, the IBE scheme shown above is
full-adaptively secure in the multi-instance, multi-ciphertext setting. More concretely, for any adversaryA making
at most qK key extraction queries and at most qR challenge queries for each of qC distinct challenge identity against
at most λ instances, there exist adversariesB1,B2,B3,B4 andB5 such that

AdvIBE
A (k,λ, qK , qC , qR) ¶ AdvLS1

B1
(k, qCqR, qK) + 2n ·

�

AdvLS2
B2
(k, qCqR, qK) +AdvLS3

B3
(k, qCqR, qK)

�

+n ·AdvNH
B4
(k, qCqR, qK) +AdvND

B5
(k, qC , qK , qR) + 2−Ω(k),

where maxi∈[5]Time(Bi)≈ Time(A)+ (λ+qCqR+qK) ·poly(k, n) and poly(k, n) is independent of Time(A).

Auxiliary Algorithms and Distributions. The auxiliary algorithms KeyGen and Enc and the truly random
functions {bRi}i∈[0,n] and {eRi}i∈[0,n] we needed here are identical to those defined in Appendix B.

For all (PP, HP, SP) ∈ [SampP(1k, 2n)], all MSK0 ∈ H, all ι ∈ [λ], all x =
�

x1, . . . , xn
�

∈ {0, 1}n, and all
M ∈ GT , we define four forms of ciphertext Enc(MPK,x, M) in the ιth instance with MPK := (PP,µ(MSK0)).
The normal ciphertext, semi-functional type-(∧, i) ciphertexts (for i ∈ [0, n]) and semi-functional type-(∼, i)
ciphertexts (for i ∈ [0, n]) are defined as in Appendix B and the last form is defined as follows:

(Semi-functional type-i ciphertexts for i ∈ [0, n].)

Enc(PP,x, M; MSK0 · bRi(ι,x) · eRi(ι,x),g · bg · eg),

where g← SampG(PP), bg←ÛSampG(PP, SP) and eg←åSampG(PP, SP); more explicitly, the distribution is

g0 · bg0 · eg0,
n
∏

j=1

�

g2 j−x j
· bg2 j−x j

· eg2 j−x j

�

, e(g0 · bg0 · eg0, MSK0 · bRi(ι,x) · eRi(ι,x)) · M

 ,

where
�

g0, g1, . . . , g2n
�

← SampG(PP),
�

bg0, bg1, . . . , bg2n
�

←ÛSampG(PP, SP) and
�

eg0, eg1, . . . , eg2n
�

←åSampG(PP, SP).

For all (PP, HP, SP) ∈ [SampP(1k, 2n)], all MSK0 ∈ H, all ι ∈ [λ], and all y =
�

y1, . . . , yn
�

∈ {0,1}n, we
define two forms of secret key KeyGen(MPK, MSK,y) in the ιth instance with MPK := (PP,µ(MSK0)), the normal
secret key and the semi-functional type-i secret key for i ∈ [0, n], in a similar fashion as Appendix B.

Game Sequence. The proof requires a sequence of games defined as follows.

– Game0 is identical to the original experiment in Section 2.

– Game1 is identical to Game0 except that all challenge ciphertexts and secret keys are type-0 semi-
functional.

– Game2.i.0 (i ∈ [n+ 1]) is identical to Game1 except that all challenge ciphertexts and secret keys are
type-(i− 1) semi-functional.

– Game2.i.1 (i ∈ [n]) is identical to Game2.i.0 except that

– all challenge ciphertexts for identities whose ith bit is 1 are type-(∼, i− 1) semi-functional.

– Game2.i.2 (i ∈ [n]) is identical to Game2.i.1 except that

– all challenge ciphertexts for identities whose ith bit is 0 are type-(∧, i− 1) semi-functional.

– Game2.i.3 (i ∈ [n]) is identical to Game2.i.2 except that

– all secret keys are type-i semi-functional;

– all challenge ciphertexts for identities whose ith bit is 0 are type-(∧, i) semi-functional;

– all challenge ciphertexts for identities whose ith bit is 1 are type-(∼, i) semi-functional.

52

– Game2.i.4 (i ∈ [n]) is identical to Game2.i.3 except that

– all challenge ciphertexts for identities whose ith bit is 0 are type-i semi-functional.

– Game2.i.5 (i ∈ [n]) is identical to Game2.i.4 except that

– all challenge ciphertexts for identities whose ith bit is 1 are type-i semi-functional.

– Game3 is identical to Game2.n+1.0.

– Game4 is identical to Game3 except that all challenge ciphertexts are for random messages.

We sketch the proof. We first move from Game0 to Game1 using the LS1 property and an conceptual trans-
formation. We note that Game2.1.0 is the same as Game1. For i ∈ [n], we move from Game2.i.0 to Game2.i.1
using the LS2 property, and move from Game2.i.1 to Game2.i.2 using the LS3 property, the indistinguishabil-
ity of Game2.i.2 and Game2.i.3 relies on the NH propoerty, then we move from Game2.i.3 to Game2.i.5 again
using the LS3 and LS2 property. Note that Game2.i.5 is the same as Game2.i+1.0. Then we stop the loop at
Game2.n+1,0 which is defined as Game3. We finally prove that Game3 and Game4 are indistinguishable using
the ND property. It is clear that all challenge ciphertexts in the last game are irrelevant to challenge messages
and the adversary’s advantage is exactly 0. The main theorem is now proved by combining all above results
together.

53

	Introduction
	Background and Problem
	Motivation and Observation
	Contributions and Techniques
	Comparison and Discussion
	Related Work
	Independent Work
	Outline

	Preliminaries
	Notations
	Identity Based Encryptions

	Revisiting Extended Nested Dual System Groups
	Instantiating ENDSG from d-Linear Assumption
	Prime-order Bilinear Groups and Computational Assumptions
	Construction
	Left Subgroup Indistinguishability 1
	Left Subgroup Indistinguishability 2
	Generalized Many-Tuple Lemma
	Nested-hiding Indistinguishability

	Concrete IBE from d-Linear Assumption
	Achieving Stronger Security Guarantee
	Warmup: Achieving B-weak Adaptive Security
	Computational Non-degeneracy and Full Adaptive Security
	Computational Non-degeneracy from d-Linear Assumption

	Fine-Tuning Extended Nested Dual System Groups from Section 3
	Instantiating ENDSG from d-Linear Assumption with Auxiliary Input
	d-Linear Assumption with Auxiliary Input
	Construction
	Left subgroup indistinguishability 1
	Left subgroup indistinguishability 2
	Left subgroup indistinguishability 3
	Nested-hiding indistinguishability
	Computational Non-degeneracy

	Concrete IBE from d-Linear Assumption with Auxiliary Input
	More about Bilinear Groups and Related Assumptions
	d-Lifted Linear Assumption 2014:CRYPTO:JR
	External Decision Linear Assumption 2012:AsiaCrypt:ACD+
	Symmetric Bilinear Groups and Decisional Linear Assumption
	Generic Security for d-Linear Assumption with Auxiliary Input

	IBE from Revised ENDSG in Section 3
	Construction
	Security Proof

	IBE from Fine-tuned ENDSG in Section 7
	Construction
	Security Proof

