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Abstract. We present a general framework for developing and analyzing homomorphic cryptosystems whose se-
curity relies on the difficulty of solving systems of nonlinear equations over Zn, n being an RSA modulus. In
this framework, many homomorphic cryptosystems can be conceptualized. Based on symmetry considerations, we
propose a general assumption that ensures the security of these schemes. To highlight this, we present an additive
homomorphic private-key cryptosystem and we prove its security. Finally, we propose two motivating perspectives
of this work. We first propose an FHE based on the previous scheme by defining a simple multiplicative operator.
Secondly, we propose ways to remove the factoring assumption in order to get pure multivariate schemes.
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1 Introduction

In [6] and [7], new ideas and new tools were proposed to develop homomorphic cryptosystems. The authors
first proposed a very simple private-key cryptosystem where a ciphertext is a vector c whose components
are in Zn, n being an RSA modulus chosen at random. Given a secret multivariate polynomial ϕD, an
encryption of x ∈ Zn is a vector c chosen at random such that ϕD(c) = x. In order to resist a CPA attacker,
the number of monomials of ϕD should not be polynomial (otherwise the cryptosystem can be broken by
solving a polynomial-size linear system). In order to get polynomial-time encryptions and decryptions, ϕD

should be written in a compact form, e.g. a factored or semi-factored form. By construction, the generic
cryptosystem described above is not homomorphic in the sense that the vector sum is not a homomorphic
operator. This is a sine qua non condition for overcoming Gentry’s machinery. Indeed, as a ciphertext c is a
vector, it is always possible to write it as a linear combination of other known ciphertexts. Thus, if the vector
sum were a homomorphic operator, the cryptosystem would not be secure at all. This simple remark suffices
to prove the weakness of the homomorphic cryptosystems presented in [14], [10]. In order to use the vector
sum as a homomorphic operator, noise should be injected into the encryptions as done in all existing FHE
[8],[3],[12],[13],[4],[9]. To overcome this, the authors propose developing ad hoc nonlinear homomorphic
operators to get a noise-free compact FHE. However, the proof of security of their scheme is far from being
completed, and only partial security results are provided.

In this paper, we adopt the same approach except that ϕD is a rational function instead of being a
polynomial, i.e. ϕD(c) = ϕ1(c)/ϕ2(c) = x. The polynomial Φ(c) = ϕ1(c) − xϕ2(c) is equal to 0 if c
encrypts x implying that its expanded representation could be recovered by solving a linear system. This
kind of attacks will be called attacks by linearization. However, this attack fails by adjusting the parameters
in order that Φ has an exponential number of monomials. By using results based on symmetry (see Section
2.2), we show the difficulty to represent ϕ1 or ϕ2 in a compact factored or semi-factored form assuming the
hardness of factoring (see Section 5.1).

However, it is not sufficient to ensure security. Indeed, the homomorphic operators consist of applying
nonlinear operators Q1, . . . ,Qρ (see Section 3). By recursively applying these operators over a challenge
encryption c1 and other encryptions c2, . . . , cr in an arbitrary way, a CPA attacker can generate vectors
v1, . . . ,vt in the hope to create new efficient attacks by linearization, i.e. recovering a small polynomial ϕ



such that ϕ(v1, . . . ,vt) = 0 with a larger probability when c1 encrypts x1 rather than 0. In Section 5, we
conjecture that our scheme is IND-CPA secure if this does not happen. In Section 4.2, we develop a very
simple nonlinear additive operator and we prove that our scheme is IND-CPA secure under this assumption
(and another one closely related to the factoring assumption).

There are two major perspectives from this work. The principal one would be to build a compact FHE. In
Section 8, we propose a very simple multiplicative operator. We are obviously convinced that the obtained
FHE is IND-CPA secure but its security proof is left as an open problem for further research. A second
motivating perspective would be to remove the factoring assumption to obtain a pure multivariate encryption
scheme. The factoring assumption is required to get formal results (Lemma 4, Lemma 5 and Proposition 3).
We propose ways to remove this assumption (see Remark 4 and Remark 5) in the hope of getting pure
multivariate schemes. Basically, it consists of adding randomness to the construction in order to maintain
the truth of the formal results proved under the factoring assumption.

Notation. We use standard Landau notations. Throughout this paper, we let λ denote the security parameter:
all known attacks against the cryptographic scheme under scope should require 2Ω(λ) bit operations to
mount. Let κ ∈ N \ {0} and let n be a randomly chosen RSA modulus. All the computations considered in
this paper will be done in Zn.

– K = {0, . . . , κ− 1}.

– A vector v =

v1
· · ·
v2κ

 can be also denoted by (v1, . . . , v2κ).

– The inner product of two vectors v and v′ is denoted by v · v′

– The set of all square 2κ− by − 2κ matrices over Zn is denoted by Z2κ×2κ
n . The ith row of S ∈ Z2κ×2κ

n

is denoted by si and Li denotes the linear function defined by Li(v) = si · v.

Remark 1. The number of κ-variate monomials of degree γ is equal to
(
γ + κ− 1

γ

)
. In particular, this

number is exponential provided κ = Θ(λ) and γ = Ω(λ). This will be implicitly considered in Conjecture
2.

2 Security assumptions

2.1 Roots of polynomials

Let n be an η-bit RSA modulus and let r ∈ N \ {0}. Given a polynomial ϕ ∈ Zn[X1, . . . , Xr], zϕ denotes
the probability that ϕ(x) = 0 assuming x uniform over Zr

n, i.e. zϕ = |S|/nr where S is the set of the roots of
ϕ. In this section, we wonder whether it is possible to recover a polynomial ϕ such that zϕ is non-negligible.
We start by showing a weaker result.

Lemma 1. Assuming the hardness of factoring, there is no p.p.t-algorithm A which inputs a randomly
chosen RSA modulus n and which outputs an arithmetic circuit of a polynomial ϕ ∈ Zn[X1, . . . , Xr] such
that zϕ and 1− zϕ are both non-negligible.

Proof. See Appendix B.1
�



The previous result is not sufficient because it does not exclude the possibility to recover a non-null
polynomial ϕ such that zϕ = 1 for instance. The following result goes in this sense.

Lemma 2. Assuming the hardness of factoring, there is no p.p.t-algorithm A which inputs a randomly
chosen RSA modulus n and which outputs the expanded representation of a non-null polynomial ϕ ∈ Zn[X]
such that zϕ = 1.

Proof. See Appendix B.2.
�

However, this result does not strictly prove the difficulty of finding a polynomial ϕ such that zϕ = 1.
Indeed, it only deals with the expanded representation of such polynomials but it does not say anything about
other representations, e.g. factored representations. To establish the main result of this section, we assume
that this problem is also difficult.

Conjecture 1. There is no p.p.t-algorithm A which inputs a randomly chosen RSA modulus n and which
outputs an arithmetic circuit of a non-null polynomial ϕ ∈ Zn[X] such that zϕ = 1.

Since zXλ(n)−X = 1 (λ(n) refers to the Euler’s function), Conjecture 1 is stronger than the factoring as-
sumption.

Lemma 3. Assuming Conjecture 1, there is no p.p.t-algorithm A which inputs a randomly chosen RSA
modulus n and which outputs an arithmetic circuit of a non-null polynomial ϕ ∈ Zn[X] such that zϕ is
non-negligible.

Proof. See Appendix B.3.
�

Lemma 4. Assuming Conjecture 1, there is no p.p.t-algorithm A which inputs a randomly chosen RSA
modulus n and which outputs an arithmetic circuit of a non-null polynomial ϕ ∈ Zn[X1, . . . , Xr] such that
zϕ is non-negligible.

Proof. See Appendix B.4.
�

2.2 κ-symmetry

Let n be an η-bit RSA modulus chosen at random and let κ, t > 1 be positive integers polynomials in η.
Recall that K = {0, . . . , κ − 1}. Let y1, y2 be randomly chosen in Zn. It is well-known that recovering1

y1 given only S = y1 + y2 or P = y1y2 is difficult assuming the hardness of factoring. In this section, we
propose to extend this.

Definition 1. A κt-variate polynomial s is κ-symmetric if for any y0, . . . , yκ−1 ∈ Zt
n and for any σ ∈ K,

s(y0, . . . , yκ−1) = s(y′0, . . . , y
′
κ−1) where y′ℓ = yℓ+σ mod κ.

LetAS be an arbitrary efficient algorithm which inputs n and outputs mκ-symmetric κt-variate polynomials
s1, . . . , sm and a non κ-symmetric κt-variate polynomial π. By construction, the polynomials π, s1 . . . , sm
are built without knowing the factorization of n. We assume that s1, . . . , sm and π are public in the sense

1 y1, y2 are the roots of the polynomial y2 − Sy + P .



that they can be publicly and efficiently evaluated given any y0, . . . , yκ−1. In other words, an efficient repre-
sentation of these polynomials is published. The following problem consists in evaluating π(y0, . . . , yκ−1)
given only s1(y0, . . . , yκ−1), . . . ,sm(y0, . . . , yκ−1) where the tuples yℓ are chosen at random under some
symmetric additive constraints.

PROBLEM 1. Let IF ⊆ {1, . . . , t}, let n be a randomly chosen RSA modulus and let (s1, . . . , sm, π) ←
AS(n) be public κt-variate polynomials satisfying,

– s1, . . . , sm are κ-symmetric
– π is a monomial defined2 over {yℓi|(ℓ, i) ∈ K × IF } such that deg π < κ.

Let (y0, . . . , yκ−1) i.d.d. drawn according to the uniform distribution over Zt
n s.t. for each i ̸∈ IF , y0i +

. . .+ yκ−1,i = xi where xi ∈ Zn are arbitrarily chosen by the attacker.

The challenge is to recover π(y0, . . . , yκ−1) given only3 s1(y0, . . . , yκ−1), . . . , sm(y0, . . . , yκ−1).

Lemma 5. Problem 1 is difficult if factoring is hard.

Proof. See Appendix C.1.
�

Corollary 1. The values yℓ,i∈IF cannot be recovered.

Remark 2. By assuming Conjecture 1, Problem 1 can be simply extended by defining π as a non-κ symmet-
ric polynomial instead of a monomial.

By construction, a CPA attacker will only know values which are κ-symmetric with respect to the tuples
y0, . . . , yκ−1 defined in the proof of Proposition 3. Thus, by Lemma 5, the CPA attackers live in the κ-
symmetric world. In the remainder of this section, we will see that the life is difficult in this world. First,
consider the bivariate polynomials4 s0(X1, X2) = X2

1 , s1(X1, X2) = X2
2 and s2(X1, X2) = X1X2. These

polynomials are clearly linearly independent. Given y uniform over Z2
n, y cannot be recovered given only

s1(y), s2(y). Nevertheless, the equality s22 = s0s1 ensures that it is possible to find s0(y) given only s1(y)
and s2(y). Lemma 6 shows that this does not happen in the κ-symmetric world.

Let us consider the set Ed of κ-symmetric polynomials belonging to Zn[X1, . . . , Xκt] defined by

Ed =

{
κ−1∑
ℓ=0

Xi1+ℓt · · ·Xid+ℓt| i1, . . . , id ∈ {1, . . . , t}

}

We denote by Fd the set of linear combinations over Ed. Let y0, . . . , yκ−1 be κ tuples uniform over Zt
n.

In the remainder of this section, we wonder whether it is possible to recover s0(y0, . . . , yκ−1) given only
s1(y0, . . . , yκ−1), . . . , sm(y0, . . . , yκ−1) where s0, s1, . . . , sm ∈ Fd s.t. s0 ̸∈ co(s1, . . . , sm). The following
lemma shows that s0 cannot be written as a simple rational function.

Lemma 6. Let s0, s1, . . . , sm be linearly independent polynomials belonging to Fd. There does not exist
m-variate non-zero polynomials p, q satisfying deg p, q ≤ κ and s0 · q(s1, . . . , sm) = p(s1, . . . , sm).

Proof. See Appendix C.2
�

2 π =
∏

(ℓ,i)∈K×{1,...,t} y
eℓi
ℓi where eℓi = 0 when i ̸∈ IF . Moreover deg π < κ⇒ non κ-symmetric.

3 and an efficient representation of π, s1, . . . , sm.
4 It deals with the case κ = 1.



By Lemma 5, the tuples y0, . . . , yκ−1 cannot be recovered implying that s0 cannot be directly evaluated
knowing only the evaluations of s1, . . . , sm. Let us assume the existence of two polynomials p, q satisfying
s0 · q(s1, . . . , sm) = p(s1, . . . , sm). According to Lemma 6, deg p, q ≥ κ ensuring that these polynomials
have an exponential number of monomials (see Remark 1) provided κ = Θ(λ) and m = Θ(λ). This
enhances the idea that p, q and thus s0 cannot be polynomially evaluated. This idea is encapsulated in
Conjecture 2.

3 The function QGen

Let S be an invertible matrix of Z2κ×2κ
n and let v,v′ be two vectors of Z2κ

n . The ith row of S ∈ Z2κ×2κ
n

is denoted by si and Li denotes the linear function defined by Li(v) = si · v. In this section, we consider
quadratic operators Q where Q(v,v′) outputs a vector v′′ such that the components of Sv′′ are (known)
polynomials of the components of Sv and Sv′.

Definition 2. Let S be an invertible matrix and let σ, σ′ ∈ K.

1. Let P = (p1, p2) be a family of quadratic polynomials pi : Z2
n × Z2

n → Zn s.t.

pi(x, x
′) =

∑
(j,k)∈{1,2}2

aijkxjx
′
k

2. Let z0, . . . , zκ−1 : Z2κ
n × Z2κ

n → Z2
n × Z2

n defined by

zℓ(v,v
′) =

(
L2ℓσ+1(v),L2ℓσ+2(v),L2ℓσ′+1(v

′),L2ℓσ′+2(v
′)
)

where ℓσ = ℓ+ σ mod κ and ℓσ′ = ℓ+ σ′ mod κ.

3. The function QGen inputs S,P, σ, σ′ and outputs the expanded representation of the polynomials q1, . . . , q2κ
defined by

(q1, . . . , q2κ) = S−1 (p1 ◦ z0, p2 ◦ z0, . . . , p1 ◦ zκ−1, p2 ◦ zκ−1)

4. The operator Q ← QGen(S,P, σ, σ′) consists of evaluating the polynomials qi, i.e.

Q(v,v′) =
(
q1(v,v

′), . . . , q2κ(v,v
′)
)

Q

S−1


a1

a2

a3

a4

a5

a6

 , S−1


b1
b2
b3
b4
b5
b6



 = S−1


p1(a3, a4, b5, b6)
p2(a3, a4, b5, b6)
p1(a5, a6, b1, b2)
p2(a5, a6, b1, b2)
p1(a1, a2, b3, b4)
p2(a1, a2, b3, b4)

 = S−1


a3b5
a4b6
a5b1
a6b2
a1b3
a2b4



Fig. 1.
Q ← QGen(S, (p1, p2), 1, 2) with p1(x, x

′) = x1x
′
1 and p2(x, x

′) = x2x
′
2 in

the case κ = 3. A toy implementation of this operator (for κ = 1) is presented in
Appendix A.

Proposition 1. The computation of Q ← QGen(S,P, σ, σ′) requires O(κ4) modular multiplications and
the computation of v′′ ← Q(v,v′) requires O(κ3) modular multiplications.

Proof. (Sketch.) A quadratic 2κ-variate polynomial has O(κ2) monomials.
�



4 An additively homomorphic encryption scheme

4.1 A private-key encryption

Definition 3. Let λ be a security parameter. The functions KeyGen, Encrypt, Decrypt are defined as follows:

– KeyGen(λ). Let η, κ be positive integers indexed by λ, let n be an η-bit RSA modulus chosen at random,
and let S be an invertible matrix of Z2κ×2κ

n chosen at random. The ith row of S is denoted by si and Li
denotes the linear function defined by Li(v) = si · v. Output

K = {S}

– Encrypt(K,x ∈ Zn). Choose at random r0, . . . , rκ−1 ∈ Z∗
n and x0, . . . , xκ−1 ∈ Zn s.t. x0 + . . . +

xκ−1 = x and output

c = S−1



r0x0
r0
r1x1
r1
· · ·
rκ−1xκ−1

rκ−1


– Decrypt(K, c ∈ Z2κ

n ). Output x = ϕD(c) defined by

ϕD(c) =

κ−1∑
ℓ=0

L2ℓ+1(c)/L2ℓ+2(c)

Thanks to the symmetry properties of this scheme, we show in Section 5.1 that ϕD cannot be recov-
ered in a compact form provided κ = Θ(λ). At this step, this encryption scheme is not homomorphic.
Homomorphic operators will be developed using only operators Q.

Remark 3. The factorization of n is not required to decrypt. One can wonder whether the factoring assump-
tion is necessary.

4.2 An additive homomorphic operator

Let S ← KeyGen(λ) and (pi)i=1,2 be the family of polynomials: Z2
n × Z2

n → Zn defined by

– p1(x, x
′) = x1x

′
2 + x2x

′
1

– p2(x, x
′) = x2x

′
2

AddGen(S) outputs the operator Add← QGen(S, (p1, p2), 0, 0).

Proposition 2. Let Add← AddGen(S) is a valid additive homomorphic operator.

Proof. Straightforward (see Figure 3).
�
By publishing this homomorphic operator, we get an additive homomorphic private-key encryption

scheme. The classic way to transform a private-key cryptosystem into a public-key cryptosystem consists
of publicizing encryptions ci of known values xi and using the homomorphic operators to encrypt x. Let
Encrypt1 denote this new encryption function. Assuming the IND-CPA security of the private-key cryp-
tosystem, it suffices that Encrypt1(pk, x) and Encrypt(K,x) are computationally indistinguishable to ensure
the IND-CPA security of the public-key cryptosystem.



Add


S−1



r0x0

r0
r1x1

r1
· · ·
rκ−1xκ−1

rκ−1


, S−1



r′0x
′
0

r′0
r′1x

′
1

r′1
· · ·
r′κ−1x

′
κ−1

r′κ−1




= S−1



r0r
′
0(x0 + x′

0)
r0r

′
0

r1r
′
1(x1 + x′

1)
r1r

′
1

· · ·
rκ−1r

′
κ−1(xκ−1 + x′

κ−1)
rκ−1r

′
κ−1


Fig. 2. Description of the operator Add← AddGen(S).

5 A general security assumption

In the previous section, we showed how to build an additively homomorphic operator using only operatorsQ.
In Section 8, a multiplicative homomorphic operator will be proposed. In this section, we assume that some
operators Q are made public and we propose a general security assumption (dealing with these operators)
about the IND-CPA security of the private-key encryption scheme.

Let S ← KeyGen(λ), let P1, . . . ,Pρ be ρ families of quadratic polynomials indexed by n (satisfying the
requirements of Definition 2), let (σi, σ′

i)i=1,...,ρ be elements of K and let

Qi ← QGen(S,Pi, σi, σ′
i)

be ρ operators. The quantities n, (Pi, σi, σ′
i,Qi)i=1,...,ρ are made public while S remains secret.

5.1 An impossibility result based on κ-symmetry

Recall that Li refers to the linear function defined by Li(v) = si ·v. We denote by P γ
S the set of polynomials

defined by

P γ
S =

{
γ∏

t=1

Lit |it ∈ {1, . . . , 2κ}

}
A CPA attacker is naturally interested in these polynomials: for instance, Decrypt can be written with

polynomials of P 1
S . A representation Rf of an arbitrary function f is said to be effective if its storage is

polynomial and its evaluation is polynomial-time. The following proposition ensures that the polynomials
of P γ<κ

S cannot be recovered: this is derived from symmetry properties related to the parameter κ.

Proposition 3. Let γ ∈ K \ {0} and let ϕ ∈ P γ
S . Under the factoring assumption, a CPA attacker cannot

recover any effective representation Rϕ of ϕ.

Proof. (Sketch.) Details are given in Appendix D.
The ith row of S is denoted by si. Let c1, . . . , cr be the encryptions of x1, . . . , xr received by the CPA

attacker from the encryption oracle, i.e. ci = S−1(ri0xi0, ri0, . . . , ri,κ−1xi,κ−1, ri,κ−1). Let us consider the
κ tuples (yℓ)ℓ=0,...,κ−1 defined by

yℓ = ((xiℓ, riℓ)i=1,...,r, s2ℓ+1, s2ℓ+2)

These tuples are generated to probability distribution statistically indistinguishable from the probability dis-
tribution of Problem 1 (note that only the values xiℓ are involved in additive constraints). By construction,
a CPA attacker only knows κ-symmetric polynomials defined over (y0, . . . , yκ−1). By Lemma 5, it is not



possible to polynomially recover the evaluation of any monomial π (s.t. deg π < κ) defined over the co-
efficients sij assuming the hardness of factoring. As the knowledge of Rϕ can be used to evaluate such a
monomial π, Rϕ cannot be recovered.

�

Corollary 2. Assuming the hardness of factoring, S cannot be recovered by a CPA attacker.

The decryption of a ciphertext c consists of evaluating the following function

ϕD =

κ−1∑
ℓ=0

L2ℓ+1/L2ℓ+2

Clearly, ϕD is a κ-symmetric polynomial in the sense that it remains unchanged if the tuples yℓ (as defined
in the proof of Proposition 3) are permuted. Therefore, Lemma 5 cannot be directly used to prove that ϕD

cannot be recovered. However, by Proposition 3, the linear functions Li, cannot be recovered implying that
ϕD cannot be naturally represented as the sum of rational functions

∑κ−1
ℓ=0 L2ℓ+1/L2ℓ+2. More generally, the

representations involving polynomials of P γ<κ
S cannot be recovered. The only way to represent5 ϕD without

involving such polynomials consists of writing ϕD as a ratio of two κ-symmetric polynomials ϕ1/ϕ2, i.e.

ϕD =
ϕ1 =

ϕ2 =

∑κ−1
ℓ=0 L2ℓ+1

∏
ℓ′ ̸=ℓ L2ℓ′+2∏κ−1

ℓ=0 L2ℓ+2

Note that ϕ1 and ϕ2 are sums of polynomials of P κ
S and the monomial coefficients of ϕ1 and ϕ2 are κ-

symmetric while the factored or semi-factored representations of these polynomials cannot be recovered
according to Proposition 3. By construction, for any encryption c ← Encrypt(K,x), the polynomial Φ =
ϕ1 − xϕ2 satisfies Φ(c) = 0. It could be thus recovered by solving a linear system where the variables are
the monomial coefficients of Φ. This attack is called “attack by linearization”. However, this attack fails
provided κ = Θ(λ) because the expanded representation of Φ is exponential-size in this case (see Remark
1). Nevertheless, efficient attacks by linearization involving the operators Qi could be imagined: this is the
object of the next section.

5.2 A conjecture about IND-CPA security

Throughout this section, κ = Θ(λ). Roughly speaking, we conjecture that our scheme is IND-CPA secure
if a CPA attacker cannot mount any attack by linearization (informally defined in the previous section). This
section aims to justify and to formalize it.

We consider an attacker A which has access to an encryption oracle and which can use the public
operators (Qi)i=1,...,ρ in an arbitrary way. Clearly, to break IND-CPA security,A wishes to recover x1 ∈ Zn

and a polynomial Φ ∈ Zn[X1, . . . , X2κ] such that Φ ◦ Encrypt(K,x1)
s
̸≡ Φ ◦ Encrypt(K, 0). However, to

recover Φ with attacks by linearization6, it should be ensured that Φ ◦ Encrypt(K,x1) = 0 (or any other
constant) with non-negligible probability7. This leads us to restrict the set of distinguishing functions to the
polynomials Φ satisfying

AdvΦ,x1 def
= |Pr(Φ ◦ Encrypt(K,x1) = 0)− Pr(Φ ◦ Encrypt(K, 0) = 0)| (1)

5 without using the operatorsQi.
6 It consists of recovering the monomial coefficients of Φ (indexed by S) by solving a linear system.
7 By Lemma 4, it follows that Φ ◦ Encrypt(K,x1) = 0 with probability 1.



is non-negligible.
By construction of Encrypt (see the previous section), the degree of such polynomials Φ is larger than

κ implying that their expanded representation is exponential-size provided κ = Θ(λ). Moreover, from
Proposition 3, A cannot expect to recover factored or semi-factored representations. Nevertheless, efficient
attacks by linearization could appear by composing functions. For concreteness, A could generate new vec-
tors v1, . . . ,vt by applying the operatorsQi to the challenge encryption c1 and new encryptions8 c2, . . . , cr
in the hope that there exists a small polynomial ϕ s.t. ϕ(v1, . . . ,vt) = Φ(c1) (Φ satisfying (1)). We restrict
the generation of these new vectors in a natural way encapsulated in the following definition.

Definition 4. GV denotes an arbitrary efficient procedure with encryptions c1, . . . , cr as input which out-
puts vectors v1, . . . ,vt built by recursively applying operators Qi and/or linear combinations.

c1

c2

c3

c4

v1=c1+c2

v2=Q1(c3,c4)

v3=Q2(v2,v2)

v4=Q3(v1,v3)

Fig. 3. Example of a procedure GV. By construction, each component of Svi can be written
as a (known) polynomial defined over the components of Sc1, . . . , Scr .

By fixing c2, . . . , cr and by using the arithmetic expression of the operatorsQi in GV, ϕ◦GV can be seen
as a polynomial ϕ ◦ GVc2,...,cr ∈ Zn[X1, . . . , X2κ] satisfying ϕ ◦ GVc2,...,cr(c1) = ϕ ◦ GV(c1, c2, . . . , cr).
Let v be a vector output by GV. By construction, each component of Sv can be expressed by a (known)
polynomial defined over the components of Sc1, . . . , Scr. The key idea of our analysis is that there is no
other relevant way to use the encryption oracle and the operators Qi. This implicitly means that an attacker
cannot derive new operators9 Q (for chosen families P). Corollary 2 ensures that this cannot be directly
done by recovering S. This is extensively discussed in Appendix F where it is shown that this problem is
difficult in general (the discussion is based on Lemma 6 and a modified version of Lemma 5).

Informally, we restrict the set of functions satisfying (1) to the functions ϕ ◦ GV where ϕ is a small
polynomial10, i.e. deg ϕ = o(λ).

Conjecture 2. Assume κ = Θ(λ). The CPA attacker A arbitrarily chooses x ∈ Zr
n and generates encryp-

tions c2, . . . , cr of respectively x2, . . . , xr by using the encryption oracle. The encryption scheme is IND-
CPA secure if A cannot output11 a procedure GV and an arithmetic circuit of a o(λ)-degree polynomial
ϕ ∈ Zn[X1, . . . , X2κt] s.t. Advϕ◦GVc2,...,cr ,x1 is non-negligible.

8 obtained by requesting the encryption oracle.
9 Definition 4 is irrelevant otherwise.

10 If deg ϕ = Ω(λ) then ϕ cannot be recovered with attacks by linearization because it is exponential-size (see Remark 1).
11 with non-negligible probability



Remark 4. Ways to randomize QGen are proposed in Appendix F. This randomization makes the system of
nonlinear equations derived from the operators Qi widely unknown. One can reasonably wonder whether
the factoring assumption can be removed by adding this randomness. In other words, does Conjecture 2
remain true if n is a small/large prime? If so, the security could entirely rely on the difficulty of solving
systems of nonlinear equations.

6 Security Analysis

Proposition 4. Assume κ = Θ(λ). The additively homomorphic encryption scheme is IND-CPA secure
assuming Conjecture 1 and Conjecture 2.

Proof. (Sketch.) Details are given in Appendix E.
To simplify the proof (and the task of the attacker), we fix S = Id. Let ϕ be an arbitrary non-null

polynomial of Zn[X1, . . . , X2κt] such that deg ϕ < κ chosen by the CPA attacker. The polynomial ϕ ◦
GVc2,...,cr can be written as a polynomial ϕ ◦ GVc2,...,cr ∈ Zn[X1, . . . , X2κ] defined by

ϕ ◦ GVc2,...,cr(r0, . . . , rκ−1, x0, . . . , xκ−1) = ϕ ◦ GV(c1, . . . , cr)

where c1 = (r0x0, r0, . . . , rκ−1xκ−1, rκ−1)← Encrypt(K,x).
By fixing x0 + · · · + xκ−1 = x and by using the equality xκ−1 = x− xκ−2 − . . . − x0, ϕ ◦ GVc2,...,cr

can be written as a polynomial ϕ ◦ GVx,c2,...,cr of Zn[X1, . . . , X2κ−1] satisfying

ϕ ◦ GVx,c2,...,cr(r0, . . . , rκ−1, x0, . . . , xκ−2) = ϕ ◦ GVc2,...,cr(r0, . . . , rκ−1, x0, . . . , xκ−1)

We show that this polynomial is not null implying that ϕ ◦ GVx,c2,...,cr(r0, . . . , rκ−1, x0, . . . , xκ−2) = 0
with negligible probability assuming Conjecture 1 (see Lemma 4) proving that Pr(ϕ ◦ GVc2,...,cr(c1) = 0)
is negligible for each x ∈ Zn. It follows that the scheme is IND-CPA secure assuming Conjecture 2.

�
Remark 5. Randomness can be introduced in AddGen by outputting Add← QGen(S, (p1, p2), σ, σ′) where
σ, σ′ randomly chosen in K. Moreover, by introducing randomness as explained in Appendix F, one may
reasonably think that the factoring assumption is not required anymore.

7 Efficiency

The computation of an operator Q requires O(κ3) multiplications in Zn. Thus, the running time of Add
O(κ3M(n)) where M(n) denotes the runtime of multiplications done in Zn. The running time of decryption
is O(κ2M(n)). A ciphertext contains a 2κ-vector in Zn, implying that the ratio of ciphertext size to plaintext
size is 2κ. In terms of storage, each operator Q contains O(κ3) elements of Zn, which leads to a space
complexity in O(|n|κ3).

We identified only the attack by linearization described in Section 5.1. To ensure the irrelevancy of this
attack, it suffices to choose κ ≥ 30: in this case, the linear system contains more than 1030 variables. By
choosing κ = 30, applying the operator Add requires approximatively 3 · 104 modular multiplications.

8 Perspectives

The first perspective of this work is to build an FHE by developing a multiplicative operator. To get a formal
security proof under Conjecture 1 and Conjecture 2, it suffices (as done in the proof of Proposition 4) to
show that ϕ ◦ GVx,c2,...,cr is not identically zero. While we did not find a provably-secure construction, we
propose the simplest construction potentially secure. The security proof is left as an open problem for further
research.



Construction. Let S ← KeyGen(λ), let Add← AddGen(S) and let P = (p1, p2) be the family of polyno-
mials: Z2

n × Z2
n → Zn defined by

– p1(x, x
′) = x1x

′
1

– p2(x, x
′) = x2x

′
2

MultGen(S) outputs the operatorsQi ← QGen(S,P, σi, σ′
i) where σi, σ′

i are randomly chosen inK ensuring
that

∪
i∈K{σi − σ′

i mod κ} = K (a description of Qi is given in Figure 1).

Mult(c, c′)

1. v0 ← Q0(c, c
′)

2. for i = 1 to κ− 1

(a) wi ← Qi(c, c
′)

(b) vi ← Add(vi−1,wi)

3. Output vκ−1

Proposition 5. Let Mult← MultGen(S) is a valid multiplicative homomorphic operator.

Proof. Let c = S−1(r0x0, r0, . . . , rκ−1xκ−1, rκ−1) and c′ = S−1(r′0x
′
0, r

′
0, . . . , r

′
κ−1x

′
κ−1, r

′
κ−1) be two

encryptions of respectively x, x′ and let c′′ ← Mult(c, c′). We easily check that:

vκ−1 = S−1



∏κ−1
i=0 rσir

′
σ′
i
×

∑κ−1
i=0 xσix

′
σ′
i∏κ−1

i=0 rσir
′
σ′
i∏κ−1

i=0 rσi+1 mod κr
′
σ′
i+1 mod κ ×

∑κ−1
i=0 xσi+1 mod κx

′
σ′
i+1 mod κ∏κ−1

i=0 rσi+1 mod κr
′
σ′
i+1 mod κ

· · ·∏κ−1
i=0 rσi−1 mod κr

′
σ′
i−1 mod κ ×

∑κ−1
i=0 xσi−1 mod κx

′
σ′
i−1 mod κ∏κ−1

i=0 rσi−1 mod κr
′
σ′
i−1 mod κ


As

∪
i∈K{σi − σ′

i mod κ} = K, it is ensured that each product xix′j appears only once in the above
sums. It follows that Decrypt(c′′) =

∑
i,j xix

′
j = xx′.

�

Can the values σi, σ′
i be recovered? We are strongly convinced that this problem is difficult but we do not

provide any formal result in this sense. If we assume that a CPA attacker cannot recover σi, σ′
i, recovering a

distinguishing function ϕ ◦ GV seems very hard.
A second motivating perspective would consist of removing the factoring assumption required to prove

formal results (Lemma 1, Lemma 5 and Proposition 3). This assumption defeats the whole “post-quantum”
purpose of multivariate cryptography [11]. In our opinion, this can be overcome by introducing randomness
into our scheme (see Remark 4 and Remark 5). Finally, we think that efficient multilinear maps [2], [5] or
functional encryptions [1] can be developed with the material of this paper.
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A Toy implementation of an operator Q

In this section, we propose a concrete computation of Q ← QGen(S, (p1, p2), 0, 0) with p1(x, x
′) = x1x

′
1

and p2(x, x
′) = x2x

′
2 for κ = 1.

Given S :=

[
s11 s12

s21 s22

]
with ∆ = s11s22 − s12s21 ∈ Z∗

n

Q
((

c1
c2

)
,

(
c′1
c′2

))
= ∆−1

[
(s22s

2
11 − s12s

2
21)c1c

′
1 + (s22s11s12 − s12s21s22)(c1c

′
2 + c2c

′
1) + (s22s

2
12 − s12s

2
22)c2c

′
2

(s11s
2
21 − s21s

2
11)c1c

′
1 + (s11s21s22 − s21s11s12)(c1c

′
2 + c2c

′
1) + (s11s

2
22 − s21s

2
12)c2c

′
2

]
B Proofs of the lemmas of Section 2.1

Throughout this section n = pq is a randomly chosen RSA modulus such that η = ⌈log2 p⌉ = ⌈log2 q⌉.
Given a polynomial ϕ ∈ Zn[X1, . . . , Xr], zϕ,p = |{x ∈ Zr

n|ϕ(x) ≡ 0 mod p}|/nr and zϕ,q = |{x ∈
Zr
n|ϕ(x) ≡ 0 mod q}|/nr.

B.1 Proof of Lemma 1

To prove this result, we assume the existence of an p.p.t algorithm A solving our problem and we build an
algorithm B which factors n. Let ϕ← A(n). By using the Chinese remainder theorem and the specificities
of A, we have:

1. zϕ,p and zϕ,q are non-negligible (otherwise zϕ is negligible).
2. 1− zϕ,p or 1− zϕ,q is non-negligible (otherwise 1− zϕ is negligible).

Assume that 1 − zϕ,p is non-negligible and pick x ∈ Zr
n at random. The probability of the conjunction

of two following independent events ϕ(x) ̸≡ 0 mod p and ϕ(x) ≡ 0 mod q is non-negligible, i.e. it is
equal to (1− zϕ,p)zϕ,q. It follows that q = gcd(ϕ(x), n) with non-negligible probability.

�

B.2 Proof of Lemma 2

Assume the existence of a p.p.t-algorithm A outputting the expanded representation of a non-null polyno-
mial ϕ ∈ Zn[X] such that zϕ = 1. Clearly ϕ mod p (resp. ϕ mod q) is a multiple of Xp − X (resp.
Xq − X). It follows that ϕ has two polynomials m1,m2 such that k = degm1 − degm2 is a multiple of
p− 1 and/or q − 1. We distinguish the two following cases:

1. k is a multiple of p − 1 but not of q − 1 (resp. k is a multiple of q − 1 but not of p − 1). In this case,
gk − g mod n is a non-zero multiple of p (resp. q) with a probability larger than 1/2 (over the choice
of g). It follows that p = gcd(n, gk − g mod n).

2. k is a multiple of lcm(p − 1, q − 1). Since k is even, k = 2tr with r odd and t ≥ 1. A straightforward
argument shows that if g is chosen at random from Zn then with probability at least 1/2 (over the choice
of g) one of the elements in the sequence gk/2, gk/4, . . . , gk/2

t
mod n is a non-trivial square root of

unity (not in {1;−1}) that reveals the factorization of n.

As the exponents of ϕ are polynomial-size, k is polynomial-size implying that all the previous computations
are polynomial-time.

�



B.3 Proof of Lemma 3

We assume the existence of a p.p.t algorithm which outputs an arithmetic circuit of ϕ ∈ Zn[X] such that
zϕ is non-negligible. Let ϕ0 = X · ϕ. Clearly zϕ0 is non-negligible implying that 1 − zϕ0 is negligible
(from Lemma 1). Thus, it can be assumed that 1 − zϕ0 < 1/2η2. It follows that 1 − zϕ0,p < 1/2η2 and
1− zϕ0,q < 1/2η2.

Let ϕ, ϕ′ ∈ Zn[X] such that ϕ′(0) = 0 and let ϕ′′ denote the polynomial defined by ϕ′′ = ϕ′ ◦ (r · ϕ).
Clearly, if r is uniform over Zn then the expectation of 1− zϕ′′,p is equal to

E(1− zϕ′′,p) = (1− zϕ,p)(1− z′ϕ,p)

Since 1− zϕ′′,p ≥ 0, the probability that 1− zϕ′′,p ≥ a · E(1− zϕ′′,p) is smaller than 1/a. It follows that

1− zϕ′′,p ≤ (1− zϕ,p)/2 (2)

with probability larger than 1− 1/η2 provided 1− z′ϕ,p ≤ 1/2η2.
Let us consider the recursive sequence defined by ϕi(x) = ϕ0 ◦ (ri · ϕi−1) where ri uniform over Zn.

By iterating the inequality (2), we get

1− zϕi,p ≤ 2−i(1− zϕ0,p)

with probability larger than 1− i/η2. It follows that 1− zϕη ,p < 2−η implying that

1− zϕη ,p = 0

with probability larger than 1 − 1/η > 2/3. Similarly, we show that 1 − zϕη ,q = 0 with probability larger
than 1− 1/η > 2/3 implying that 1− zϕη = 0 with probability larger than 1/3. Moreover, ϕη is not null if
ri ̸= 0 for any i ∈ {1, . . . , η} implying that ϕη is null with negligible probability. Consequently, assuming
Conjecture 1, it is difficult to recover ϕη implying that it is difficult to recover ϕ0 and thus ϕ. This concludes
the proof.

�

B.4 Proof of Lemma 4

This result can be shown by induction over r. By Lemma 3, the result is true for r = 1. Let us assume
the result true for any r < r0 but not for r = r0, i.e. there exists a p.p.t-algorithm A which outputs an
arithmetic circuit of a non-null polynomial ϕ ∈ Zn[X1, . . . , Xr0 ] such that zϕ is non-negligible. By fixing
X2, . . . , Xr0 to randomly chosen values x2, . . . , xr0 ∈ Zn , we get an univariate polynomial ϕx2,...,xr0

defined by ϕx2,...,xr0
(x1) = ϕ(x1, . . . , xr0). At least one monomial coefficient of ϕx2,...,xr0

can be written
as a non-null (r0 − 1)-variate polynomial φ evaluated over x2, . . . , xr0 . By using the induction hypothesis,
zφ is negligible implying that φ(x2, . . . , xr0) ̸= 0 with overwhelming probability. It follows that ϕx2,...,xr0

is not null with overwhelming probability. Moreover, as zϕ is non-negligible, zϕx2,...,xr0
is non-negligible

with non-negligible probability. This contradicts the case r = 1.
�

C Proofs of the lemmas of Section 2.2

C.1 Proof of Lemma 5

We start by proving a preliminary result (which can be seen as a special case of Conjecture 1).



Lemma 7. Let p be an η-bit prime and π1, π2 be two monomials of Zp[X1, . . . , Xr] such that π1 ̸= π2 and
deg π1, deg π2 polynomials in η. The probability that π1(x) = π2(x) is negligible if x uniform over Zr

p.

Proof. (Sketch.) Consider the case r = 1. As π1 ̸= π2, π(X) = π1(X)/π2(X) = Xγ where γ = deg π1 −
deg π2 ̸= 0 is polynomial. So the number of x ∈ Z∗

p such that π(x) = 1 is polynomial, i.e. it is smaller than
γ2.

�

Let D be the probability distribution of (y0, . . . , yκ−1). The proof consists of building a polynomial
factoring algorithm A by using a solver B of Problem 1 as subroutine12. Let us consider the following
polynomial-time algorithm A:

Input: n = pq

(s1, . . . , sm, π)← AS(n)

Repeat

1. Let (y0, . . . , yκ−1)
$← D

2. Compute sj = sj(y0, . . . , yκ−1) for all j = 1, . . . ,m.
3. Compute Π = π(y0, . . . , yκ−1)
4. Apply B on the inputs s1, . . . , sm, i.e. ΠB ← B(s1, . . . , sm)

until gcd(Π −ΠB, n) ̸= 1

output gcd(Π −ΠB, n)

By construction, this algorithm is correct. Let us show that it terminates in polynomial-time. First, each
step of A can be computed in polynomial-time implying that A is polynomial if the expectation of the
number of steps of A is polynomial (or equivalently, if the probability to get gcd(Π − ΠB, n) ̸= 1 is not
negligible). As deg π < κ, π is not κ-symmetric implying that there exists σ∗ ∈ K and y∗0, . . . , y

∗
κ−1 such

that π(y∗0, . . . , y
∗
κ−1) ̸= π(y∗σ∗ , . . . , y∗σ∗−1 mod κ). Let πσ∗ be the monomial s.t. deg πσ∗ = deg π defined

by πσ∗(y0, . . . , yκ−1) = π(yσ∗ , . . . , yσ∗−1 mod κ). By construction, π ̸= πσ∗ implying that

π(y0, . . . , yκ−1) ̸≡ πσ∗(y0, . . . , yκ−1) mod q (3)

with overwhelming probability according to Lemma 7 (because the variables yℓi involved13 in π are i.i.d.
according to the uniform distribution over Zn).

Let us consider the function h :
(
Zt
n

)κ → (
Zt
n

)κ such that (y′0, . . . , y
′
κ−1) = h(y0, . . . , yκ−1) is defined

by

– y′ℓi ≡ yℓi mod p for all (ℓ, i) ∈ K × T
– y′ℓi ≡ yℓ+σ∗ mod κ,i mod q for all (ℓ, i) ∈ K × T .

Because of the symmetry of the (additive) constraints, if (y0, . . . , yκ−1) satisfies the constraints of Problem
1 then (y′0, . . . , y

′
κ−1) also satisfies these constraints. It implies that (y0, . . . , yκ−1) and (y′0, . . . , y

′
κ−1) have

the same probability under D, i.e.

PrD(y0, . . . , yκ−1) = PrD(y
′
0, . . . , y

′
κ−1)

12 B is assumed to solve Problem 1 if it outputs π with non-negligible probability
13 According to Problem 1, i ∈ IF .



Let Π ′ = π(y′0, . . . , y
′
κ−1). As the functions sj are κ-symmetric polynomials, we getsj(y′0, . . . , y

′
κ−1) =

sj(y0, . . . , yκ−1) for all j = 1, . . . ,m. It follows that

PrD(ΠB = Π) = PrD(ΠB = Π ′)

As B is assumed to solve Problem 1, PrD(ΠB = Π) is non-negligible implying that PrD(ΠB = Π ′) is
non-negligible.

By construction Π ≡ Π ′ mod p. Since Π ′ ≡ πσ∗(y0, . . . , yκ−1) mod q, Equation (3) implies that
Π ̸≡ Π ′ mod q with overwhelming probability. It follows that p = gcd(n,Π − Π ′) with overwhelming
probability. Consequently, A terminates (when ΠB = Π ′) in polynomial-time.

�

C.2 Proof of Lemma 6

A multiset is a generalization of the notion of a set in which members are allowed to appear more than
once. For example, there is a unique set {a, b} containing elements a and b and no others, but there are
many multisets containing a and b (and no others) with various multiplicities. For instance, in the multiset
{a, a, b}, a has multiplicity 2 and b has multiplicity 1. Given a set E, E[u] denotes the set of multisets
{x1, . . . , xu} such that xi ∈ E.

Let I : {1, . . . , t}[d] → Ed be the one-to-one function defined by I(M) =
∑κ−1

ℓ=0

∏
i∈M Xi+ℓt. Let

α ∈ N \ {0}. As the application J : E
[α]
d → Zn[X1, . . . , Xκt] defined by J(ϕ0, . . . , ϕα−1) = ϕ0 · · ·ϕα−1 is

injective, any multiset Φ = {ϕ0, . . . , ϕα−1} ∈ E
[α]
d can be identified to the polynomial J(Φ) = ϕ0 · · ·ϕα−1.

Lemma 8. The polynomials of E[α]
d are linearly independent for any α ≤ κ.

Proof. Let Φ0 = {ϕ0, . . . , ϕα−1} ∈ E
[α]
d . By construction, Φ0 =

∏α−1
k=0

∑κ−1
ℓ=0

∏
i∈I−1(ϕk)

Xi+ℓt. Clearly,
the monomial

∏α−1
k=0

∏
i∈I−1(ϕk)

Xi+kt belongs to Φ0 and does not belong to any other polynomial Φ ∈
E

[α]
d \ {Φ0}.
�

Let p, q be two arbitrary polynomials. Without loss of generality, it can be assumed that p, q are homoge-
neous such that deg p = deg q + 1 ≤ κ. The polynomial r = s0 · q(s1, . . . , sm) − p(s1, . . . , sm) can be
written as a linear combination L over E[deg p]

d . Because the polynomials s0, s1, . . . , sm are linearly indepen-
dent, L is not zero. As deg p ≤ κ, Lemma 8 ensures that the polynomials of E[deg p]

d are linearly independent
implying that r is not identically equal to the zero polynomial.

�

D Proof of Proposition 3

The ith row of S is denoted by si. Let c1, . . . , cr be the encryptions of x1, . . . , xr received by the CPA
attacker from the encryption oracle, i.e. ci = S−1(ri0xi0, ri0, . . . , ri,κ−1xi,κ−1, ri,κ−1). Let us consider the
κ tuples (yℓ)ℓ=0,...,κ−1 defined by

yℓ = ((xiℓ, riℓ)i=1,...,r, s2ℓ+1, s2ℓ+2)

By noticing that a randomly chosen matrix S is not invertible with negligible probability, these tuples are
generated to probability distribution statistically indistinguishable from the probability distribution of Prob-
lem 1 (note that only the xiℓ are involved in additive constraints). By construction, each component of ci
can be written as κ-symmetric polynomial defined over (y0, . . . , yκ−1).



We denote by S[0] the two first rows of S, S[1] the two next rows... and S[κ−1] the two last rows of S.
Given an arbitrary τ ∈ K, Sτ denotes the matrix where the two fist rows are S[τ ], the two next rows are
S[τ+1 mod κ]... and the two last rows are S[τ−1 mod κ]. By construction,

QGen(S,P, σ, σ′) = QGen(Sτ ,P, σ, σ′)

It follows that each monomial coefficient of Q can be written as a κ-symmetric multivariate polynomial
defined over (y0, . . . , yκ−1).

Consequently, a CPA attacker only knows κ-symmetric polynomials defined over (y0, . . . , yκ−1). By
Lemma 5, it is not possible to polynomially recover any non κ-symmetric monomial π defined over the
coefficients sij assuming the hardness of factoring.

Let ϕ ∈ P γ
S , i.e. ϕ(v) =

∏γ
t=1 Lit(v) and let π =

∏γ
t=1 sit1. Because γ < κ, π is an evaluation of a

monomial defined over (y0, . . . , yκ−1) such that deg π < κ. Clearly π = ϕ(1, 0, 0, . . .) implying that the
knowledge of Rϕ can be used to efficiently compute π. By Lemma 5, π cannot be recovered implying that
Rϕ cannot be recovered.

�

E Proof of Proposition 4

We start by proving a useful algebraic result.

Lemma 9. Let ϕ ∈ Zn[X0, . . . , Xκ−1, Y0, . . . , Yκ−1] be a non-null polynomial such that each monomial

Xe0
0 · · ·X

eκ−1

κ−1 Y
e′0
0 · · ·Y

e′κ−1

κ−1 satisfies

– ∃i ∈ K s.t. ei = e′i = 0

– ei = 0⇒ e′i = 0

For any α ∈ Zn, the polynomial ϕα = ϕ(X0, . . . , Xκ−1, Y0, . . . , Yκ−2, α− Y0 − . . .− Yκ−2) is not null.

Proof. Let ϕ =
∑ρ

i=1 aiMi where Mi = Xei0
0 · · ·X

ei,κ−1

κ−1 Y
e′i0
0 · · ·Y

e′i,κ−1

κ−1 and ai ∈ Z∗
n, let m = maxi e

′
i,κ−1.

If m = 0 then the result is trivially true. Thus, one can assume that m > 0. By using the equality
Yκ−1 = α − Y0 − . . . − Yκ−2, we have ϕα =

∑ρ
i=0 ai(α − Y0 − . . . − Yκ−2)

e′i,κ−1M ′
i where M ′

i =

X
ei,0
0 · · ·Xei,κ−1

κ−1 Y
e′i,0
0 · · ·Y

e′i,κ−2

κ−2 .

Given a monomial M = Xe0
0 · · ·X

eκ−1

κ−1 Y
e′0
0 · · ·Y

e′κ−1

κ−1 , E(M) denotes the set {j ∈ K|ej ̸= 0}. Let i0
s.t. e′i0,κ−1 = m. As ∃j ∈ K s.t. eij = ei′j = 0, one can assume that 0 ̸∈ E(M ′

i0
). Let us show that the

monomial Y m
0 M ′

i0
belongs to ϕα (implying that ϕα is not null). To achieve this, it suffices to show that this

monomial does not belong to any polynomial (α− Y0 − . . .− Yκ−2)
e′i,κ−1M ′

i with i ̸= i0.
Suppose that there exists i1 ̸= i0 s.t. Y m

0 M ′
i0

belongs to (α − Y0 − . . . − Yκ−2)
e′i1,κ−1M ′

i1
. Clearly,

0 ̸∈ E(M ′
i0
) implies that 0 ̸∈ E(M ′

i1
) and e′i1,κ−1 ≥ m (because the constraint ei = 0 ⇒ e′i = 0 implies

that the exponent of Y0 in M ′
i1

is equal to 0). By definition of m, it follows that e′i1,κ−1 = m implying that
M ′

i0
̸= M ′

i1
(because Mi0 = Mi1 otherwise). Thus, Y m

0 M ′
i0

does not belong to (α−Y0− . . .−Yκ−2)
mM ′

i1
.

This concludes the proof.
�

To simplify the analysis, we enhance the power of A by revealing S. If A can recover ϕ for a specific
choice of S then it can do it for any choice of S. Thus, we can fix S = Id without loss of generality. The
CPA attacker chooses GV (see Definition 4) and x ∈ Zr

n and then it invokes the encryption oracle to get



encryptions c2, . . . , cr of x2, . . . , xr. For sake of simplicity (but without loss of generality), we assume that
GV consists of recursively applying operators Qi but not linear combinations.

Let ϕ be an arbitrary non-null polynomial of Zn[X1, . . . , X2κt] such that deg ϕ < κ chosen by the
CPA attacker. The polynomial ϕ ◦ GVc2,...,cr can be written as a non-null polynomial ϕ ◦ GVc2,...,cr ∈
Zn[X1, . . . , X2κ] defined by

ϕ ◦ GVc2,...,cr(r0, . . . , rκ−1, x0, . . . , xκ−1) = ϕ ◦ GVc2,...,cr(c1)

where c1 = (r0x0, r0, . . . , rκ−1xκ−1, rκ−1).
By construction of the operator Add, each vector v output by GV is independent of c1 or satisfies v =(

a0 · re0(e · x0 + b0), a0 · re0, . . . , aκ−1 · reκ−1(e · xκ−1 + bκ−1), aκ−1 · reκ−1

)
where ai, bi ∈ Zn only de-

pends on c2, . . . , cr. Consequently, as deg ϕ < κ, each monomial re00 · · · r
eκ−1

κ−1 x
e′0
0 · · ·x

e′κ−1

κ−1 of ϕ ◦ GVc2,...,cr
satisfies

– ∃i ∈ K s.t. ei = e′i = 0
– ei = 0⇒ e′i = 0.

By fixing x0 + · · · + xκ−1 = x (which is the value encrypted by c1) and by using the equality xκ−1 =
x − xκ−2 − . . . − x0, ϕ ◦ GVc2,...,cr can be written as a polynomial ϕ ◦ GVx,c2,...,cr of Zn[X1, . . . , X2κ−1]
satisfying

ϕ ◦ GVx,c2,...,cr(r0, . . . , rκ−1, x0, . . . , xκ−2) = ϕ ◦ GVc2,...,cr(r0, . . . , rκ−1, x0, . . . , xκ−1)

By Lemma 9, this polynomial is not null.
Consequently, assuming Conjecture 1, ϕ ◦ GVx,c2,...,cr(r1, . . . , rκ, x1, . . . , xκ−1) = 0 with negligible

probability according to Lemma 4. Thus, assuming Conjecture 2, our scheme is IND-CPA secure.
�

F About the impossibility of deriving new operators Q

The definition of GV (and thus Conjecture 1) would be irrelevant if new operators Q (for chosen families
P) could be polynomially derived from the public operators Q1, . . . ,Qρ. Let Q1 ← QGen(S,P1, 0, 0) and
Q2 ← QGen(S,P2, 0, 0). Clearly, the operator Q3 = Q1 + Q2 is the operator output by QGen(S,P1 +
P2, 0, 0). Thus, it is possible to build new relevant operators, e.g. Q3. However, as linear combinations
are considered in GV, this new operator is not useful in the sense that the same vectors can be derived by
procedures GV using or not this operator. In this section, we wonder whether one can derive new operators
Q dealing with families of polynomials P which cannot be obtained by linear combinations of P1, . . . ,Pρ.
Corollary 2 ensures that this cannot be directly done by recovering S.

F.1 A discussion based on Lemma 6

Let S be three randomly chosen invertible matrices of Z2κ×2κ
n , let P0, . . . ,Pr be ρ+1 families of quadratic

polynomials satisfying requirements of Definition 2 and let Qi ← QGen(S,Pi, 0, 0). Moreover, we assume
that P0 ̸∈ co(P1, . . .Pρ).

In order to simplify the analysis (and the task of the attacker), let us assume that S−1 is replaced by the
identity matrix in QGen, i.e.

(q1, . . . , q2κ) = (p1 ◦ z0, p2 ◦ z0, . . . , p1 ◦ zκ−1, p2 ◦ zκ−1)



In this case, the monomial coefficients of the public operators Q1, . . . ,Qρ can be written as polynomials of
F2 (see Section 2.2) defined over the tuples y0, . . . yκ−1 defined by

yℓ = (s2ℓ+1, s2ℓ+2)

By using the fact that P0 ̸∈ co(P1, . . . ,Pρ), we easily show that the coefficients of Q0 cannot be writ-
ten as linear combinations defined over the coefficients of Q1, . . . ,Qρ. By Lemma 6, there does not exist
polynomials p, q of degree smaller than κ such that α · q(Q1, . . . ,Qρ)− p(Q1, . . . ,Qρ) is identically equal
to 0. In other words, assuming Conjecture 1, a CPA attacker cannot recover small degree polynomial p, q
(deg p, q < κ) s.t.

α = p(Q1, . . . ,Qρ)/q(Q1, . . . ,Qρ)

with non-negligible probability. While this is not sufficient to prove that Q0 cannot be recovered, this
strongly enhances this idea.

F.2 An extension of Lemma 5

Let (Qi)i=1,...,ρ be the operators defined in the previous section and let Q ← QGen(S,P, σ, σ′) be an
arbitrary operator such that σ ̸= 0 and/or σ′ ̸= 0. In this section, we show that an attacker cannot recover
Q only given (Qi)i=1,...,ρ (and accesses to the encryption oracle). In particular, this will prove that a CPA
attacker of the additive encryption scheme cannot derive new operators Add. To achieve this, we start by
strengthening the definition of κ-symmetry (see Definition 1).

Definition 5. A polynomial s ∈ Zn[X1, . . . , Xκt is κ-symmetric if for any y0, . . . , yκ−1 ∈ Zt
n and for any

permutation σ of K, s(y0, . . . , yκ−1) = s(yσ(0), . . . , yσ(κ−1)).

Then, instead of considering non κ-symmetric monomials π, we will consider non κ-symmetric polynomi-
als.

PROBLEM 2. Let IF ⊆ {1, . . . , t}, let n be a randomly chosen RSA modulus and let (s1, . . . , sm, π) ←
AS(n) be public κt-variate polynomials satisfying,

– s1, . . . , sm are κ-symmetric
– π is a non κ-symmetric polynomial defined14 over {yℓi|(ℓ, i) ∈ K × IF }.

Let (y0, . . . , yκ−1) i.d.d. drawn according to the uniform distribution over Zt
n s.t. for each i ̸∈ IF , y0i +

. . .+ yκ−1,i = xi where xi ∈ Zn are public.

The challenge is to recover π(y0, . . . , yκ−1) given only15 s1(y0, . . . , yκ−1), . . . , sm(y0, . . . , yκ−1).

Lemma 10. Problem 2 is difficult assuming Conjecture 1.

Proof. (Sketch.) The proof exactly follows the proof of Lemma 5 given in Appendix C.1. Nevertheless,
Conjecture 1 is required to ensure that π and πσ∗ are equal with negligible probability.

�

It suffices then to notice that each value known by the CPA attacker is κ-symmetric relatively to the tuples
yℓ defined in the proof of Proposition 3 while each value of Q is not κ-symmetric (only κ-symmetric) and
thus cannot be recovered according to Lemma 10.
14 π(y0, . . . , yκ−1) =

∏
(ℓ,i)∈K×I y

eℓi
ℓi with eℓi = 0 when i ̸∈ IF .

15 and an efficient representation of π, s1, . . . , sm.



F.3 Randomizing the operators Q

The key idea of this section is to add rows to S which are not useful for encryptions. For concreteness, S is
a randomly chosen matrix of Z2κ+δ

n and an encryption c of x is

c = S−1 (r1x1, r1, . . . , rκxκ, rκ, 0, . . . , 0)

Let E be the set16 of the linear combinations over the vectors s2κ+1, . . . , s2κ+δ. By construction, for any
u ∈ E, u·c = 0. Let R be the set of quadratic polynomials r defined by r(c, c′) = u·c×v′ ·c′+v ·c×u′ ·c′
where u,u′ ∈ E and v,v′ ∈ Z2κ+δ

n are arbitrary vectors. By construction, for any r ∈ R and any public
encryptions c, c′,

r(c, c′) = 0

Let Q = (q1, . . . , q2κ+δ) ← QGen(S,P, σ, σ′) and (r1, . . . , r2κ+δ) be randomly chosen in R. By con-
struction, it is ensured that the operator Qrand = (q1 + r1, . . . , q2κ+δ + r2κ+δ) satisfies for any encryptions
c, c′

Qrand(c, c′) = Q(c, c′)

16 E can be recovered by the Attacker.


