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Abstract

The challenges faced in securing embedded computing systems against multifaceted memory
safety vulnerabilities have prompted great interest in the development of memory safety coun-
termeasures. These countermeasures either provide protection only against their corresponding
type of vulnerabilities, or incur substantial architectural modifications and overheads in order
to provide complete safety, which makes them infeasible for embedded systems. In this paper,
we propose M-MAP: a comprehensive system based on multi-factor memory authentication for
complete memory safety, inspired by everyday user authentication factors. We examine certain
crucial theoretical and practical implications of composing memory integrity verification and
bounds checking protection schemes in a comprehensive system. Based on these implications,
we implement M-MAP with hardware based memory integrity verification and software based
bounds checking to achieve a balance between hardware modifications and performance. We
demonstrate that M-MAP implemented on top of a lightweight out-of-order processor delivers
complete memory safety with only 32% performance overhead on average, and incurs minimal
hardware modifications and area overhead.
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1 Introduction
The widespread proliferation of computer security vulnerabilities and attacks has generated intense
interest in the development of processor architectures that provide inherent protection against
weaknesses in both hardware and software [1]. Memory is fundamental to the concept of compu-
tation, and as such it is given a high degree of implicit trust by the central processing unit which
relies on it. If an attacker can manipulate a computer’s memory in even a limited fashion, he can
often leverage this to wrest full control of program execution. For this reason, the most prevalent
and dangerous classes of attacks have focused on exploitation of memory vulnerabilities [2].

Security attacks on a computer’s memory can be broadly classified into software based and
hardware based attacks. Figure 1 shows these two attack channels. Software based attacks are
generally the attacks against spatial and/or temporal safety [3], and are launched by supplying
a malicious input to the program, e.g. to exploit a buffer overflow vulnerability, through the
legitimate I/O channels. In attacks on spatial safety, an attacker is able to abuse unchecked
pointer dereferencing to read or write an inappropriate section of memory. Attacks on temporal
safety involve performing a valid memory dereference at an inappropriate time: for instance, reading
memory before it is initialized. Because of this indirect modification of memory by the adversary,
we refer to such attacks as indirect memory tampering or simply indirect attacks. E.g., for buffer
overflows, the attacker typically takes advantage of an unchecked string copy or a bounded memory
copy, where the length of the structure to be copied is taken from user input, to write past the end
of an array or structure and onto some other sensitive data. Other vulnerabilities in this class may
allow direct arbitrary read/write of memory through a user-supplied pointer offset, or, more subtly,
may inadvertently disclose sensitive regions of memory by making incorrect assumptions about the
size or location of a structure being read (a famous example being the recent OpenSSL "Heartbleed"
bug of 2014 [2]). Similarly reading memory that has since been reallocated can allow an attacker to
forge data or function pointers. Attacks exploiting both spatial and temporal vulnerabilities have
proven to be highly successful techniques, effective against many popular software products in the
past and present. Hardware-based attacks on memory are the ones against its data integrity and
data freshness, and typically involve various forms of “direct" attacks exploiting physical access to
the device [4]. For performance reasons, many hardware devices, sockets, and ports both internal
and external to a computer are given direct access to main memory. A malicious device can exploit
this low-level access to read or write any portion of memory it has access to (often the entire
4GB 32-bit address space). Practical attacks of this nature have been demonstrated by easy-to-
use tools such as Inception [5], which exploits DMA access through PCI/PCI Express interfaces
such as FireWire, Thunderbolt, ExpressCard, and PC Card to completely bypass operating-system
authentication mechanisms in systems running Windows, Mac OS X, or Linux [6]. We call such
attacks as direct memory tampering or direct attacks.

Existing memory safety techniques can also be divided into two main groups. Most of the
software based or indirect attacks can be prevented by bounds checking techniques which have
been proposed in several different flavors. For hardware based or direct attacks, memory integrity
verification schemes enable the trusted CPU to detect any illegitimate data modification [7]. We
discuss both types of countermeasures in detail in the later sections.

Clearly, these schemes protect only against their corresponding type of attacks. Whereas a
comprehensively secure processor architecture must provide protection against both hardware and
software attacks as the system can be compromised if either one is possible. Embedded systems
are often more vulnerable to both direct and indirect attacks because the adversary typically has
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Figure 1: Memory Attacks: An adversary can alter the normal control flow of a program by either (a) Indirectly
tampering with the main memory using legitimate I/O channels; or (b) Directly tampering with the main memory
through a compromised device on the system bus.

the physical access to these devices. Therefore, such systems also need to prevent both types of
attacks. As a direct consequence, in order to provide complete safety with minimal overheads,
bounds checking and integrity verification techniques should coexist in the system. Potentially,
these techniques can be implemented either in software, hardware or a combination of both.

In this paper, we propose and implement M-MAP: an architecture based on Multi-factor
Memory Authentication for secure embedded Processors. We first create an analogy between the
daily life user authentication and memory authentication based on multiple authentication factors,
and identify three important memory authentication factors necessary for complete memory safety.
Then we explore the design tradeoffs of the composition of different memory safety techniques to
achieve these authentication factors. We analytically argue which compositions/flavors of bounds
checking and integrity verification techniques are secure as well as feasible in terms of performance
and required modifications to the existing systems. Based on these arguments, we propose M-MAP
which implements both integrity verification and bounds checking in an efficient manner to pro-
vide all memory authentication factors. Since hardware based bounds checking requires substantial
hardware changes [8], M-MAP implements it in software. On the other hand, integrity verification
is implemented in hardware since it offers better performance than its software counterpart, and
only requires minimal changes at DRAM-Cache boundary. We evaluate our proposed architecture
for an in-order processor and an out-of-order processor, both tailored for secure embedded systems
applications. Our experimental results demonstrate only 32% performance overhead on average
compared to an insecure system. We also show that the composition of countermeasures may
introduce new overheads, which are otherwise not applicable.

2 Background of Memory Safety Schemes

2.1 Bounds Checking for Spatial and Temporal Safety

A great amount of research has been done on the subject of detecting and protecting against
software-level memory safety violations. Among the various proposals are software only ap-
proaches [1], [3], [9], [10], [11], [12], [6], [13], [14], [15] and partially or fully hardware-assisted
approaches [16], [8], [17], [4]. Hardware approaches such as CHERI [8] and HardBound [16] result
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in much lower performance overheads. However, these specialized schemes have high area overheads,
and require substantial modifications to the operating systems and Instruciton Set Architectures
(ISAs). The rest of these approaches strike different balances of protection, performance, and com-
patibility with existing applications. A previous survey by Szekeres et al. [18] analyzes the current
state of protection mechanisms available, and the corresponding exploit techniques that have been
used to defeat them. Notably, it identified pointer-based checking as the only class of approaches
to provide complete, non-probabilistic detection of both spatial and temporal memory safety vul-
nerabilities [12]. For our purposes, we will discuss a series of pointer-based checking approaches
developed by Nagarakatte et al. [3], [9], [17], which represents the state of the art in complete
memory safety solutions.

Pointer-based checking, also known as a capability system, treats each pointer as a “capability”,
or a key, carrying with it an associated set of access rights. Metadata representing these capabilities
can be stored inline (as multi-value “fat pointers” [19]); this approach is common in high-level safe
languages, such as Java and C#, and is also used in Cyclone [20], a safe dialect of C/C++.
This is often acceptable for new programs, but does not address the problem posed by the huge
body of unsafe C/C++ code already in existence, most of which cannot be practically ported to
a safe language. Other notable works include Dynamic Information Flow Tracking [21] and [22],
which track all suspicious data in program control flows, and Context based schemes [23] and [24].
However, these schemes suffer from high performance overheads, and high false positive rates that
occur due to pointer aliasing [25]. We thus need a solution that provides full safety while preserving
compatibility with existing C/C++ source code.

SoftBound [3] achieves this by creating a capability system based on a disjoint metadata space,
tracking pointer capabilities in a distinct region of memory specifically reserved for that purpose.
It is a complementary software-based solution implemented via compiler-level instrumentation, by
adding custom passes to the LLVM compiler infrastructure [26]. It is based on a previous hardware-
based scheme, HardBound [16], and provides complete spatial safety by maintaining a base address
and bound corresponding to each pointer. Base and bound values are associated with pointers
upon creation, and are propagated to any derived pointers. Each time a pointer is dereferenced, a
check is performed to ensure that the effective address is within the allocated region; if it is not, a
spatial safety violation is detected and the program is terminated. This approach allows arbitrary
pointer arithmetic without compromising safety guarantees. SoftBound can additionally detect
sub-object overflows by narrowing pointer bounds when creating pointers to structure members.
Due to SoftBound being a state-of-the-art program control flow protection open-source framework,
we employ it in our proposed architecture in this paper [27].

2.2 Memory Integrity Verification

Much of the research on memory integrity verification has remained hardware focused on Merkle
Trees where address and data hashes are mapped to a binary tree, and then accessed and updated
on off-chip DRAM read/writes. R. C. Merkle first introduced the idea of a hash tree (Merkle tree)
for data integrity verification [28]. Since then, several research projects have been attempting to
improve on the idea of Merkle trees. For instance, research has been done on creating energy-
efficient memory integrity verification mechanisms for embedded systems by adding timestamps to
help decrease the runtime of data checking [29]. An example of an attempt on optimizing Merkle
tree is presented by Rogers et al. with a Bonsai Merkle tree [30]. Researchers have also been able
to show that there are optimal parameters for software based hash trees, such as leaf block size
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and tree depth, based on certain factors including the size of the used memory region [31]. And
very recently, Szefer and Biedermann discussed a skewed Merkle tree approach to memory integrity
checking, reasoning that some memory pages are accessed more often than others, so decreasing
the paths from leaf nodes to the root for those pages could increase efficiency [32].

Suh et al. [33] describes two alternative schemes to guarantee memory integrity. The first is
based on a traditional hash tree (Merkle tree), where each node contains the hash of the con-
catenation of its children. Only the root node must be stored in secure memory to maintain the
integrity of the tree. The performance overhead of traversing the hash tree can be quite significant,
but this can be dramatically reduced by caching hash chunks within trusted on-chip L2 cache [7].
The second scheme is a novel method involving incremental multiset hash functions [34], which
are used to maintain a read/write log within trusted on-chip storage of all operations performed
to untrusted off-chip memory; updates to this log are performed with minimal overhead, and the
processor periodically performs an integrity check using the log. For applications that only need to
guarantee memory integrity on a periodic basis (say, before performing certain critical operations),
this can provide significantly lower overhead. However, an important implication here is that of-
fline schemes like the multi-set hash functions implemented in software cannot be used in a stronger
adversarial model, where besides the data memory also the instruction memory is untrusted.

3 Authentication: User vs. Memory
Authentication is a process of verifying the claimed identity of a person or an entity through one or
more authentication factors. User authentication, therefore, refers to the scenario where a person’s
identity is verified in order to grant him the authorization to a certain resource.

3.1 User Authentication Factors

All user authentication mechanisms mainly rely on one or more basic authentication factors which
are as follows:

1. Knowledge Factor: Something that only the user knows, for example a PIN, a password
or a pass phrase etc.

2. Ownership Factor: Something that only the user has, for example an ID card or a physical
token etc.

3. Inherence Factor: Something that only the user is or does, for example signatures or the
biometric identifiers such as fingerprints etc.

Authentication mechanisms based on pattern recognition [35] can also be considered as a new
dimension towards the basic authentication factors. In combination with the basic authentication
factors, user authentication may consider continuous authentication factors as well in order to
continuously verify the identity of already authenticated users. As a user can be authenticated
based on multiple (basic and/or continuous) authentication factors, the process is termed as multi-
factor user authentication.
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Table 1: Architectural Tradeoffs for Memory Safety
Integrity Verification

Hardware Software

B
ou

nd
s
C
he

ck
H
W

+ Negligible performance overhead − Major hardware modifications
− Major hardware modifications − Significant Performance Overhead

SW

+ Minimal hardware modifications + Compatibility across processors
− Moderate performance overhead − Possible security flaws

− Huge performance overhead

3.2 Memory Authentication Factors

Analogous to user authentication, we define multiple authentication factors for memory authenti-
cation in secure computer systems as follows:

1. Integrity: Memory integrity checking is the most crucial factor of memory authentication
which answers the following question: “Did the device/CPU, which implements Memory
Integrity Checking, write the data in memory?”

2. Freshness: To prevent an adversary from manipulating the memory in a way that the CPU
reads a stale copy of data instead of the most recent one on a memory read, one must verify
“When was the data written?”

3. Spatial/Temporal Safety Verification: To prevent program’s control flow manipulation
as a result of a spatial/temporal memory violation by the CPU itself (i.e. CPU writing the
data in an illegitimate way) because of an exploit such as a buffer overflow, addresses the
question “How was the data written?”

Based on these factors, a multi-factor memory authentication strategy can be defined which protects
against all memory safety vulnerabilities and ensures a secure execution of the application.

4 Designing a Comprehensively Secure Processor Architecture
As explained earlier, memory safety countermeasures can be grouped into two logical classes, based
on the types of attacks they aim to prevent, i.e. bounds checking and memory integrity verification.
To provide complete memory safety, it is necessary to design a computational environment that
integrates these two types of countermeasures in an efficient manner. In this section, we explore the
design tradeoffs of different flavors of these protection schemes for a unified and comprehensively
secure system. A summary of these tradeoffs is presented in Table 1.

4.1 Hardware vs. Software Integrity Verification

Memory integrity verification addresses direct attacks on memory, typically waged at the hardware
level. Because such attacks are independent of program flow and can be made at any time, these
protections must run in real time – that is, all loads and stores of insecure memory must be
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instrumented to provide protection. In our adversarial model, we consider all layers of the memory
hierarchy above the main memory to be physically secure. Therefore, memory integrity verification
must be implemented at least above the boundary between main memory and lowest-level cache;
higher-level implementations will provide equal security, but at correspondingly lower efficiencies.

A software implementation, for instance, might be useful for some purposes, but will incur
extremely high performance overhead, since software has no visibility into the physical allocation
of memory between DRAM and cache. To provide guaranteed protection, it must perform a costly
check on every load or store, regardless of whether the addressed region is actually backed by
insecure memory. Such software based approaches, however, would still require at least some basic
hardware support (e.g. store the root hash on-chip) in order to provide fundamental security.
Otherwise, an adversary can also manipulate e.g. the root hash in order to bypass the protection
scheme.

Regardless of the basic hardware support, some software based schemes can still be circumvented
by advanced attacks. For instance, Suh et al.’s scheme utilizing incremental multiset hash functions
to facilitate periodic checks [33] implemented in software can alleviate the performance overhead
as compared to a software based Merkle tree approach, but at the cost of potentially undermining
security. If in hardware, such a scheme can “play back” recent memory operations during a periodic
check, and guarantee termination of a compromised process at that time. In software, however, an
attacker only needs a brief window of opportunity to overwrite instruction memory and effect full
control of execution; the malicious code, not being instrumented with the necessary checks, will be
unaffected by any software-level protections.

Hardware based schemes are also constrained by the fact that in the presence of strong adver-
saries, the integrity verification must be done online (i.e. in real time). As mentioned earlier, even
hardware incremental multiset hash based scheme can only detect an attack at the next checkpoint.
This could still harm in terms of privacy leakage type of attacks. Practically, then, to guarantee full
security without drastically compromising performance, we need to implement Merkle tree based
memory integrity verification in hardware, at the interface between main memory and lowest-level
cache, where the roles of these protections are most naturally reflected. Since it only requires the
addition of an integrity verification interface in DRAM controller, the required hardware changes
are minimal.

4.2 Hardware vs. Software Bounds Checking

Implementations of spatial and temporal safety protection (i.e. bounds checking) are constrained
more tightly. Since these vulnerabilities manifest themselves in the logical (virtual) address space,
therefore we cannot ignore the cache layers, which are part of that space, notwithstanding their
physical safety. Hence bounds checking schemes must be implemented at the highest level of mem-
ory hierarchy, i.e. between L1 cache and CPU registers, since violations can occur even in the cache.
This leaves the choice of implementing the protections in software, hardware, or some combination
of the two (as have been demonstrated by SoftBound [3], Watchdog [10], and WatchdogLite [17],
respectively); but all of these variations still operate at essentially the same level, albeit from dif-
ferent perspectives. Software based approaches happen to inherently implement the protections
at the highest level of memory hierarchy and offer compatibility with existing systems and legacy
code, but at a cost of high performance overhead. Conversely, hardware implementations introduce
an integrity verification interface between CPU registers and L1 cache and offer better performance
compared to the software based approaches, e.g. CHERI [8] reports only 15%-30% overhead –
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though the hardware also has to perform frequent real time checks on registers-L1 cache boundary.
Hardware approaches, however, are not feasible as they require substantial hardware changes lead-
ing to high area and cost overheads. Notice that spatiotemporal protections must be implemented
on CPU-L1 Cache boundary, otherwise this would fundamentally compromise the safety guarantees
they seek to provide.

4.3 Implications of Composition of Memory Safety Schemes

The two types of memory safety schemes, once composed together, complement each other to
provide further protection against potential attacks. For instance, memory integrity verification
allows spatio-temporal metadata to be safely stored in insecure memory; and likewise, spatial
protection prevents corruption of metadata "shadow spaces". However, the logical separation of
memory integrity verification from spatio-temporal protection provides a mutual orthogonality
that allows various individual schemes to be substituted as long as they provide the same high-level
safety guarantees. A unified software-only scheme, while not amenable to high performance, is
possible, and may have value as a debugging tool; conversely, a hardware-only design can facilitate
extremely high performance and binary compatibility with existing uninstrumented code, but at
the cost of potentially significant circuit complexity. A practical compromise, such as a hardware
implementation of memory integrity verification at the boundary between DRAM and lowest-level
cache, combined with software-based or partially hardware-assisted bounds checking, can achieve a
balance of performance overhead and hardware cost that is acceptable for a great deal of real-world
applications.

However, we expect that coexistence of the two schemes in the system may introduce new
performance overheads. For instance, integrity verification engine may need to perform extra
reads/writes to DRAM to verify the integrity of bounds checking metadata which would not be
required in a system having only the integrity verification scheme. We observe this behavior in
section 6.

4.4 Proposed Architecture

Based on the intuitions provided earlier in this section, we implement the following flavors of the
two types of protection schemes to provide a holistic and practically secure system:

• Merkle Tree for integrity verification in Hardware
• SoftBound for bounds checking in Software

Figure 2a shows the architecture of our unified system. The processor is considered trusted and
implements an integrity verification module which serves as an interface to the untrusted DRAM.
All the communication between the processor and the DRAM is channeled through this trusted
verification module. A balanced hash tree is maintained on top of the whole working set memory.
The hash tree nodes are also stored in the untrusted DRAM, as shown in Figure 2b, except for
the root hash which is stored on-chip. The lowest level cache is shared by both data and hash
blocks, i.e. the hash blocks are also cached [7]. A cache partitioning scheme is used to reduce
interference between regular cache data and hash blocks. 1/4th of the cache space is allocated for
caching hash blocks while the rest of the cache is used for regular data. For each off-chip access to
a data block, the hash of data block is computed using an on-chip hashing engine. Then the nodes
of its hash chain, which starts from its hash node leaf and goes up to the root hash, are searched
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Figure 2: Architecture of the unified system with Merkle tree based memory integrity verification and SoftBound
based bounds checking. “Application Data” represents the memory footprint of the uninstrumented program whereas
“SoftBound Metadata” shows the additional space required by bounds checking data structures.

in the cache. Since the cache is trusted, the first hash node from the chain found in the cache can
be used to verify data integrity. In the worst case, the complete hash chain up to the root hash is
retrieved from the memory and is verified. Since in our implementation, the hash tree has 13 levels
excluding the root hash level; therefore in the worst case, 13 additional cache lines need to be read
for integrity verification per data read. To provide bounds checking protection, we recompile the
application programs along with SoftBound which adds additional instructions to perform checking
on each memory instruction. This results in an overall increase in total number of instructions of
the program.

5 Evaluation Methodology
The default architectural parameters used for evaluation are shown in Table 2. The baseline
system models a single issue, in-order processor with physical address length of 48bits. We also
model a single issue, out-of-order core type for our evaluation. The DRAM size that an application
can access is 4GB, denoted by “effective DRAM size”. It takes 100 cycles to complete a DRAM
request. The hashing engine takes a 512bit block (i.e. one cache line) as input and computes a
128bit hash in 80 clock cycles. The hash tree is structured as a quad tree (i.e. each node has
four child nodes) since the hashing engine can be fed four 128bit child hashes to compute their
128bit parent hash. For the 4GB working set with 64Bytes cache line size, the quad hash tree
has 226 leafs and log4(226) = 13 levels (excluding the root hash). Total number of nodes of a
quad tree having L leafs is given by 4L−1

3 , therefore our hash tree has 228−1
3 nodes, each of which

occupies 16Bytes memory. Consequently the hash tree for memory integrity verification requires
an additional ≈ 1.33GB of memory space in the insecure DRAM. The logic overhead of the hash
engine is around 60000 1-bit gates [33].
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Table 2: Architectural parameters for evaluation.
Parameter Value

Number of Cores 1 @ 1 GHz
Compute Pipeline
(i) In Order (In) In-Order, Single-Issue
(ii) Out of Order (OoO) OoO, Single-Issue. ROB: 32, Load/Store Queue: 10/8

Word Size 64 bits
Physical Address Length 48 bits

Memory Subsystem
L1-I Cache per core 32 KB, 4-way Assoc., 1 cycle
L1-D Cache per core 32 KB, 4-way Assoc., 1 cycle
L2 Cache per core 1 MB, 16-way Assoc. Inclusive. Tag/Data: 2/6 cycles.
Cache Line Size 64 bytes
Effective DRAM Size 4 GB
DRAM Bandwidth 10 GBps per Controller
DRAM Latency 100 Clock Cycles

5.1 Performance Models

All experiments are performed using the core, cache hierarchy, and memory system models imple-
mented within the Graphite simulator [36]. Memory integrity checking is faithfully modeled and
integrated into Graphite. The Graphite simulator requires the memory system (including the cache
hierarchy) to be functionally correct to complete simulation.

5.2 Simulated Configurations

We simulate the following configurations:

1. Baseline is a vanilla system without any memory integrity or bounds checking capability.
Comparison against this system gives us an idea of how much overhead the individual and
combined schemes will incur relative to a plain vanilla system.

2. MI implements memory integrity checking on top of the baseline system. It uses the Merkle
tree approach to verify the integrity of data on each off-chip request.

3. BC uses SoftBound to detect buffer overflows on top of the baseline system. SoftBound adds
extra instructions to perform bounds checking.

4. MI_BC implements both Merkle tree based memory integrity verification and SoftBound
based bounds checking to provide a holistic multi-factor authentication framework.
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Figure 3: Number of instructions of baseline and bounds checking. The results are normalized to in-order insecure
baseline.

5.3 Benchmarks and Evaluation Metrics

We simulate two SPEC [37] benchmarks (a-star, bzip), four benchmarks from MiBench [38]
(crc, dijkstra, sha, and q-sort), four benchmarks from Aladdin [39, 40], (bb-gemm, fft,
reduction, and ss-sort), and a matrix multiplication benchmark (matmul). We were unable
to compile other benchmarks (such as SPLASH-2, PARSEC, rest of the benchmarks in SPEC
and MiBench). For each simulation run, we measure the DRAM accesses, instruction count, and
Completion Time. The DRAM accesses are broken down into 1) L2 Read Misses, 2) L2 Write
Misses, 3) Dirty Evictions, and 4) Integrity Verification Accesses. The completion time is an
aggregate of the following components:

1. Compute latency: The processing delay in compute pipeline including the private L1 hit
latency.

2. L1 to L2 cache latency: The time spent accessing the L2 cache.
3. L2 cache to off-chip memory latency: The time spent accessing memory including the

time spent communicating with the memory controller and the queuing delay incurred due
to finite off-chip bandwidth.

6 Results
In this section we discuss the results of the simulated configurations in terms of the completion time,
number of DRAM accesses, and instruction count. We highlight the different tradeoffs involved
and evaluate the feasibility of the different schemes.

6.1 Instruction Count

Figure 3 shows the instruction count of the bounds checking scheme normalized to the baseline.
The number of instructions in MI are the same as baseline, as MI is a hardware based scheme and
does not add any additional instructions. However, BC add substantial number of instructions on
top of the baseline. The benchmarks that are memory-bound incur higher overhead compared to
the benchmarks that are compute-bound. For example, the instruction count for memory-bound
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Figure 4: DRAM accesses breakdown of the evaluated schemes. The results are normalized to in-order insecure
baseline.

dijkstra and matmul increases to 2.96× and 8.12× respectively. On the other the instruction
count for compute-bound crc and q-sort is practically the same as the baseline. This is due to
the fact that the memory-bound benchmarks have higher number of load/store instructions. These
load/store instructions result in large number of bounds checking instructions being inserted. The
geometric mean (geomean) of instruction count for bounds checking across all workloads shows
56% increase over baseline.

6.2 DRAM Accesses

Figure 4 shows the number of DRAM accesses of the simulated configurations for in-order processor.
As there can be multiple DRAM accesses on each L2 cache miss to load the hash nodes of the
required hash chain, the number of DRAM accesses in MI increases substantially. We can also see
a significant increase in the DRAM access count in BC. This is because the number of instructions
are very high compared to the baseline, as seen in section 6.1.

The increase in DRAM accesses in the individual schemes add up to an even higher number
in MI_BC. Clearly, a naïve thinking would be that the overheads of the two individual protection
schemes add up in MI_BC. However, we observe that the coexistence of MI and BC in a compre-
hensive system leads to additional overheads than simply the sum of their individual overheads.
This is because of the fact that bounds checking causes additional off-chip memory accesses: for a
BC only configuration, these accesses would only be normal DRAM accesses. Whereas in MI_BC
configuration, these DRAM requests lead to further accesses to retrieve the hash nodes form the
memory to perform integrity verification, and hence cause overall slowdown.

In the baseline system, the compute-bound workloads show a low number of DRAM accesses
because of their computation intensive behavior. In MI, the number of accesses become 4×,
however, this access count does not have any significant impact on system performance as evident
from Figure 5. The reason being the low frequency of DRAM accesses. On the other hand, memory-
bound workloads exhibit a large number of DRAM accesses. This number balloons up under MI
and BC, impacting the overall system performance.

The number of DRAM accesses increase substantially in MI_BC over MI and BC due to the
increased pressure on LLC. There is a chain reaction effect being seen in the DRAM access count in
MI_BC. The accesses made to load the hash blocks from the DRAM dominates the overall DRAM
accesses. Under MI and MI_BC, ≈ 77% of the total DRAM accesses are made to verify memory
integrity.
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Figure 5: Completion time of the evaluated schemes under in-order and out-of-order processors. The results are
normalized to in-order insecure baseline.

6.3 Completion Time

Figure 5 shows the completion time of the simulated configurations for both in-order and out-of-
order processors. The results are normalized to that of in-order baseline. The completion time is
affected directly by the increase in number of instructions and DRAM accesses. This is why we see
the completion time increasing going from the baseline to MI and BC to MI_BC.

The compute-bound benchmarks fare well on completion time, as they do in instruction count
and DRAM access count. The reason being that they load a small amount of data from off-chip and
then work on it in the trusted on-chip area. Furthermore, they do not contain a high percentage
of load/store instructions. This is evident from the results of crc, sha, bb-gemm, and ss-sort.
Each of these workloads shows a slowdown of < 25% in MI_BC under the in-order processor.

The memory-bound workloads have to communicate with the untrusted off-chip more frequently
because of their large memory footprint and a high percentage of load/store instructions. Both
of these facts add up and result in a substantial slowdown. dijkstra and matmul are two such
workloads and they show slowdowns of > 5× under MI_BC scheme for an in-order processor.
a-star is another such benchmark but with lower slowdown.

The baseline out-of-order processor is able to hide most of the latency and shows a 42% reduction
in completion time over baseline in-order processor. This advantage of OoO processor carries over
to the evaluated schemes and MI_BC only shows a slowdown of 32% over in-order insecure baseline.
In comparison, the slowdown of in-oder processor for MI_BC is 105% over the in-order insecure
baseline. Furthermore, the OoO processor improves the worst performing workload, matmul, by
3× in MI_BC over the in-order counterpart.

6.4 Proposed Solution for Secure Embedded Systems

In-order processors are prevalent in embedded systems because of its cost-effectiveness. The simpler
design leads to lower energy consumption, however, the performance is sub-optimal. One can deploy
a small out-of-order processor in embedded system setting to improve the performance. However,
it comes with increase in energy consumption and area footprint.

The out-of-order processor evaluated in this paper models a small single-issue processor with
rather small ROB and load/store queues. This does not add a huge area overhead and keeps
the microarchitecture simple. This processor enables MI_BC with a modest overhead of 32% in
completion time over in-order baseline. Therefore, we propose MI_BC running on top of a simple
out-of-order processor as the recommended solution for a secure embedded system.
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7 Further Considerations
Networked embedded systems for which physical access is not possible are only vulnerable to
attacks through the network by remote adversaries. In such an environment, the embedded systems
only need to protect the network I/O channels against spatial/temporal safety violations through
malicious I/Os. This can be achieved through the bounds checking techniques. Since the adversary
has no direct access to the system, therefore integrity verification is not required in such environment
which leads to lower overheads.

In this paper, we discuss the implications and constraints of different memory protection schemes
mainly for single-core systems. However, it is equally interesting to explore the possibilities and
limitations of memory safety techniques for multi-core systems as well. In multi-core systems, one
does not necessarily need to implement integrity verification in hardware in order to get better
performance. Instead, software based schemes can exploit the available hardware resources to run
integrity verification in parallel with the actual application on separate cores. This could also lead
to minimal performance overhead without any substantial hardware support.

8 Conclusion
Spatio-temporal vulnerabilities and memory integrity attacks pose serious challenges in designing
secure embedded systems. Conventional memory safety schemes provide protection against either
spatio-temporal vulnerabilities or memory integrity attacks. Solutions that provide complete mem-
ory safety guarantees come with substantial architectural modifications and overheads, making
them infeasible for embedded systems. In this paper we examine key theoretical and practical
implications of implementing the conventional protections in a comprehensive secure processor de-
sign. Based on these implications, we propose a holistic memory authentication framework, called
M-MAP, for complete memory safety. M-MAP implements hardware based memory integrity ver-
ification along with software based bounds checking in order to keep a balance between hardware
modifications and performance. We propose to implement M-MAP on top of a lightweight out-of-
order processor which delivers complete memory safety with a modest overhead of 32% on average.
This enables a low cost solution geared towards secure embedded systems.
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