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Abstract. SPDZ, TinyOT and MiniMAC are a family of MPC protocols based on secret sharing with
MACs, where a preprocessing stage produces multiplication triples in a finite field. This work describes
new protocols for generating multiplication triples in fields of characteristic two using OT extensions.
Before this work, TinyOT, which works on binary circuits, was the only protocol in this family using
OT extensions. Previous SPDZ protocols for triples in large finite fields require somewhat homomor-
phic encryption, which leads to very inefficient runtimes in practice, while no dedicated preprocessing
protocol for MiniMAC (which operates on vectors of small field elements) was previously known. Since
actively secure OT extensions can be performed very efficiently using only symmetric primitives, it is
highly desirable to base MPC protocols on these rather than expensive public key primitives. We ana-
lyze the practical efficiency of our protocols, showing that they should all perform favorably compared
with previous works; we estimate our protocol for SPDZ triples in Fya0 will perform around 2 orders
of magnitude faster than the best known previous protocol.
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1 Introduction

Secure multi-party computation (MPC) allows parties to perform computations on their private inputs,
without revealing their inputs to each other. Recently, there has been much progress in the design of practical
MPC protocols that can be efficiently implemented in the real world. These protocols are based on secret
sharing over a finite field, and they provide security against an active, static adversary who can corrupt up
to n — 1 of n parties (dishonest majority).

In the preprocessing model, an MPC protocol is divided into two phases: a preprocessing (or offline) phase,
which is independent of the parties’ inputs and hence can be performed in advance, and an online phase. The
preprocessing stage only generates random, correlated data, often in the form of secret shared multiplication
triples [2]. The online phase then uses this correlated randomness to perform the actual computation; the
reason for this separation is that the online phase can usually be much more efficient than the preprocessing,
which results in a lower latency during execution than if the whole computation was done together. This
paper builds on the so-called ‘MPC with MACs’ family of protocols, which use information-theoretic MACs
to authenticate secret-shared data, efficiently providing active security in the online phase, starting with the
work of Bendlin et al. [4]. We focus on the SPDZ [10], MiniMAC [11] and TinyOT [18] protocols, which we
now describe.

The ‘SPDZ’ protocol of Damgard et al. [10,8] evaluates arithmetic circuits over a finite field of size at least
2% where k is a statistical security parameter. All values in the computation are represented using additive
secret sharing and with an additive secret sharing of a MAC that is the product of the value and a secret
key. The online phase can be essentially performed with only information theoretic techniques and thus is
extremely efficient, with throughputs of almost 1 million multiplications per second as reported by Keller et
al. [15]. The preprocessing of the triples uses somewhat homomorphic encryption (SHE) to create an initial
set of triples, which may have errors due to the faulty distributed decryption procedure used. These are then
paired up and a ‘sacrificing’ procedure is done: one triple is wasted to check the correctness of another. Using
SHE requires either expensive zero knowledge proofs or cut-and-choose techniques to achieve active security,
which are much slower than the online phase — producing a triple in F,, (for 64-bit prime p) takes around
0.03s [8], whilst Fa40 triples are even more costly due to the algebra of the homomorphic encryption scheme,
taking roughly 0.27s [7].

TinyOT [18] is a two-party protocol for binary circuits based on OT extensions. It has similar efficiency
to SPDZ in the online phase but has faster preprocessing, producing around 10000 F5 triples per second.
Larraia et al. [16] extended TinyOT to the multi-party setting and adapted it to fit with the SPDZ online
phase. The multi-party TinyOT protocol also checks correctness of triples using sacrificing, and two-party
TinyOT uses a similar procedure called combining to remove possible leakage from a triple, but when working
in small fields simple pairwise checks are not enough. Instead an expensive ‘bucketing’ method is used, which
gives an overhead of around 3-8 times for each check, depending on the number of triples required and the
statistical security parameter.

MiniMAC [11] is another protocol in the SPDZ family, which reduces the size of MACs in the online phase
for the case of binary circuits (or arithmetic circuits over small fields). Using SPDZ or multi-party TinyOT
requires the MAC on every secret shared value to be at least as big as the statistical security parameter,
whereas MiniMAC can authenticate vectors of bits at once combining them into a codeword, allowing the
MAC size to be constant. Damgard et al. [9] implemented the online phase of MiniMAC and found it to be
faster than TinyOT for performing many operations in parallel, however no dedicated preprocessing protocol
for MiniMAC has been published.

1.1 Our Contributions

In this paper we present new, improved protocols for the preprocessing stages of the ‘MPC with MACs’ family
of protocols based on OT extensions, focusing on finite fields of characteristic two. Our main contribution is
a new method of creating SPDZ triples in Fy» using only symmetric primitives, so it is much more efficient
than previous protocols using SHE. Our protocol is based on a novel correlated OT extension protocol
that increases efficiency by allowing an adversary to introduce errors of a specific form, which may be



Finite field Protocol # Correlated OTs # Random OTs Time (est:m;)te, ms
2-party TinyOT [18,5] 0 54 0.07
Fo n-party TinyOT [16,5] 81n(n —1) 27n(n — 1) 0.24
This work §5.2 2Tn(n — 1) In(n —1) 0.08
N SPDZ [7] N/A N/A 272
210 This work §5.1 240n(n — 1) 240n(n — 1) 1.13
Fys (MiniMAC) This work §6 ‘ 1020n(n — 1) 175n(n — 1) 2.63

Table 1. Number of OTs and estimates of time required to create a multiplication triple using our protocols and
previous protocols, for n parties. See Section 7 for details.

of independent interest. Additionally, we revisit the multi-party TinyOT protocol by Larraia et al. from
CRYPTO 2014 [16], and identify a crucial security flaw that results in a selective failure attack. A standard
fix has an efficiency cost of at least 9x, which we show how to reduce to just 3x with a modified protocol.
Finally, we give the first dedicated preprocessing protocol for MiniMAC, by building on the same correlated
OT that lies at the heart of our SPDZ triple generation protocol.

Table 1 gives the main costs of our protocols in terms of the number of correlated and random OTs
required, as well as an estimate of the total time per triple, based on OT extension implementation figures.
We include the SPDZ protocol timings based on SHE to give a rough comparison with our new protocol
for Foso triples. For a full explanation of the derivation of our time estimates, see Section 7. Our protocol
for Fas0 triples has the biggest advantage over previous protocols, with an estimated 200x speed-up over
the SPDZ implementation. For binary circuits, our multi-party protocol is comparable with the two-party
TinyOT protocol and around 3x faster than the fixed protocol of Larraia et al. [16]. For MiniMAC, we give
figures for the amortized cost of a single multiplication in Fos. This seems to incur a slight cost penalty
compared with using SPDZ triples and embedding the circuit in Fo40, however this is traded off by the more
efficient online phase of MiniMAC when computing highly parallel circuits [9].

We now highlight our contributions in detail.

For Triples. We show how to use a new variant of correlated OT extension to create multiplication triples
in the field Fyr, where k is at least the statistical security parameter. Note that this finite field allows much
more efficient evaluation of AES in MPC than using binary circuits [7], and is also more efficient than F,, for
computing ORAM functionalities for secure computation on RAM programs [14]. Previously, creating big
field triples for the SPDZ protocol required using somewhat homomorphic encryption and therefore was very
slow (particularly for the binary field case, due to limitations of the underlying SHE plaintext algebra [7]).
It seems likely that our OT based protocol can improve the performance of SPDZ triples by 2 orders of
magnitude, since OT extensions can be performed very efficiently using just symmetric primitives.

The naive approach to achieving this is to create k2 triples in Fo, and use these to evaluate the Fyx
multiplication circuit. Each of these Fy triples would need sacrificing and combining, in total requiring many
more than k2 OT extensions. Instead, our protocol in Section 5.1 creates a Fyr triple using only O(k) OTs.
The key insight into our technique lies in the way we look at OT: instead of taking the traditional view of
a sender and a receiver, we use a linear algebra approach with matrices, vectors and tensor products, which
pinpoints the precise role of OT in secure computation. A correlated OT is a set of OTs where the sender’s
messages are all (z,x + A) for some fixed string A. We represent a set of k correlated OTs between two
parties, with inputs x,y € F§, as:

RQ+T=xQy

where Q,T € IFI;Xk are the respective outputs to each party. Thus, correlated OT gives precisely a secret
sharing of the tensor product of two vectors. From the tensor product it is then straightforward to obtain a



For multiplication of the corresponding field elements by taking the appropriate linear combination of the
components.

An actively secure protocol for correlated OT was presented by Nielsen et al. [18], with an overhead of
~ 7.3 calls to the base OT protocol due to the need for consistency checks and privacy amplification, to
avoid any leakage on the secret correlation. In our protocol, we choose to miss out the consistency check,
allowing the party creating correlation to input different correlations to each OT. We show that if this party
attempts to cheat then the error introduced will be amplified by the privacy amplification step so much that
it can always be detected in the pairwise sacrificing check we later perform on the triples. Allowing these
errors significantly complicates the analysis and security proofs, but reduces the overhead of the correlated
OT protocol down to just 3 times that of a basic OT extension.

Fo Triples. The triple production protocol by Larraia et al. [16] has two main stages: first, unauthenticated
shares of triples are created (using the aBit protocol by Nielsen et al. [18] as a black box) and secondly the
shares are authenticated, again using aBit, and checked for correctness with a sacrificing procedure. The
main problem with this approach is that given shares of an unauthenticated triple for a,b,c € Fo where
¢ = a - b, the parties may not input their correct shares of this triple into the authentication step. A corrupt
party can change their share such that a + 1 is authenticated instead of a; if b = 0 (with probability 1/2)
then (a +1)-b=a-b, the sacrificing check still passes, and the corrupt party hence learns the value of .3

To combat this problem, an additional combining procedure can be done: similarly to sacrificing, a batch
of triples are randomly grouped together into buckets and combined, such that as long as one of them is
secure, the resulting triple remains secure, as was done by Nielsen et al. [18]. However, combining only
removes leakage on either a or b. To remove leakage on both a and b, combining must be done twice, which
results in an overhead of at least 9x, depending on the batch size. Note that this fix is described in full in a
recent preprint [5], which is a merged and extended version of the two TinyOT papers [18,16]

In Section 5.2 we modify the triple generation procedure so that combining only needs to be done once,
reducing the overhead on top of the original (insecure) protocol to just 3x (for a large enough batch of
triples). Our technique exploits the structure of the OT extension protocol to allow a triple to be created,
whilst simultaneously authenticating one of the values a or b, preventing the selective failure attack on the
other value. Combining still needs to be performed once to prevent leakage, however.

MiniMAC Triples. The MiniMAC protocol [11] uses multiplication triples of the form C*(c) = C(a)xC(b),
where a,b € F5, and C is a systematic, linear code over Fou, for ‘small’ u (e.g. Fo or Fas), * denotes the
component-wise vector product and C* is the product code given by the span of all products of codewords
in C'. Based on the protocol for correlated OT used for the Fyr multiplication triples, we present the first
dedicated construction of MiniMAC multiplication triples. The major obstacles to overcome are that we
must somehow guarantee that the triples produced form valid codewords. This must be ensured both during
the triple generation stage and the authentication stage, otherwise another subtle selective failure attack
can arise. To do this, we see a and b as vectors over F¥'* and input these to the same secure correlated
OT procedure as used for the For multiplication triples. From the resulting shared tensor product, we
can compute shares of all of the required products in C(a) * C(b), due to the linearity of the code. For
authentication we use the same correlated OT as used for authentication of the Fqr triples. However, this
only allows us to authenticate components in Fou one at a time, so we also add a “compression” step to
combine individual authentications of each component in C(x) into a single MAC. Finally, the construction
is ended with a pairwise sacrificing step.

Furthermore, since the result of multiplication of two codewords results in an element in the Schur
transform, we need some more preprocessed material, in order to move such an element back down to an
“ordinary” codeword. This is done using an authenticated pair of equal elements; one being an ordinary
codeword and one in the Schur transform of the code. We also construct these pairs by authenticating the

3 We stress that this attack only applies to the multi-party protocol from CRYPTO 2014 [16], and not the original
two-party protocol of Nielsen et al. [18].



k components in Fou and then, using the linearity of the code, computing authenticated shares of the entire
codeword. Since this again results in a MAC for each component of the codeword we execute a compression
step to combine the MAC’s into a single MAC.

Efficient Authentication from Passively Secure OT. All of our protocols are unified by a common
method of authenticating shared values using correlated OT extension. Instead of using an actively secure
correlated OT extension protocol as was previously done [18,16], we use just a passively secure protocol,
which is simply the passive OT extension of Ishai et al. [12], without the hashing at the end of the protocol
(which removes the correlation).

This allows corrupt parties to introduce errors on
MACs that depend on the secret MAC key, which could Overview of our Protocols
result in a few bits of the MAC key being leaked if the
MAC check protocol still passes. Essentially, this means ;
that corrupt parties can try to guess subsets of the field [Doictips] [ Mwiiv :
in which the MAC key shares lie, but if their guess is \ / ”\\
incorrect the protocol aborts. We model this ability in Imaccheek | Mreorg | [Mschur] It iniMult | IiTripleCheck |
all the relevant functionalities, showing that the result- / \
ing protocols are actively secure, even when this leakage MyncheckedTriples  MBatcnCheck
is present.

TinyOT MiniMAC SPDZ

TlcEmute

Security. The security of our protocols is proven in the
standard UC framework of Canetti [6] (see Appendix A HCST\e /EAC"T
for details). We consider security against malicious, static For
adversaries, i.e. corruption may only take place before the

protocols start, corrupting up to n — 1 of n parties.
Fig. 1. Illustration of the relationship between our

protocols. Protocols in boxes indicate final elements

Setup Assumption. The security of our protocols is in the
for use in online execution.

Fort-hybrid model, i.e. all parties have access to an ideal
1-out-of-2 OT functionality. Moreover we assume authen-
ticated communication between parties, in the form of a
functionality Far which, on input (m,4,j) from P;, gives m to P; and also leaks m to the adversary. Our
security proof for Fy triples also uses the random oracle (RO) model [3] to model the hash function used in an
OT extension protocol. This means that the parties and the adversaries have access to a uniformly random
H : {0,1}* — {0,1}", such that if it is queried on the same input twice, it returns the same output. We
also use a standard coin flipping functionality, Frand, which can be efficiently implemented using hash-based
commitments in the random oracle model as done previously [8].

Overview. The rest of this paper is organized as follows: In Section 2 we go through our general notation,
variable naming and how we represent shared values. We continue in Section 3 with a description of the
passively secure OT extensions we use as building block for our triple generation and authentication. We
then go into more details on our authentication procedure in Section 4. This is followed by a description of
how we generate TinyOT (Fs) and SPDZ (Fyx) triples in Section 5 and MiniMAC triples in Section 6. We
end with a complexity analysis in Section 7.

We illustrate the relationship between all of our protocols in Fig. 1. In the top we have the protocol
producing final triples used in online execution and on the bottom the protocols for correlated OT extension
and authentication.

2 Notation

We denote by « the computational security parameter and s the statistical security parameter. We let negl(x)
denote some unspecified function f(), such that f = o(k~¢) for every fixed constant ¢, saying that such a



function is negligible in k. We say that a probability is overwhelming in k if it is 1 — negl(x). We denote by

a & A the random sampling of a from a distribution A, and by [d] the set of integers {1,...d}.

We consider the sets {0,1} and F5 endowed with the structure of the fields Fy and Fax, respectively. We
denote by F any finite field of characteristic two, and use roman lower case letters to denote elements in F,
and bold lower case letters for vectors. We will use the notation v[i] to denote the i-th entry of v. Sometimes
we will use v[i; j] to denote the range of bits from 4 to j when viewing v as a bit vector. Given matrix A,
we denote its rows by subindices a; and its columns by superindices a’. If we need to denote a particular
entry we use the notation A[i, j]. We will use O to denote the matrix full of ones and Dy for some vector x
to denote the square matrix whose diagonal is x and where every other positions is 0.

We use - to denote multiplication of elements in a finite field; note that in this case we often switch
between elements in the field Fax, vectors in F5 and vectors in IE‘;{” (where u|k), but when multiplication is
involved we always imply multiplication over the field, or and entry-wise multiplication if the first operand
is a scalar. If a, b are vectors over F then a*b denotes the component-wise product of the vectors, and a® b
to denote the matrix containing the tensor (or outer) product of the two vectors.

We consider a systematic linear error correcting code C' over finite field Fou of length m, dimension &
and distance d. So if a € F5., we denote by C(a) € F5. the encoding of a in C, which contains a in its
first k positions, due to the systematic property of the code. We let C* denote the product code (or Schur
transform) of C, which consists of the linear span of C(a) * C(b), for all vectors a,b € F&,. If C is a [m, k, d]
linear error correcting code then C* is a [m, k*, d*] linear error correcting code for which it holds that k* > k
and d* < d.

2.1 Authenticating Secret-shared Values

Let F be a finite field, we additively secret share bits and elements in F among a set of parties P =
{Py,...,P,}, and sometimes abuse notation identifying subsets Z C {1,...,n} with the subset of parties
indexed by i € Z. We write (a) if a is additively secret shared amongst the set of parties, with party P;
holding a value (¥, such that dicp a® = q. We adopt the convention that, if a € F then the shares also
lie in the same field, i.e. a(® € F.

Our main technique for authentication of secret shared values is similar to the one by Larraia et al. [16]
and Damgard et al. [10], i.e. we authenticate a secret globally held by a system of parties, by placing an
information theoretic tag (MAC) on the secret shared value. We will use a fixed global key A € Fonr, M > k&,
which is additively secret shared amongst parties, and we represent an authenticated value x € F, where
F = Fou and u|M, as follows:

[2] = ((x), (m,), (4),

where m, = z - A is the MAC authenticating = under A. We drop the dependence on z in m, when it is
clear from the context. In particular this notation indicates that each party P; has a share z(Y) of x € F, a
share m® ¢ F2 of the MAC, and a uniform share A of A; hence a [-]-representation of x implies that
is both authenticated with the global key A and (-)-shared, i.e. its value is actually unknown to the parties.
Looking ahead, we say that [x] is partially open if (x) is opened, i.e. the parties reveal x, but not the shares
of the MAC value m. It is straightforward to see that all the linear operations on [-] can be performed locally
on the [-]-sharings. We describe the ideal functionality for generating elements in the [-]-representation in
Fig. 5.

In Section 6 we will see a generalization of this representation for codewords, i.e. we denote an authenti-
cated codeword C(x) by [C(x)]* = ((C(x)), (m), (A)), where the * is used to denote that the MAC will be
“component-wise” on the codeword C(x), i.e. that m = C(x) x A.

3 OT Extension Protocols

In this section we describe the OT extensions that we use as building blocks for our triple generation protocols.
Two of these are standard — a 1-out-of-2 OT functionality and a passively secure correlated OT functionality



Functionality F¢,

The Initialize step is independent of inputs and only needs to be called once. After this, Extend can be called
multiple times. The functionality is parametrized by the number £ of resulting OTs and by the bit length «.
Running with parties Ps, Pr and an ideal adversary denoted by S, it operates as follows.

Initialize: Upon receiving A € F5 from Ps, the functionality stores A.
Extend(R,S): Upon receiving (Pr, (X1, ...,%¢)) from Pgr, where x5, € F5, it does the following:
- It samples t, € F5, h =1,...,¢, for Pr. If Pr is corrupted then it waits for S to input ty,.
- It computes qn = tp, +xp * A, h =1,..., ¢, and sends them to Ps. If Ps is corrupted, the functionality
waits for S to input qp , and then it outputs to Pr values of t; consistent with the adversarial inputs.

Fig. 2. IKNP extension functionality ]'-géﬁ'e

— whilst the third protocol is our variant on passively secure correlated OT with privacy amplification, which
may be of independent interest for other uses.

We denote by FoT the standard @) OT functionality, where the sender Pg inputs two messages vg, vy €
F5 and the receiver inputs a choice bit b, and at the end of the protocol the receiver Pr learns only the
selected message v,. We use the notation ]-'S’Te to denote the functionality that provides ¢ G) OTs in F5. (see

Fig. 20 for a formal definition).Note that ]-"Sﬁfg can be implemented very efficiently for any ¢ = poly(x) using
just one call to 73y and symmetric primitives, for example with actively secure OT extensions [18,1,13].

A slightly different variant of Fot is correlated OT, which is a batch of OTs where the sender’s messages
are correlated, i.e. vi +vi = A for some constant A, for every pair of messages. We do not use an actively
secure correlated OT protocol but a passively secure protocol, which is essentially the OT extension of Ishai
et al. [12] without the hashing that removes correlation at the end of the protocol. We model this protocol
with a functionality that accounts for the deviations an active adversary could make, introducing errors into
the output, and call this correlated OT with errors (Fig. 2). The implementation of this is exactly the same
as the first stage of the IKNP protocol, but for completeness we include the description in Appendix D. The
security was proven e.g. by Nielsen [17], where it was referred to as the ABM box.

3.1 Amplified Correlated OT with Errors

Our main new OT extension protocol is a variant of correlated OT that we call amplified correlated OT with
errors. To best illustrate our use of the protocol, we find it useful to use the concept of a tensor product to
describe it. We observe that performing k& correlated OTs on k-bit strings between two parties P and Pg
gives a symmetric protocol: if the input strings of the two parties are x and y then the output is given by

Q+T=xQy

where Q and T are the k x k matrices over Fo output to each respective party. Thus we view correlated
OT as producing a secret sharing of the tensor product of two input vectors. The matrix x ® y consists of
every possible bit product between bits in x held by Pr and bits in y held by Ps. We will later use this to
compute a secret sharing of the product in an extension field of Fs.

The main difficulty in implementing this with active security is ensuring that a corrupt Pgr inputs the
same correlation into each OT: if they cheat in just one OT, for example, they can guess Pg’s corresponding
input bit, resulting in a selective failure attack in a wider protocol. The previous construction used in the
TinyOT protocol [18] first employed a consistency check to ensure that Pg used the same correlation on most
of the inputs. Since the consistency check cannot completely eliminate cheating, a privacy amplification step
is then used, which multiplies all of the OTs by a random binary matrix to remove any potential leakage on
the sender’s input from the few, possibly incorrect OTs.

In our protocol, we choose to omit the consistency check, since the correctness of SPDZ multiplication
triples is later checked in the sacrificing procedure. This means that an adversary is able to break the



Functionality Fazh;

It runs between a sender Ps, a receiver Pr and an ideal adversary S. The procedure can be called repeatedly.
Let ¢/ =2k + s.

- Upon receiving x € F¥ from Pg and y € F% from Ps, the functionality does the following:
Honest parties
- The functionality samples a random matrix @ € ]FSX’“. Then it computes T' = @ +x ®y, and it outputs
Q to Ps and T to Prg.
Corrupt parties
- If Ps is corrupted, the functionality waits for the adversary to input Q € ]F'Q“Xk and one of the following;:
- If the adversary inputs (MultError, V") for Y’ € ]Fg/X]C such that more than k rows of Y’ are non-zero,
it samples M & ]F’;M/ and %' & F%, sets E = MDsg/Y' and § = M%X' +x, and outputs (M, d) to S.
- The adversary inputs (AddError, E).
The functionality then computes T = Q + x ® y + E and sends T to Pr and Q to Ps.
- If Pg is corrupted, it waits for S to input x. Then it samples Q € F;Xk and computes U = Q +x® Yy,
outputs U to S, waits for S to input 71", and outputs 7" to Pr and @ to Ps.

Fig. 3. f:&so-r — Amplified correlated OT

Protocol H:&)T
Let x € F§ and y € F denote the inputs of Pr and Ps, respectively. Let £ := 2k + s.

1. Parties run ]_-S,Tz’:
(a) Ps samples Q' & FY %% sets Y = ODy where O € F4 ** is the matrix full of ones and inputs (Q’, Q' +Y).
(b) Pr samples and inputs x’ EFy.
(¢) Prreceives T' = Q' + Dy/Y.

2. Parties sample a random matrix M € ngzl using Frand (Fig. 21).

Pg sends § = Mx’' + x to Ps and outputs T = MT".

4. Ps outputs Q = MQ' +6®y.

@

Fig. 4. Amplified correlated OT

correlation, but the output will be distorted in a way such that sacrificing will fail for all but one possible
x input by Pgr. Without amplification, the adversary could craft a situation where the latter check succeeds
if, for example, first bit is zero, allowing the selective failure attack. On the other hand, if the success of the
adversary depends on guessing k random bits, the probability of a privacy breach is 27%, which is negligible
in k. In the functionality (Fig. 3),the amplification manifests itself in the fact that the environment does not
learn x’ which amplifies the error Y.

The protocol HE’CSOT (Fig. 4) requires parties to create the initial correlated OTs on strings of length
¢ = 2k + s, where s is the statistical security parameter. The sender Pg is then allowed to input a ¢ x k
matrix Y instead of a vector y, whilst the receiver chooses a random string x’ € Fél. Fort then produces a
sharing of D,/Y, instead of X’ ® y in the honest case. For the privacy amplification, a random k x ¢ binary
matrix M is chosen, and everything is multiplied by this to give outputs of length k as required. Finally, Pr
sends Mx’ + x to switch to their real input x. Multiplying by M ensures that even if Pg learns a few bits
of x’, all of x remains secure as every bit of x’ is combined into every bit of the output.

Lemma 1. The protocol H:&SOT (F'ig. 4) implements the functionality }"X’CSOT (Fig. 3)in the Fgf,—hybrid
model with statistical security s.

Proof. The proof essentially involves checking that Q@ + T = x ® y for honest parties, that at most k
deviations by Pg are canceled by M with overwhelming probability, and that more than k deviations cause



Functionality fﬁF_ﬂ

Let F = Fyn, with M > k. Let A be the indices of corrupt parties. Running with parties P, ..., P, and an ideal
adversary S, the functionality authenticates values in Fou for u|M.

Initialize: On input (Init) the functionality activates and waits for the adversary to input a set of shares
{AW},c4 in F. Tt samples random {A(i)}igA in F for the honest parties, defining A := Zie[n] AW If any
j € A outputs Abort then the functionality aborts.
n-Share: On input (Authenticate,xi”, ... ,Xzi)) from the honest parties and the adversary where X,(f> € Fau,
the functionality proceeds as follows. ‘
Honest parties: Vh € [{], it computes xp = Y, p x;f)
(mp) = {mg), ce mgl")} and outputs m;l“ to P; for each i € P, h € [{].
Corrupted parties: The functionality waits for the adversary S to input the set A of corrupted parties. Then
it proceeds as follows:
- Vh € [{], the functionality waits for S to input shares {m

and m, = x5 - A. ® Then it creates a sharing

glj)}jeA and it generates (mjy,), with honest

shares {mﬁf)}ig A,nelg), consistent with adversarial shares but otherwise random.
- If the adversary inputs (Error, {e;f;»}kgA,he[e]’je[]u]) with elements in Fyun, the functionality sets
m;ﬁ) = mglm + Zjle egllf; . A;k> - X771 where Ag-k) denotes the j-th bit of A®),
- For each k ¢ A, the functionality outputs {mgc)} to Pr.
Key queries: On input of a description of an affine subspace S C (F37)™, return Success if (Am7 RN A(")) es.
Otherwise return Abort.

“If u £ M we view A as an element of ]ng/ “ and perform the multiplication by x; componentwise.

Fig. 5. Ideal Generation of [-]-representations

the desired entropy in the output. The two cases are modeled by two different possible adversarial inputs to
the functionality. See Appendix F.1 for further details.

4 Authentication Protocol

In this section we describe our protocol to authenticate secret shared values over characteristic two finite
fields, using correlated OT extension. The resulting MACs, and the relative MAC keys, are always elements
of a finite field F := Fon, where M > k and k is a computational security parameter, whilst the secret
values may lie in Fou for any u|M. We then view the global MAC key as an element of F%/ “ and the MAC
multiplicative relation as componentwise multiplication in this ring. Our authentication method is similar
to that by Larraia et al. [16] (with modifications to avoid the selective failure attack) but here we only
use a passively secure correlated OT functionality (Fcote), allowing an adversary to introduce errors in the
MACs that depend on arbitrary bits of other parties’ MAC key shares. When combined with the MAC check
protocol by Damgard et al. [8] (shown in Fig. 16), this turns out to be sufficient for our purposes, avoiding
the need for additional consistency checks in the OTs.

Our authentication protocol in Fig. 6 begins with an Initialize stage, which initializes a Fcote instance
between every pair of parties (P;, P;), where P; inputs their MAC key share AU) . This introduces the subtle
issue that a corrupt P; may initialize Fcote with two different MAC shares for P;, and P;,, say AW and
AW which allows for the selective failure attack mentioned earlier — if P;, authenticates a bit b, the MAC
check will still pass if b = 0, despite being authenticated under the wrong key. However, since FcoTe.Initialize
is only called once, the MAC key shares are fixed for the entire protocol, so it is clear that P; could not
remain undetected if enough random values are authenticated and checked. To ensure this in our protocol
in Fig. 6, we add a consistency check to the Initialize stage, where x dummy values are authenticated, then
opened and checked. If the check passes then every party’s MAC key has been initialized correctly, except
with probability 27%. Although in practice this overhead is not needed when authenticating ¢ > k values,

29
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modeling this would introduce additional errors into the functionality and make the analysis of the triple
generation protocols more complex.

Now we present the protocol II.}, realizing the ideal functionality of Fig. 5, in more detail. We describe
the authentication procedure for bits first and then the extension to Fau.

Suppose parties need to authenticate an additively secret shared random bit z = z(!) 4+ ... + z("), Once
the global key A is initialized, the parties call the subprotocol I1,) (Fig. 7) n times. Output of each of these
calls is a value u® for P; and values qU%) for each Pj, j # 1, such that

u® 4+ q(j,i) - Zt(i,j) + 2@ A0 L Zq(m) — 0. A (1)
J#i J#i

To create a complete authentication [z], each party sets m® =ul® + Zj# q("7). Notice that if we add up
all the MAC shares, we obtain:

m=Y"m® =3 (@ + 3 q) =T (@ + 3 i) =32 A= 4,

ieP ieP i i€P i i€P

where the second equality holds for the symmetry of the notation q(*#) and the third follows from (1).

Finally, if P; wants to authenticate a bit (¥, it is enough, from Equation (1), setting m = u® and
m) = qU) V) # . Clearly, from (1), we have Yicp m® =z . A,

Consider now the case where parties need to authenticate elements in Fou. We can represent any element
x € Fou as a binary vector (x1,...,2,) € Fy. In order to obtain a representation [x] it is sufficient to repeat
the previous procedure u times to get [z;] and then compute [x] as >, _; [zx] - X*~! (Fig. 6). Here we let
X denote the variable in polynomial representation of Fou and [zx] the k’th coefficient.

We now describe what happens to the MAC representation in presence of corrupted parties. As we have
already pointed out before, a corrupt party could input different MAC key shares when initializing FcoTe
with different parties. Moreover a corrupt P; could input vectors x?), .. .xgz) instead of bits to n-Share(7)
(i.e. to FcoTe). This will produce an error in the authentication depending on the MAC key. Putting things
together we obtain the following faulty representation:

m=zx-A+ Zx(k) 60 4 Ze(i’k) x* A for some i € A
kg A kg A

where A is the set of corrupt parties, () is an offset vector known to the adversary which represents the
possibility that corrupted parties input different MAC key shares, whilst e(“*) depends on the adversary
inputting vectors and not just bits to Fcore. More precisely, if P; inputs a vector x¥ to n-Share(i), we can
rewrite it as x(V = z() . 1 + e(¥%) where e("*) ¢ F2! is an error vector known to the adversary. While we
prevent the first type of errors by adding a MACCheck step in the Initialize phase, we allow the second type
of corruption. This faulty authentication suffices for our purposes due to the MAC checking procedure used
later on.

Lemma 2. In the FggTe-hybrid model, the protocol II}y (Fig. 6) implements Fp.] against any static adver-
sary corrupting up to n — 1 parties.

Proof. See Appendix F.2.

11



Protocol 11

The protocol computes an authenticated sharing, [z], of an additively shared value x € Fou, where u|M and the
resulting MAC lies in Fyn .

Initialize: Each party P; samples AW € Fyur. Each pair of parties (P;, P;) (for i # 7) calls fé\é’fe.lnitialize where
P; inputs AU Now check consistency of the MAC keys:
1. The parties run (as a subroutine) m-Share rk times, where each party P; inputs random shares

2. 2% € Fa, to obtain [z1],.. ., [z.].
2. Each party P; broadcasts their shares asgl), .. ,(.z> and computes zp =y ., mh> for h=1,.
3. The parties run Ilmaccheck, inputting 1, ... ,xn and their shares of the corresponding MAC&.

4. If IImaccheck fails, output Abort.
n-Share: Each party P; inputs a share. We do one of the following, depending on the type of data being

authenticated:
F; : P; inputs xh> € Fq, h e [4].
1. For each i =1,...,n, run the subprotocol the I with input (i, (31:(1 U x‘(f)), Share) from P; and
(i,Share) from P; for j # i, to obtain [zV]Y, ..., [z(™M]%.

2. Each party P; locally computes [z] =", [1:(’)}
F2u : P; inputs x® e Fou.
1. For each ¢ = 1,...,n, run the subprotocol II; with input (3, xg ), e 7ng),Share) from P; and
(,Share) from P; for j # i, and then sum up the n MACs for each component [x1], ..., [Xu].
2. Compute [x] = > 7, [z;] D C

Fig. 6. From [-]4 to [-]

Subprotocol I

Share(i): On input (3, (x§ .. .,xé )),Share) from P, and (i, Share) from all other parties, do:
1. For each j # i, P; and P; call F23+, .Extend on inputs x*) = (! @ ...,xm)
P; obtains {t( ’J)}he[g while P; obtains {q(” )}he (¢ such that q(“) t(m) +z A(])

2. P; outputs uz) = ac SAG LS i t(z 9 and P; outputs q<] " for j #iand h =1,...,0 The system
nowhas[ x;, ]A,hzl,...,ﬁ.

Fig. 7. Transforming two-party representations onto [v}z’p—representation

5 Triple Generation in Fy; and Fax

In this section we describe our protocols generating triples in finite fields. First we describe the protocols for
multiplication triples in Fax (Fig. 10 and 14), and then the protocol for bit triples (Fig. 15). Both approaches
implement the functionality F}Friples, given in Fig. 8. Note that the functionality allows an adversary to try
and guess an affine subspace containing the parties’ MAC key shares, which is required because of our faulty
authentication procedure described in the previous section.

5.1 TFyr Triples

In this section, we show how to generate For authenticated triples using Fé’FSMult (Fig. 24) and f‘[[[F]] We

realize the functionality fé’FsMult with protocol Hg;\/lult (Fig. 9). This protocol is a simple extension of FacoT
that converts the sharing of a tensor product matrix in FSX’“ to the sharing of a product in Fy.. Taking this
modular approach simplifies the proof for triple generation, as we can deal with the complex errors from
Facot separately. Our first triple generation protocol (IyncheckedTriples) Will not reveal any information about

12



Functionality f-]?rimes

Let A be the indices of corrupt parties. Running with parties P, ..., P, and an adversary S, the functionality
operates as follows.

Initialize: On input (Init) the functionality activates and waits for S to input a set of shares {A®)},c4. Tt
samples random {A<i)}i$A in F5 for the honest parties, defining A := Eie[n] AW If any j € A outputs
Abort then the functionality aborts.

Honest Parties: On input (Triples), the functionality outputs random [zx]a, [yr]a, [2r]a, such that
(zn) = (zn) - (yn) and zn,yn,zn € F.

Corrupted Parties: The functionality samples xzp, yn ﬁ F and computes z;, = xp - yn. To produce [a]a =
({a), (m), (A)), where a € {zn,yn, zn}ne[q it does the following:

- It waits the adversary to input shares {a(i)}ieA and {m<i)}i6A.

- It waits for the adversary to input (ValueError, e) and (MacError, e).

- It selects the shares of honest parties at random, but consistent with adversarial shares and with a + e
and a- A + e, that is, such that 37, a” =a+eand 37 m® =a-A+e.

Key queries: On input of a description of an affine subspace S C (F5)", return Success if (Am, RN A(")) es.
Otherwise return Abort.

Fig. 8. Ideal functionality for triples generation

k,s
Protocol II ;.

Let x and y denote the inputs of Pr and Ps respectively, in F,r, and let s be a statistical security parameter.
Furthermore, let e = (1, X,..., X" ') and ¢’ = 2k + s.

1. The parties run Fa:

(a) Pr inputs x and Ps inputs y.

(b) Pr receives T and Ps receives @ such that T+ Q =xQy.
2. Pg outputs t = eT'e' and Ps outputs q = eQe ' .

Fig. 9. F,x multiplication

Protocol HUncheckedTripIes

Initialize: The parties initialize }'&Fzﬂk7 which outputs A o party i.
Triple generation:
1. Every party ¢ samples random a® & For and p® & For. ‘ ‘
2. Every tuple of parties (i,7) € [n]2,;’ '75 J call ]-'ggfv!u,t Wiph P; inputting a and P; inputting b\ to
generate a random secret sharing cEZ]J ) 4+ cEJ J’.Z) =a® .p0,
3. Every party i computes ¢V =a® . b® + Z#i(cﬁf;“ + Ci»f;j)).

4. Party 1 calls }'ﬁk with inputs a®™, b and ¢, and receives mg), ms), and mff).

Fig. 10. Protocol for generation of unchecked F,x triples.

the values or the authentication key, but an active adversary can distort the output in various ways. We then
present a protocol (IITviplecheck) to check the generated triples from ITyncheckedTriples, Similarly to the sacrificing

step of the SPDZ protocol [8], to ensure that an adversary has not distorted them.

The protocol is somewhat similar to the one in the previous section. Instead of using n(n — 1) instances

of Fcore, it uses n(n — 1) instances of F¢iy, - Which is necessary to compute a secret sharing of x -y, where
x and y are known to different parties.

13



]:UncheckedTripIes

Let B denote the set of honest parties, and let i be the lowest index in B. Furthermore, let B’ = B\ {i} and
A = [n] \ B the set of corrupted parties.

Initialize: Sample (A) EF ,% and secret share it using shares for corrupted parties input by S. Output the
share A® to party i.
Triple generation:
1. Sample ((a), (b)) & F,r according to corrupted parties’ shares from S.
2. Wait for S to input {£”, £ Vicnr, {000, o 050 Yiennems Frva, ¥, e € Far, C C B x A, and
{(YED £0D) ) e S _
3. For all (z,g) € C, compute (M@ §03) £6:) a5 Foemur would (using a'® for x), and send
{(M(l’]),(;(z’”)}(z‘,j)eo to S.

4. Compute
Z f(ivj)_;'_f‘
(i,5)eC
C:aAbJrZa(i) +Zb(z )Jrf
i€B’ i€B’
ma=a A+ > AV 9l X"+
i€ B,he[k]
p=b-A+ Y AP ol X"t
i€ B,he[k]
me=c- A+ o APl X" e
i€B,heE[k]

and secret share them using shares input by S for corrupted parties. AS) denotes the h-th bit of the
share A®. _ _
5. Output (a®?, b®, ¢, mY’ mg) (l)) to party .

Fig. 11. Unchecked F, triple generation.

Lemma 3. The protocol IlyncheckedTriples Shown in Fig. 10 implements the functionality FuncheckedTriples i the
(fé,’_—‘?wm“ fﬁk )-hybrid model with perfect security.

Proof. The proof is straightforward using an appropriate simulator. See Appendix F.6 for further details.

The protocol IItriplecheck Produces N triples using 2N unchecked triples similar to the sacrificing step of
the SPDZ protocol. However, corrupted parties have more options to deviate here, which we counter by using
more random coefficients for checking. Recall that, in the SPDZ protocol, parties input their random shares
by broadcasting a homomorphic encryption thereof. Here, the parties have to input such a share by using
an instance of fé’FsMult and ]-'F_Zk with every other party, which opens up the possibility of using a different
value in every instance. We will prove that, if the check passes, the parties have used consistent inputs to
}"GFMu,t On the other hand, ]—JF provides less security guarantees. However, we will also prove that the more

deviation there is with ]-'JF the more likely the check is to fail. This is modeled using the key query access
of Frriples- Note that, Whlle thls reveals some information about the MAC key A, this does not contradict the
security of the resulting MPC protocol because A does not protect any private information. Furthermore,
breaking correctness corresponds to guessing A, which will only succeed with probability negligible in &
because incorrect guesses lead to an abort.

We use a supplemental functionality Fgatchcheck (Fig. 12), which is used to check that a batch of shared
values are equal to zero, and can be easily implemented using commitment and Frand (see Fig. 13 and
Appendix C). The first use of Fgatchcheck corresponds to using the SPDZ MAC check protocol for r; and
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FBatchCheck
Let A denote the set of corrupted parties, and B = [n] \ A the set of honest ones.

Batch Checking:
1. Sample {X(j)}jE[N] EFN.
Each party 4 inputs {z£j>}j€[N].
For every party ¢, compute o; = vazl X<j) . zEj).
Output {X(j)}jE[N] to the adversary.
Wait for the adversary to input (.
Output {oi}icp to the adversary.
It ZieB oi = ¢, output OK, otherwise output L.

Nk N

Fig. 12. Batch checking functionality.

Protocol ITgatchcheck

The parties invoke Frang to receive {x};en € F.

Every party ¢ computes o; = Zj.vzl X9 - zij).

Every party i calls Comm(o;) on Fcomm, which broadcasts 7;.

Every party 4 calls Open(7;) on Fcomm, which broadcasts o; for all j.

If o1 + - - - 4 on # 0, the parties output L and abort, otherwise they output OK.

v L

Fig. 13. Batch Zero Checking Protocol

Protocol Iltiplecheck

Initialize: Each party receives A from FUncheckedTriples-
Triple Generation:

1. Generate 2N {[a;], [b;], [c;]} ej2n) unchecked triples using FuncheckedTriples-

2. Sample t,t’,t” & Fyr using Frand-

3. For all j € [N], open t-(b;) +t - (bjyn) asr; and t' - (a;) +t” - (a;4+n) as s;.

4. Use FBatchCheck With {l‘j . <A> +t- (mbj > +tl . (mbH_N) >}jE[N] and {Sj . <A> —I—t, . (maj > +t” . (maHN)}je[N],
and abort if it returns L.
Use FaatchCheck With {t - (mc;) +t” - (mec;, v ) + 15 - (Ma;) +5; - (mb,, ) }jeqn), and abort if returns L.
6. Output {[a;], [b;], [c;]}jem-

Fig. 14. Triple checking protocol.

ot

s; for all j € [NV], and the second use corresponds to the sacrificing step, which checks whether t - ¢; +t” -
Cj+N t+rja; +s;- bj+N =0 for all j € [N]

Theorem 1. The protocol Hriplecheck, described in Fig. 14, implements Frviples i1 the (FuncheckedTripless + Rand ) -
hybrid model with statistical security (k —4).

Proof. The proof mainly consists of proving that, if ¢; # a; - b; or the MAC values are incorrect for some j,
and the check passes, then the adversary can compute the offset of c; or the MAC values. See Appendix F.7.

5.2 F; Triples

This section shows how to produce a large number £ of random, authenticated bit triples using the correlated
OT with errors functionality Fcote from Section 3. We describe the main steps of the protocol in Fig. 15. The
main difference with respect to the protocol by Larraia et al. [16] is that here we use the outputs of Fcote
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Protocol IgitTriples

The goal of the protocol is to generate ¢ Fy triples (zn), (yn), {(zn), h = 1,..., ¢, such that z, = xp - yn, together
with [za], [yn], [2n]. The protocol is parametrized by the number ¢ of authenticated triples, and it assumes
access to a random oracle H : {0,1}* — {0, 1}.

Initialize:
1. Each party P; samples a random MAC key share AD 4 second value A® € F§ and sets A® =
(A9 AD) € F3~.
2. Bach pair of parties (P;, P;) (for i # j) calls Fcore.Initialize, where P; inputs A, and Fpq-Init, where
P; inputs AW,
3. Parties check consistency of the Feore inputs A = AM ... 4 A™ as in the Initialize step of I,
using k random values. If ITumaccheck fails, output Abort.
COTe.Extend: Each P;, i € P, runs Fcor..Extend with P;, Vj # i: P; inputs x¥ = (:c&“, e ,xy)) € FS, and
then it receives {f;;f’j)}he[g] and P; receives élglj’i) = f:;f’j) + :Bgf) AU e [h).
Triple generation: Each party P, uses only the first £ components of its shares. We denote them by C]E:‘j ),
A® and Egj’j).
1. Each party P; generates ¢ random yg) € Fs.
2. For each ¢ € P do:
(a) Using a random oracle H : {0,1}" — {0, 1}, break the correlation from the previous step. P; locally
computes H(E;f’j)) = wg’j)7 and P; locally computes H(E[Elj’i)) = vé{;?,H((i;lj’i) + AWy = vg;f),
V3 #i,Vh € [£].
(b) Parties need to create new correlations corresponding to yp:
- Each P;, j # i, sends a vector s e FS to P; such that each component is sgf’i) = vé{’hi) +
0 )
- Vj # i, P; computes ngf’j) = w,(f’j) + xS) . séj’i) = U(()],f) + xS) -y,(lj).

3. Each P; computes
0= S a8 Sl
J#i J#i
Authentication: 1. Authenticate x; by summing up the last x components of the outputs from the COTe
step to obtain [x], for h=1,... ¢
2. Call ]-'[][F% with input Authenticate to authenticate y,(f), zéﬂ forj=1,...,nand h = 1,...,¢, obtaining
[ynl, [2n]
Check triples: This step performs sacrificing and combining, to check that the triples are correctly generated
and to prevent any leakage on x; in case y;, was authenticated incorrectly. The parties call the subprotocol
I checkTriples in Fig. 23.

Fig. 15. Fa-triples generation

to simultaneously generate triples, (z) = (x1) - (yn), and authenticate the random bits xp, for h=1,...,¢,
under the fixed global key A, giving [z] = ((z1), (mp), (A)). To do this, we need to double the length of
the correlation used in Fcote, so that half of the output is used to authenticate xj, and the other half is

hashed to produce shares of the random triple.*

The shares (yn), (zn) are then authenticated with additional calls to Fcote to obtain [yx], [zn]. We
then use a random bucketing technique to combine the x; values in several triples, removing any potential
leakage due to incorrect authentication of y, (avoiding the selective failure attack present in the previous

protocol [16]) and then sacrifice to check for correctness (as in the previous protocol).

4 If the correlation length is not doubled, and the same output is used both for authentication and as input to the
hash function, we cannot prove UC security as the values and MACs of a triple are no longer independent.
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The Initialize stage consists of initializing the functionality -7:3812 with A € F2~. Note that A is the
concatenation of a random A € F5 and the MAC key A. We add a consistency check to ensure that each
party initialize A correctly, as we did in 1.

Then, in COTe.Extend, each party P; runs a COTe?* with all other parties on input x(¥) = (x(lj’), e ,xy)) €
F5. For each i € P, we obtain q(J W) = fg’j) + xﬁf) - AW h € [¢], where

qg,z) _ ((],(Lf’l)”qg)l)) c an and E%],Z) — (Eé],l)”tsljﬂ)) c F%n

Note that we allow corrupt parties to input vectors xs) instead of bits.
Parties use the first k components of their shares during the Triple Generation phase. More precisely,

each party P; samples ¢ random bits y,(j) and then uses the first x components of the output of COTe**

to generate shares z( . The idea (as previously [16]) is that of using OT-relations to produce multiplicative
triples. In step 2, in order to generate ¢ random and independent triples, we need to break the correlation
generated by COTe. For this purpose we use a hash function H, but after that, as we need to “bootstrap”
to an n-parties representation, we must create new correlations for each h € [¢]. P; sums all the values

nt® ]),j 24, and x( 2 ( ) to get u(w) ZJ#Z nEl i) 4 x( 2 yg). Notice that adding up the share ugli’j) held
by P; and all the shares of other partles7 after step 2 we have:

J) +Zv0h _‘Th “Yh-
J#i

Repeating this procedure for each i € P and adding up, we get z, = zp - Yp.
Once the multiplication triples are generated the parties Authenticate z; and y, using F.), while to
authenticate x; they use the remaining x components of the outputs of the COTe.Extend step.

Checking Triples. In the last step we want to check that the authenticated triples are correctly generated.
For this we use the subprotocol IIcheckTriples in Appendix F.3. This generalizes the bucket-based cut-and-
choose technique by Larraia et al. [16], optimizing the parameters and abstracting away the key properties
that are needed from the data being checked. This means that the procedure can easily be adapted for other
purposes.

The bucket-cut-and-choose step ensures that the generated triples are correct. Privacy on z is then
guaranteed by the combine step, whereas privacy on y follows from the use of the original COTe for both
creating triples and authenticating x. Note also that if a corrupt party inputs an inconsistent bit xﬁf) in

(i’k) , for some k € A in step 2.b, then the resulting triples z, = xp - yp + sglk’i) - yp, will pass the checks if
(ki) _ = 0, revealing nothing about y,.

We conclude by stating the main result of this section.

and only if s,

Theorem 2. For every static adversary A corrupting up to n — 1 parties, the protocol IgitTriples k-Securely
implements Freiples (Fig. 8) in the (.FggTe,f[[.]])-hybrid model.

Proof. Correctness easily follows from the above discussion. For more details see Appendix F.4.

6 Triple Generation for MiniMACs

In this section we describe how to construct the preprocessing data needed for the online execution of the
MiniMAC protocol [11,9]. The complete protocols and security proofs are in Appendix G. Here we briefly
outline the protocols and give some intuition of security.
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6.1 Raw Material

The raw material used for MiniMAC is very similar to the raw material in both TinyOT and SPDZ. In
particular this includes random multiplication triples. These are used in the same manner as Fo and Fgx
triples to allow for multiplication during an online phase. However, remember that we work on elements
which are codewords of some systematic linear error correcting code, C'. Thus an authenticated element is
defined as [C (x)]* = {{(C(x)), (m), (A)} where m = C(x) * A with C(x), m and A elements of FJ. and
x € F%.. Similarly a triple is a set of three authenticated elements, {[C (a)]*, [C (b)]*, [C* (c)]*} under the
constraint that C*(c) = C(a) *x C'(b), where x denotes component-wise multiplication. We notice that the
multiplication of two codewords results in an element in the Schur transform. Since we might often be doing
multiplication involving the result of another multiplication, that thus lives in C*, we need some way of
bringing elements from C* back down to C. To do this we need another piece of raw material: the Schur
pair. Such a pair is simply two authenticated elements of the same message, one in the codespace and one
in the Schur transform. That is, the pair {[C (r)]*, [C* (s)]*} with r = s. After doing a multiplication using
a preprocessed random triple in the online phase, we use the [C* (s)]* element to onetime pad the result,
which can then be partially opened. This opened value is re-encoded using C' and then added to [C (r)]*.
This gives a shared codeword element in C', that is the correct output of the multiplication.

Finally, to avoid being restricted to just parallel computation within each codeword vector, we also need
a way to reorganize these components within a codeword. To do so we need to construct “reorganization
pairs”. Like the Schur pairs, these will simply be two elements with a certain relation on the values they
authenticate. Specifically, one will encode a random element and the other a linear function applied to the
random element encoded by the first. Thus the pair will be {[C (r)]*, [C (f(r))]*} for some linear function
f : F5. — Fk.. We use these by subtracting [C (r)]* from the shared element we will be working on. We
then partially open and decode the result. This is then re-encoded and added to [C (f(r))]*, resulting in the
linear computation defined by f(-) on each of the components.

6.2 Authentication

For the MiniMAC protocol to be secure, we need a way of ensuring that authenticated vectors always form
valid codewords. We do this based on the functionality Fcodeauth in two steps, first a ‘BigM AC’ authentication,
which is then compressed to give a ‘MiniMAC’ authentication. The steps are described by the BigMAC,
respectively Compress phases in Fig. 31 and their implementations in Fig. 30 in Appendix G.2. For the
BigMAC authentication, we simply use the Fp.j functionality to authenticate each component of x (living
in Fou) separately under the whole of A € 3. Because every component of x is then under the same MAC
key, we can compute MACs for the rest of the codeword C(x) by simply linearly combining the MACs on x,

due to the linearity of C'. We use the notation [C (x)] = {<C(X)>, {(mx,) g » <A>} to denote the BigMAC

share. To go from BigMAC to MiniMAC authentication, we just extract the relevant Fou element from each
MAC. We then use [C (x)] = {{(C(x)), (mx), (A)} to denote a MiniMAC element, where my is made up of
one component of each of the m BigMACs.

6.3 Multiplication Triples

To generate a raw, unauthenticated MiniMAC triple, we need to be able to create vectors of shares (C'(a)),
(C(b)), (C*(c)) where C*(c) = C(a) * C(b) and a,b € F5,. These can then be authenticated using the
FcodeAuth functionality described above.

Since the authentication procedure only allows shares of valid codewords to be authenticated, it might
be tempting to directly use the SPDZ triple generation protocol from Section 5.1 in Fou for each component
of the codewords C(a) and C(b). In this case, it is possible that parties do not input valid codewords, but
this would be detected in the authentication stage. However, it turns out this approach is vulnerable to a
subtle selective failure attack — a party could input to the triple protocol a share for C'(a) that differs from
a codeword in just one component, and then change their share to the correct codeword before submitting

18



it for authentication. If the corresponding component of C(b) is zero then this would go undetected, leaking
that fact to the adversary.

To counter this, we must ensure that shares output by the triple generation procedure are guaranteed to
be codewords. To do this, we only generate shares of the F5, vectors a and b — since C is a linear [m, k, d]
code, the shares for the parity components of C'(a) and C(b) can be computed locally. For the product C*(c),
we need to ensure that the first k* > k components can be computed, since C* is a [m, k*, d*] code. Note that
the first k components are just (ai,...,ax) * (by,...,bg), which could be computed similarly to the SPDZ
triples. However, for the next k* — k components, we also need the cross terms a; - b;, for every i, j € [k]. To
ensure that these are computed correctly, we input vectors containing all the bits of a,b to FacoT, which
outputs the tensor product a ® b, from which all the required codeword shares can be computed locally.
Similarly to the BigMAC authentication technique, this results in an overhead of O(k - u) = O(klogk)
for every multiplication triple when using Reed-Solomon codes. We express the above operations in the
subprotocol CodeOT in Fig. 32 in Appendix G.3.

Taking our departure in the above description we generate the multiplication triples in two steps: First
unauthenticated multiplication triples are generated by using the CodeOT subprotocol, which calls Facot
and takes the diagonal of the resulting shared matrices. The codewords of these diagonals are then used as
inputs to Fcodeauth, Which authenticates them. This is described by protocol IlyncheckedMiniTriples i Fig. 33.
Then a random pairwise sacrificing is done to ensure that it was in fact shares of multiplication being
authenticated. This is done using protocol IIminiTriples in Fig. 36. One minor issue that arises during this
stage is that we also need to use a Schur pair to perform the sacrifice, to change one of the multiplication
triple outputs back down to the code C, before it is multiplied by a challenge codeword and checked.

Security intuition. Since the CodeOT procedure is guaranteed to produces shares of valid codewords, and
the authentication procedure can only be used to authenticate valid codewords, if an adversary changes their
share before authenticating it, they must change it in at least d positions, where d is the minimum distance
of the code. For the pairwise sacrifice check to pass, the adversary then has to essentially guess d components
of the random challenge codeword to win, which only happens with probability 2~ %¢.

6.4 Schur and Reorganization Pairs

The protocols schyr (Fig. 38) and ITreorg (Fig. 40) describe how to create the Schur and reorganization
pairs. We now give a brief intuition of how these work.

Schur Pairs. We require random authenticated codewords [C(r)]*, [C*(s)]* such that the first k& components
of r and s are equal. Note that since C' C C*, it might be tempting to use the same codeword (in C') for
both elements. However, this will be insecure — during the online phase, parties reveal elements of the form
[C*(x *y)]* — [C*(s)]*. If C*(s) is actually in the code C' then it is uniquely determined by its first k
components, which means C*(x * y) will not be masked properly and could leak information on x,y.
Instead, we have parties authenticate a random codeword in C* that is zero in the first k positions,
reveal the MACs at these positions to check that this was honestly generated, and then add this to [C(r)]*
to obtain [C*(s)]*. This results in a pair where the parties’ shares are identical in the first k& positions,
however we prove in Section G.4 that this does not introduce any security issues for the online phase.

Reorganizing Pairs. To produce the pairs [C(r)]*, [C(f(r))]*, we take advantage of the fact that during
BigMAC authentication, every component of a codeword vector has the same MAC key. This means linear
functions can be applied across the components, which makes creating the required data very straightforward.
Note that with MiniMAC shares, this would not be possible, since you cannot add two elements with different
MAC keys.

7 Complexity Analysis

We now turn to analyzing the complexity of our triple generation protocols, in terms of the required number
of correlated and random OTs (on k-bit strings) and the number of parties n.
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Two-party TinyOT. The appendix of TinyOT [18] states that 54 aBits are required to compute an AND
gate, when using a bucket size of 4. An aBit is essentially a passive correlated OT combined with a consistency
check and some hashes, so we choose to model this as roughly the cost of an actively secure random OT.

Multi-party TinyOT. Note that although the original protocol of Larraia et al. [16] and the fixed protocol
of Burra et al. [5] construct secret-shared OT quadruples, these are locally equivalent to multiplication triples,
which turn out to be simpler to produce as one less authentication is required. Producing a triple requires
one random OT per pair of parties, and the 3 correlated OTs per pair of parties to authenticate the 3
components of each triple. Combining twice, and sacrificing gives an additional overhead of B2, where B is
the bucket size. When creating a batch of at least 1 million triples with statistical security parameter 40, the
proofs in Appendix F.3 show that we can use bucket size 3, giving 81n(n — 1) calls to FcoTe and 27n(n — 1)
to For.

Authentication. To authenticate a single bit, the II[.j protocol requires n(n — 1) calls to Fcote. For full
field elements in Fyr this is simply performed k times, taking kn(n — 1) calls.

F, Triples. The protocol starts with n(n — 1) calls to FcoTe to create the initial triple and authenticate x;
however, these are on strings of length 2« rather than « and also require a call to H, so we choose to count
this as n(n —1) calls to both Fot and Fcote to give a conservative estimate. Next, y and z are authenticated
using Fp., needing a further 2n(n — 1) X Fcote-

We need to sacrifice once and combine once, and if we again use buckets of size 3 this gives a total
overhead of 9x. So the total cost of an Fy triple with our protocol is 27n(n — 1) Fcore calls and 9n(n — 1)
For calls.

Fyr Triples. We start with n(n — 1) calls to ]—"LC’CSOT, each of which requires 3k Fot calls, assuming that k
is equal to the statistical security parameter. We then need to authenticate the resulting triple (three field
elements) for a cost of 3kn(n — 1) calls to Fcote. The sacrificing step in the checked triple protocol wastes
one triple to check one, so doubling these numbers gives 6kn(n — 1) for each of Fot and Fcore-

MiniMAC Triples. Each MiniMAC triple also requires one Schur pair for the sacrificing step and one
Schur pair for the online phase multiplication protocol.

Codeword Authentication. Authenticating a codeword with Ilcodeauth takes k calls to Fpj on wu-bit field
elements, giving kun(n — 1) COTe’s on a u - m-bit MAC key. Since COTe is usually performed with a k-bit
MAC key and scales linearly, we choose to scale by u-m/k and model this as ku?mn(n—1)/x calls to FcoTe.

Schur and Reorganization Pairs. These both just perform 1 call to Fcogdeauth, SO have the same cost as above.

Multiplication Triples. Creating an unchecked triple first uses n(n — 1) calls to CodeOT on k - u-bit strings,
each of which calls Facor, for a total of (2ku+ s)n(n—1) Fot’s. The resulting shares are then authenticated
with 3 calls to Fcodeauth- Pairwise sacrificing doubles all of these costs, to give 2kun(n —1)(2ku+s)/x Fot’s
and 6 calls to Fcodeauth, Which becomes 8ku2mn(n —1)/k Fcote’s when adding on the requirement for two
Schur pairs.

Parameters. [9] implemented the online phase using Reed-Solomon codes over Fas, with (m, k) = (256, 120)
and (255, 85), for a 128-bit statistical security level. The choice (255, 85) allowed for efficient FFT encoding,
resulting in a much faster implementation, so we choose to follow this and use u = 8,k = 85. This means the
cost of a single (vector) multiplication triple is 86700n(n — 1) calls to Fcote and 14875(n — 1) calls to For.
Scaling this down by k, the amortized cost of a single Fa« multiplication becomes 1020(n — 1) and 175(n —1)
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calls. Note that this is around twice the cost of Fas0 triples, which were used to embed the AES circuit by
Damgard et al. [7], so it seems that although the MiniMAC online phase was reported by Damgard et al. [9]
to be more efficient than other protocols for certain applications, there is some extra cost when it comes to
the preprocessing using our protocol.

7.1 Estimating Runtimes

To provide rough estimates of the runtimes for generating triples, we use the OT extension implementation
of Asharov et al. [1] to provide estimates for Fcote and Fot. For Fcote, we simply use the time required for
a passively secure extended OT (1.07us), and for Fort the time for an actively secure extended OT (1.29us)
(both running over a LAN). Note that these estimates will be too high, since FcoTe does not require hashing,
unlike a passively secure random OT. However, there will be additional overheads due to communication
etc, so the figures given in Table 1 are only supposed to be a rough guide.
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A UC Security

We work in the standard Universal Composability (UC) framework of Canetti [6]. The UC framework
introduces a PPT environment Z that is invoked on the security parameter x and an auxiliary input z €
{0,1}* and oversees the execution of a protocol in one of the two worlds. The “ideal” world execution
involves dummy parties 7y, . .., 7,, an ideal adversary S who may corrupt some of the dummy parties, and a
functionality F. The “real” world execution involves the PPT parties P, ..., P,, possibly corrupted by a real
world adversary A, and interacting with each other by means of a protocol IT realizing an ideal functionality
F. The environment Z chooses the input of the parties and may interact with the ideal /real adversary during
the execution. At the end of the execution, it has to decide upon and output whether a real or an ideal world
execution has taken place.

We let IDEALf£ s z(k, z) denote the random variable describing the output of the environment Z after
interacting with the ideal execution with adversary S, the functionality F, on the security parameter x and z.
Let IDEALx s,z denote the ensemble {IDEAL 7 s z(#, 2) } xen,ze{0,1}¢+ - Similarly let REALp 4 = (1%, z) denote
the random variable describing the output of the environment Z after interacting in a real execution of a
protocol IT with adversary A, the parties P, on the security parameter x and z. Let REALp 4 z denote the
ensemble {REALp 4 z(k,2)}ren,ze{0,1}+-

Also, the UC framework considers the G-hybrid world, where the computation proceeds as in the “real”
world with the additional assumption that the parties have access to an auxiliary ideal functionality G.
In this model, honest parties do not communicate with the ideal functionality directly, but instead the
adversary delivers all the messages to and from the ideal functionality. We consider the communication
channels to be ideally authenticated, so that the adversary may read but not modify these messages. Unlike
messages exchanged between parties, which can be read by the adversary, the messages exchanged between
parties and the ideal functionality are divided into a public header and a private header. The public header
can be read by the adversary and contains non-sensitive information (such as session identifiers, type of
message, sender and receiver). On the other hand, the private header cannot be read by the adversary and
contains information such as the parties private inputs. We denote the ensemble of environment outputs
that represents the execution of a protocol II in a G-hybrid model as HYBIgj’ Az (defined analogously to
REAL 4 z ). UC security is then formally defined as:

Definition 1. Forn € N, let F be an n-ary functionality and let IT be an n-party protocol. We say that 11
securely realizes F in the G-hybrid model if for every environment Z, for every PPT real world adversary
A, there exists a PPT ideal world adversary S, corrupting the same parties, such that

IDEALF sz~ HYB 4 -

The crucial aspect of universal composability framework is the composition theorem. It works as follows:
denote by moG a protocol 7 that during its execution makes calls to an ideal functionality G. The composition
proof shows that if m¢ o G implements F and if 7, securely implements G, then ¢ o 7, securely implements
F. This provides modularity in construction of protocols and simplifies proofs dramatically. It is also shown
that proving security against a dummy adversary, i.e. one that acts as a communication channel, is sufficient
for proving general security.

B Information Theoretic Tags for Dishonest Majority

In this section we recall the MACCheck protocol by Damgard et al. [8]. The procedure utilizes an ideal
functionality Fcomm for commitments given in Figure 17. An implementation of Fcomm in the random oracle
model can be found in the Appendix of Damgard et al.

Theorem 3 (Damgard et al. [8]). The protocol MACCheck is correct, i.e. it accepts if all the public
values b;, and the corresponding MACSs are correctly computed. Moreover, it is sound, i.e. it rejects except
with probability 2711 in case at least one value, or MAC, is not correctly computed.
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Protocol ITmaccheck

Usage: The parties have a set of [ay], sharings and public values by, for h = 1,...,¢, and they wish to check
that an = by, i.e. they want to check whether the public values are consistent with the shared MACs held
by the parties.

As input the system has sharings ((A), {bx, (an), (M, )},—1). If the MAC values are correct then we have
that mg,, = bn - A, for all h.
MACCheck({b1,...,bt}):
1. Every party P; samples a seed s and asks Fcomm tO broadcast 7 = Comm(s(”).

Every party P; calls Fcomm with Open(Tm) and all parties obtain s) for all j € P.

Set s = s + .. + s,

Parties sample a random element r = PRF(Fsx)s € F5«; note all parties obtain the same vector as they

have agreed on the seed s.

WD

5. Each party computes the public value b = Z;:l Th - bp.

6. The parties locally compute the sharings (mg) =71 - (Mg, ) + - +r¢ - (Mg, ) and (o) = (Mq) — b - (A).

7. Party i asks Fcomm to broadcast his share 70 — Comm(a(i)).

8. Every party calls Fcomm with Open(%(i)), and all parties obtain ") for all jEeP.

9. If oW 4. 4™ # 0, the parties output @ and abort, otherwise they accept all by, as valid authenticated
bits.

Fig. 16. Protocol IImaccheck - For checking MACs on partially opened values

The Functionality Fcomm

Comumit: On input (Comm,v,4,7,) by P; or the adversary on his behalf (if P; is corrupt), where v is either in
a specific domain or L, it stores (v,4,7y) on a list and outputs (i, 7,) to all parties and adversary.

Open: On input (Open,i,7,) by P; or the adversary on his behalf (if P; is corrupt), the ideal functionality
outputs (v,4,7,) to all parties and adversary. If (NoOpen, i, 7,) is given by the adversary, and P; is corrupt,
the functionality outputs (L,,7,) to all parties.

Fig. 17. Ideal Commitments

Receive {X(j)}je[N] from Fgatchcheck and pass this to the corrupted parties.

Emulating Fcomm, receive o; from every corrupted party i.

Emulating Fcomm, sample 7; and send it to all corrupted parties for every honest party i.
Compute ¢ = EieA o; and send it to FgatchCheck-

Receive {0 }iep from Fpatchcheck-

For every honest party ¢, send o; it to all corrupted parties.

S oW

Fig. 18. Simulator for batch checking protocol

C Batch Checking

We use a simple protocol based on Fcomm and Frang for checking that a batch of additively shared values
are equal to zero, by opening a linear combination of them. This is similar to what was used in the MAC
checking procedure of SPDZ [10,8], but in our protocol we also use it for checking correctness of a batch
of Fyr triples. Because of the nature of UC, the Fgatchcheck functionality closely matches the protocol, only
performing the check on a random linear combination of the inputs. Later on, we use Lemmas 6 and 7 to

argue that this implies the original inputs were zero, with high probability.

Lemma 4. The protocol Ipaichcheck in Figure 16 securely implements FgatchCheck i the (FRrand, FComm)-

hybrid model.

Proof. We use the simulator in Figure 18. The use of Fcomm ensures that the corrupted parties cannot chose

{0i}ica dependent on {0;}icp.
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KL
Protocol Il

Initialize: This is independent of inputs and only needs to be done once.
1. Pg samples x pairs of x-bit seeds, {(kJ,k})}5_;.
2. Ps samples a random k-bit string A.
3. The parties call 57 with inputs {kJ, k] };cpe) and {A[]}e()-
4. Pg receives ijj forj=1,...,k.
Extend(Pr, Ps): On input z1,...,z, from Pg, do:
1. Expand k% and k? using a pseudo random generator (PRG) ¢, letting

t! = PRG(k]) € F5 and t] =PRG(K!) € TS, j=1,...,.

so Pr knows (tg,t{) and Ps knows tjAj forj=1,...,k.
2. Pr computes
w=t)+t]+xelF5, j=1,...,k,
where x = (z1,...,2¢) € F5 and sends them to Ps. Here we are creating the keys correlation that
permits to extend OTs, inverting the role of sender and receiver.

3. Ps computes _ _ _
q =4;-u +t) cFS.

Notice that g’ :tﬁ+Aj -x, for j=1,...,K.
4. Let qn denote the h-th row of the £ x s bit matrix Q = [q']...|q"], and similarly let t;, be the h-th row
of [t4]. .. |t§]. Note that
qh:th+xh~A, th,...,é.

5. Pgr outputs t;, Ps outputs q.

@ If Extend is being iterated, set té,t{ instead to be the next £ bits output from the PRG, to create fresh
randomness.

Fig. 19. Protocol for correlated OT with errors between Pr and Ps.

Functionality Fg;
F running with Pr and Ps and an adversary S proceeds as follows:

- The functionality waits for input (vo,n,v1,n) € F5 x F5, h € [¢], from Ps and x1,...,x¢, with x5, € Fa2, from
Pr.
- It outputs v, », h € [{], to Pg.

Fig. 20. The OT functionality

D IKNP extension and other OT functionalities

The protocol in Fig. 19 is the passively secure IKNP OT extension, using the standard OT functionality given
in Fig. 20. Note that the receiver can cheat in Step 2 by using different values of x; this is modeled in the
Fcote functionality (Fig. 2) by allowing Pr to input vectors xi, ..., X, instead of bits. This means that the
protocol can be shown (and was proven by e.g. Nielsen [17]) to securely implement the Fcote functionality

with active security, in a FJ7 -hybrid model.

E Other functionalities
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Functionality fgand

Random sample: Upon receiving (rand;u) from all parties, it samples a uniform r € F and outputs (rand, r)
to all parties.

Fig. 21. Functionality Fg,.q

F Security proofs

For some of our proofs we require the following simple, technical lemma on the rank of a random matrix
over [Fy.

Lemma 5. Let A be a random (k +m) X k matriz over Fy, where m > 0. Then A has rank k except with
probability less than 27™.

Proof. See [19][Lemma 1].
We will also use the following lemmas on sums with random coefficients.

Lemma 6 (Principle of Deferred Decisions). Let {(x;,y:)}ic|n), 2 be random variables in For for some
k,N € N. Furthermore, let x; be uniformly distributed and independent of all other variables for all i € [N].
Then, if there exists j € N such thaty; # 0,

N
Pr {z = in ~yz} =27k
i=1
Proof.
N
z = in Y
i=1

is equivalent to

x;=y; - (Z+in 'Yi>~
i#]
The claim follows because the left hand side is uniformly distributed and independent of the right hand side
by definition.

Lemma 7. Let {yi ji}ie[N,],je[Ns].i€[0,Ns]> Z be random variables in Fox for some k, N1, N2, N3 € N. Fur-
thermore, let {X;}iciny), {W; }je[na]s {Vihievs) be uniformly distributed random variables, of which {X;};cn,)
are independent of all other variables as well as mutually. Then, if there exists (i, j',1") € [N1] x [N3] x [0, N3]
such that y; .10 # 0,

Ny N» N3
Pria=3x 3 wie (viso+ 3 _viovis)| <327
i=1 j=1

=1

Proof. If I’ =0 and w;» # 0,

N, No N3
z = E X - E wj - (Yi,j,o + g vi 'Yi,j,l)
=1 j=1

=1

is equivalent to

No N3
Xj = WJTI 'y;,ljf,o ' (Z + in : ij : (Yi,j,o + Zvl 'yz‘,j,l)‘*‘

i j=1 1=1
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N3
in : Z Wi - (Yi,j,o + Zvl 'Yi,j,l)) .

i#i G =1

Because the left hand side is uniformly random and independent of the right hand side, equality holds with
probability 27%. If I #£ 0, wj» # 0, and v # 0, the equation is equivalent to

N N3
X5 = Wj/ Vl/ y,L‘/vj/J/ z X W Yi,5,0 Vi Yigl

i’ j=1 =1
N3
+ in : Z W - (Yi,j,O + Zvl 'YiJ,l) + in : Z W ZVZ 'Yig’,l))-
i A 1=1 i AT LAV

Again, the equality holds with probability. Finally, the probability that w; = 0 and vi» = 0 is 27F  respec-
tively. The claim follows using the union bound.

Lemma 8. For N,{ € N, let f; : F§ — For be a Fy-linear map for all i € [N], {X;}icn) be independent

and uniformly distributed in For, and f = Zfil X; « fi. Furthermore, let y be independent and uniformly
distributed in F*, and z a random variable independent of y (but not necessarily {xi}ieny). Then,

Pr(z=f(y)AJie [N,y €F5: (f(y) = f(y') A fily) # fi(y')] <27F

In other words, the probability that f(y) = z and f(y) does not uniquely determine f;(y) for all i € [N] is
at most 27FF1,

Proof. Let {v;};emn be a basis of V' = (ﬂivzl ker f;)* C F5. Then, fi(y) can be expressed as Z?:I a; fi(v;)
for all ¢ € [N]. Let F}, denote the above event, which can be stated as follows:

Fpn=(z=f(y)AJi€ [N,y €F5: (f(y') =0A fi(y') #0))

for h being the dimension of V. The equivalence is straightforward by replacing y’ with y +y’. We will prove
the statement by induction over h.

For h = 1, y = ayv;y for random a;. fi(y) # fi(y’) can only hold for y’ = (1 — ay)v;. Furthermore,
fly) = f(y) is equivalent to 0 = f(y —y’) = f(v1) = Zfil fi(vy). Since v; € V, there exists ¢ € [N] such
that f;(vi) # 0. From Lemma 6, it follows that

Pr(Jie [N,y €Fs: (f(y) = f(¥) A fily) # fi(y)] =27F.

This implies that Pr[F;] < 27F+1,
Let E} denote the event that {f(v,)}gein has Fo-dimension j, that is, there exists G C [h] of size j + 1
such that 3 ;) f(vg) = 0, but not such G of size j exists. The Fa-dimension of a set of size h clearly is in

[0, k], and hence,
h h

Pr[F},] = Pr {Fh nUJ Eﬂ =" Pr[F,|EY - Pr[ED).
=0 =0
In the event EP', 0 = f(y') = ZZ:l agf(vg) for some ai,...,ap € Fy implies that a, = 0 for all g € [h]
and thus f;(y’) = fi(zgzl agvy) = 0. Therefore, Pr[F,|E?] = 0. On the other hand, for j # h, there
exists a1,...,ap € Fo with ay = 1 for some g € [h] and 0 = 2221 apf(vy) = f(ZZ:1 apvy). Since

ZZ:1 agvy € (ﬂfil ker f;) T, there exists i € [N] such that fi(ZZ:1 apvy) # 0. It follows that

Pr{Fy|E}] = Prla = f(y)|E}] =27
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for j # h. The equality follows from the fact that f(y) is uniformly random in a space of Fo-dimension j in
the event Ejh and the fact that y is independent of z. Hence,

h—1

Pr[Fy] = > 270 Pr[E]] (2)

Jj=0

Furthermore, if {f(vg)}4epn has Fo-dimension j > 1, {f(vy)}gen—1) clearly has Fo-dimension j or j — 1. It
follows that

h—1
Pr(Fy] = PriBy] + 3277 - (Pr[E}| )] - Pe{E) ) 4 Pr{E} | E} ] PrlE) ).
j=1
h—1
= PI‘[ESL] + Z 92=J . PI‘[E;L|EJ}.L71] . PI“[EJ}-lil]—i—
j=1
h—2
S 27Tt o[l [EMY - Pr(EE Y.
j=0
Similarly,
Pr[E} |}~ = (1 - Pr(B}| B ).
Therefore,
h—1
Pr[F},] = Pr[El] + Z 27 . Pr[EﬂEj}.‘*l] . PT[EJ}_Lfl]_i_
j=1

> 277t (1= Pr[E}EFY) - Pr(E} Y
= Pr[Eh] + 27" PrBL |y Pr(B T

22 I Pr[EFEF - Pr[EF
=1

h—2
L Pr[EQIEGT 4 277 PrlEl Y
7=0
h—2
<Pr(E{|E) Y- Pr(E; T+ 278 Pr[Ep ]+ ) 27F ! PrEl Y
j=1
h—2
— 27N Pr[EGIEL Y 4+ ) 2 T Pr(El Y
j=1
< Pr[EREY - (Pr[ESY —27Y) 427 pr[EP T 27k
h—2
> 2 Pe(El Y
j=1
h—2
<27F4+ ) 2Tt pr[EM Y
j=1
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In the first inequality, we have used that Pr[E}] = Pr[El A El7'] and that Pr[EﬂE;“l] < 27k for
all 0 < j < h — 1. The latter can be seen as follows: {f(vy)}gsepn having Fp-dimension j implies that
fvn)+2,eq f(vg) = 0 for any set G C [h—1] of size j. This is equivalent to Zfil Xi [i(Vh+24eq Vg) = 0.
By Lemma 6, this happens with probability 27%. Given that {f(vg)}ge[n—1] has Fo-dimension j, there are
27 possibilities of for > gec f(vg) over all choices of G C [h — 1]. Summing up gives the desired inequality.

In the second inequality, we have used that Z?;ll Pr[EJf-‘fl] < 1, and in the third inequality, we have used

that Pr[E21]) < 2% for h > 1.
Finally, consider that

h—2
Pr(F, 1] =>» 277 -Pr[El ]
j=1

like in (2). We conclude that

h—2
Pr(F,] <27F 4> 2771 Pr(E ]
j=1
=27%F 4 271 . Pr[F),_]
<97k ol g7hkHl
; 27kt+1’

which completes the induction.

Corollary 1. For Ni,Na,l € N, let fi ; : Fy — Far be a Fo-linear map for all (i,5) € [N1] x [Na], {xi}ie(n
be independent and uniformly distributed in For, W; be either non-zero or uniformly distributed in For for
all j € [N3], and f = Zfil X; - W; - fij. Furthermore, let'y be independent and uniformly distributed in F*,
and z a random variable independent of y (but not necessarily of {X;}ic(n,] o7 {W;}je(n,))- Then,

Pr(z=f(y)AJi€[N],je[Na]y €F5: (f(y) = f(Y) A fijly) # fij(y)] <27

In other words, the probability that f(y) = z and f(y) does not uniquely determine f; ;(y) for all (i,7) €
[N1] x [Ng] is at most 27*+1.

k+1

Proof. Similarly to the previous lemma, we establish that Pr[F;] < 2~ using a simplified version of

Lemma 7. The rest of the proof is identical.

F.1 Amplified Correlated OT — Lemma 1

In the simulator in Figure 22, 7 describes Pg’s bits that the adversary tries to tamper with in the OT.
If 7 is small enough, the amplification rules out any leakage with overwhelming probability in k. On the
other hand, if |Z| is larger than k, the amplified result contains so many errors that the adversary has only
negligible chance of opening all of them correctly.

Proof. Tt is easy to see that if both parties follow the protocol,
Q/ + TI = DXIY = DXIODy = X/ & y.
Hence,

Q+T=MQ +T)+i®y
=Mx®y)+i®y
=MxX Ry+6Qy
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Get Y and Q' from Ps by emulating ]_-g_l,_e’ for ¢/ = 2k + s.
Define y as the majority of rows in Y.
Define Y/ =Y — ODy where is O € FS ** is the matrix full of ones.
Define Z as the set of indices where the i-th row of Y’ is non-zero.
S I T > ke
(a) Input (MultError, Y') to Fyz8r and receive (M, 6).
(b) Compute Q = MQ' + 6 ® x.
- Otherwise:
(a) Sample M & FEx¢ 5§ & FE and %' & FY .
(b) Compute E = MDY and Q = MQ' +4®y.
(c) Send (AddError, E) to Frzir.

Ll

Fig. 22. Simulator for amplified leaky correlated OT (corrupted Ps)

= (Mx'+ Mx' +x)®y
=XQYy.

The case of Pr being corrupted is straightforward. Pr can only deviate when sending §, so we define
x = § + Mx' and input it to ]::,CSOT' For a corrupted Pg, we use the simulator in Figure 22. In the real world,
we have that

TH+Q=MT +Q)+éxy
=MDy Y +6Ry
= M(Dy(ODy +Y'))+6®@y
=x®y+ MDY’

We have applied that M Dy ODy + 0 ® y = x ® y. Hence, we have to prove that £ added by }“/];’CSOT to the
output is statistically close to M D,/ Y’ added in the real protocol.

- If |Z| < k, E = M DgY’. While this looks similar to the real world, note that § = Mx’ in the real world,

while & is uniformly random. Define x/ as x’ with all indices not in Z set to zero and xz = x' —x7.
Furthermore, define M|z as M restricted to column indices in Z. Clearly, Mx' = Mx7 + Mx% and
DxY' = Dy, Y' by definition. Then, for uniformly random x%, Mx% is uniformly distributed if M|z
has full rank. By Lemma 5, this happens with probability at least 1 — 27° because M|z has at least
k + s columns. If Mx% is uniformly random (even given M), however, Mx’ is independent of Dy Y" and
MDY’
It is easy to see that (M,d) has the same distribution as (M,d). M and M are sampled uniformly at
random and so is 4. Since § = Mx’ for uniformly random x’, § is uniformly distributed if M has full
rank, which trivially holds if M|z does so. Hence, the statistical distance between (M Dy Y', M, §) and
(MDx/Y',M,$) is at most 2.

- Otherwise, (MD;(/Y’, M, 5) and (M Dy Y’, M, §) are computed in the exact same way and thus perfectly
indistinguishable.

We conclude that the statistical distance between simulation and real execution is at most 275. O

F.2 Authentication — Lemma 2

Proof. We prove the lemma for authenticating elements of Fo over the extension field Fox, i.e. M = k. The
generalization to higher order fields and authenticating extension field elements is straightforward. Let S be
a simulator that has access to J.J, we show that no environment Z can distinguish between an interaction
with & and F and an interaction with the real adversary A and real parties. The simulator invokes an
internal copy of A and sets dummy parties m;,i € P. Let A be the set of corrupt parties, it proceeds as
follows:
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1. Simulating the Initialize phase: S samples random shares { A()},.o 4 for honest 7, and receives { AU} 4
internally from A. Then it runs an internal copy of Fcote.Extend initializing the inputs of the honest
(dummy) parties at random, with the inputs of the corrupt parties specified by A as before. After this it
performs the local computation as specified in the protocol. If it receives Abort, then it forwards Abort
to the functionality, and it halts. Otherwise inputs (Authenticate) to the functionality, together with the
set A of corrupt parties and all the extracted shares of P;, i € A.

2. Simulating the n-Share phase: S runs an internal copy of Fcote.Extend as specified before. If P; inputs
vectors instead of bits, the simulator sends (Error, e(k)) to F. and sets the flag Errory to true. It outputs

what corrupts m; outputs and it halts.

Now we argue indistinguishability.

If during the internal execution of the protocol an abort occurred, then an abort occurs in both the ideal
and the real world, and the simulation in this case is perfect.

For the sake of simplicity, we separately consider the two cases (—Abort) A(—Errory) and (—Abort) A (Errory).
In the first situation, during the Initialize phase, we could have a faulty representation m; = x5 - A +
Zkez A argf) -0, We must examine the probability that the ITyaccheck passes when a corrupt party P; has

submitted different A(91) A(:32) for some j; # jo. Assuming 6 # 0 for at least one i, then for every h,

the adversary must adjust their shares mg) so that > 1", mgf) = xp - A, for the MAC check to pass. This

K2
is easily seen to be equivalent to guessing Zi¢ A xg) for h = 1,...,k, which happens with probability 27",
since ng) are uniformly random bits. So if the MAC check passes, we are guaranteed that corrupt P; used
the same MAC key A® for each Fcote instance, except with negligible probability.
We need to examine the n-Share phase. Since Errory is not true, then parties run Fcote inputting bits, and
indistinguishability of the outputs follows from correctness and privacy of Fcore-

Let us consider the second case. As before, since there is no interaction among parties, we only need to
show outputs indistinguishability. In the real execution we could have that some shares {mgk)} are shifted
by the value egf’k) « A) | that is exactly what the simulator tells to output to the functionality. Note that
the flag Errory can be set to true also during the Initialize phase, when parties run n-Share on dummy input
z1,..., 2. Now imagine that m, = zp - A+ 37,04 eg“k) x A et S,(f’k) be the set of indices where eg“k)

is 1 and set S = U;¢ AS}(f’k). In the ideal world, the simulator can query the functionality with a description
of an affine space S C Fj4. In both the executions the adversary may guess |S| bit of A®*) with the same
probability 27151,

]

F.3 Generalized Bucket Sacrificing for F5 Triples

In this section we generalize the bucket-based sacrificing step by Larraia et al. [16], abstracting away the key
properties that are required. This means the procedure could be reused for other purposes, such as checking
different kinds of triples or preprocessing data. We also obtain a tighter proof than Larraia et al., allowing
the bucket size to be just 3 when checking batches of 1 million triples, whereas previously this required
bucket size 4.

Definition 2. We say that a data type is (R, p)-checkable if:

- Values of the data type consist of a fixed-length list of secret shared and MACed values.
- There is a predicate R that is efficiently computable if the data is revealed.
- There is an algorithm CheckR and associated value p that takes as input two items a,b and outputs either
Good or Bad, such that:
- If R(a) =1 and R(b) =1 then CheckR(a,b) = Good.
- If R(a) = 0 and R(b) = 0 then Pr[CheckR(a,b) = Good] < p.
- If R(a) =0,R(b) =1 or R(a) =1, R(b) = 0 then CheckR(a,b) = Bad
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Subprotocol IIcheckTriples

The protocol is parametrized by the number £ of triples generated, the size T' and T” of buckets, and a positive
integer ¢ which is used to control how much cut-and-choose we perform.

Input: Let N =T(T"¢) + ¢ be the number of inputs denoted by {aT;}ien), where aT; = {[x:], [y:], [z:]}
Phase-1 Cut-and-choose:
1. Using Frand, the parties sample a random vector v € ]Fév with ¢ of non-zero entries.
2. Let J be the set of indices j such that v; # 0 and Vj € J. The parties partially open {aT,};cs and
Vj € J, verify the predicate R(aT;). If R = 0 happens, then Abort.
Phase-1I1 Bucket-Sacrifice: After Phase I we are left with T'(7"¢) aTs. Set t = T"¢.
1. Permute each of the unopened items according to a random permutation 7 on 7't indices, again using

FRand- Then renumber the permuted unopened sets of values such that j =1,..., Tt and, for: =1,...,¢
create the i’th bucket as {aTj};-LT_T_H,
2. Parties compute a BucketHead(i) for each i = 1,...,t, i.e. return the first (lexicographically) element in

the i’th bucket.
3. For i =1,...,t, check the correctness of BucketHead(7) against every other item in the bucket. That is,
for j =il —T+2,...,iT:
- Run CheckR(BucketHead(i),aT;)
- If CheckR outputs Bad, then Abort.
Phase-III Combine: After Phase I and II, there are t = T'¢ authenticated triples.
1. Repeat Step 1. of Phase II to permute the remaining aT; and split them into ¢ buckets of size T".
2. Recursively combine the triples in each bucket as follows:
a) Consider the first two elements in the bucket, say aT; and aT}
b) Parties open (y; +y;)
c) Parties set: [xx] = [xi +x;], [y&] = [yi] and [z&] = [z + z;] + (vi + y;)[x;]-
d) Then repeat Steps b) and ¢) with aT, and the next element in the bucket.
Phase-IV Mac Check:
1. The parties execute the protocol ITmaccheck On all partially opened values from Phase I, IT and III.
2. If ITmaccheck does not abort then output the resulting combined triples bucket aTy for k = 1,...,¢ as
correct authenticated triples.

Fig. 23. Checking triples

- If CheckR(a,b) = Good and b is discarded then no information about the secret shared data a is
revealed.

Here we want to verify that an authenticated triple, aT = {[x], [y], [z]}, where x,y,z € F, verifies the
multiplicative relation. This means that R is true, i.e. R(aT) = 1, if and only if the opened values x,y, z
satisfy x -y = z. Note that if p is negligible in the statistical security parameter then we can check the
relation R by simple pairwise sacrificing, that here we denote by CheckR(:,-), as with the main methods of
Damard et al. [10,8]. If p is non-negligible, we do the bucket-based sacrifice given in Figure 23.

Lemma 9. Let ¢t = ¢T'. For an (R, p)-checkable data type, the sacrifice procedure, e.g. (Phase 1 and II in
I checkTriples), with ¢ = 3logyt and T > + 1 outputs t values satisfying R with error probability

275,

s
log, t—log, p

Proof. Correctness in the semi-honest model is straightforward. For active security, first note that by the
properties of the CheckR procedure, the only way an incorrect tuple evades detection is if it is not opened
in Phase I and then if all of the tuples in its bucket in Phase II are incorrect, in which case the test passes
with probability p? 1.

Let m > 0 be the number of initial tuples that do not satisfy R. If m > T -t then the check in Phase I will
never succeed, and similarly if m mod T # 0 then the checks in Phase II will never succeed. Furthermore,
note that for the check to pass m must be a multiple of k, otherwise there will always be at least one bucket
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with both correct and incorrect triples. So let m = k- T for some k € {1,...,¢}. As in Larraia et al. [16],
let E; denote the event that the cut-and-choose step (Phase I) passes, and E5 the event that the sacrificing
step (phase IT) also passes. The cut-and-choose step passes only if none of the ¢ triples chosen to be checked
are incorrect, and since m out of all the N triples are incorrect, we have:

N—-m N-m-1 N-m-c+1
N N—-1 = N-c+1

PI‘[El] =

It is easy to see that:

Pr[E,] = Pr[E;] T (2) . (;Z:) 71_

Note that the quantities Pr[E;] and pFT=1 are less than one and strictly decrease as k increases. Let

-1
p(k) = (,t) . (Z?) , the right-hand term in the above expression, and notice that this is symmetric around

k=1t/2,1e. p(k) = p(t — k), and is minimized at k = t/2. Therefore for k € {1,...,¢}, Pr[Es] is maximized
either at k =1 (when p(k) = p(1) = p(t — 1)) or k =t (when p(k) = p(0)). We now examine the choices for
¢ that lead to Pr[FEs] being maximal at k = 1. If this is the case, we have:

Pr[Es]|k=1 > Pr[Es]|r=
N-T N-T-ctl 5, (Tt TUNST  N—iT ekl gy
N N—c+1 T) =N N—c+1 P

Tt — 1)) t—1)(T—1
((Tt)!))z(N—tT)-~-(N—tT—c+1)-p( N(T-1)

& (N=T)---(N—c+1)-t-T! >l pt=DT=D

=

S(N=T)- - (N=T—c+1)-t-

Recall that p < 1, and notice that if ¢ > T and N —c+1 > T 41 then the above equation is always true,
so we now impose these constraints on ¢ and continue to inspect Pr[Es], assuming k = 1.

N-T N-T-c+1 AN
P E = “en -t .
B = —x N-c+1 (T) b

T\ "

< f1oT LTl

— 1T T

p
_ 27(T71)(10g2 t—log, p)
so choosing T' > m + 1 ensures that Pr[Ty] < 27°. Since the last inequality above is independent of

the cut-and-choose parameter ¢, it suffices to set ¢ = T, meaning the amount of cut-and-choose performed
is essentially negligible. O

The following Lemma shows that the combining step in the triple checking protocol suffices to remove
leakage from our Fs triples.

Lemma 10. Phase III in IcheckTriples Outputs leaky triples with negligible probability < 27° if T' > 10;;(1@) +1.
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# triples s T,T

1024 40 5
16384 40 4
1048576 40 3
1024 64 8
16384 64 6
1048576 64 5

Table 2. Bucket sizes for 2 triple checking and combining with statistical security parameter s.

Proof. Straightforward from Theorem 8 by Nielsen et al. [18]. O

For the case of bit triples, the bucket checking procedure has detection probability p = 1 when a bucket
contains both good and bad triples. This means we have the following requirements:

F.4 Bit Triples — Theorem 2

Let A be a real world adversary corrupting up to n — 1 parties, we describe an ideal world adversary S for
A. S has access to Fryiples, and we show that no environment Z can distinguish between its interaction with
S and Frviples and its interaction with the real adversary A and real parties. The ideal world adversary S
internally runs a copy of A setting dummy parties 71, .. ., 7,, and then it simulates for them a real execution
of IgitTriples- The communication of Z with the adversary A is handled as follows: every input value received
by the simulator from Z is written on A’s input tape. Likewise, every output value written by 4 on its
output tape is copied to the simulator’s output tape (to be read by the environment Z).

S simulates an internal copy of IIgitTriples as follows.

1. Simulating the Initialize phase: It samples random shares { A(*)} ;4 4 for honest 7 and receives { AU} ;¢ 4
internally from A. Then it emulates Fcote and Fp..Init to check the consistency of A and A, with the
input of the honest (dummy) parties sampled at random, and with the input of corrupt parties specified
by A. Then it proceeds as in the protocol performing local computations. If it receives Abort, then it
forwards Abort to the functionality, and it halts. Otherwise, it inputs Triples, together with the set A of
corrupt parties and all the extracted shares for P;,i € A.

2. Simulating the COTe phase: The simulator runs internal copies of ]:g(’#e- It sends {f;f’k)7 qg]*’“)}jeA to A.
If A inputs vectors instead of bits to some 7, k & A, then it sets the flag MacError to true and computes
€= 4o eg’k) - A% for some i € A. It sends (MacError, e) to the functionality.

3. Simulating the Triple generation phase: For j € A, S receives sU from A and sets y}(lj) = sgj’i) —l—v((){;? +

vgjhz) S internally sends random {sgbk’i)}kg A to A acting as Far. If A gives any inconsistent yéj ) for

j € A, or an inconsistent nElZ’])7 1€ A, S sets flag badTriples to true.

4. Simulating the Authentication phase: If during the pairwise calls of FcoTe, A misbehaves in such a
way that dummy parties {m1,...,7,} hold incorrect authenticated bits, then the simulator sets the
flag badAuth to true; if A inputs vectors instead of bits set the flag MacError to true and compute the
subset S,(Lk) C{l,....ktand e =3, egf’k) - A% for some i € A. Hence it sends (MacError,e) to
the functionality. Also, if A authenticates something different to what it was generated in the Triple
generation step, then S sets flag badTriples to true.

5. Simulating the Check triples phase: In the MacCheck step the simulator uses the dummy input
{A(k)}kgA to run IIpmaccheck With A.

Now the simulator checks what happened during the internal execution of the protocol.
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If during this execution an abort occurred, the simulator sends Abort to the functionality; both the real
and the ideal process abort and the simulation is perfect.
Otherwise, it sends {A(J)}je 4 and Triples to the functionality together with all the extracted corrupted

shares. Notice that the simulator only sends the last x components AU of AW to the functionality.

Now, if the flag badAuth is true and no Abort occurred, the simulator acknowledges itself to the environment.
In this case Z always distinguishes between the two executions of the protocol: we have corrected authenti-
cated triples in the ideal world and bad authenticated values in the real execution. By Theorem 3 we know
that this happens with negligible probability 27**1.

Consider the case badTriples true and again no Abort occurred. This happens either if some y,(f ) are
inconsistent, for j € A, or if corrupted parties authenticate something different to what it was generated
in the triple generation phase. In both cases, in a real execution of the protocol, this will produce a faulty
representation of type z, = xp - yp + xﬁlk), for some k € A. However if no abort occurred, from Lemma 9
and Lemma 10, we know that the authenticated triples that the protocol outputs are correct (i.e. satisfy
the multiplicative relation), and that the privacy on zj is guaranteed with overwhelming probability. On
the other hand, if the adversary produces inconsistent n,(f’] )7 for some ¢ € A, then the triple will pass
CheckR if and only if sgj ) = 0 in both executions, and the privacy is again guaranteed as sgl] ) i already
part of the public transcript. Both the executions output random authenticated triples and hence they are
indistinguishable.

Consider now the case when MacError is true. This means that, for some j € A and k € A, we have
s = |
step and during the authentication. First we argue indistinguishability of the transcripts: the values SZ’J are
identically distributed in both the executions, as the value Uék’j) +U§k’]), where vék’J) = H(qﬁf’j) —|—e§f’k) *A(k))
and v§k’j) = H(qﬁf’j) + eﬁlj’k) * A®) 1 A(R)) ' is uniformly random and independent of w}(f’j), and these values
perfectly mask the value y}(l] ) 1f the protocol outputs the triple, we know that it is correct and that privacy
on xj, is guaranteed, except with negligible probability. However we could have a leaky MAC representation:

the simulator can query the functionality with a description of an affine subspace S C (F5)™, and in both

)+xh~A+e§lj )« AR) This faulty representation could happen both before the triples generation

the executions, and the adversary might guess ¢ = |S§Lk)| bits of the global key with probability 27¢ .
Finally, if no corruptions occur, we show that Z does not distinguish between the real and the ideal
process. In both processes Z can see the masks s leaked by Far: they look perfectly random and in-
dependent of Z’s view, as the values H (qgf Yy and H (qﬁlj ) 4 AG)) (with H modeled as a random oracle)
used to pair y(9) are uniformly random, even if we allow Z to adaptively make additional calls to H. All
the partial openings in both the simulated and the real run of the protocol reveal uniform values. More
precisely, all opened values are a combination of output data and sacrificed data, with the latter that is
not part of the final output, and therefore by no means Z can reconstruct the set of opened values using
its view. Finally note that we are using the same call to Fcote “twice”, namely to generate triples and to
authenticate xj. However the zj’s share are obtained by using only the first £ components of the ¢ outputs
of }'gg’fe, and these values, that are hidden from Z’s view, are then randomized again through random oracle
queries to break the correlation. To authenticate z; we then use the second block of x components, which
are hence independent of that used in the previous step. The resulting zj;’share are not bind to the values
produced in the authentication phase, all the outputs are identically distributed, and all the ideal transcripts
are consistent with what Friples outputs. O

F.5 Far Multiplication

In this section we introduce a new functionality Fgemui, that will be used in the next two sections to prove
the security of Iltriplecheck- INotice that IIgrmuie essentially consists of a call to FacoT plus an additional step
at the end.

Notation. For ¢',k € N, let M be a matrix in FQI“X[7 Y’ be a matrix in Fg/Xk, and Z C [¢']. For {m;};c(p

denoting the columns of M, let Mz € ngm and Mz € IFSX(ZL‘ID be the matrices consisting of the columns
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Functionality fé{:fwmc

It involves two parties Ps and Pgr, and an ideal adversary S. The procedure can be called repeatedly. Let
0 =2k + s.

- Upon receiving x € For from Pr and y € For from Ps, the functionality does the following:
Honest parties
- The functionality samples a random element q € Fy.. Then it computes t = q + x -y, and it outputs q
to Ps and t to Pg.
Corrupt parties
- If Ps is corrupted:
1. The functionality waits for S to input q € F,. and one of the following:
- If S inputs (RandomError, Y, f) such that Y € F% ** and |Z| > k for T = {i € [¢'] | yi # 0}, the
functionality samples M= Mz € ng‘ll such that M = M ®z Y has rank k and x i F‘Qzl, sets
f =M% +f and § = Mzx + x, and sends (M, 6) to S.
- & inputs (AddError, f).
2. It computes t = q+x -y + f, and sends t to Pr, q to Ps.
- If Pgr is corrupted, the functionality waits for S to input x. Then it samples q € Fyx and computes
u=gq+x-y, outputs u to S, waits for S to input t, and outputs t to Pr and q to Ps.

Fig. 24. Fé,’:‘f\,lu,t — Galois field multiplication

Emulating Fr2% 1, get y from Ps.
Similarly, wait for Z to input Q@ € F§** and (MultError,Y”') for Y’ € IFng.
Let {y:}icz denote the rows of Y’ and define Z = {i € [¢'] | y; # 0}.
Sample M & FEx¢.
- If Mz has rank k, sample § & Fyr and f & im(M &z Y"’), and input (AddError, f) to féﬁfvlult-
- Otherwise, if M ®z Y’ has rank k, sample x- & F‘Qzl, input (RandomError, Y, Mzx%) to F it receive
(M, 6) from féﬁfwuw and replace Mz by M.
- Otherwise, abort.
5. Send (M, 0) to Z.
6. Compute q = eQe' and send q and Y’ to Féemur.-

- o=

Fig. 25. Simulator for F,x multiplication (corrupted Pg)

of {m;};cr and {m,};¢7, respectively. Furthermore, (M Gz Y') € ngm be the matrix consisting of the
columns {y} - m;};ez.

Lemma 11. The protocol IIEgyuy, described in Figure 9, implements Fep (Fig. 24) in the Fager-hybrid
model with statistical security s.

Proof. If both parties follow the protocol,
t+q=e(T+Qle' =e(x®y)e’ = (ex)@ (ey) =x-y.

Note that, for x € F%, ex denotes the representation of x in Fyx, and hence, the tensor product collapses to
the field product in Fyx in the last equality.

The case of Pr being corrupt is trivial. For corrupt Pg we use the simulator in Figure 25. On input
(MultError, Y') from Z to Fagor in the real world, Fager will sample M € FE** and x' € FY4, compute
d = Mx' + x, and output (M, ) to Z. It is easy to see that

t+q=x-y+eMDyY'e"
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for t and q output by Pr and Ps in ITgrmyk. If m; € For and y; € For denote the columns of M and rows
of Y, respectively, it holds that

eM = (my,...,my) and
YIeT = (yl1,-~-,YZ/)T~

It follows that
Z/
eMDyY'e' = Z T, -m; -y,
i=1

_ ! /
=Y aj-m; -y

i€l
= (M orY')x7

for x’- consisting of the elements of x’ with index in Z.

By definition, Mz has the same distribution in both worlds. The same holds for Mz even though it is
generated twice if M ®7 Y’ has rank k. The second generation is executed to match this condition. We now
consider the same distinction for real-world M as in the simulator.

- If M7 has rank k, fo’f is distributed uniformly in Fyr for uniformly random x’f and thus is

6 = Mx' +x = Mzx7 + Mzxz 4 x.

£ & im(M ©zY') and eM Dy Y'e" = (M 7 Y')x); are trivially distributed identically because x and
xL are independent.

- In the case of M ©7 Y’ having rank k, X is distributed identically to x%, and hence f = (M ©z Y')vzx is
so to (M ®7 Y')xz and so is Mzx + fo’f +x to Mx' +x.

- Neither Mz nor M ®7Y" having rank k happens with probability at most 27°. According to Lemma 5, it
happens with probability 2~ (' ~IZI=k) for M= and 2~ (ZI=K) for either M7 and M ®7Y". The latter holds
because m; is sampled uniformly and y; # 0 for all i € Z, and therefore, m; - y; is distributed uniformly
for all i € Z. Since Mz and (M7, M ©7Y") are distributed independently, the probability of neither M=
nor both Mz and M &7 Y’ having full rank is 2= (W' =IZI=k) . 9=(IZ|=k) — 9—(¢'=2k) — 9= using the union
bound.

We conclude that the statistical distance between real and ideal execution is 275.

Lemma 12. Let M & IF’;X” consisting of columns {m;}!_,, Y’ € Fg/Xk consisting of rows {y;}'_,, T =
{i € ['] | y, # 0} and M ©z Y’ as above. Furthermore, let f and f' denote the linear map defined by
Mz and (M ©1Y"), respectively. Then, if not all non-zero rows of Y’ are the same, the probability that
ker Mz C ker(M Gz Y') is at most 27F.

Proof. For alli € Z, let Y; € F5** denote the matrix induced by the multiplication with y} in Fox. ker Mz C
ker(M @7 Y') is equivalent to (M @7 Y’) + NMz = 0 for some matrix N € F5*¥ which means that, for all

I
XEIFlgl,

Y @i (Yi+ N)m; =0,
s
which is equivalent to

for all i € Z. By assumption, there exist j, 7/ € Z such that Y; # Yj/. Y;+Y} is invertible because it represents
the multiplication with y’; +y’, and thus has rank k. Let Y; + N have rank k'. It follows that Y}, + N has
rank k — k" because (Y; + N) + (Yj: + N) = Y; + Y], which has rank k. We conclude that the probability that

both (Y; + N)m; = 0 and (Yj: + N)my = 0 is 2=* and 2F+F respectively, and hence, the probability of
both events is 27F.
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Initialize:
1. Emulating Fp, receive {A®};c 4 from Z.
2. IHPUt {A(i)}iEA to FUncheckedTripIes-
Triple generation:
1. Emulate all instances of Féi‘fwun between honest and corrupted parties.
- For every corrupt party i € A and every honest party j € B, define a®%) and b{*%) to be the inputs
of party P; to the ]-'éﬁwult instances with party P;.
- For every i € A, define a® = a®? and b = b9,
- For every j € B', define ) = ZieA(a(i’j) —a) and féj) = ZieA(b(i’j) —b®),
- If the adversary inputs (RandomError, y &), f'(i’”) to any instance of Fé,’:i,lu“, define C' as the set of
all such instances.
- For all (i,5) € B x A\ C, A inputs (AddError, £(29)) to the respective Feppy, instance.
- Compute f = Do) EBXA\C £09),

- Foralli € B and j € A, in the instance with party i as Ps and party j as Pr, sample U ) & Fka
and output it to Z. Wait for A to input 77 € FA** Set f £+ 3 £ (9,
2. Emulate ]-']sz
- If Z inputs (Error, {el h,eg )h,eg W ke B, helk)), define gaa)h egz)h, <p§))h = eé)h, and wil)h = eéi)h for all
i€ B,helk. ’ ’
Wait for Z to input {m m(z) Z')}ZeA
Add the cumulative errors in the outputs of corrupted parties to £, ¥a, ¥p, te.
5. Input {fzg )7 f( )}zeB’ {L,Da ho SOS);N Pe, h}zEB he(k]s f wa7 wb, 7/)0 to ]:UncheckedTripIes, C and
{(y @) £ ]>)}(i,j)ec to the functionality.
6. Receive {(M“’J‘),é(i’j))}(i,j)ec and forward (M7 §(9)) to Z emulating Fere,, between party i and
j for all (3,7) € C.

zGB,jEA(

- w

Fig. 26. Simulator for FuncheckedTriples

F.6 SPDZ Triple Generation — Lemma 3

Proof. If all parties behave honestly in IlyncheckedTriples in Figure 10, it holds that

S e =S al b 4 ($al . b))

i€P i€eP j#i
— Z Z a® . pl
i€P jEP
=a-b.
For the case of corrupted parties, we use the simulator in Figure 26. Most aspects of the indistinguisha-

bility can be seen with a straightforward computation that merely involves summing up the outputs of all
instance of fGFMult

F.7 SPDZ Triple Checking — Theorem 1

Proof. We construct a simulator S for the ideal functionality Fryipies such that no environment Z distinguishes
with a non-negligible probability whether it is interacting with the A in the real setting or with S in the
ideal setting.

1. Simulating the Initialize phase: Emulating FuncheckedTriples, S receives {A(i)}ie 4 internally from A and it

inpU-tS {A(z)}zeA to fTripIes-
2. Simulating the Triple generation phase:
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(a)

It emulates FuncheckedTriples With input of corrupt parties, {a(i),b(i)}leA’je[QN], specified by A, to-

gether with {féz af( )}1EB’ {@aj ha(p](;,) h7(ch7h}z€B helk]» ]a¢aj7¢bja¢cj € ]FQk C C B x A and

{Y(l N inec, for all j € 2N].
Let I(l ") = {h e ]|y # 0} asin Fos - The functionality samples 5( 2 & By and M (1.4)
such that M;l ) QI(.“" Yﬁ ) for every (i,i) € C, and sends {65 * } (i,inec; to A

Then, it provides {c m;(,?7mg)7m£3)}i€A’je[2N] & Fyr to A, and it inputs {(agi)7b;i)7c§i),mgj),

mb 7mc] )}zEA LJE[N] to fTrlpIes

Emulating Frang, it samples t,t’, t” & For, and forwards these values to all corrupted parties.

For every i € B and j € [N], S samples r§i)7s§-i) & Fyr, and computes

=2 Db b, =D s 4 Sl e ally).

i€B €A i€B €A

S emulates the communication channels: it sends {r ] from every party ¢ € B to every

(' 3) (' 3)

(4,4") (zz)}
MS

'8
party i € A; and, in the same way, for every j € [N], it receives r;
party i’ € A to every party i € B.

For every j € [N] and i € B, compute flgj.) = Ei,eA(rgl R r;l)) and fs(;.) = ieals; s 4 s(l))

S emulates FpatchCheck: it computes {xr, }jen] and {Xxs, }je[n), and it sends them to A. Then it
receives (. and (5. Hence, for every j € [N], it computes

and s; sent from every

<P§ )h =t ng,h +t ‘P&LNW ‘P;Z,),h =t @g,h +t @SJ.)JrN,h’

for every i € B, h € [k], as well as
wl‘j =t wbj + t, : wbj+N7 Q/JS]' = t/ : Q/Jaj + t” : waj+1v

&e; = Z((t b+t bjn) - AV +t-m§_3 +t - m” )

bjn
icA
and
&, =Y (¢ -a; +t" - a;n) AV 4+t ml) +t”-ml) ).
i€A

The simulator solves

> (D0 A X ) e ) =G 3)

JE[N] helk],ieB

S (X AP XD 4ol s+ ) = G (4)

JE[N] he[k],i€B

for bits {Ag)}ie B,helk]- 1f such a solution exists, it queries Friples With the solution space, otherwise
it sends Abort to Frriples. For every j € [N], S computes

Z AEZ) XM "pgj)’h‘f‘@aja Z AS) X 'ng’h—‘r@b"
ieBelk] i€ B,h€k]

(see below for details), and inputs them to Fryiples with MacError.
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(i) S emulates Fpatchcheck: it computes {Xd]- }je[N] and it outputs it to A. Then it receives (q. For every
J € [N], it computes
o) =t oDt ol (e £) (o0 4 )+ (55 + D) (0l b, ),

7

for every i € B, h € [k], and
Ya; =t-te; + t”- Yooy H 15 Ya; +85 b,y

ng = Zt ' mg]) +t mgij)JrN +r;- m(aly) ts;- mgj+N~
1€EA

For every j € [N], S solves

Soxa (X AP XM v, +6a,) = Ga

helk],ieB

for bits {A;f)}ie B,helk]- If such a solution exists, S queries Frples With the solution space, otherwise

it sends Abort to Frriples. For every j € [N], compute ;5 ey A( i), xh-1 (p((:J)h + e, (see below

for details), and it inputs them to Fryples with MacError. Furthermore, it inputs Z(i inec 6]@ & + fj
to Friples With ValueError for c;.

At a high level, we can see the simulation consisting of two main parts, simulating the opening of
(rj,s;) and simulating the MAC checks. The first is straightforward: We receive the corrupted parties’
shares of {a;,bj;,c;},c;n) from A and randomly chose their shares of {a;,bj;,c;}jcini1,2n) as well all
shares of {r;,s;};en]. This is indistinguishable to the real protocol because the environment never learns
{aj,bj,¢;}jcin+1,2n) and thus {r;,s;};e[n) are uniformly random from the environment’s view.

In the Fgatchcheck We simulate the fact the adversary can test the single bits of honest parties’ shares of
A using the gohz) variables. The simulator computes the successful space of those variables and tests it with
Friples, which will abort if unsuccessful.

The first invocation of Fgaichcheck i the real world succeeds if the first equality of the following holds:

Gr = Z X, ((r +f,§j)) CA® +t'ml(oi_3 Lt m® )

bj+n
i€EB
JE[N]
=Yy .((Z(t.b(i/)+t/.b(i/) )_|_f(i))'A(i)+t.m(i)+t,.m(i) )
i J J+N rj b; bjiN
i€EB i'eP
JEIN]
= > ey, (&bt by +£0) AD 4t m) + ¢ mf) )
i€B
JE[N]
= 3 (6 by € byy) - (A4 35 A0) 4 FED - AO
JE[N] €A i€B
to (b At Y AP Xl gy Y ml))
i€B,helk] icA
+t- (bj+N.A+ Z Agf) . xh1 @b n TUbn +Zmb +N))
i€ B,he(k] i€EA
= Z Xr; * ((t b +t- b]—i—N ZA(Z +Zf(l (@)
JE[N] i€A i€B
AG) . xh-1 0 (i)
Z h b, + b + Zmbj
i€B,hek] icA
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T A A L)

i€B,hek] i€A
Y e (X AP0 gl o)) 6
JE[N] 1€ B,hElk]

This equals the equality 3 in the simulation. Applying Corollary 1 with

fin: {AS)}iEB,hG[k] = Z AP xhL Sﬁgj,h

1€ B,hEk]
iz A Yiennemw — > Ay xht SOSJ.)JrN,h
1€ B,hEk]

as the linear maps for j € [N], we get that the probability of the check passing and
Z A i) Xh 1, ( )
1€ B,hek]

9—k+1

not being uniquely defined for any j € [N] is . Similarly, one can prove the same for

D
i€ B,helk]

By solving the linear equation, this allows to compute ZleB helk] A( 0. xh=1 gpé) pT@a; and Y i p helk] Agj)

Xh=1. @Sj’h + b, as required by the simulator.
The last invocation of Fgatchcheck in the real world succeeds if the first equality of the following holds:

Ga = Z Xd; - (t ' mg’]) +t7me, 1 me(xzj) +s;- m") )

b.7+N
i€B,jE[N]
:zxd (t(ca+ X AP X" gy + 3 ml))
i€ B,helk] i€A
(e A+ Y0 AP XM e+ ml )
i€B,he[k] i€A

+ Z (rj (z) +s;- m]()7)+N))
i€B
:Zde.(t'((aj'bj'*‘Za;i) +Zb(1) Z)+f>'A+ng?)
JE[N]

i€B’ i€B’ i€EA
¢ (g by + Y ally €00+ b A fay) A+ Y ml,)
1€EB’ 1€B’ €A

R D DIPEED Gt +1/ch)

i€ B,he[k]

( Z A Xh 1 @cj)+th+wcj+N)

i€ B,he(k]

+(t-bj+t' -bjy)-a; - Atr;- ( Soooap xt @ajh+¢aj +) m{ )
i€ B,helk] i€A

+(t"aj+t”'aj+N)'bj+N'A+Sj'( SoooApy. xh LPbﬁNm—?ﬁbHNJrz:mbw>
1€ B,hE(k] €A
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= Z Xa, - ((t (Zag‘i)'f‘g? + Z by) _ft()i) +fj)
JEN]

i€B’ i€B’
i i i (4)
e (Dl f, 3 b6, ) -
i€B’ ieB’
Y A ).
i€ B,he[k]
In the real world, if the adversary inputs f C, and {Y(i*i/}(i7i/)ec 0 FuncheckedTriples i1l the j-th triple gen-
eration, f; = 3, i1\ cc f;i’i,) + f for f;i’i,) uniformly distributed in M(i’i/)(M(i’il))*l(5§i’i,) + agi)). Clearly,
the larger the set is the lower the probability that the above equality holds and the MAC check succeeds.
Therefore, we assume that the set collapses to a set of size one. This holds if ker M (17) < ker M), By
definition, M%) = (M®#) ©Y”). Lemma 12 implies that the condition only holds with probability at most
27 if not all rows of Y’ are the same, say y(“',). Hence, f](“ ) = (5](-“ )+ ag-l) -y(i’i,), and
(i) | ¢ (3,1") () (4 | 7
f= Y £ 4= > " +al yOi 4
(i,¢")eC (i,2")eC

It follows that the equation above can be rewritten as

Ca= Y xa ((t(Zag”( £+ Yyt )+Zb“ SRS 5(”)+f)

JE[N] i€B’ (zz )eC i€ B’ (i,3")eC
(Sl (X ) Ty e X 604 E)) 4
i€EB’ (i,3")eC 1€EB’ (i,i")eC
Y AR XD g g,
i€ B,he[k]

Considering that {agi), bg.i) }ies jezn] are uniformly random independent of all other variables and {xaq, } je[n, t, t”
are uniformly random, Lemma 7 implies that the check only passes with probability 3 - 27% if any of

{(fg) + 2 eCj yj(.i’i/)) . A,fl()? - Aliepr jeen 18 not zero. Since A # 0 with probability 27, {((féj) +

Z(l iec; yy ! ), fg))}ieB/,je[QN] must be zero for the check to pass with non-negligible probability. This
establishes that

cj=a; b+ 3 a® £+ Y b0 D+ T g0 L

i€B’ ieB’ (4,i")€C;

o h. @) (e@) (i, (@) (@) (") | 7.

—a; b+l (£0+ 3 v )+ Y+ 3 o 4,
i€B’ (3,i")eC i€B’ (3,i")eC

=a; b+ Y. 64

(i,i")eC

which is used for the ValueError input to Fryiples. Similarly, for fj = fj + Z(“ cc 6]( , we assume that

CdZZde-(t £+t fin) A+ Z AP xhL 30 TV, +€d>

JE[N] i€B,he[k]
= Zxdj'(t f+t j+N ZA
JE[N] icA
Y A XIT ) B ) + v, o)
1€ B,he(k]
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=Y Xa,- ((t-fj ) > AD

JE[N] i€A

i Z Ag) . xh-1, (t- (Sﬁf:?,h + fj) Lt (<Pf~,?+N,h + fj+N)
1€ B,hE(k]

(1 + £D) - (60 ) + (55 + D) (0 Uyan)) + Y, + Ea, ).
With

Jin: {Agf)}ieB,he[k] — Z Aﬁj) S XhL. (gog_)h + f"j)

i€B,hek]
Fio A Yiepnem = Y, AP XM @)+ En),
1€ B,hek]

for all j € [N], Corollary 1 implies that the probability of the check passing and

SoooaAP XM (el + )
1€ B,he[k]

not being clearly defined for all j € [N] is at most 27%*1. Again, this allows to compute ZieB’he[k] AS) .

Xh-t. (go‘(fj{ n+ fj) + %c, as required by the simulator.

Summing up using the union bound, we find that the statistical distance between the real world and
simulation is at most 2 - 27k+1 4 27k3. 2=k 4 2=k 4 9=k+1 = 11. 27k We conclude that Iipiecheck (k — 4)-
securely implements ]:Triples in the (]:UncheckedTripIes>]:Rand)'mOdeL

G MiniMAC Protocols and Security Proofs

In this section we describe the ideal functionalities, protocols and proofs of our MiniMAC preprocessing. This
section is organized as follows: In subsection G.1 we present the ideal functionalities for the preprocessing
aspects of MiniMAC. Afterwards, in subsection G.2 we present the ideal functionality, protocol and proof of
the codeword authentication protocol. Following this in subsection G.3 we describe the ideal functionalities,
protocols, simulators and proofs needed in the construction of the multiplication triples. Finally in subsec-
tion G.4 and G.5 we present the protocol and simulator for construction of the Schur triples, respectively
reorganization triples.

Throughout this section we will interchangeably be viewing elements expressible with u-m (or u- k) bits
as either bit vectors (Fy™), elements of the characteristic 2 Galois extension field of order 2% (Fgu-m) or
a vector of m elements in the characteristic 2 Galois extension field of order 2* (F5.).

G.1 Preprocessing Functionality
In this subsection we define the ideal functionalities needed to realize the MiniMAC preprocessing. We do
this in Fig. 27 and 28, using the macros defined in Fig. 29.

G.2 Codeword Authentication

We now describe the codeword authentication protocol. This protocol allows parties to authenticate
shares of components of a codeword such that the output is guaranteed to be authenticated shares of a valid
codeword. There are two main stages: firstly a BigMAC is constructed which consists of a (big) MAC on
each component of a codeword. Then these are combined and compressed into a single MiniMAC for the
entire codeword.
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This functionality generates offline material used in the MiniMAC online protocol. We denote by A the set of
parties controlled by the adversary.

Initialize: On input (Init,m, k,d, u, G) from all parties, store integers m, k,d, v and generator matrix G for a
linear [m, k, d]-code C over the field Fau.
1. For each corrupt party P; with i € A, get element A € F4. from the adversary.
2. Pick each share A® for i ¢ A uniformly at random from F%: and define A = > AW,
3. If the functionality receives the signal Abort from the adversary then halt and output Abort.
4. Output AW to party P;.
Computation: On input DataGen from all honest parties and the adversary, and only if the functionality
received Proceed (or BreakDown is set to true) it executes the data generation procedures specified in Figure
28 composed with the macro Bracket in Figure 29.

Fig. 27. Ideal functionality for MiniMAC offline generation

This functionality generates offline material used in the MiniMAC online protocol. We denote by A the set of
parties controlled by the adversary.

Schur Pair ([C (r)]*, [C* (s)]7):
1. Receive the shares {C(r(i)),C* (s(i))} N from the adversary, where C(r?) and C*(s®) are equal in
i€

the first k positions. Similarly pick the shares {C’(r(i)), c* (s(i))} » for each of the honest parties, such
that C(r”) and C*(s) are equal in the first k& positions and the following k* — k positions of C*(s(?)

are chosen uniformly at random.
2. Run the Bracket macros {C(r(i)), A(i)}_ and {C’*(s(“), A(i)}_ and return the output.
Reorganization ([C (r)]*, [C (f(r))]"): e e
1. Receive the shares {C(r(i))}iGA from the adversary and pick the shares {C(r(i))}igA uniformly at

random for each of the honest parties.

2. Run the BigBracket macro on {C’(rm)7 A(“}ie[n] to get {C(r(”), {mgi)’h)}he[m]}'

(x.h)
obtain [C(f(r))1],. ., [C(f(r))r] where C(f([rr])) = [C(f(r))n]-

4. Finally return {C( @), ﬁi)*} and {C(f( @), gf(>r>} where m{"* m;z():) € F3. and m{"*[n] =
(1)

m,,’, [h], respectively m! ()*) [h] = (f(r) wh] for h € [m].
Multiplicatlon (IC @], 1C ™), IC* (©)]):
1. Sample shares {C(a( ), C (bl ))} . and compute C*(cV) = C(a?) x C(b®).
i€[n

3. Letting [rs] be defined by ((r[h]}, (m(i) ) (A)) for h € [k], apply f and then C to [ri],...,[rx], to

2. Run the Bracket macro on {C(a(i)),A(”} )’ {C(b(i>),A(i)}
i€[n

3. Output [C (a)]", [C (B)]", [C™ ()"
Key queries: On input of a description of an affine subspace S C (F3“)", return Success if (AM) ... AM™) ¢
S. Otherwise return Abort.

and {C* (c), A®) }

i€[n] ZE[n]

Fig. 28. Ideal functionality for MiniMAC offline generation (continued)

We present the codeword authentication protocol ITcodeautn in Fig. 30 and its ideal functionality Fcodeauth

in Fig. 31. The protocol uses the Fp. functionality, which is described in Fig. 5.

The BigMAC part of the protocol consists of first having each party ¢ give as input the non-parity

(@) (2)

components x;’,...,X; € Fau of his shares of a systematic codeword C(x). Each component share then
gets authenticated using Fcodeauth using an m - u bit global key. Thus each party will thus have a MAC share

inF

o of the authentication of each of the & components. The authentications of the last m — k components

of the shares of C'(x) are then computed through linear combinations of the BigMACs using the generator
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Ideal Authentication Macros

The macros take input ({x(i), A“)}, C) ol where each x € F%., C is a code of degree k and dimension m,
1€[n
and A® e FZ.

Bracket:
1 Letx=)",

2. For every corrupt party P; for i € A the adversary specifies a share m®.

3. The functionality sets each share m® for i ¢ A uniformly random under the constraint that
Zze[n] m(l) =m.

4. If the adversary inputs (Error, {egi)j}igA,hE[k],jg[mﬂ]). with elements in Fom-«, set m® := m® + e,
where e € F5% and

(n] x Furthermore let m = C/(x) * A.

e® [h] = Ze?] . A;i) LI
j=1

where A;i) denotes the j-th bit of A® for h € [m)].
5. Output the shares (x(i), m(i)) to each party P;.
BigBracket:
1. Let the h-th component of x* be denoted by xV[h].
2. Next let x[h] =3, x[h]. Furthermore let my, = x[h] - A.

3. For every corrupt party P; for ¢ € A the adversary specifies shares {mgf)} -
helk

4. The functionality sets the shares {mﬁj)}he[k] for i € A uniformly random under the constraint that
i) m? =m,, for h € [k].

5. If the adversary inputs (Error, {es,)j}ig,q,he[k]’je[mﬂ]) with elements in Fom-u, set mg) = mg) +Z;":11‘ e](j’)J»
Aé-i) - X971 where Ag-i) denotes the j-th bit of A®.

6. For ¢ € [n] and h € [k + 1;m], compute the values mﬁf) by applying the code C to {mg)}he[k], and
similarly for {x[h]}ne(es1im)-

7. For each i ¢ A and h € [m], output the shares {x¥, mg)} to P;.

Fig. 29. Macro for ideal MiniMAC authentication.

matrix of C. The Compress part of the protocol then takes as input all the m BigMAC shares of each party
and simply uses the h’th component of the BigMAC authenticating the hA’th component of C'(x) as the h’th
component of the MiniMAC. That is, if we view the BigMACs as columns in a matrix (the first column
being the BigMAC of the first component of C'(x) and so on up to the m’th component) then the MiniMAC
of C(x) is simply the diagonal of this matrix.

The intuition of why this is secure is that since the authentication of the parity components of the code-
word are computed from the authenticated non-parity components using a public algorithm (the generator
matrix) then an adversary can only try to cheat locally. Furthermore, if he later on tries to change the value
that is MAC’ed to, then he will have to guess the honest parties’ share of d components, because of the
code’s minimal distance.

CodeAuth Security.

Lemma 13. For every static adversary A corrupting up to n — 1 parties, the protocol Ilcodeauth k securely
implements Fcodeputh Of Figure 31 in the }'[[,]]—hybrid model.

Proof. Let § be a simulator that has access to Fcodeauth, We show that no environment Z can distinguish
between an interaction with & and an interaction with the real adversary A and real parties with access to
the functionality J.
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Protocol Ilcodeauth

Initialize: Call fﬁ"“’" .(Init) to initialize the BigMAC key A € Fam-u.
BigMAC: On input (BigMAC, C, x(i)) from every party P;, where x € Fi. and C'is a systematic, linear code
over Fou of dimension k and length m, do the following:
1. For each party i € [n] call Fpj.(n-Share) with input (Authenticate,x”[1],...,x"[k]) to obtain
{{mn)},c(r) and in turn the authenticated shares {[x[h]]}, () = {(x[h]), (mn), (A)},cpy
2. Locally encode these shares using the code C, to obtain [[ng)]], a length m vector of Fou elements,
where every component is authenticated under A. That is,

[Cx)] = (LCERD, (mn) e (A))

Where C(x)[h] = (x - G)[h] and mgl” =3, ml“) - G[l,h] when G is the generator matrix of the code
C and x is viewed as a row vector.
Compress: On input (Compress, [C'(x)]) from all parties, do the following:
1. View A® and mgf) as elements of F5u by letting each block of u bits be one component in Fau.
2. Parse [C(x)] as

{{C(x)[h]), (mp), (A }he m] = {{C () gj)’A(i)}he[m]}'e[ ] .

3. Now define a new componentwise sharing [C(x)]* to be

{(CG0), (m), (4)} = {C ("), m", A0

i€[n] ’

where m"* € F5% and m®*[h] = ms)[h] for h € [m].

Fig. 30. Protocol Ilcodeauth - Used for codeword authentication with a BigMAC key and a MiniMAC key.

The simulator invokes an internal copy of A and sets dummy parties 7;,7 € P. Let A be the set of corrupt
parties, it proceeds as follows:

1. Simulating the Initialize phase: S inputs (Init) to the Fcodeauth functionality, together with the set A of
corrupt parties and all their extracted inputs {A(i) }1 cAr It then runs an internal copy of F.j.(Init) using
the shares it extracted from the adversary and the shares it got back from Fcodeautn- If it receives Abort,

then it forwards Abort to the Fcodeauth functionality, and it halts.

2. Simulating the BigMAC phase: S extracts the adversary’s input to Fp.j.(n-Share), {xs), ms)}h " for
elk

1 € P and passes it on to Fcodeauth-BigMAC. It then picks the shares {X;li)}h " for i & P uniformly at
€
random and sends it to Fcodeauth-BigMAC, which sends back the honest parties’ MAC shares, {mg) }h m
€

If the adversary inputs (Error, {eg)j}-g,q helk], jG[m-u]) then the simulator passes on this call to Fcodeauth

and locally updates the honest parties share by setting m( ) = m(z +3 e El)j A( - X771 where A;i)

denotes the j-th bit of A®).
3. Simulating the Compress phase: S simply passes on the call to the Fcodeauth functionality and returns
what it gets back.

To argue indistinguishability first notice that if during the internal execution of the protocol an abort
occurred, then an abort occurs in both the ideal and the real world, and the simulation in this case is perfect.

For the rest simply notice that everything is done in perfect accordance with the ITcodeauth (and .7-'[[.]])
since everything is passed on directly to the Fcodeauth functionality or done with local computations.
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Functionality Fcodeauth

Let A be the indices of corrupt parties. Running with parties P, ..., P, and an ideal adversary S, the function-
ality operates as follows.

Initialize: On input (Init) the functionality activates and waits for the adversary to input a set of shares
{AD}c 4 in FP¥. It samples random {AD},44 in F5™ for the honest parties, defining A := 2 iein) AW,
If any j € A outputs Abort then the functionality aborts.
BigMAC: On input (BigMAC, C,x®) from all parties P;, where x() € F&. and C is a systematic, linear code
over Fou of dimension k and length m:
- Run the macro BigBracket with input ((x“)[l}, AD) L (xD[k], AD), C)
from P;.

Compress: On input (Compress, [C'(x)]) from all parties P;, do as follows:
1. Parse [C'(x)] as

(COD, (), () = { {O 0L, 40}
€m] i€(n]
Now define a new componentwise sharing [C'(x)]" to be
{(C6), m), ()} = {Ox"),m@", a0}
i€[n]
where m* € F3 and m™*[h] = m'"[n] for h € [m).
2. Return [C(x)]* = (C(x(i)),m(i)*,A(i)) to each party i.

Key queries: On input of a description of an affine subspace S C (F3*“)", return Success if (AM) ... AM™) ¢
S. Otherwise return Abort.

Fig. 31. Functionality Fcodeauth - Used for generating authenticated codewords.

G.3 Multiplication Triples

In this part we describe the remaining ideal functionalities, protocols and proofs needed in order to con-
struct MiniMAC multiplication triples. First, we show in Fig. 32 how to use the amplified correlation OT
functionality Facot from Fig. 3 to generate an XOR sharing of the tensor product of two unauthenticated
codewords (one chosen by each party). We then describe the protocol HyncheckedMiniTriples i1 Fig. 33 (with
ideal functionality ]:UncheckedMiniTripIes described in Fig. 34 and its simulator SUncheckedMiniTriples described in
Fig. 35) how to use these components of unauthenticated multiplication triples, along with the codeword
authentication functionality Fcodeauth from Fig. 31, to construct unchecked MiniMAC multiplication triples.
We then show the protocol Tuinitriples in Fig. 36 (whose ideal functionality is part of Fig. 28 and whose
simulator SminiTriples is described in Fig. 37) how to combine a pair of unchecked MiniMAC triples along with
the Schur triple into a MiniMAC multiplication triple.

CodeOT Subprotocol. The CodeOT subprotocol uses Facot to create an XOR sharing of the component-
wise product of vectors (over Fau) input by two parties. It does so by first getting an XOR sharing of two
u - k bit vectors from Facot. These shares are then converted to k elements of the field Fou by viewing each
element as a coefficient of an up to u— 1 degree polynomial and then constructing the polynomial, that is an
element of Fau, by summing over the appropriate coefficients, multiplied with an X power to create a term.
Finally, each row/column of this matrix is then expanded from k X k to m X m by viewing each row/column
as an element in F§, and then using the linearity of C' to encode each of these. This makes it possible for
the parties to end up with an XOR sharing of the outer product of an encoding of a F, value of each their
choice.
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Subprotocol CodeOT®

Let C be a systematic, [m, k, d] linear code over Fou, and let s be a statistical security parameter.

Initialize: Run Facor.Initialize.

Input: Pg inputs a € F&. and Ps b € F.

Correlated OT: Run .FX&IS"TQ with input a,b, so Pg receives a matrix T’ €
FY 5% such that

FYExuwk and Pg receives Q' €

Q=T +a®b
Convert to field:

1. Consider Q' and T” as k x k block matrices, where entry (i, j) is given by an XOR share of the u X u
matrix over Fa:
a;[2] - b;[1] ai[2] - b;[2] ... ai[2] - bj[u]

ai[u] - b;[1] a;[u] - bs[2] ... aifu] - b;[u]
2. Let entry (7, j) be the Fau field element given by:

fig = Y aili]-byli] B Shtit

i=1j'=1

so now Q',T' are k x k matrices over Fou, where entry (i,5) contains an XOR share of the product of
afi] and b[j].
Encode: Now expand Q' and T’ into m X m matrices of codewords:
1. Pgr sets T to be the matrix obtained by applying C(-) to each row and each column of T”, seen as a
vector in Fu.
2. Ps sets @Q to be the matrix obtained by applying C(-) to each row and each column of Q’, seen as a
vector in Fu.
Note that @ and T are u - m X u - m matrices over F2, whose rows and columns are codewords in C' when
viewed as vectors in Fyu.
Note that if Q;,T; are the i-th rows of @Q,T then Q; = T; + a; - b for i € [m], and now every column of Q,T
is a codeword.
Now Pg has T € F.*™ and Ps has Q € F5.™ such that:

Q=T+ C(a)® C(b).

Fig. 32. Subprotocol for codeword OT extension between P, and Ps.

Since it only consists of local computation we do not model this with a separate functionality, instead
just using it as a subprotocol in triple generation. We describe this subprotocol in Fig. 32.

Unchecked Multiplication Triples. The protocol ITyncheckedMiniTriples constructs weakly authenticated
multiplication triples. This is done by having each party pick two random elements in ]Flgu and executing
the CodeOT protocol with each other party on each of these elements to get an XOR sharing. Every party
then computes a share of the Schur product based on his own chosen random values and the diagonal of
each of the tensor products from CodeOT. Finally each party authenticates their respective shares using the
Fcodeauth functionality.

Lemma 14. For every static adversary A corrupting up to n — 1 parties, the protocol IlyncheckedMiniTriples &
securely implements the FuncheckedMiniTriples functionality in the (FacoT, FcodeAuth)-hybrid model.
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Initialize: Call Fcodeauth.Initialize.
Triple Generation: This generates a triple {(C(a)), (C(b)),(C*(¢c))} with C(a), C(b),C*(c) € Fsu for which
it holds that C*(c) = C(a) * C(b).

1. Each party P; generates a<i), b & Fh..

2. Each pair of parties (P;, P;) (i # j) calls F&geor with input a” b¥), to obtain a random XOR sharing
of the m x m matrix C/7 + C’;’j = C(a)®C(bY). (Note the tensor product is over Fau, so each entry
of the matrix is a product of Fou elements.)

3. Each party P; computes C*(c?) = C(a”) x C(b®) + diag(>_; ., CH + "), where diag(M) is the
vector containing the diagonal entries in the matrix M.

4. P; calls Fcodeaun-BigMAC with input (C, a<i)), (C, b(”) and (C~, c“)) to obtain shares
[C(a)], [C(b)], [C*(c)] and then calls Fcodeauth-Compress to obtain [-]* sharings.

Fig. 33. Protocol ITyncheckedMiniTriples - Generation of unchecked MiniMAC triples

Functionality fUncheckedMiniTripIes

Let B denote the set of honest parties, and let i be the lowest index in B. Furthermore, let B’ = B\ {i} and
A = [n] \ B the set of corrupted parties.
Initialize:

1. Sample A & Fau-m and output a random share AW to P;, consistent with shares for corrupted parties input
by S.

Triple generation:

1. Sample random shares of codewords (C(a)), (C'(b)), using shares for corrupted parties input by the adversary.
2. Wait for S to input {£”,£"},c 5/, and £ € Fhu.
3. Compute
C*(e) = Cla) + C(b) + > (Ca) + C(ED) + C(bP) x C(8)) + C(h)
ieB’
and shares of C*(c) that are consistent with any adversarial inputs.
4. Run the macro Bracket on input (C(a)), (C(b)), (C*(c)).
5. Output [C (a)]", [C (B)]", [C* (e)]".

Fig. 34. Functionality FuncheckedMiniTriples - Used for generation of unchecked MiniMAC triples

Proof. The simulation for unchecked MiniMAC triples, given in Fig. 35, is very close to the proof for
unchecked SPDZ triples in Fyx. The main aspect of arguing indistinguishability is if the adversary inputs
Error in one of the Facor instances. Following the same argument as the SPDZ proof, it follows that the
resulting error term in For.. in the real world is statistically close to uniform, corresponding to the uniform
value f that is added in the simulation.

For the remaining indistinguishability argument, observe that the codeword C*(c) that results from the
output of the simulation (from FyncheckedMiniTriples), assuming the adversary does not input Error, is given by:

C*(e) =C(a) xC(b) + ) (C(a@) « C(ED) + C(bW) « C(flgn))

i€B’

where f;gi), féi) are adversarially chosen. In the protocol, if A does not input MultError to FacoT, we have
C*(e) = _C*(c) =) | CaD)xC(bY) +diag(y_ C; +CF)

i=1 i=1 j#i
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Simulator SUncheckedMiniTripIes
Initialize:

1. Receive A_(i) € F5" for i € A as input to FcodeAuth-
2. Input {AD}ica t0 FuncheckedMinTriples-

Triple generation:

1. Emulate Fr %r™ similarly to step 1 of the simulator for SPDZ triples (Fig. 26):
- Receive inputs a<i’j>, b9 for i € A and j € B from corrupt parties P;, corresponding to their input to
the Facot instance with honest P;.
- Calculate the errors for these inputs as in Fig. 26, giving F4'* elements {fa(\i), ft()i)}ieB/, corresponding to
multiplicative errors, and an additive error f, which is uniformly random if the adversary input Error to
FacoT and zero otherwise.
- For each i € A and j € B, output a uniformly random matrix Utd) ¢ as P; output for Facot
with P;. Wait for Z to input T and adjust the additive error f accordingly (as in Fig. 26).
2. Emulate Fcodeauth as follows:
- Receive new shares af(i), b'® /™ for i € A.
- If A inputs (Error, e?j) for honest ¢ € B for one of the inputs, then submit the corresponding errors

k-uxXk-u
IF‘2

t0 FUncheckedMiniTriples, along with the errors {f;i)7fg)}i63/, f and the shares a’@ b’ /@ passing the
output to the adversary.

Fig. 35. Simulator for unchecked MiniMAC triples.

-3 (e (@) C(b®) + diag(zn: C(al)) @ C(bU)))
=1 J#i

= n C(a(i)) % C(b(i)) + ic(a(i,j)) " C(b(j,i))
=1 i

=C(a)xC(b)+ > (C(a(i) )« CED) + C(bD) x C (£ ))

i€B’

where féi), fg) are the sum of the deviations in the adversary’s interactions with P; in Facot. This clearly
corresponds perfectly to the simulated result.

Checked Multiplication Triples. To construct fully secure MiniMAC multiplication triples we implement
a pairwise sacrificing to verify both the MACs, the multiplicative relation and that shares indeed sum up to

codewords.

To prove that this is enough to securely implement the triples stage of the functionality, we use the

following proposition.

Proposition 1. If the MiniMAC pairwise sacrifice is performed on any two triples where at least one is
incorrect, then the probability the check passes is at most 2~ ™dk) “where d is the minimum distance and

k is the dimension of the code over Fou.

Proof. This follows because the inputs to the sacrifice step are guaranteed to be authenticated codewords.

Note that if the check passes, we have:
[C* (t x (co —ap xbg))]" = [C* (c1 —aj xby)]
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Initialization:
1. Call FuncheckedMiniTriples-Initialize.
2. Generate two unchecked triples [C (ao)]*, [C (bo)]*, [C™ (co)]* and [C (a1)]*, [C (b1)]*, [C* (c1)]" using
FUncheckedMiniTriples-
3. Generate a random Schur pair [C (r)]*, [C* (r')]* using Fschur-
Sacrificing:
1. Sample t <3 F’Su using FRrand-
Open C(t) * C(bg) — C(b1) as p and C(ag) + C(ai1) as o.
Open [C* (co)]” — [C* (¥')]" to get C*(y).
Re-encode the first k& components of y into C and add this to [C (r)]* to get [C (co)]*.
Locally compute

[C" (x)]" = C(t) * [C (co)]" + [C" (e1)] = [C (a0)]" * p— [C (b1)] ¥ &
= [C* (t * (co —ag *bg) + ¢1 — a1 *b1)]"

U W

and check the shares open to 0.

6. Check that all opened values are valid codewords in C* and check their MACs using ITmaccheck- If any
checks fail, output Abort.

7. Output ([C (a0)]*, [C (bo)]*, [C* (c0)]*) as a valid multiplication triple.

Fig. 36. Protocol IIminiTriples - Generation of MiniMAC triples

Simulator Swminitriples

Let A denote the set of corrupted parties and B the honest parties. Let Fuminitriples denote the functionality
consisting of the Multiplication stage of Fuminiprep-

Initialize:
1. Receive A® for corrupt P; for the Initialize step of FUncheckedMiniTriples -
2. Input A to Fuiniprep for i € A.
Triple generation:
1. Emulate FyncheckedMiniTriples for the both triples, receiving shares C’(agi)), C’(béi)) and C’(agi))7 C’(bgi)), as
well as sets of errors E; for j € B if the adversary inputs the Error flag.
2. Emulating Fschr, receive shares C(r(), C(r'@) and corresponding MAC shares C(m,(f)),C(mff)) for

i€ A

3. Emulating FuncheckedMiniTriples; Teceive shares C(c$”), C(c!”) and MAC shares C’(mgg),C’(mg), etc for
1€ A.

4. Call Fuinitriples With input C(a((f))7 C(b(()l)), C(c(()l)) and their MACs for corrupt P;, along with the errors
E; for j € B.

5. Emulating FRrand, sample t <i Fgu and send this to A.

6. Perform each of the sacrifice checks as in the protocol, using shares input by the adversary for corrupt
parties and generating random codewords for the partial openings of p,o,C*(y) and C*(x). If any of
the checks fail then abort.

7. Simulate the MACCheck procedure in the same manner as the Fgatchcheck procedure in the For simulation
(described in Section F.7). If the MAC check passes despite some errors introduced by the adversary,
compute the solution spaces S c FyL corresponding to the possible values of each honest party’s A®
for which the check would have passed, and submit {S(i)}ie B to the key query stage of Fuminiprep. If this
aborts then abort.

Fig. 37. Simulator for MiniMAC triples, after sacrificing.

for a uniformly random t € F5,. By the minimum distance of the code C, C(t) must be non-zero in at least
d positions with overwhelming probability in « - k. Now if one of the triples is incorrect, it follows that they
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Protocol I1schur

Initialization: Call Fcogeauth-Initialize with input (Init).
Schur Pair Generation:
1. Each party P; generates random r € F5. and r® e IF’;Z”“ . Let 0 € F. be the O-vector (in Fau) of
k elements. Now define r®" = (0||r®") € Fha..
2. Call Feodeautn-BigMAC with input (BigMAC, C,r¥) and (BigMAC,C*,r@") from P; to obtain [C(r)]
and [C*(r")].
3. For h € [K] let mE?’h) be the MAC share of the h’th components of P;’s shares of [C*(r")]. Each party
commits to mEQh) using Fcomm. Then all parties open their commitments and check that Y., mgi)’h) =0
for h € [k].
4. Call Fcodeauth-Compress with input (Compress, C, [C(r)])) and (Compress, C*, [C(r)]+[C*(r")]) to obtain
[C(r)]* and [C*(s)]", so that r is equal to s in the first k& components.
5. Output [C(r)]*, [C*(s)]"

Fig. 38. Protocol Ilschu - Generation of Schur pairs.

both must be incorrect, otherwise just one side of the above equation would be zero. If j is an index of one
of the (at least) d positions where t is non-zero then we can write

C(t)[j] = (Clerlj]) = Clawlj]) - C(bu])) / (Cleo[j]) — Clao[j]) - C(boli]))
for every such j. Since t; is uniformly random and unknown to the adversary when they choose shares of the
triples, each of these equations is satisfied with probability 2~*. However, note that C(t) is fully determined
by any of its k positions, so at most k positions are independently uniform. This means we get a total success
probability of no more than 2~ %min(d.k)
]

Lemma 15. For every static adversary A corrupting up to n — 1 parties, the protocol IiniTriples tmple-
ments the Multiplication stage of Fig. 28 in the (Fschur, FCodeAuth)-hybrid model with statistical security
uw-min(k, d), where Fsehur 48 a functionality representing the Schur pair stage of Fig. 28.

Proof. Correctness and indistinguishability of the transcripts when there are no errors follows from straight-
forward calculations, since the adversary’s shares and errors in the protocol align exactly with what is allowed
by the functionality, similarly to the protocol for Fyx triples.

By Proposition 1, if the sacrifice check passes in the real world then with overwhelming probability we
are guaranteed that the shares of triples are correct. This means that the errors fa(\f,) and fl()i) (for b=10,1)
submitted t0 FyncheckedMiniTriples Were all zero. In this case the only errors possible (in both worlds) are the
MAC errors, which are modeled identically in both the protocol and the functionality, so will be distributed
the same. Finally, the MAC checking stage is simulated as in the proof of Fyr triples — the simulator computes
the solution space (in the unknown honest parties’ shares of A) for which the adversary’s inputs to the MAC
check would pass, and tests this using the key query stage of Fminiprep. This implies that the probability of
abort corresponds to the probability of passing the MAC check in the real world.

]

G.4 Schur Pairs

The construction of a Schur pair is described by the IIsch,r protocol (Fig. 38). It consists of having each
party generate a random element in F§, and a random element of F%., but under the constraint that the
first k& elements are 0. The random element in F, is then encoded and BigMACed with C using FcodeAuth-
Similarly the random element in IF’Q“u is then encoded and BigMACed with C* using Fcodeauth- Lhe first is
compressed, so is the addition of the two. This results in two MiniMAC authentications of the same same
element, but where one is in C and the other in C*.
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Simulator Sschur
Let A denote the set of corrupted parties.

Initialization: On input (Init) from all parties, receive {A(i)} . It then passes on these values to the ideal
icA
Initialize call in Fcodeauth and receives back the shares {A(i)}_ , defining A =",
l
Schur Pair Generation:

1. Receive the shares { @) {m<r h)}

Le[n]

} respectively {r {m(r,, h)} } for each corrupted party
he[k] helk*]

i € A from the environment as input to Fcodeauth-BigMAC for [C (r)], respectively [C* (r"")]. If " # O]’

for some r’ € 11«“’52 then output abort. = )
2. Tt then passes the values C(r®), C*(r® +r®") and m{”, m{" + m(z,,) on to the ideal functionality for

Schur pair generation on behalf of the corrupted parties. Here it lets ml(f)[h] EZ)h)[h] and (my) +

m(i))[h} (m Er)h) + mg?,, n)[h] for h € [k] and then for h € [k + 1;m] it defines the shares m<i)h>[h] =

Zle (r B [h] - G[l, h], where G is the generator matrix for C. Similarly for the shares of m{” + m(z)

3. The simulator receives back from the functionality the shares { C(r™), my)} and {C* (™), m{’ } for

each i ¢ A, under the constraint that m, = C(r) * A and mg = C*(s) * A (where A" for i € A has
previously been given by the environment during initialization).

4. The simulator then emulates the execution of (BigMAC, C,r") and (BigMAC,C’*7r<i)//) by using the
shares it got from the adversary and the ideal functionality. More specifically for h € [k] when i ¢ A
it picks a uniformly random value mgi)’h) € Fau-m under the constraint that m(r mlh] = m{”[h] and
When i€ Ait uses the values given by the adversary. For h € [k + 1;m] and all ¢ € [n] it sets

(r h)[ | =37, m(r 1)[ | - G[I, h], where G is the generator matrix for C. Similarly for the shares of
m® + m&).

5. If the adversary inputs (Error, {6%3}ieA,he[k],je[m-u]) with elements in Fom-u then it locally sets mg?yh) =
(r By T Zm ¥ () . A;i) - X771 where A;i) denotes the j-th bit of A®. Similarly for the shares of

(1) + m(t)

6. The s1mulator receives the shares of the MAC on the first £ components and then broadcasts the shares
of the MAC of the honest parties, emulating Fcomm. It checks that all shares sum up to 0 and outputs
abort if that is not the case.

7. It then emulates the Compress phase of Fcodeauth- It does so just like the protocol Ilcodeautn Since this
part is non-interactive.

Fig. 39. Simulator for generation of Schur pairs.

Lemma 16. For every static adversary A corrupting up to n — 1 parties, the protocol Ischy in Fig. 38 k
securely implements the Schur Pair call of Fig. 28 in the (Fcodeauths FComm)-hybrid model.

Proof. We use the simulator Sschyr of Figure 39 which has access to the functionality Schur Pair of Fig. 28
and show that no environment Z can distinguish between an interactions with Sschyr and a real adversary
A and real parties with access to the functionality Fcodeauth. This is relatively straightforward; we see that
in the simulation, like the protocol, each malicious party gets to choose its shares r(?, r@" and that r®” is
uniquely defined from r® i)' . Using these values and the adversarial shares of the MACS given to the BigMAC
call we construct each adversarial share of the last m — k components of mg ), respectively mg ), just like
they would be after the call to Compress in the end of the protocol. So for the corrupted parties the simulator
is indistinguishable from the protocol.

Next, consider the honest parties i ¢ A. We notice that based on the output of the ideal functionality we
simulate their shares in the BigMAC call exactly like in I1sch,, by picking the values uniformly at random and
using the parts mE? n) [h] we got from the ideal functionality while keeping the constraint that m, ,y = r[h]-A.

We see that for h € [k] this follows since we are given the adversarial values for mE? h) and that we are free
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Protocol Ireorg

Initialize: Take as input a linear function f : Féu, — F'gu and call Feodeautn-Initialize with input (Init).
Reorganization Pair Generation:

1. Call Icodeaun with input (BigMAC, C, "), for random r € F4. from P, to obtain [C(r)].

2. Let [r(], ..., [r] be the first & components of the BigMAC-authenticated codeword [C(r)].

3. Each party locally applies f and then C to [r(y)],. .., [r], to obtain [C(f(r))].

4. Call Icodeautn with input (Compress, C, [C(r)]) and (Compress, C, [C(f(r))]) to obtain [C(r)]* and

[C( )]
5. Output [C(r)]", [C(f ()]

Fig. 40. Protocol ITreorg - Generation of pairs of authenticated codewords for reorganization of elements.

to choose the values for the honest parties (of which there will be at least one), thus this is trivial to ensure
since we also know A for all parties from the Initialization. Since the last m — k values are uniquely defined
from the first k values, by the generator matrix G, and since we have correctness for Fcodeauth-Compress this
also follows trivially. Similarly for the mé?,,’h) values.

Now assume w.l.o.g. that there is only one honest party, party ¢ (more honest parties will give us more

wriggle room). To see we can still keep the constraint while using the component mgi) h) [h] given by the ideal

functionality for h € [k 4 1;m], first remember that this component is uniquely determined by the formula
mg?’h) [h] = C(r)[h] - A[R] = 3" ica (Zle mg?l) [h] - G]I, h]) in the ideal functionality. We simulate this share
by defining it to be

I
Q /F? —
-
Q
=
Q
[Se
~__
BN
=
|
MR
B
=
Q
=

We see that they are both equally defined and so the simulation is good.

Next we see that the potential input of Error by the adversary is emulated like in the protocol. Then we
notice that the MAC check is also handled (without interaction) as in the protocol and the same goes for
the Compress call and so we are done.

G.5 Reorganization Pairs

The reorganization pairs are constructed in almost the same manner as the Schur pairs: Each party selects a
random element in F’gu and authenticates it with a BigMAC using Fcodeauth- The linear function f : IF’QZ —
k., given as input, is then applied component wise to each of the authenticated components. Finally, the
results are compressed to MiniMACs.
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Simulator Sreorg

Initialization: On input (Init) from all parties, receive {A<i)} . It then passes on these values to the ideal
icA

Initialize functionality in Fcodeauth and receives back the shares {A(i)} , defining A =3, cin] A,
igA
Reorganization Pair Generation:

1. Receive the shares {r(i)7 {mg?h)} " } for each corrupted party ¢ € A from the environment as input to
) helk

Feodeauth-BigMAC for [C (r)]. It then passes these values on to the ideal functionality for Reorganization
pair generation. ‘

2. If the adversary inputs (Error, {es,)j}iezA,he[k],je[m-u]) with elements in Fom-u, it passes on the call to the
ideal functionality.

3. The simulator receives back from the functionality the shares {C’(r(i))7 {mgi)h)}h [k]} for the honest
’ €

parties.

4. The simulator then emulates the execution of (BigMAC, C, r“)) by using exactly the shares it got from
the adversary and the ideal functionality.

5. The simulator applies f and then C to [r[1]], ..., [r[k]], to obtain [C (f(r))], just like in the real protocol.

6. It then emulates the Compress phase of Freorg. It does so just like the protocol ITreorg since this part
is non-interactive.

Fig. 41. Simulator for generation of Reorganization Pairs.

Lemma 17. For every static adversary A corrupting up to n — 1 parties, the protocol Ireorg in Fig. 40 k
securely implements the Reorganization call of Fig. 28 in the Fcodeauth-hybrid model.

Proof. We use the simulator Sreorg of Figure 41 which has access to the functionality Schur Pair of Fig. 28
and show that no environment Z can distinguish between an interactions with Sreorg and a real adversary A
and real parties with access to the functionality Fcodeauth- This is relatively straightforward; we see that in
the simulation, like the protocol, each malicious party gets to choose its shares r(®. Using these values and
the adversarial shares of the MACs given to the BigMAC call, the simulator uses the ideal functionality to get

(@)

the adversarial shares {m(lr h) for i € A. These shares are constructed by the ideal functionality

}hG k+1;m
exactly like in the real protocol s[o+f0r}the corrupted parties the simulator is indistinguishable from the
protocol.

Next, consider the honest parties i € A. We notice that the output of the ideal functionality for the
honest parties is consistent with the values constructed by the BigMAC call in the real protocol.

Finally we see that the potential input of Error by the adversary is emulated similarly to the real protocol.
Then we notice that the construction of [C (f(r))] is also handled (without interaction) as in the real protocol
and the same goes for the Compress call and so we are done.

H MiniMAC Online Phase

For completeness we here describe the online phase of the MiniMAC protocol. Furthermore, we have in-
troduced a few small optimizations, such as removing the need for a public codeword and a more efficient
amortized MAC check, so our online phase is slightly different from the one by Damgard et al. [11].

First consider arithmetic operations on shares: Remember that shares [C (x)]* and [C (y)]* are given by
triples ((C'(x), (mx), (4)) and ((C(y)), (my), (A)) respectively. Now see how we do some basic operations
on such shares:

[CEI"+ICHI = ((C(X(”) +COy"),cx?) +0(y®),...,
ox")+o(y™)),
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(mgcl) + mg]l)’ m)({Q) 4 m§’2)’ o mgcn) + mgln)) ’ <A>>
=[Cx+y)]"
)ﬂ* — (C(X) +C(y(1))’C(y(2))77C(y(n)))7
(C’(X) « A L mgll), C(x) * A® 4 mglz), o

Cx)+[C(y

C(x)« AM + m<y")), <A>)

=[C (X+y)]]

) = (( )« CyM), C(x) « C(y?),...,Cx) o(y(n))) 7
( «m(t), O(x) * m§2),...,0(x)*m§”)),<A>)
=[C (X*Y)]]

We now present the online protocol in Fig. 42 which uses the MAC checking procedure from Fig. 16. It
also uses the ideal triple macros from Fig. 29 and assumes pools of preprocessed material in accordance with
the ideal descriptions in Fig. 27 and 28.
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Initialize: The parties first invoke the preprocessing protocols to get a sufficient amount of multiplication
triples {[C (a)]*, [C (B)]*,[C™ ()]*}, Schur triples {[C (r)]*,[C* (s)]"} and reorganization triples for each
of the different linear functions needed {[C (r)]*, [C (f(x))]"}.

Rand: The parties call (BigMAC, C,r") for a random r” € F5. and thus learn a sharing [C (r)]. This is
followed by a call to (Compress, [C (r)]) to learn a sharing [C (r)]".

Input: To share party P;’s input x € F5u. all parties call (BigMAC, C, r(i)) for a random r¥ € F%. and thus
learn a sharing [C (r)]. This is followed by a call to (Compress, [C (r)]) to learn a sharing [C (r)]". Party P;

then locally computes the encoding of x, C' (x) € F5u and then does as follows:
1. Party P; sets m® := m® + (C’(X) — C(r(i))) - A and stores C(x) instead of C(r'?) as its message
share.
2. Party P; then sends & = C(x) — C(r")) to party P; for each j # i.
3. Each party P; where j # i verifies that § is in fact a codeword and aborts if that is not the case. P;
then sets m¥ ;=m0 +§. A,

Add: To add the triples [C (x)]* and [C (y)]*, the parties locally compute [C (x +y)]* = [C (x)]*+[C (¥)]"-

Multiply: To multiply [C(x)]* and [C(y)]® the parties take a multiplication triple
{IC (@)]*,[C (B)]*,[C* (c)]*} and a Schur pair {[C (r)]*,[C* (s)]"} from the pool of available ones
and do:

1. Partially open [C (x)]* — [C (a)]* to get € and [C (y)]* — [C (b)]* to get 4.

2. Compute [C* (c)]" +ex[C(D)]*+d*[C(a)]" +exd =[C" (x*xy)]".

3. Partially open [C* (xxy)]* — [C" (s)]* to get C*(xxy —s) = n* € C*. Party P; then computes
C(x *xy —r) = n, which he broadcasts.

4. All parties then check that both 1 and ™ are in fact codewords for the same value. The parties then
locally compute n + [C (r)]*.

Reorganize: Let x = (x1,x2,...,z;) be the vector of blocks containing the output bits of a given layer in
the circuit. To reorganize these bits as inputs for the next layer the parties first identify the f matching this
reorganizing and take the preprocessed pair {[C (r)]*, [C (f(r))]"}. The parties then do as follows:

1. Partially open [C (x)]* — [C (r)]" = [C (x — r)]".
2. The parties then extracts x — r from C(x — r) and locally computes C(f(x — r)).
3. The parties then compute [C (f(x))]* = C(f(x — 1)) + [C (f(£)]".

Output: This stage is entered when the parties have [C (x)]* for (possibly incorrect) but not opened output

value x.
1. Let [z1]", [z2]",- .-, [2=]" be all partially opened values so far, the parties then call MACCheck with
their shares of these values.
2. The parties then partially open [C (x)]* and call MACCheck with their shares of this value.
If no calls to MACCheck aborts the parties output x.

Fig. 42. Protocol Online - MiniMAC online protocol
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