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lyze the practical efficiency of our protocols, showing that they should all perform favorably compared
with previous works; we estimate our protocol for SPDZ triples in F240 will perform around 2 orders
of magnitude faster than the best known previous protocol.
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1 Introduction

Secure multi-party computation (MPC) allows parties to perform computations on their private inputs,
without revealing their inputs to each other. Recently, there has been much progress in the design of practical
MPC protocols that can be efficiently implemented in the real world. These protocols are based on secret
sharing over a finite field, and they provide security against an active, static adversary who can corrupt up
to n− 1 of n parties (dishonest majority).

In the preprocessing model, an MPC protocol is divided into two phases: a preprocessing (or offline) phase,
which is independent of the parties’ inputs and hence can be performed in advance, and an online phase. The
preprocessing stage only generates random, correlated data, often in the form of secret shared multiplication
triples [2]. The online phase then uses this correlated randomness to perform the actual computation; the
reason for this separation is that the online phase can usually be much more efficient than the preprocessing,
which results in a lower latency during execution than if the whole computation was done together. This
paper builds on the so-called ‘MPC with MACs’ family of protocols, which use information-theoretic MACs
to authenticate secret-shared data, efficiently providing active security in the online phase, starting with the
work of Bendlin et al. [4]. We focus on the SPDZ [10], MiniMAC [11] and TinyOT [18] protocols, which we
now describe.

The ‘SPDZ’ protocol of Damg̊ard et al. [10,8] evaluates arithmetic circuits over a finite field of size at least
2k, where k is a statistical security parameter. All values in the computation are represented using additive
secret sharing and with an additive secret sharing of a MAC that is the product of the value and a secret
key. The online phase can be essentially performed with only information theoretic techniques and thus is
extremely efficient, with throughputs of almost 1 million multiplications per second as reported by Keller et
al. [15]. The preprocessing of the triples uses somewhat homomorphic encryption (SHE) to create an initial
set of triples, which may have errors due to the faulty distributed decryption procedure used. These are then
paired up and a ‘sacrificing’ procedure is done: one triple is wasted to check the correctness of another. Using
SHE requires either expensive zero knowledge proofs or cut-and-choose techniques to achieve active security,
which are much slower than the online phase – producing a triple in Fp (for 64-bit prime p) takes around
0.03s [8], whilst F240 triples are even more costly due to the algebra of the homomorphic encryption scheme,
taking roughly 0.27s [7].

TinyOT [18] is a two-party protocol for binary circuits based on OT extensions. It has similar efficiency
to SPDZ in the online phase but has faster preprocessing, producing around 10000 F2 triples per second.
Larraia et al. [16] extended TinyOT to the multi-party setting and adapted it to fit with the SPDZ online
phase. The multi-party TinyOT protocol also checks correctness of triples using sacrificing, and two-party
TinyOT uses a similar procedure called combining to remove possible leakage from a triple, but when working
in small fields simple pairwise checks are not enough. Instead an expensive ‘bucketing’ method is used, which
gives an overhead of around 3-8 times for each check, depending on the number of triples required and the
statistical security parameter.

MiniMAC [11] is another protocol in the SPDZ family, which reduces the size of MACs in the online phase
for the case of binary circuits (or arithmetic circuits over small fields). Using SPDZ or multi-party TinyOT
requires the MAC on every secret shared value to be at least as big as the statistical security parameter,
whereas MiniMAC can authenticate vectors of bits at once combining them into a codeword, allowing the
MAC size to be constant. Damg̊ard et al. [9] implemented the online phase of MiniMAC and found it to be
faster than TinyOT for performing many operations in parallel, however no dedicated preprocessing protocol
for MiniMAC has been published.

1.1 Our Contributions

In this paper we present new, improved protocols for the preprocessing stages of the ‘MPC with MACs’ family
of protocols based on OT extensions, focusing on finite fields of characteristic two. Our main contribution is
a new method of creating SPDZ triples in F2k using only symmetric primitives, so it is much more efficient
than previous protocols using SHE. Our protocol is based on a novel correlated OT extension protocol
that increases efficiency by allowing an adversary to introduce errors of a specific form, which may be
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Finite field Protocol # Correlated OTs # Random OTs
Time estimate, ms

(n = 2)

2-party TinyOT [18,5] 0 54 0.07
F2 n-party TinyOT [16,5] 81n(n− 1) 27n(n− 1) 0.24

This work §5.2 27n(n− 1) 9n(n− 1) 0.08

F240
SPDZ [7] N/A N/A 272
This work §5.1 240n(n− 1) 240n(n− 1) 1.13

F28 (MiniMAC) This work §6 1020n(n− 1) 175n(n− 1) 2.63

Table 1. Number of OTs and estimates of time required to create a multiplication triple using our protocols and
previous protocols, for n parties. See Section 7 for details.

of independent interest. Additionally, we revisit the multi-party TinyOT protocol by Larraia et al. from
CRYPTO 2014 [16], and identify a crucial security flaw that results in a selective failure attack. A standard
fix has an efficiency cost of at least 9x, which we show how to reduce to just 3x with a modified protocol.
Finally, we give the first dedicated preprocessing protocol for MiniMAC, by building on the same correlated
OT that lies at the heart of our SPDZ triple generation protocol.

Table 1 gives the main costs of our protocols in terms of the number of correlated and random OTs
required, as well as an estimate of the total time per triple, based on OT extension implementation figures.
We include the SPDZ protocol timings based on SHE to give a rough comparison with our new protocol
for F240 triples. For a full explanation of the derivation of our time estimates, see Section 7. Our protocol
for F240 triples has the biggest advantage over previous protocols, with an estimated 200x speed-up over
the SPDZ implementation. For binary circuits, our multi-party protocol is comparable with the two-party
TinyOT protocol and around 3x faster than the fixed protocol of Larraia et al. [16]. For MiniMAC, we give
figures for the amortized cost of a single multiplication in F28 . This seems to incur a slight cost penalty
compared with using SPDZ triples and embedding the circuit in F240 , however this is traded off by the more
efficient online phase of MiniMAC when computing highly parallel circuits [9].

We now highlight our contributions in detail.

F2k Triples. We show how to use a new variant of correlated OT extension to create multiplication triples
in the field F2k , where k is at least the statistical security parameter. Note that this finite field allows much
more efficient evaluation of AES in MPC than using binary circuits [7], and is also more efficient than Fp for
computing ORAM functionalities for secure computation on RAM programs [14]. Previously, creating big
field triples for the SPDZ protocol required using somewhat homomorphic encryption and therefore was very
slow (particularly for the binary field case, due to limitations of the underlying SHE plaintext algebra [7]).
It seems likely that our OT based protocol can improve the performance of SPDZ triples by 2 orders of
magnitude, since OT extensions can be performed very efficiently using just symmetric primitives.

The naive approach to achieving this is to create k2 triples in F2, and use these to evaluate the F2k

multiplication circuit. Each of these F2 triples would need sacrificing and combining, in total requiring many
more than k2 OT extensions. Instead, our protocol in Section 5.1 creates a F2k triple using only O(k) OTs.
The key insight into our technique lies in the way we look at OT: instead of taking the traditional view of
a sender and a receiver, we use a linear algebra approach with matrices, vectors and tensor products, which
pinpoints the precise role of OT in secure computation. A correlated OT is a set of OTs where the sender’s
messages are all (x, x + ∆) for some fixed string ∆. We represent a set of k correlated OTs between two
parties, with inputs x,y ∈ Fk2 , as:

Q+ T = x⊗ y

where Q,T ∈ Fk×k2 are the respective outputs to each party. Thus, correlated OT gives precisely a secret
sharing of the tensor product of two vectors. From the tensor product it is then straightforward to obtain a
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F2k multiplication of the corresponding field elements by taking the appropriate linear combination of the
components.

An actively secure protocol for correlated OT was presented by Nielsen et al. [18], with an overhead of
≈ 7.3 calls to the base OT protocol due to the need for consistency checks and privacy amplification, to
avoid any leakage on the secret correlation. In our protocol, we choose to miss out the consistency check,
allowing the party creating correlation to input different correlations to each OT. We show that if this party
attempts to cheat then the error introduced will be amplified by the privacy amplification step so much that
it can always be detected in the pairwise sacrificing check we later perform on the triples. Allowing these
errors significantly complicates the analysis and security proofs, but reduces the overhead of the correlated
OT protocol down to just 3 times that of a basic OT extension.

F2 Triples. The triple production protocol by Larraia et al. [16] has two main stages: first, unauthenticated
shares of triples are created (using the aBit protocol by Nielsen et al. [18] as a black box) and secondly the
shares are authenticated, again using aBit, and checked for correctness with a sacrificing procedure. The
main problem with this approach is that given shares of an unauthenticated triple for a, b, c ∈ F2 where
c = a · b, the parties may not input their correct shares of this triple into the authentication step. A corrupt
party can change their share such that a + 1 is authenticated instead of a; if b = 0 (with probability 1/2)
then (a+ 1) · b = a · b, the sacrificing check still passes, and the corrupt party hence learns the value of b.3

To combat this problem, an additional combining procedure can be done: similarly to sacrificing, a batch
of triples are randomly grouped together into buckets and combined, such that as long as one of them is
secure, the resulting triple remains secure, as was done by Nielsen et al. [18]. However, combining only
removes leakage on either a or b. To remove leakage on both a and b, combining must be done twice, which
results in an overhead of at least 9x, depending on the batch size. Note that this fix is described in full in a
recent preprint [5], which is a merged and extended version of the two TinyOT papers [18,16]

In Section 5.2 we modify the triple generation procedure so that combining only needs to be done once,
reducing the overhead on top of the original (insecure) protocol to just 3x (for a large enough batch of
triples). Our technique exploits the structure of the OT extension protocol to allow a triple to be created,
whilst simultaneously authenticating one of the values a or b, preventing the selective failure attack on the
other value. Combining still needs to be performed once to prevent leakage, however.

MiniMAC Triples. The MiniMAC protocol [11] uses multiplication triples of the form C∗(c) = C(a)∗C(b),
where a,b ∈ Fk2u and C is a systematic, linear code over F2u , for ‘small’ u (e.g. F2 or F28), ∗ denotes the
component-wise vector product and C∗ is the product code given by the span of all products of codewords
in C. Based on the protocol for correlated OT used for the F2k multiplication triples, we present the first
dedicated construction of MiniMAC multiplication triples. The major obstacles to overcome are that we
must somehow guarantee that the triples produced form valid codewords. This must be ensured both during
the triple generation stage and the authentication stage, otherwise another subtle selective failure attack
can arise. To do this, we see a and b as vectors over Fu·k2 and input these to the same secure correlated
OT procedure as used for the F2k multiplication triples. From the resulting shared tensor product, we
can compute shares of all of the required products in C(a) ∗ C(b), due to the linearity of the code. For
authentication we use the same correlated OT as used for authentication of the F2k triples. However, this
only allows us to authenticate components in F2u one at a time, so we also add a “compression” step to
combine individual authentications of each component in C(x) into a single MAC. Finally, the construction
is ended with a pairwise sacrificing step.

Furthermore, since the result of multiplication of two codewords results in an element in the Schur
transform, we need some more preprocessed material, in order to move such an element back down to an
“ordinary” codeword. This is done using an authenticated pair of equal elements; one being an ordinary
codeword and one in the Schur transform of the code. We also construct these pairs by authenticating the

3 We stress that this attack only applies to the multi-party protocol from CRYPTO 2014 [16], and not the original
two-party protocol of Nielsen et al. [18].
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k components in F2u and then, using the linearity of the code, computing authenticated shares of the entire
codeword. Since this again results in a MAC for each component of the codeword we execute a compression
step to combine the MAC’s into a single MAC.

Efficient Authentication from Passively Secure OT. All of our protocols are unified by a common
method of authenticating shared values using correlated OT extension. Instead of using an actively secure
correlated OT extension protocol as was previously done [18,16], we use just a passively secure protocol,
which is simply the passive OT extension of Ishai et al. [12], without the hashing at the end of the protocol
(which removes the correlation).

Overview of our Protocols

ΠMiniMult

ΠMACCheck

ΠBitTriples

ΠReOrg ΠSchur

ΠCodeAuth

ΠUncheckedMiniMult

ΠJ·K

ΠCOTe

FOT

ΠACOT

ΠGFMult

ΠUncheckedTriples

ΠReOrg ΠSchur ΠUncheckedMiniMult ΠTripleCheck

ΠBatchCheck

ΠMiniMult

ΠMACCheck

ΠBitTriples

ΠReOrg ΠSchur

ΠCodeAuth

ΠUncheckedMiniMult

ΠJ·K

ΠCOTe

FOT

ΠACOT

ΠGFMult

ΠUncheckedTriples

ΠReOrg ΠSchur ΠUncheckedMiniMult ΠTripleCheck

ΠBatchCheck

TinyOT MiniMAC SPDZ

Fig. 1. Illustration of the relationship between our
protocols. Protocols in boxes indicate final elements
for use in online execution.

This allows corrupt parties to introduce errors on
MACs that depend on the secret MAC key, which could
result in a few bits of the MAC key being leaked if the
MAC check protocol still passes. Essentially, this means
that corrupt parties can try to guess subsets of the field
in which the MAC key shares lie, but if their guess is
incorrect the protocol aborts. We model this ability in
all the relevant functionalities, showing that the result-
ing protocols are actively secure, even when this leakage
is present.

Security. The security of our protocols is proven in the
standard UC framework of Canetti [6] (see Appendix A
for details). We consider security against malicious, static
adversaries, i.e. corruption may only take place before the
protocols start, corrupting up to n− 1 of n parties.

Setup Assumption. The security of our protocols is in the
FOT-hybrid model, i.e. all parties have access to an ideal
1-out-of-2 OT functionality. Moreover we assume authen-
ticated communication between parties, in the form of a
functionality FAT which, on input (m, i, j) from Pi, gives m to Pj and also leaks m to the adversary. Our
security proof for F2 triples also uses the random oracle (RO) model [3] to model the hash function used in an
OT extension protocol. This means that the parties and the adversaries have access to a uniformly random
H : {0, 1}∗ → {0, 1}κ, such that if it is queried on the same input twice, it returns the same output. We
also use a standard coin flipping functionality, FRand, which can be efficiently implemented using hash-based
commitments in the random oracle model as done previously [8].

Overview. The rest of this paper is organized as follows: In Section 2 we go through our general notation,
variable naming and how we represent shared values. We continue in Section 3 with a description of the
passively secure OT extensions we use as building block for our triple generation and authentication. We
then go into more details on our authentication procedure in Section 4. This is followed by a description of
how we generate TinyOT (F2) and SPDZ (F2k) triples in Section 5 and MiniMAC triples in Section 6. We
end with a complexity analysis in Section 7.

We illustrate the relationship between all of our protocols in Fig. 1. In the top we have the protocol
producing final triples used in online execution and on the bottom the protocols for correlated OT extension
and authentication.

2 Notation

We denote by κ the computational security parameter and s the statistical security parameter. We let negl(κ)
denote some unspecified function f(κ), such that f = o(κ−c) for every fixed constant c, saying that such a
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function is negligible in κ. We say that a probability is overwhelming in κ if it is 1− negl(κ). We denote by

a
$← A the random sampling of a from a distribution A, and by [d] the set of integers {1, . . . d}.
We consider the sets {0, 1} and Fκ2 endowed with the structure of the fields F2 and F2κ , respectively. We

denote by F any finite field of characteristic two, and use roman lower case letters to denote elements in F,
and bold lower case letters for vectors. We will use the notation v[i] to denote the i-th entry of v. Sometimes
we will use v[i; j] to denote the range of bits from i to j when viewing v as a bit vector. Given matrix A,
we denote its rows by subindices ai and its columns by superindices aj . If we need to denote a particular
entry we use the notation A[i, j]. We will use O to denote the matrix full of ones and Dx for some vector x
to denote the square matrix whose diagonal is x and where every other positions is 0.

We use · to denote multiplication of elements in a finite field; note that in this case we often switch

between elements in the field F2κ , vectors in Fκ2 and vectors in Fκ/u2u (where u|κ), but when multiplication is
involved we always imply multiplication over the field, or and entry-wise multiplication if the first operand
is a scalar. If a,b are vectors over F then a∗b denotes the component-wise product of the vectors, and a⊗b
to denote the matrix containing the tensor (or outer) product of the two vectors.

We consider a systematic linear error correcting code C over finite field F2u of length m, dimension k
and distance d. So if a ∈ Fk2u , we denote by C(a) ∈ Fm2u the encoding of a in C, which contains a in its
first k positions, due to the systematic property of the code. We let C∗ denote the product code (or Schur
transform) of C, which consists of the linear span of C(a) ∗C(b), for all vectors a,b ∈ Fk2u . If C is a [m, k, d]
linear error correcting code then C∗ is a [m, k∗, d∗] linear error correcting code for which it holds that k∗ ≥ k
and d∗ ≤ d.

2.1 Authenticating Secret-shared Values

Let F be a finite field, we additively secret share bits and elements in F among a set of parties P =
{P1, . . . , Pn}, and sometimes abuse notation identifying subsets I ⊆ {1, . . . , n} with the subset of parties
indexed by i ∈ I. We write 〈a〉 if a is additively secret shared amongst the set of parties, with party Pi
holding a value a(i), such that

∑
i∈P a

(i) = a. We adopt the convention that, if a ∈ F then the shares also

lie in the same field, i.e. a(i) ∈ F.
Our main technique for authentication of secret shared values is similar to the one by Larraia et al. [16]

and Damg̊ard et al. [10], i.e. we authenticate a secret globally held by a system of parties, by placing an
information theoretic tag (MAC) on the secret shared value. We will use a fixed global key ∆ ∈ F2M , M ≥ κ,
which is additively secret shared amongst parties, and we represent an authenticated value x ∈ F, where
F = F2u and u|M , as follows:

JxK = (〈x〉, 〈mx〉, 〈∆〉),
where mx = x ·∆ is the MAC authenticating x under ∆. We drop the dependence on x in mx when it is
clear from the context. In particular this notation indicates that each party Pi has a share x(i) of x ∈ F, a
share m(i) ∈ FM2 of the MAC, and a uniform share ∆(i) of ∆; hence a J·K-representation of x implies that x
is both authenticated with the global key ∆ and 〈·〉-shared, i.e. its value is actually unknown to the parties.
Looking ahead, we say that JxK is partially open if 〈x〉 is opened, i.e. the parties reveal x, but not the shares
of the MAC value m. It is straightforward to see that all the linear operations on J·K can be performed locally
on the J·K-sharings. We describe the ideal functionality for generating elements in the J·K-representation in
Fig. 5.

In Section 6 we will see a generalization of this representation for codewords, i.e. we denote an authenti-
cated codeword C(x) by JC(x)K∗ = (〈C(x)〉, 〈m〉, 〈∆〉), where the ∗ is used to denote that the MAC will be
“component-wise” on the codeword C(x), i.e. that m = C(x) ∗∆.

3 OT Extension Protocols

In this section we describe the OT extensions that we use as building blocks for our triple generation protocols.
Two of these are standard – a 1-out-of-2 OT functionality and a passively secure correlated OT functionality

7



Functionality Fκ,`COTe

The Initialize step is independent of inputs and only needs to be called once. After this, Extend can be called
multiple times. The functionality is parametrized by the number ` of resulting OTs and by the bit length κ.
Running with parties PS , PR and an ideal adversary denoted by S, it operates as follows.

Initialize: Upon receiving ∆ ∈ Fκ2 from PS , the functionality stores ∆.
Extend(R,S): Upon receiving (PR, (x1, . . . ,x`)) from PR, where xh ∈ Fκ2 , it does the following:

- It samples th ∈ Fκ2 , h = 1, . . . , `, for PR. If PR is corrupted then it waits for S to input th.
- It computes qh = th + xh ∗∆, h = 1, . . . , `, and sends them to PS . If PS is corrupted, the functionality

waits for S to input qh , and then it outputs to PR values of th consistent with the adversarial inputs.

Fig. 2. IKNP extension functionality Fκ,`COTe

– whilst the third protocol is our variant on passively secure correlated OT with privacy amplification, which
may be of independent interest for other uses.

We denote by FOT the standard
(

2
1

)
OT functionality, where the sender PS inputs two messages v0,v1 ∈

Fκ2 and the receiver inputs a choice bit b, and at the end of the protocol the receiver PR learns only the

selected message vb. We use the notation Fκ,`OT to denote the functionality that provides `
(

2
1

)
OTs in Fκ2 . (see

Fig. 20 for a formal definition).Note that Fκ,`OT can be implemented very efficiently for any ` = poly(κ) using
just one call to Fκ,κOT and symmetric primitives, for example with actively secure OT extensions [18,1,13].

A slightly different variant of FOT is correlated OT, which is a batch of OTs where the sender’s messages
are correlated, i.e. vi0 + vi1 = ∆ for some constant ∆, for every pair of messages. We do not use an actively
secure correlated OT protocol but a passively secure protocol, which is essentially the OT extension of Ishai
et al. [12] without the hashing that removes correlation at the end of the protocol. We model this protocol
with a functionality that accounts for the deviations an active adversary could make, introducing errors into
the output, and call this correlated OT with errors (Fig. 2). The implementation of this is exactly the same
as the first stage of the IKNP protocol, but for completeness we include the description in Appendix D. The
security was proven e.g. by Nielsen [17], where it was referred to as the ABM box.

3.1 Amplified Correlated OT with Errors

Our main new OT extension protocol is a variant of correlated OT that we call amplified correlated OT with
errors. To best illustrate our use of the protocol, we find it useful to use the concept of a tensor product to
describe it. We observe that performing k correlated OTs on k-bit strings between two parties PR and PS
gives a symmetric protocol: if the input strings of the two parties are x and y then the output is given by

Q+ T = x⊗ y

where Q and T are the k × k matrices over F2 output to each respective party. Thus we view correlated
OT as producing a secret sharing of the tensor product of two input vectors. The matrix x ⊗ y consists of
every possible bit product between bits in x held by PR and bits in y held by PS . We will later use this to
compute a secret sharing of the product in an extension field of F2.

The main difficulty in implementing this with active security is ensuring that a corrupt PR inputs the
same correlation into each OT: if they cheat in just one OT, for example, they can guess PS ’s corresponding
input bit, resulting in a selective failure attack in a wider protocol. The previous construction used in the
TinyOT protocol [18] first employed a consistency check to ensure that PR used the same correlation on most
of the inputs. Since the consistency check cannot completely eliminate cheating, a privacy amplification step
is then used, which multiplies all of the OTs by a random binary matrix to remove any potential leakage on
the sender’s input from the few, possibly incorrect OTs.

In our protocol, we choose to omit the consistency check, since the correctness of SPDZ multiplication
triples is later checked in the sacrificing procedure. This means that an adversary is able to break the
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Functionality Fk,sACOT

It runs between a sender PS , a receiver PR and an ideal adversary S. The procedure can be called repeatedly.
Let `′ = 2k + s.

- Upon receiving x ∈ Fk2 from PR and y ∈ Fk2 from PS , the functionality does the following:
Honest parties

- The functionality samples a random matrix Q ∈ Fk×k2 . Then it computes T = Q+ x⊗y, and it outputs
Q to PS and T to PR.

Corrupt parties
- If PS is corrupted, the functionality waits for the adversary to input Q ∈ Fk×k2 and one of the following:

- If the adversary inputs (MultError, Y ′) for Y ′ ∈ F`
′×k

2 such that more than k rows of Y ′ are non-zero,

it samples M̂
$← Fk×`

′

2 and x̂′
$← Fk2 , sets E = M̂Dx̂′Y

′ and δ̂ = M̂ x̂′ + x, and outputs (M̂, δ̂) to S.
- The adversary inputs (AddError, E).

The functionality then computes T = Q+ x⊗ y + E and sends T to PR and Q to PS .
- If PR is corrupted, it waits for S to input x. Then it samples Q ∈ F k×k2 and computes U = Q+ x⊗ y,

outputs U to S, waits for S to input T , and outputs T to PR and Q to PS .

Fig. 3. Fk,sACOT – Amplified correlated OT

Protocol Πk,s
ACOT

Let x ∈ Fk2 and y ∈ Fk2 denote the inputs of PR and PS , respectively. Let `′ := 2k + s.

1. Parties run Fk,`
′

OT :

(a) PS samples Q′
$← F`

′×k
2 , sets Y = ODy whereO ∈ F`

′×k
2 is the matrix full of ones and inputs (Q′, Q′+Y ).

(b) PR samples and inputs x′
$← F`

′
2 .

(c) PR receives T ′ = Q′ +Dx′Y .

2. Parties sample a random matrix M ∈ Fk×`
′

2 using FRand (Fig. 21).
3. PR sends δ = Mx′ + x to PS and outputs T = MT ′.
4. PS outputs Q = MQ′ + δ ⊗ y.

Fig. 4. Amplified correlated OT

correlation, but the output will be distorted in a way such that sacrificing will fail for all but one possible
x input by PR. Without amplification, the adversary could craft a situation where the latter check succeeds
if, for example, first bit is zero, allowing the selective failure attack. On the other hand, if the success of the
adversary depends on guessing k random bits, the probability of a privacy breach is 2−k, which is negligible
in k. In the functionality (Fig. 3),the amplification manifests itself in the fact that the environment does not
learn x′ which amplifies the error Y ′.

The protocol Πk,s
ACOT (Fig. 4) requires parties to create the initial correlated OTs on strings of length

`′ = 2k + s, where s is the statistical security parameter. The sender PS is then allowed to input a `′ × k
matrix Y instead of a vector y, whilst the receiver chooses a random string x′ ∈ F`′2 . FOT then produces a
sharing of Dx′Y , instead of x′ ⊗ y in the honest case. For the privacy amplification, a random k × `′ binary
matrix M is chosen, and everything is multiplied by this to give outputs of length k as required. Finally, PR
sends Mx′ + x to switch to their real input x. Multiplying by M ensures that even if PS learns a few bits
of x′, all of x remains secure as every bit of x′ is combined into every bit of the output.

Lemma 1. The protocol Πk,s
ACOT (Fig. 4) implements the functionality Fk,sACOT (Fig. 3)in the Fk,`

′

OT -hybrid
model with statistical security s.

Proof. The proof essentially involves checking that Q + T = x ⊗ y for honest parties, that at most k
deviations by PS are canceled by M with overwhelming probability, and that more than k deviations cause
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Functionality FF
J·K

Let F = F2M , with M ≥ κ. Let A be the indices of corrupt parties. Running with parties P1, . . . , Pn and an ideal
adversary S, the functionality authenticates values in F2u for u|M .

Initialize: On input (Init) the functionality activates and waits for the adversary to input a set of shares
{∆(j)}j∈A in F. It samples random {∆(i)}i/∈A in F for the honest parties, defining ∆ :=

∑
i∈[n]∆

(i). If any
j ∈ A outputs Abort then the functionality aborts.

n-Share: On input (Authenticate,x
(i)
1 , . . . ,x

(i)
` ) from the honest parties and the adversary where x

(i)
h ∈ F2u ,

the functionality proceeds as follows.
Honest parties: ∀h ∈ [`], it computes xh =

∑
i∈P x

(i)
h and mh = xh · ∆. a Then it creates a sharing

〈mh〉 = {m(1)
h , . . . ,m

(n)
h } and outputs m

(i)
h to Pi for each i ∈ P, h ∈ [`].

Corrupted parties: The functionality waits for the adversary S to input the set A of corrupted parties. Then
it proceeds as follows:

- ∀h ∈ [`], the functionality waits for S to input shares {m(j)
h }j∈A and it generates 〈mh〉, with honest

shares {m(i)
h }i6∈A,h∈[`], consistent with adversarial shares but otherwise random.

- If the adversary inputs (Error, {e(k)h,j}k 6∈A,h∈[`],j∈[M ]) with elements in F2M , the functionality sets

m
(k)
h = m

(k)
h +

∑M
j=1 e

(k)
h,j ·∆

(k)
j ·X

j−1 where ∆
(k)
j denotes the j-th bit of ∆(k).

- For each k 6∈ A, the functionality outputs {m(k)
h } to Pk.

Key queries: On input of a description of an affine subspace S ⊂ (FM2 )n, return Success if (∆(1), . . . ,∆(n)) ∈ S.
Otherwise return Abort.

a If u 6= M we view ∆ as an element of FM/u2u and perform the multiplication by xh componentwise.

Fig. 5. Ideal Generation of J·K-representations

the desired entropy in the output. The two cases are modeled by two different possible adversarial inputs to
the functionality. See Appendix F.1 for further details.

4 Authentication Protocol

In this section we describe our protocol to authenticate secret shared values over characteristic two finite
fields, using correlated OT extension. The resulting MACs, and the relative MAC keys, are always elements
of a finite field F := F2M , where M ≥ κ and κ is a computational security parameter, whilst the secret

values may lie in F2u for any u|M . We then view the global MAC key as an element of FM/u
2u and the MAC

multiplicative relation as componentwise multiplication in this ring. Our authentication method is similar
to that by Larraia et al. [16] (with modifications to avoid the selective failure attack) but here we only
use a passively secure correlated OT functionality (FCOTe), allowing an adversary to introduce errors in the
MACs that depend on arbitrary bits of other parties’ MAC key shares. When combined with the MAC check
protocol by Damg̊ard et al. [8] (shown in Fig. 16), this turns out to be sufficient for our purposes, avoiding
the need for additional consistency checks in the OTs.

Our authentication protocol in Fig. 6 begins with an Initialize stage, which initializes a FCOTe instance
between every pair of parties (Pi, Pj), where Pj inputs their MAC key share ∆(j). This introduces the subtle
issue that a corrupt Pj may initialize FCOTe with two different MAC shares for Pi1 and Pi2 , say ∆(j) and

∆̂(j), which allows for the selective failure attack mentioned earlier – if Pi2 authenticates a bit b, the MAC
check will still pass if b = 0, despite being authenticated under the wrong key. However, since FCOTe.Initialize
is only called once, the MAC key shares are fixed for the entire protocol, so it is clear that Pj could not
remain undetected if enough random values are authenticated and checked. To ensure this in our protocol
in Fig. 6, we add a consistency check to the Initialize stage, where κ dummy values are authenticated, then
opened and checked. If the check passes then every party’s MAC key has been initialized correctly, except
with probability 2−κ. Although in practice this overhead is not needed when authenticating ` ≥ κ values,
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modeling this would introduce additional errors into the functionality and make the analysis of the triple
generation protocols more complex.

Now we present the protocol ΠJ·K, realizing the ideal functionality of Fig. 5, in more detail. We describe
the authentication procedure for bits first and then the extension to F2u .

Suppose parties need to authenticate an additively secret shared random bit x = x(1) + · · ·+ x(n). Once
the global key ∆ is initialized, the parties call the subprotocol Π[·] (Fig. 7) n times. Output of each of these

calls is a value u(i) for Pi and values q(j,i) for each Pj , j 6= i, such that

u(i) + q(j,i) =
∑
j 6=i

t(i,j) + x(i) ·∆(i) +
∑
j 6=i

q(j,i) = x(i) ·∆. (1)

To create a complete authentication JxK, each party sets m(i) = u(i) +
∑
j 6=i q

(i,j). Notice that if we add up
all the MAC shares, we obtain:

m =
∑
i∈P

m(i) =
∑
i∈P

(
u(i) +

∑
j 6=i

q(i,j)
)

=
∑
i∈P

(
u(i) +

∑
j 6=i

q(j,i)
)

=
∑
i∈P

x(i) ·∆ = x ·∆,

where the second equality holds for the symmetry of the notation q(i,j) and the third follows from (1).
Finally, if Pi wants to authenticate a bit x(i), it is enough, from Equation (1), setting m(i) = u(i) and

m(j) = q(j,i), ∀j 6= i. Clearly, from (1), we have
∑
i∈Pm(i) = x(i) ·∆.

Consider now the case where parties need to authenticate elements in F2u . We can represent any element
x ∈ F2u as a binary vector (x1, . . . , xu) ∈ Fu2 . In order to obtain a representation JxK it is sufficient to repeat
the previous procedure u times to get JxiK and then compute JxK as

∑u
k=1JxkK ·Xk−1 (Fig. 6). Here we let

X denote the variable in polynomial representation of F2u and JxkK the k’th coefficient.
We now describe what happens to the MAC representation in presence of corrupted parties. As we have

already pointed out before, a corrupt party could input different MAC key shares when initializing FCOTe

with different parties. Moreover a corrupt Pi could input vectors x
(i)
1 , . . .x

(i)
` instead of bits to n-Share(i)

(i.e. to FCOTe). This will produce an error in the authentication depending on the MAC key. Putting things
together we obtain the following faulty representation:

m = x ·∆+
∑
k 6∈A

x(k) · δ(i) +
∑
k 6∈A

e(i,k) ∗∆(k), for some i ∈ A

where A is the set of corrupt parties, δ(i) is an offset vector known to the adversary which represents the
possibility that corrupted parties input different MAC key shares, whilst e(i,k) depends on the adversary
inputting vectors and not just bits to FCOTe. More precisely, if Pi inputs a vector x(i) to n-Share(i), we can
rewrite it as x(i) = x(i) · 1 + e(i,k), where e(i,k) ∈ FM2 is an error vector known to the adversary. While we
prevent the first type of errors by adding a MACCheck step in the Initialize phase, we allow the second type
of corruption. This faulty authentication suffices for our purposes due to the MAC checking procedure used
later on.

Lemma 2. In the Fκ,`COTe-hybrid model, the protocol ΠJ·K (Fig. 6) implements FJ·K against any static adver-
sary corrupting up to n− 1 parties.

Proof. See Appendix F.2.
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Protocol ΠJ·K

The protocol computes an authenticated sharing, JxK, of an additively shared value x ∈ F2u , where u|M and the
resulting MAC lies in F2M .

Initialize: Each party Pi samples ∆(i) ∈ F2M . Each pair of parties (Pi, Pj) (for i 6= j) calls FM,`COTe.Initialize where
Pj inputs ∆(j). Now check consistency of the MAC keys:
1. The parties run (as a subroutine) n-Share κ times, where each party Pi inputs random shares

x
(i)
1 , . . . , x

(i)
κ ∈ F2, to obtain Jx1K, . . . , JxκK.

2. Each party Pi broadcasts their shares x
(i)
1 , . . . , x

(i)
κ and computes xh =

∑n
i=1 x

(i)
h for h = 1, . . . , κ.

3. The parties run ΠMACCheck, inputting x1, . . . , xκ and their shares of the corresponding MACs.
4. If ΠMACCheck fails, output Abort.

n-Share: Each party Pi inputs a share. We do one of the following, depending on the type of data being
authenticated:
F2 : Pi inputs x

(i)
h ∈ F2, h ∈ [`].

1. For each i = 1, . . . , n, run the subprotocol the Π[·] with input (i, (x
(i)
1 , . . . , x

(i)
` ), Share) from Pi and

(i,Share) from Pj for j 6= i, to obtain [x(1)]1∆, . . . , [x
(n)]n∆.

2. Each party Pi locally computes JxK =
∑
i[x

(i)]i∆.

F2u : Pi inputs x(i) ∈ F2u .
1. For each i = 1, . . . , n, run the subprotocol Π[·] with input (i,x

(i)
1 , . . . ,x

(i)
u , Share) from Pi and

(i, Share) from Pj for j 6= i, and then sum up the n MACs for each component Jx1K, . . . , JxuK.
2. Compute JxK =

∑u
j=1JxjK ·X

j−1.

Fig. 6. From [·]i∆ to J·K

Subprotocol Π[·]

Share(i): On input (i, (x
(i)
1 , . . . , x

(i)
` ), Share) from Pi, and (i,Share) from all other parties, do:

1. For each j 6= i, Pi and Pj call FM,`COTe.Extend on inputs x(i) = (x
(i)
1 , . . . , x

(i)
` ).

Pi obtains {t(i,j)h }h∈[`], while Pj obtains {q(j,i)
h }h∈[`] such that q

(j,i)
h = t

(i,j)
h + x

(i)
h ·∆

(j)
h .

2. Pi outputs u
(i)
h := x

(i)
h ·∆

(i) +
∑
j 6=i t

(i,j)
h and Pj outputs q

(j,i)
h for j 6= i and h = 1, . . . , `. The system

now has [x
(i)
h ]i∆, h = 1, . . . , `.

Fig. 7. Transforming two-party representations onto [·]i∆,P -representation

5 Triple Generation in F2 and F2k

In this section we describe our protocols generating triples in finite fields. First we describe the protocols for
multiplication triples in F2κ (Fig. 10 and 14), and then the protocol for bit triples (Fig. 15). Both approaches
implement the functionality FF

Triples, given in Fig. 8. Note that the functionality allows an adversary to try
and guess an affine subspace containing the parties’ MAC key shares, which is required because of our faulty
authentication procedure described in the previous section.

5.1 F2k Triples

In this section, we show how to generate F2k authenticated triples using Fk,sGFMult (Fig. 24) and FF
2k

J·K . We

realize the functionality Fk,sGFMult with protocol Πk,s
GFMult (Fig. 9). This protocol is a simple extension of FACOT

that converts the sharing of a tensor product matrix in Fk×k2 to the sharing of a product in F2k . Taking this
modular approach simplifies the proof for triple generation, as we can deal with the complex errors from
FACOT separately. Our first triple generation protocol (ΠUncheckedTriples) will not reveal any information about
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Functionality FF
Triples

Let A be the indices of corrupt parties. Running with parties P1, . . . , Pn and an adversary S, the functionality
operates as follows.

Initialize: On input (Init) the functionality activates and waits for S to input a set of shares {∆(j)}j∈A. It
samples random {∆(i)}i/∈A in Fκ2 for the honest parties, defining ∆ :=

∑
i∈[n]∆

(i). If any j ∈ A outputs
Abort then the functionality aborts.

Honest Parties: On input (Triples), the functionality outputs random JxhK∆, JyhK∆, JzhK∆, such that
〈zh〉 = 〈xh〉 · 〈yh〉 and zh, yh, xh ∈ F.

Corrupted Parties: The functionality samples xh, yh
$← F and computes zh = xh · yh. To produce JaK∆ =

(〈a〉, 〈m〉, 〈∆〉), where a ∈ {xh, yh, zh}h∈[`] it does the following:

- It waits the adversary to input shares {a(i)}i∈A and {m(i)}i∈A.
- It waits for the adversary to input (ValueError, e) and (MacError, e).
- It selects the shares of honest parties at random, but consistent with adversarial shares and with a+ e

and a ·∆+ e, that is, such that
∑n
i=1 a

(i) = a+ e and
∑n
i=1 m(i) = a ·∆+ e.

Key queries: On input of a description of an affine subspace S ⊂ (Fκ2 )n, return Success if (∆(1), . . . ,∆(n)) ∈ S.
Otherwise return Abort.

Fig. 8. Ideal functionality for triples generation

Protocol Πk,s
GFMult

Let x and y denote the inputs of PR and PS respectively, in F2k , and let s be a statistical security parameter.
Furthermore, let e = (1, X, . . . ,Xk−1) and `′ = 2k + s.

1. The parties run Fk,sACOT:
(a) PR inputs x and PS inputs y.
(b) PR receives T and PS receives Q such that T +Q = x⊗ y.

2. PR outputs t = eTe> and PS outputs q = eQe>.

Fig. 9. F2k multiplication

Protocol ΠUncheckedTriples

Initialize: The parties initialize FF
2k

J·K , which outputs ∆(i) to party i.
Triple generation:

1. Every party i samples random a(i) $← F2k and b(i) $← F2k .
2. Every tuple of parties (i, j) ∈ [n]2, i 6= j call Fk,sGFMult with Pi inputting a(i) and Pj inputting b(j) to

generate a random secret sharing c
(i,j)
i,j + c

(j,i)
i,j = a(i) · b(j).

3. Every party i computes c(i) = a(i) · b(i) +
∑
j 6=i(c

(i,j)
i,j + c

(i,j)
j,i ).

4. Party i calls FF
2k

J·K with inputs a(i), b(i), and c(i), and receives m
(i)
a , m

(i)
b , and m

(i)
c .

Fig. 10. Protocol for generation of unchecked F2k triples.

the values or the authentication key, but an active adversary can distort the output in various ways. We then
present a protocol (ΠTripleCheck) to check the generated triples from ΠUncheckedTriples, similarly to the sacrificing
step of the SPDZ protocol [8], to ensure that an adversary has not distorted them.

The protocol is somewhat similar to the one in the previous section. Instead of using n(n− 1) instances

of FCOTe, it uses n(n− 1) instances of Fk,sGFMult, which is necessary to compute a secret sharing of x ·y, where
x and y are known to different parties.
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FUncheckedTriples

Let B denote the set of honest parties, and let ι̂ be the lowest index in B. Furthermore, let B′ = B \ {ι̂} and
A = [n] \B the set of corrupted parties.

Initialize: Sample 〈∆〉 $← F2k and secret share it using shares for corrupted parties input by S. Output the
share ∆(i) to party i.

Triple generation:

1. Sample (〈a〉, 〈b〉) $← F2k according to corrupted parties’ shares from S.

2. Wait for S to input {f (i)a , f
(i)
b }i∈B′ , {ϕ

(i)
a,h, ϕ

(i)
b,h, ϕ

(i)
c,h}i∈B,h∈[k], f̄ , ψa, ψb, ψc ∈ F2k , C ⊂ B × A, and

{(Y (i,j), f̄ (i,j))}(i,j)∈C .

3. For all (i, j) ∈ C, compute (M̄ (i,j), δ(i,j), f (i,j)) as FGFMult would (using a(i) for x), and send
{(M̄ (i,j), δ(i,j))}(i,j)∈C to S.

4. Compute

f =
∑

(i,j)∈C

f (i,j) + f̄

c = a · b +
∑
i∈B′

a(i) · f (i)a +
∑
i∈B′

b(i) · f (i)b + f

ma = a ·∆+
∑

i∈B,h∈[k]

∆
(i)
h · ϕ

(i)
a,h ·X

h + ψa

mb = b ·∆+
∑

i∈B,h∈[k]

∆
(i)
h · ϕ

(i)
b,h ·X

h + ψb

mc = c ·∆+
∑

i∈B,h∈[k]

∆
(i)
h · ϕ

(i)
c,h ·X

h + ψc

and secret share them using shares input by S for corrupted parties. ∆
(i)
h denotes the h-th bit of the

share ∆(i).
5. Output (a(i),b(i), c(i),m

(i)
a ,m

(i)
b ,m

(i)
c ) to party i.

Fig. 11. Unchecked F2k triple generation.

Lemma 3. The protocol ΠUncheckedTriples shown in Fig. 10 implements the functionality FUncheckedTriples in the

(Fk,sGFMult,F
F
2k

J·K )-hybrid model with perfect security.

Proof. The proof is straightforward using an appropriate simulator. See Appendix F.6 for further details.

The protocol ΠTripleCheck produces N triples using 2N unchecked triples similar to the sacrificing step of
the SPDZ protocol. However, corrupted parties have more options to deviate here, which we counter by using
more random coefficients for checking. Recall that, in the SPDZ protocol, parties input their random shares
by broadcasting a homomorphic encryption thereof. Here, the parties have to input such a share by using

an instance of Fk,sGFMult and FF
2k

J·K with every other party, which opens up the possibility of using a different

value in every instance. We will prove that, if the check passes, the parties have used consistent inputs to

Fk,sGFMult. On the other hand, FF
2k

J·K provides less security guarantees. However, we will also prove that the more

deviation there is with FF
2k

J·K , the more likely the check is to fail. This is modeled using the key query access

of FTriples. Note that, while this reveals some information about the MAC key ∆, this does not contradict the
security of the resulting MPC protocol because ∆ does not protect any private information. Furthermore,
breaking correctness corresponds to guessing ∆, which will only succeed with probability negligible in k
because incorrect guesses lead to an abort.

We use a supplemental functionality FBatchCheck (Fig. 12), which is used to check that a batch of shared
values are equal to zero, and can be easily implemented using commitment and FRand (see Fig. 13 and
Appendix C). The first use of FBatchCheck corresponds to using the SPDZ MAC check protocol for rj and

14



FBatchCheck

Let A denote the set of corrupted parties, and B = [n] \A the set of honest ones.

Batch Checking:

1. Sample {χ(j)}j∈[N ]
$← FN .

2. Each party i inputs {z(j)
i }j∈[N ].

3. For every party i, compute σi =
∑N
i=1 χ

(j) · z(j)
i .

4. Output {χ(j)}j∈[N ] to the adversary.
5. Wait for the adversary to input ζ.
6. Output {σi}i∈B to the adversary.
7. If

∑
i∈B σi = ζ, output OK, otherwise output ⊥.

Fig. 12. Batch checking functionality.

Protocol ΠBatchCheck

1. The parties invoke FRand to receive {χ(j)}j∈N ∈ FN2k .

2. Every party i computes σi =
∑N
j=1 χ

(j) · z(j)
i .

3. Every party i calls Comm(σi) on FComm, which broadcasts τi.
4. Every party i calls Open(τi) on FComm, which broadcasts σj for all j.
5. If σ1 + · · ·+ σn 6= 0, the parties output ⊥ and abort, otherwise they output OK.

Fig. 13. Batch Zero Checking Protocol

Protocol ΠTripleCheck

Initialize: Each party receives ∆(i) from FUncheckedTriples.
Triple Generation:

1. Generate 2N {JajK, JbjK, JcjK}j∈[2N ] unchecked triples using FUncheckedTriples.

2. Sample t, t′, t′′
$← F2k using FRand.

3. For all j ∈ [N ], open t · 〈bj〉+ t′ · 〈bj+N 〉 as rj and t′ · 〈aj〉+ t′′ · 〈aj+N 〉 as sj .
4. Use FBatchCheck with {rj ·〈∆〉+t ·〈mbj 〉+t′ ·〈mbj+N)

〉}j∈[N ] and {sj ·〈∆〉+t′ ·〈maj 〉+t′′ ·〈maj+N 〉}j∈[N ],
and abort if it returns ⊥.

5. Use FBatchCheck with {t · 〈mcj 〉+ t′′ · 〈mcj+N 〉+ rj · 〈maj 〉+ sj · 〈mbj+N 〉}j∈[N ], and abort if returns ⊥.
6. Output {JajK, JbjK, JcjK}j∈[N ].

Fig. 14. Triple checking protocol.

sj for all j ∈ [N ], and the second use corresponds to the sacrificing step, which checks whether t · cj + t′′ ·
cj+N + rjaj + sj · bj+N = 0 for all j ∈ [N ].

Theorem 1. The protocol ΠTripleCheck, described in Fig. 14, implements FTriples in the (FUncheckedTriples,FRand)-
hybrid model with statistical security (k − 4).

Proof. The proof mainly consists of proving that, if cj 6= aj ·bj or the MAC values are incorrect for some j,
and the check passes, then the adversary can compute the offset of cj or the MAC values. See Appendix F.7.

5.2 F2 Triples

This section shows how to produce a large number ` of random, authenticated bit triples using the correlated
OT with errors functionality FCOTe from Section 3. We describe the main steps of the protocol in Fig. 15. The
main difference with respect to the protocol by Larraia et al. [16] is that here we use the outputs of FCOTe
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Protocol ΠBitTriples

The goal of the protocol is to generate ` F2 triples 〈xh〉, 〈yh〉, 〈zh〉, h = 1, . . . , `, such that zh = xh · yh, together
with JxhK, JyhK, JzhK. The protocol is parametrized by the number ` of authenticated triples, and it assumes
access to a random oracle H : {0, 1}∗ → {0, 1}.

Initialize:
1. Each party Pi samples a random MAC key share ∆(i), a second value ∆̃(i) ∈ Fκ2 and sets ∆̂(i) =

(∆̃(i)‖∆(i)) ∈ F2κ
2 .

2. Each pair of parties (Pi, Pj) (for i 6= j) calls FCOTe.Initialize, where Pj inputs ∆̂(j), and FJ·K.Init, where

Pj inputs ∆(j).
3. Parties check consistency of the FCOTe inputs ∆̂ = ∆̂(1) + · · · + ∆̂(n) as in the Initialize step of ΠJ·K,

using κ random values. If ΠMACCheck fails, output Abort.
COTe.Extend: Each Pi, i ∈ P, runs FCOTe.Extend with Pj , ∀j 6= i: Pi inputs x(i) = (x

(i)
1 , . . . , x

(i)
` ) ∈ F`2, and

then it receives {t̂(i,j)h }h∈[`] and Pj receives q̂
(j,i)
h = t̂

(i,j)
h + x

(i)
h · ∆̂

(j), h ∈ [`].

Triple generation: Each party Pi uses only the first κ components of its shares. We denote them by q̃
(i,j)
h ,

∆̃(i) and t̃
(i,j)
h .

1. Each party Pi generates ` random y
(i)
h ∈ F2.

2. For each i ∈ P do:
(a) Using a random oracle H : {0, 1}∗ → {0, 1}, break the correlation from the previous step. Pi locally

computes H(t̃
(i,j)
h ) = w

(i,j)
h , and Pj locally computes H(q̃

(j,i)
h ) = v

(j,i)
0,h , H(q̃

(j,i)
h + ∆̃(j)) = v

(j,i)
1,h ,

∀j 6= i,∀h ∈ [`].
(b) Parties need to create new correlations corresponding to yh:

- Each Pj , j 6= i, sends a vector s(j,i) ∈ F`2 to Pi such that each component is s
(j,i)
h = v

(j,i)
0,h +

v
(j,i)
1,h + y

(j)
h .

- ∀j 6= i, Pi computes n
(i,j)
h = w

(i,j)
h + x

(i)
h · s

(j,i)
h = v

(j,i)
0,h + x

(i)
h · y

(j)
h .

3. Each Pi computes

z
(i)
h =

∑
j 6=i

n
(i,j)
h + x

(i)
h · y

(i)
h +

∑
j 6=i

v
(i,j)
0,h .

Authentication: 1. Authenticate xh by summing up the last κ components of the outputs from the COTe
step to obtain JxhK, for h = 1, . . . , `.

2. Call FFκ2
J·K with input Authenticate to authenticate y

(j)
h , z

(j)
h for j = 1, . . . , n and h = 1, . . . , `, obtaining

JyhK, JzhK
Check triples: This step performs sacrificing and combining, to check that the triples are correctly generated

and to prevent any leakage on xh in case yh was authenticated incorrectly. The parties call the subprotocol
ΠCheckTriples in Fig. 23.

Fig. 15. F2-triples generation

to simultaneously generate triples, 〈zh〉 = 〈xh〉 · 〈yh〉, and authenticate the random bits xh, for h = 1, . . . , `,
under the fixed global key ∆, giving JxhK = (〈xh〉, 〈mh〉, 〈∆〉). To do this, we need to double the length of
the correlation used in FCOTe, so that half of the output is used to authenticate xh, and the other half is
hashed to produce shares of the random triple.4

The shares 〈yh〉, 〈zh〉 are then authenticated with additional calls to FCOTe to obtain JyhK, JzhK. We
then use a random bucketing technique to combine the xh values in several triples, removing any potential
leakage due to incorrect authentication of yh (avoiding the selective failure attack present in the previous
protocol [16]) and then sacrifice to check for correctness (as in the previous protocol).

4 If the correlation length is not doubled, and the same output is used both for authentication and as input to the
hash function, we cannot prove UC security as the values and MACs of a triple are no longer independent.
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The Initialize stage consists of initializing the functionality F2κ,`
COTe with ∆̂ ∈ F2κ

2 . Note that ∆̂ is the

concatenation of a random ∆̃ ∈ Fκ2 and the MAC key ∆. We add a consistency check to ensure that each
party initialize ∆̂ correctly, as we did in ΠJ·K.

Then, in COTe.Extend, each party Pi runs a COTe2κ,` with all other parties on input x(i) = (x
(i)
1 , . . . , x

(i)
` ) ∈

F`2. For each i ∈ P, we obtain q̂
(j,i)
h = t̂

(i,j)
h + x

(i)
h · ∆̂(j), h ∈ [`], where

q̂
(j,i)
h = (q̃

(j,i)
h ‖q(j,i)

h ) ∈ F2κ
2 and t̂

(j,i)
h = (t̃

(j,i)
h ‖t(j,i)

h ) ∈ F2κ
2 .

Note that we allow corrupt parties to input vectors x
(i)
h instead of bits.

Parties use the first κ components of their shares during the Triple Generation phase. More precisely,

each party Pi samples ` random bits y
(i)
h and then uses the first κ components of the output of COTe2κ,`

to generate shares z
(i)
h . The idea (as previously [16]) is that of using OT-relations to produce multiplicative

triples. In step 2, in order to generate ` random and independent triples, we need to break the correlation
generated by COTe. For this purpose we use a hash function H, but after that, as we need to “bootstrap”
to an n-parties representation, we must create new correlations for each h ∈ [`]. Pi sums all the values

n
(i,j)
h , j 6= i, and x

(i)
h · y

(i)
h to get u

(i,j)
h =

∑
j 6=i n

(j,i)
h + x

(i)
h · y

(i)
h . Notice that adding up the share u

(i,j)
h held

by Pi and all the shares of other parties, after step 2 we have:

u
(i,j)
h +

∑
j 6=i

v
(j,i)
0,h = x

(i)
h · yh.

Repeating this procedure for each i ∈ P and adding up, we get zh = xh · yh.

Once the multiplication triples are generated the parties Authenticate zh and yh using FJ·K, while to
authenticate xh they use the remaining κ components of the outputs of the COTe.Extend step.

Checking Triples. In the last step we want to check that the authenticated triples are correctly generated.
For this we use the subprotocol ΠCheckTriples in Appendix F.3. This generalizes the bucket-based cut-and-
choose technique by Larraia et al. [16], optimizing the parameters and abstracting away the key properties
that are needed from the data being checked. This means that the procedure can easily be adapted for other
purposes.

The bucket-cut-and-choose step ensures that the generated triples are correct. Privacy on x is then
guaranteed by the combine step, whereas privacy on y follows from the use of the original COTe for both

creating triples and authenticating x. Note also that if a corrupt party inputs an inconsistent bit x
(i)
h in

n
(i,k)
h , for some k 6∈ A in step 2.b, then the resulting triples zh = xh · yh + s

(k,i)
h · yh will pass the checks if

and only if s
(k,i)
h = 0, revealing nothing about yh.

We conclude by stating the main result of this section.

Theorem 2. For every static adversary A corrupting up to n− 1 parties, the protocol ΠBitTriples κ-securely

implements FTriples (Fig. 8) in the (Fκ,`COTe,FJ·K)-hybrid model.

Proof. Correctness easily follows from the above discussion. For more details see Appendix F.4.

6 Triple Generation for MiniMACs

In this section we describe how to construct the preprocessing data needed for the online execution of the
MiniMAC protocol [11,9]. The complete protocols and security proofs are in Appendix G. Here we briefly
outline the protocols and give some intuition of security.
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6.1 Raw Material

The raw material used for MiniMAC is very similar to the raw material in both TinyOT and SPDZ. In
particular this includes random multiplication triples. These are used in the same manner as F2 and F2k

triples to allow for multiplication during an online phase. However, remember that we work on elements
which are codewords of some systematic linear error correcting code, C. Thus an authenticated element is
defined as JC (x)K∗ = {〈C(x)〉, 〈m〉, 〈∆〉} where m = C(x) ∗ ∆ with C(x), m and ∆ elements of Fm2u and
x ∈ Fk2u . Similarly a triple is a set of three authenticated elements, {JC (a)K∗, JC (b)K∗, JC∗ (c)K∗} under the
constraint that C∗(c) = C(a) ∗ C(b), where ∗ denotes component-wise multiplication. We notice that the
multiplication of two codewords results in an element in the Schur transform. Since we might often be doing
multiplication involving the result of another multiplication, that thus lives in C∗, we need some way of
bringing elements from C∗ back down to C. To do this we need another piece of raw material: the Schur
pair. Such a pair is simply two authenticated elements of the same message, one in the codespace and one
in the Schur transform. That is, the pair {JC (r)K∗, JC∗ (s)K∗} with r = s. After doing a multiplication using
a preprocessed random triple in the online phase, we use the JC∗ (s)K∗ element to onetime pad the result,
which can then be partially opened. This opened value is re-encoded using C and then added to JC (r)K∗.
This gives a shared codeword element in C, that is the correct output of the multiplication.

Finally, to avoid being restricted to just parallel computation within each codeword vector, we also need
a way to reorganize these components within a codeword. To do so we need to construct “reorganization
pairs”. Like the Schur pairs, these will simply be two elements with a certain relation on the values they
authenticate. Specifically, one will encode a random element and the other a linear function applied to the
random element encoded by the first. Thus the pair will be {JC (r)K∗, JC (f(r))K∗} for some linear function
f : Fk2u → Fk2u . We use these by subtracting JC (r)K∗ from the shared element we will be working on. We
then partially open and decode the result. This is then re-encoded and added to JC (f(r))K∗, resulting in the
linear computation defined by f(·) on each of the components.

6.2 Authentication

For the MiniMAC protocol to be secure, we need a way of ensuring that authenticated vectors always form
valid codewords. We do this based on the functionality FCodeAuth in two steps, first a ‘BigMAC’ authentication,
which is then compressed to give a ‘MiniMAC’ authentication. The steps are described by the BigMAC,
respectively Compress phases in Fig. 31 and their implementations in Fig. 30 in Appendix G.2. For the
BigMAC authentication, we simply use the FJ·K functionality to authenticate each component of x (living
in F2u) separately under the whole of ∆ ∈ Fm2u . Because every component of x is then under the same MAC
key, we can compute MACs for the rest of the codeword C(x) by simply linearly combining the MACs on x,

due to the linearity of C. We use the notation JC (x)K =
{
〈C(x)〉, {〈mxi〉}i∈[m] , 〈∆〉

}
to denote the BigMAC

share. To go from BigMAC to MiniMAC authentication, we just extract the relevant F2u element from each
MAC. We then use JC (x)K = {〈C(x)〉, 〈mx〉, 〈∆〉} to denote a MiniMAC element, where mx is made up of
one component of each of the m BigMACs.

6.3 Multiplication Triples

To generate a raw, unauthenticated MiniMAC triple, we need to be able to create vectors of shares 〈C(a)〉,
〈C(b)〉, 〈C∗(c)〉 where C∗(c) = C(a) ∗ C(b) and a,b ∈ Fk2u . These can then be authenticated using the
FCodeAuth functionality described above.

Since the authentication procedure only allows shares of valid codewords to be authenticated, it might
be tempting to directly use the SPDZ triple generation protocol from Section 5.1 in F2u for each component
of the codewords C(a) and C(b). In this case, it is possible that parties do not input valid codewords, but
this would be detected in the authentication stage. However, it turns out this approach is vulnerable to a
subtle selective failure attack – a party could input to the triple protocol a share for C(a) that differs from
a codeword in just one component, and then change their share to the correct codeword before submitting
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it for authentication. If the corresponding component of C(b) is zero then this would go undetected, leaking
that fact to the adversary.

To counter this, we must ensure that shares output by the triple generation procedure are guaranteed to
be codewords. To do this, we only generate shares of the Fk2u vectors a and b – since C is a linear [m, k, d]
code, the shares for the parity components of C(a) and C(b) can be computed locally. For the product C∗(c),
we need to ensure that the first k∗ ≥ k components can be computed, since C∗ is a [m, k∗, d∗] code. Note that
the first k components are just (a1, . . . ,ak) ∗ (b1, . . . ,bk), which could be computed similarly to the SPDZ
triples. However, for the next k∗− k components, we also need the cross terms ai ·bj , for every i, j ∈ [k]. To
ensure that these are computed correctly, we input vectors containing all the bits of a,b to FACOT, which
outputs the tensor product a ⊗ b, from which all the required codeword shares can be computed locally.
Similarly to the BigMAC authentication technique, this results in an overhead of O(k · u) = O(κ log κ)
for every multiplication triple when using Reed-Solomon codes. We express the above operations in the
subprotocol CodeOT in Fig. 32 in Appendix G.3.

Taking our departure in the above description we generate the multiplication triples in two steps: First
unauthenticated multiplication triples are generated by using the CodeOT subprotocol, which calls FACOT

and takes the diagonal of the resulting shared matrices. The codewords of these diagonals are then used as
inputs to FCodeAuth, which authenticates them. This is described by protocol ΠUncheckedMiniTriples in Fig. 33.
Then a random pairwise sacrificing is done to ensure that it was in fact shares of multiplication being
authenticated. This is done using protocol ΠMiniTriples in Fig. 36. One minor issue that arises during this
stage is that we also need to use a Schur pair to perform the sacrifice, to change one of the multiplication
triple outputs back down to the code C, before it is multiplied by a challenge codeword and checked.

Security intuition. Since the CodeOT procedure is guaranteed to produces shares of valid codewords, and
the authentication procedure can only be used to authenticate valid codewords, if an adversary changes their
share before authenticating it, they must change it in at least d positions, where d is the minimum distance
of the code. For the pairwise sacrifice check to pass, the adversary then has to essentially guess d components
of the random challenge codeword to win, which only happens with probability 2−u·d.

6.4 Schur and Reorganization Pairs

The protocols ΠSchur (Fig. 38) and ΠReorg (Fig. 40) describe how to create the Schur and reorganization
pairs. We now give a brief intuition of how these work.

Schur Pairs. We require random authenticated codewords JC(r)K∗, JC∗(s)K∗ such that the first k components
of r and s are equal. Note that since C ⊂ C∗, it might be tempting to use the same codeword (in C) for
both elements. However, this will be insecure – during the online phase, parties reveal elements of the form
JC∗(x ∗ y)K∗ − JC∗(s)K∗. If C∗(s) is actually in the code C then it is uniquely determined by its first k
components, which means C∗(x ∗ y) will not be masked properly and could leak information on x,y.

Instead, we have parties authenticate a random codeword in C∗ that is zero in the first k positions,
reveal the MACs at these positions to check that this was honestly generated, and then add this to JC(r)K∗
to obtain JC∗(s)K∗. This results in a pair where the parties’ shares are identical in the first k positions,
however we prove in Section G.4 that this does not introduce any security issues for the online phase.

Reorganizing Pairs. To produce the pairs JC(r)K∗, JC(f(r))K∗, we take advantage of the fact that during
BigMAC authentication, every component of a codeword vector has the same MAC key. This means linear
functions can be applied across the components, which makes creating the required data very straightforward.
Note that with MiniMAC shares, this would not be possible, since you cannot add two elements with different
MAC keys.

7 Complexity Analysis

We now turn to analyzing the complexity of our triple generation protocols, in terms of the required number
of correlated and random OTs (on κ-bit strings) and the number of parties n.
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Two-party TinyOT. The appendix of TinyOT [18] states that 54 aBits are required to compute an AND
gate, when using a bucket size of 4. An aBit is essentially a passive correlated OT combined with a consistency
check and some hashes, so we choose to model this as roughly the cost of an actively secure random OT.

Multi-party TinyOT. Note that although the original protocol of Larraia et al. [16] and the fixed protocol
of Burra et al. [5] construct secret-shared OT quadruples, these are locally equivalent to multiplication triples,
which turn out to be simpler to produce as one less authentication is required. Producing a triple requires
one random OT per pair of parties, and the 3 correlated OTs per pair of parties to authenticate the 3
components of each triple. Combining twice, and sacrificing gives an additional overhead of B3, where B is
the bucket size. When creating a batch of at least 1 million triples with statistical security parameter 40, the
proofs in Appendix F.3 show that we can use bucket size 3, giving 81n(n− 1) calls to FCOTe and 27n(n− 1)
to FOT.

Authentication. To authenticate a single bit, the ΠJ·K protocol requires n(n − 1) calls to FCOTe. For full
field elements in F2k this is simply performed k times, taking kn(n− 1) calls.

F2 Triples. The protocol starts with n(n− 1) calls to FCOTe to create the initial triple and authenticate x;
however, these are on strings of length 2κ rather than κ and also require a call to H, so we choose to count
this as n(n−1) calls to both FOT and FCOTe to give a conservative estimate. Next, y and z are authenticated
using FJ·K, needing a further 2n(n− 1)×FCOTe.

We need to sacrifice once and combine once, and if we again use buckets of size 3 this gives a total
overhead of 9x. So the total cost of an F2 triple with our protocol is 27n(n − 1) FCOTe calls and 9n(n − 1)
FOT calls.

F2k Triples. We start with n(n − 1) calls to Fk,sACOT, each of which requires 3k FOT calls, assuming that k
is equal to the statistical security parameter. We then need to authenticate the resulting triple (three field
elements) for a cost of 3kn(n − 1) calls to FCOTe. The sacrificing step in the checked triple protocol wastes
one triple to check one, so doubling these numbers gives 6kn(n− 1) for each of FOT and FCOTe.

MiniMAC Triples. Each MiniMAC triple also requires one Schur pair for the sacrificing step and one
Schur pair for the online phase multiplication protocol.

Codeword Authentication. Authenticating a codeword with ΠCodeAuth takes k calls to FJ·K on u-bit field
elements, giving kun(n− 1) COTe’s on a u ·m-bit MAC key. Since COTe is usually performed with a κ-bit
MAC key and scales linearly, we choose to scale by u ·m/κ and model this as ku2mn(n−1)/κ calls to FCOTe.

Schur and Reorganization Pairs. These both just perform 1 call to FCodeAuth, so have the same cost as above.

Multiplication Triples. Creating an unchecked triple first uses n(n− 1) calls to CodeOT on k · u-bit strings,
each of which calls FACOT, for a total of (2ku+s)n(n−1) FOT’s. The resulting shares are then authenticated
with 3 calls to FCodeAuth. Pairwise sacrificing doubles all of these costs, to give 2kun(n− 1)(2ku+ s)/κ FOT’s
and 6 calls to FCodeAuth, which becomes 8ku2mn(n− 1)/κ FCOTe’s when adding on the requirement for two
Schur pairs.

Parameters. [9] implemented the online phase using Reed-Solomon codes over F28 , with (m, k) = (256, 120)
and (255, 85), for a 128-bit statistical security level. The choice (255, 85) allowed for efficient FFT encoding,
resulting in a much faster implementation, so we choose to follow this and use u = 8, k = 85. This means the
cost of a single (vector) multiplication triple is 86700n(n− 1) calls to FCOTe and 14875(n− 1) calls to FOT.
Scaling this down by k, the amortized cost of a single F2u multiplication becomes 1020(n−1) and 175(n−1)
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calls. Note that this is around twice the cost of F240 triples, which were used to embed the AES circuit by
Damg̊ard et al. [7], so it seems that although the MiniMAC online phase was reported by Damg̊ard et al. [9]
to be more efficient than other protocols for certain applications, there is some extra cost when it comes to
the preprocessing using our protocol.

7.1 Estimating Runtimes

To provide rough estimates of the runtimes for generating triples, we use the OT extension implementation
of Asharov et al. [1] to provide estimates for FCOTe and FOT. For FCOTe, we simply use the time required for
a passively secure extended OT (1.07µs), and for FOT the time for an actively secure extended OT (1.29µs)
(both running over a LAN). Note that these estimates will be too high, since FCOTe does not require hashing,
unlike a passively secure random OT. However, there will be additional overheads due to communication
etc, so the figures given in Table 1 are only supposed to be a rough guide.
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A UC Security

We work in the standard Universal Composability (UC) framework of Canetti [6]. The UC framework
introduces a PPT environment Z that is invoked on the security parameter κ and an auxiliary input z ∈
{0, 1}∗ and oversees the execution of a protocol in one of the two worlds. The “ideal” world execution
involves dummy parties π1, . . . , πn, an ideal adversary S who may corrupt some of the dummy parties, and a
functionality F . The “real” world execution involves the PPT parties P1, . . . , Pn, possibly corrupted by a real
world adversary A, and interacting with each other by means of a protocol Π realizing an ideal functionality
F . The environment Z chooses the input of the parties and may interact with the ideal/real adversary during
the execution. At the end of the execution, it has to decide upon and output whether a real or an ideal world
execution has taken place.

We let IDEALF,S,Z(κ, z) denote the random variable describing the output of the environment Z after
interacting with the ideal execution with adversary S, the functionality F , on the security parameter κ and z.
Let IDEALF,S,Z denote the ensemble {IDEALF,S,Z(κ, z)}κ∈N,z∈{0,1}t∗ . Similarly let REALP,A,Z(1κ, z) denote
the random variable describing the output of the environment Z after interacting in a real execution of a
protocol Π with adversary A, the parties P, on the security parameter κ and z. Let REALP,A,Z denote the
ensemble {REALP,A,Z(κ, z)}κ∈N,z∈{0,1}∗ .

Also, the UC framework considers the G-hybrid world, where the computation proceeds as in the “real”
world with the additional assumption that the parties have access to an auxiliary ideal functionality G.
In this model, honest parties do not communicate with the ideal functionality directly, but instead the
adversary delivers all the messages to and from the ideal functionality. We consider the communication
channels to be ideally authenticated, so that the adversary may read but not modify these messages. Unlike
messages exchanged between parties, which can be read by the adversary, the messages exchanged between
parties and the ideal functionality are divided into a public header and a private header . The public header
can be read by the adversary and contains non-sensitive information (such as session identifiers, type of
message, sender and receiver). On the other hand, the private header cannot be read by the adversary and
contains information such as the parties private inputs. We denote the ensemble of environment outputs
that represents the execution of a protocol Π in a G-hybrid model as HYBGΠ,A,Z (defined analogously to
REALπ,A,Z ). UC security is then formally defined as:

Definition 1. For n ∈ N, let F be an n-ary functionality and let Π be an n-party protocol. We say that Π
securely realizes F in the G-hybrid model if for every environment Z, for every PPT real world adversary
A, there exists a PPT ideal world adversary S, corrupting the same parties, such that

IDEALF,S,Z ≈ HYBGΠ,A,Z .

The crucial aspect of universal composability framework is the composition theorem. It works as follows:
denote by π◦G a protocol π that during its execution makes calls to an ideal functionality G. The composition
proof shows that if πf ◦ G implements F and if πg securely implements G, then πf ◦ πg securely implements
F . This provides modularity in construction of protocols and simplifies proofs dramatically. It is also shown
that proving security against a dummy adversary, i.e. one that acts as a communication channel, is sufficient
for proving general security.

B Information Theoretic Tags for Dishonest Majority

In this section we recall the MACCheck protocol by Damg̊ard et al. [8]. The procedure utilizes an ideal
functionality FComm for commitments given in Figure 17. An implementation of FComm in the random oracle
model can be found in the Appendix of Damg̊ard et al.

Theorem 3 (Damg̊ard et al. [8]). The protocol MACCheck is correct, i.e. it accepts if all the public
values bi, and the corresponding MACs are correctly computed. Moreover, it is sound, i.e. it rejects except
with probability 2−κ+1 in case at least one value, or MAC, is not correctly computed.
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Protocol ΠMACCheck

Usage: The parties have a set of JahK, sharings and public values bh, for h = 1, . . . , t, and they wish to check
that ah = bh, i.e. they want to check whether the public values are consistent with the shared MACs held
by the parties.
As input the system has sharings

(
〈∆〉, {bh, 〈ah〉, 〈mah〉}

t
h=1

)
. If the MAC values are correct then we have

that mah = bh ·∆, for all h.
MACCheck({b1, . . . , bt}):

1. Every party Pi samples a seed s(i) and asks FComm to broadcast τ (i) = Comm(s(i)).
2. Every party Pi calls FComm with Open(τ (i)) and all parties obtain s(j) for all j ∈ P.
3. Set s = s(1) + · · ·+ s(n).
4. Parties sample a random element r = PRF(Ft2κ)s ∈ Ft2κ ; note all parties obtain the same vector as they

have agreed on the seed s.
5. Each party computes the public value b =

∑t
h=1 rh · bh.

6. The parties locally compute the sharings 〈ma〉 = r1 · 〈ma1〉+ · · ·+ rt · 〈mat〉 and 〈σ〉 = 〈ma〉 − b · 〈∆〉.
7. Party i asks FComm to broadcast his share τ̄ (i) = Comm(σ(i)).
8. Every party calls FComm with Open(τ̄ (i)), and all parties obtain σ(j) for all j ∈ P.
9. If σ(1)+· · ·+σ(n) 6= 0, the parties output ∅ and abort, otherwise they accept all bh as valid authenticated

bits.

Fig. 16. Protocol ΠMACCheck - For checking MACs on partially opened values

The Functionality FComm

Commit: On input (Comm, v, i, τv) by Pi or the adversary on his behalf (if Pi is corrupt), where v is either in
a specific domain or ⊥, it stores (v, i, τv) on a list and outputs (i, τv) to all parties and adversary.

Open: On input (Open, i, τv) by Pi or the adversary on his behalf (if Pi is corrupt), the ideal functionality
outputs (v, i, τv) to all parties and adversary. If (NoOpen, i, τv) is given by the adversary, and Pi is corrupt,
the functionality outputs (⊥, i, τv) to all parties.

Fig. 17. Ideal Commitments

1. Receive {χ(j)}j∈[N ] from FBatchCheck and pass this to the corrupted parties.
2. Emulating FComm, receive σi from every corrupted party i.
3. Emulating FComm, sample τi and send it to all corrupted parties for every honest party i.
4. Compute ζ =

∑
i∈A σi and send it to FBatchCheck.

5. Receive {σi}i∈B from FBatchCheck.
6. For every honest party i, send σi it to all corrupted parties.

Fig. 18. Simulator for batch checking protocol

C Batch Checking

We use a simple protocol based on FComm and FRand for checking that a batch of additively shared values
are equal to zero, by opening a linear combination of them. This is similar to what was used in the MAC
checking procedure of SPDZ [10,8], but in our protocol we also use it for checking correctness of a batch
of F2k triples. Because of the nature of UC, the FBatchCheck functionality closely matches the protocol, only
performing the check on a random linear combination of the inputs. Later on, we use Lemmas 6 and 7 to
argue that this implies the original inputs were zero, with high probability.

Lemma 4. The protocol ΠBatchCheck in Figure 16 securely implements FBatchCheck in the (FRand,FComm)-
hybrid model.

Proof. We use the simulator in Figure 18. The use of FComm ensures that the corrupted parties cannot chose
{σi}i∈A dependent on {σi}i∈B .
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Protocol Πκ,`
COTe

Initialize: This is independent of inputs and only needs to be done once.
1. PR samples κ pairs of κ-bit seeds, {(kj0,k

j
1)}κj=1.

2. PS samples a random κ-bit string ∆.
3. The parties call Fκ,κOT with inputs {kj0,k

j
1}j∈[κ] and {∆[j]}j∈[κ].

4. PR receives kj∆j for j = 1, . . . , κ.

Extend(PR, PS): On input x1, . . . , x` from PR, do:
1. Expand kj0 and kj1 using a pseudo random generator (PRG) a, letting

tj0 = PRG(kj0) ∈ F`2 and tj1 = PRG(kj1) ∈ F`2, j = 1, . . . , κ.

so PR knows (tj0, t
j
1) and PS knows tj∆j for j = 1, . . . , κ.

2. PR computes
uj = tj0 + tj1 + x ∈ F`2, j = 1, . . . , κ,

where x = (x1, . . . , x`) ∈ F`2 and sends them to PS . Here we are creating the keys correlation that
permits to extend OTs, inverting the role of sender and receiver.

3. PS computes
qj = ∆j · uj + tj∆j ∈ F`2.

Notice that qj = tj0 +∆j · x, for j = 1, . . . , κ.
4. Let qh denote the h-th row of the `×κ bit matrix Q = [q1| . . . |qκ], and similarly let th be the h-th row

of [t10| . . . |tκ0 ]. Note that
qh = th + xh ·∆, h = 1, . . . , `.

5. PR outputs th, PS outputs qh.

a If Extend is being iterated, set tj0, t
j
1 instead to be the next ` bits output from the PRG, to create fresh

randomness.

Fig. 19. Protocol for correlated OT with errors between PR and PS .

Functionality Fκ,`OT

F running with PR and PS and an adversary S proceeds as follows:

- The functionality waits for input (v0,h,v1,h) ∈ Fκ2 × Fκ2 , h ∈ [`], from PS and x1, . . . , x`, with xh ∈ F2, from
PR.

- It outputs vxh,h, h ∈ [`], to PR.

Fig. 20. The OT functionality

D IKNP extension and other OT functionalities

The protocol in Fig. 19 is the passively secure IKNP OT extension, using the standard OT functionality given
in Fig. 20. Note that the receiver can cheat in Step 2 by using different values of x; this is modeled in the
FCOTe functionality (Fig. 2) by allowing PR to input vectors x1, . . . ,x` instead of bits. This means that the
protocol can be shown (and was proven by e.g. Nielsen [17]) to securely implement the FCOTe functionality
with active security, in a Fκ,κOT -hybrid model.

E Other functionalities
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Functionality FF
Rand

Random sample: Upon receiving (rand;u) from all parties, it samples a uniform r ∈ F and outputs (rand, r)
to all parties.

Fig. 21. Functionality FF
Rand

F Security proofs

For some of our proofs we require the following simple, technical lemma on the rank of a random matrix
over F2.

Lemma 5. Let A be a random (k + m) × k matrix over F2, where m > 0. Then A has rank k except with
probability less than 2−m.

Proof. See [19][Lemma 1].

We will also use the following lemmas on sums with random coefficients.

Lemma 6 (Principle of Deferred Decisions). Let {(xi,yi)}i∈[N ], z be random variables in F2k for some
k,N ∈ N. Furthermore, let xi be uniformly distributed and independent of all other variables for all i ∈ [N ].
Then, if there exists j ∈ N such that yj 6= 0,

Pr
[
z =

N∑
i=1

xi · yi
]

= 2−k.

Proof.

z =

N∑
i=1

xi · yi

is equivalent to

xj = y−1
j ·

(
z +

∑
i6=j

xi · yi
)
.

The claim follows because the left hand side is uniformly distributed and independent of the right hand side
by definition.

Lemma 7. Let {yi,j,l}i∈[N1],j∈[N2],l∈[0,N3], z be random variables in F2k for some k,N1, N2, N3 ∈ N. Fur-
thermore, let {xi}i∈[N1], {wj}j∈[N2], {vl}l∈[N3] be uniformly distributed random variables, of which {xi}i∈[N1]

are independent of all other variables as well as mutually. Then, if there exists (i′, j′, l′) ∈ [N1]×[N2]×[0, N3]
such that yi′,j′,l′ 6= 0,

Pr
[
z =

N1∑
i=1

xi ·
N2∑
j=1

wj ·
(
yi,j,0 +

N3∑
l=1

vl · yi,j,l
)]
≤ 3 · 2−k.

Proof. If l′ = 0 and wj′ 6= 0,

z =

N1∑
i=1

xi ·
N2∑
j=1

wj ·
(
yi,j,0 +

N3∑
l=1

vl · yi,j,l
)

is equivalent to

xi′ = w−1
j′ · y−1

i′,j′,0 ·
(
z +

∑
i 6=i′

xi ·
N2∑
j=1

wj ·
(
yi,j,0 +

N3∑
l=1

vl · yi,j,l
)

+
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∑
i 6=i′

xi ·
∑
j 6=j′

wj ·
(
yi,j,0 +

N3∑
l=1

vl · yi,j,l
))

.

Because the left hand side is uniformly random and independent of the right hand side, equality holds with
probability 2−k. If l′ 6= 0, wj′ 6= 0, and vl′ 6= 0, the equation is equivalent to

xi′ = w−1
j′ · v−1

l′ · y−1
i′,j′,l′ ·

(
z +

∑
i6=i′

xi ·
N2∑
j=1

wj ·
(
yi,j,0 +

N3∑
l=1

vl · yi,j,l
)

+
∑
i 6=i′

xi ·
∑
j 6=j′

wj ·
(
yi,j,0 +

N3∑
l=1

vl · yi,j,l
)

+
∑
i 6=i′

xi ·
∑
j 6=j′

wj ·
∑
l 6=l′

vl · yi,j,l
))
.

Again, the equality holds with probability. Finally, the probability that wj′ = 0 and vl′ = 0 is 2−k, respec-
tively. The claim follows using the union bound.

Lemma 8. For N, ` ∈ N, let fi : F`2 → F2k be a F2-linear map for all i ∈ [N ], {xi}i∈[N ] be independent

and uniformly distributed in F2k , and f =
∑N
i=1 xi · fi. Furthermore, let y be independent and uniformly

distributed in F`, and z a random variable independent of y (but not necessarily {xi}i∈[N ]). Then,

Pr
[
z = f(y) ∧ ∃i ∈ [N ],y′ ∈ F`2 : (f(y) = f(y′) ∧ fi(y) 6= fi(y

′))
]
≤ 2−k+1.

In other words, the probability that f(y) = z and f(y) does not uniquely determine fi(y) for all i ∈ [N ] is
at most 2−k+1.

Proof. Let {vj}j∈[h] be a basis of V = (
⋂N
i=1 ker fi)

⊥ ⊂ F`2. Then, fi(y) can be expressed as
∑h
j=1 ajfi(vj)

for all i ∈ [N ]. Let Fh denote the above event, which can be stated as follows:

Fh =
(
z = f(y) ∧ ∃i ∈ [N ],y′ ∈ F`2 : (f(y′) = 0 ∧ fi(y′) 6= 0)

)
for h being the dimension of V . The equivalence is straightforward by replacing y′ with y+y′. We will prove
the statement by induction over h.

For h = 1, y = a1v1 for random a1. fi(y) 6= fi(y
′) can only hold for y′ = (1 − a1)v1. Furthermore,

f(y) = f(y′) is equivalent to 0 = f(y − y′) = f(v1) =
∑N
i=1 fi(v1). Since v1 ∈ V , there exists i ∈ [N ] such

that fi(v1) 6= 0. From Lemma 6, it follows that

Pr
[
∃i ∈ [N ],y′ ∈ F`2 : (f(y) = f(y′) ∧ fi(y) 6= fi(y

′))
]

= 2−k.

This implies that Pr[F1] ≤ 2−k+1.
Let Ehj denote the event that {f(vg)}g∈[h] has F2-dimension j, that is, there exists G ⊂ [h] of size j + 1

such that
∑
g∈[h] f(vg) = 0, but not such G of size j exists. The F2-dimension of a set of size h clearly is in

[0, h], and hence,

Pr[Fh] = Pr
[
Fh ∩

h⋃
j=0

Ehj

]
=

h∑
j=0

Pr[Fh|Ehj ] · Pr[Ehj ].

In the event Ehh , 0 = f(y′) =
∑h
g=1 agf(vg) for some a1, . . . , ah ∈ F2 implies that ag = 0 for all g ∈ [h]

and thus fi(y
′) = fi(

∑h
g=1 agvg) = 0. Therefore, Pr[Fh|Ehh ] = 0. On the other hand, for j 6= h, there

exists a1, . . . , ah ∈ F2 with ag = 1 for some g ∈ [h] and 0 =
∑h
g=1 ahf(vg) = f(

∑h
g=1 ahvg). Since∑h

g=1 agvg ∈ (
⋂N
i=1 ker fi)

>, there exists i ∈ [N ] such that fi(
∑h
g=1 ahvg) 6= 0. It follows that

Pr[Fh|Ehj ] = Pr[z = f(y)|Ehj ] = 2−j
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for j 6= h. The equality follows from the fact that f(y) is uniformly random in a space of F2-dimension j in
the event Ehj and the fact that y is independent of z. Hence,

Pr[Fh] =

h−1∑
j=0

2−j · Pr[Ehj ] (2)

Furthermore, if {f(vg)}g∈[h] has F2-dimension j > 1, {f(vg)}g∈[h−1] clearly has F2-dimension j or j − 1. It
follows that

Pr[Fh] = Pr[Eh0 ] +

h−1∑
j=1

2−j ·
(

Pr[Ehj |Eh−1
j ] · Pr[Eh−1

j ] + Pr[Ehj |Eh−1
j−1 ] · Pr[Eh−1

j−1 ]
)
.

= Pr[Eh0 ] +

h−1∑
j=1

2−j · Pr[Ehj |Eh−1
j ] · Pr[Eh−1

j ]+

h−2∑
j=0

2−j−1 · Pr[Ehj+1|Eh−1
j ] · Pr[Eh−1

j ].

Similarly,

Pr[Ehj+1|Eh−1
j ] = (1− Pr[Ehj |Eh−1

j ]).

Therefore,

Pr[Fh] = Pr[Eh0 ] +

h−1∑
j=1

2−j · Pr[Ehj |Eh−1
j ] · Pr[Eh−1

j ]+

h−2∑
j=0

2−j−1 · (1− Pr[Ehj |Eh−1
j ]) · Pr[Eh−1

j ]

= Pr[Eh0 ] + 2−h+1 · Pr[Ehh−1|Eh−1
h−1 ] · Pr[Eh−1

h−1 ]+

h−2∑
j=1

2−j−1 Pr[Ehj |Eh−1
j ] · Pr[Eh−1

j ]

− 2−1 · Pr[Eh0 |Eh−1
0 ] +

h−2∑
j=0

2−j−1 · Pr[Eh−1
j ]

≤ Pr[Eh0 |Eh−1
0 ] · Pr[Eh−1

0 ] + 2−k · Pr[Eh−1
h−1 ] +

h−2∑
j=1

2−k−1 · Pr[Eh−1
j ]

− 2−1 · Pr[Eh0 |Eh−1
0 ] +

h−2∑
j=1

2−j−1 Pr[Eh−1
j ]

≤ Pr[Eh0 |Eh−1
0 ] · (Pr[Eh−1

0 ]− 2−1) + 2−k−1 · Pr[Eh−1
h−1 ] + 2−k−1+

h−2∑
j=1

2−j−1 Pr[Eh−1
j ]

≤ 2−k +

h−2∑
j=1

2−j−1 Pr[Eh−1
j ].
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In the first inequality, we have used that Pr[Eh0 ] = Pr[Eh0 ∧ Eh−1
0 ] and that Pr[Ehj |Eh−1

j ] ≤ 2−k+j for
all 0 ≤ j ≤ h − 1. The latter can be seen as follows: {f(vg)}g∈[h] having F2-dimension j implies that

f(vh)+
∑
g∈G f(vg) = 0 for any set G ⊂ [h−1] of size j. This is equivalent to

∑N
i=1 xi ·fi(vh+

∑
g∈G vg) = 0.

By Lemma 6, this happens with probability 2−k. Given that {f(vg)}g∈[h−1] has F2-dimension j, there are
2j possibilities of for

∑
g∈G f(vg) over all choices of G ⊂ [h − 1]. Summing up gives the desired inequality.

In the second inequality, we have used that
∑h−1
j=1 Pr[Eh−1

j ] ≤ 1, and in the third inequality, we have used

that Pr[Eh−1
0 ] ≤ 2−k for h > 1.

Finally, consider that

Pr[Fh−1] =

h−2∑
j=1

2−j · Pr[Eh−1
j ]

like in (2). We conclude that

Pr[Fh] ≤ 2−k +

h−2∑
j=1

2−j−1 · Pr[Eh−1
j ]

= 2−k + 2−1 · Pr[Fh−1]

≤ 2−k + 2−1 · 2−k+1

= 2−k+1,

which completes the induction.

Corollary 1. For N1, N2, ` ∈ N, let fi,j : F`2 → F2k be a F2-linear map for all (i, j) ∈ [N1]× [N2], {xi}i∈[N ]

be independent and uniformly distributed in F2k , wj be either non-zero or uniformly distributed in F2k for

all j ∈ [N2], and f =
∑N
i=1 xi ·wj · fi,j. Furthermore, let y be independent and uniformly distributed in F`,

and z a random variable independent of y (but not necessarily of {xi}i∈[N1] or {wj}j∈[N2]). Then,

Pr
[
z = f(y) ∧ ∃i ∈ [N1], j ∈ [N2],y′ ∈ F`2 : (f(y) = f(y′) ∧ fi,j(y) 6= fi,j(y

′))
]
≤ 2−k+1.

In other words, the probability that f(y) = z and f(y) does not uniquely determine fi,j(y) for all (i, j) ∈
[N1]× [N2] is at most 2−k+1.

Proof. Similarly to the previous lemma, we establish that Pr[F1] ≤ 2−k+1 using a simplified version of
Lemma 7. The rest of the proof is identical.

F.1 Amplified Correlated OT – Lemma 1

In the simulator in Figure 22, I describes PR’s bits that the adversary tries to tamper with in the OT.
If I is small enough, the amplification rules out any leakage with overwhelming probability in k. On the
other hand, if |I| is larger than k, the amplified result contains so many errors that the adversary has only
negligible chance of opening all of them correctly.

Proof. It is easy to see that if both parties follow the protocol,

Q′ + T ′ = Dx′Y = Dx′ODy = x′ ⊗ y.

Hence,

Q+ T = M(Q′ + T ′) + δ ⊗ y

= M(x′ ⊗ y) + δ ⊗ y

= Mx′ ⊗ y + δ ⊗ y
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1. Get Y and Q′ from PS by emulating Fk,`
′

OT for `′ = 2k + s.
2. Define y as the majority of rows in Y .
3. Define Y ′ = Y −ODy where is O ∈ F`

′×k
2 is the matrix full of ones.

4. Define I as the set of indices where the i-th row of Y ′ is non-zero.
- If |I| > k:

(a) Input (MultError, Y ′) to Fk,sACOT and receive (M̂, δ̂).

(b) Compute Q = M̂Q′ + δ̂ ⊗ x.
- Otherwise:

(a) Sample M̃
$← Fk×`

′

2 , δ̃
$← Fk2 , and x̃′

$← F`
′

2 .
(b) Compute E = M̃Dx̃′Y

′ and Q = M̃Q′ + δ̃ ⊗ y.
(c) Send (AddError, E) to Fk,sACOT.

Fig. 22. Simulator for amplified leaky correlated OT (corrupted PS)

= (Mx′ +Mx′ + x)⊗ y

= x⊗ y.

The case of PR being corrupted is straightforward. PR can only deviate when sending δ, so we define
x = δ+Mx′ and input it to Fk,sACOT. For a corrupted PS , we use the simulator in Figure 22. In the real world,
we have that

T +Q = M(T ′ +Q′) + δ ⊗ y

= MDx′Y + δ ⊗ y

= M(Dx′(ODy + Y ′)) + δ ⊗ y

= x⊗ y +MDx′Y
′.

We have applied that MDx′ODy + δ ⊗ y = x⊗ y. Hence, we have to prove that E added by Fk,sACOT to the
output is statistically close to MDx′Y

′ added in the real protocol.

- If |I| ≤ k, E = M̃Dx̃′Y
′. While this looks similar to the real world, note that δ = Mx′ in the real world,

while δ̃ is uniformly random. Define x′I as x′ with all indices not in I set to zero and x′Ī = x′ − x′I .
Furthermore, define M |Ī as M restricted to column indices in I. Clearly, Mx′ = Mx′I + Mx′Ī and
Dx′Y

′ = Dx′I
Y ′ by definition. Then, for uniformly random x′Ī , Mx′Ī is uniformly distributed if M |Ī

has full rank. By Lemma 5, this happens with probability at least 1 − 2−s because M |Ī has at least
k+ s columns. If Mx′Ī is uniformly random (even given M), however, Mx′ is independent of Dx′Y

′ and
MDx′Y

′.
It is easy to see that (M, δ) has the same distribution as (M̃, δ̃). M and M̃ are sampled uniformly at
random and so is δ̃. Since δ = Mx′ for uniformly random x′, δ is uniformly distributed if M has full
rank, which trivially holds if M |Ī does so. Hence, the statistical distance between (MDx′Y

′,M, δ) and
(M̃Dx̃′Y

′, M̃ , δ̃) is at most 2−s.
- Otherwise, (M̂Dx̂′Y

′, M̂ , δ̂) and (MDx′Y
′,M, δ) are computed in the exact same way and thus perfectly

indistinguishable.

We conclude that the statistical distance between simulation and real execution is at most 2−s. ut

F.2 Authentication – Lemma 2

Proof. We prove the lemma for authenticating elements of F2 over the extension field F2κ , i.e. M = κ. The
generalization to higher order fields and authenticating extension field elements is straightforward. Let S be
a simulator that has access to FJ·K, we show that no environment Z can distinguish between an interaction
with S and FJ·K and an interaction with the real adversary A and real parties. The simulator invokes an
internal copy of A and sets dummy parties πi, i ∈ P. Let A be the set of corrupt parties, it proceeds as
follows:

30



1. Simulating the Initialize phase: S samples random shares {∆(k)}k 6∈A for honest πk and receives {∆(j)}j∈A
internally from A. Then it runs an internal copy of FCOTe.Extend initializing the inputs of the honest
(dummy) parties at random, with the inputs of the corrupt parties specified by A as before. After this it
performs the local computation as specified in the protocol. If it receives Abort, then it forwards Abort
to the functionality, and it halts. Otherwise inputs (Authenticate) to the functionality, together with the
set A of corrupt parties and all the extracted shares of Pi, i ∈ A.

2. Simulating the n-Share phase: S runs an internal copy of FCOTe.Extend as specified before. If Pi inputs

vectors instead of bits, the simulator sends (Error, e
(k)
h ) to FJ·K and sets the flag Errork to true. It outputs

what corrupts πi outputs and it halts.

Now we argue indistinguishability.
If during the internal execution of the protocol an abort occurred, then an abort occurs in both the ideal

and the real world, and the simulation in this case is perfect.
For the sake of simplicity, we separately consider the two cases (¬Abort)∧(¬Errork) and (¬Abort)∧(Errork).

In the first situation, during the Initialize phase, we could have a faulty representation mh = xh · ∆ +∑
k 6∈A x

(k)
h · δ(i). We must examine the probability that the ΠMACCheck passes when a corrupt party Pi has

submitted different ∆(i,j1), ∆(i,j2) for some j1 6= j2. Assuming δ(i) 6= 0 for at least one i, then for every h,

the adversary must adjust their shares m
(i)
h so that

∑n
i=1 m

(i)
h = xh ·∆, for the MAC check to pass. This

is easily seen to be equivalent to guessing
∑
i/∈A x

(i)
h for h = 1, . . . , κ, which happens with probability 2−κ,

since x
(i)
h are uniformly random bits. So if the MAC check passes, we are guaranteed that corrupt Pi used

the same MAC key ∆(i) for each FCOTe instance, except with negligible probability.
We need to examine the n-Share phase. Since Errork is not true, then parties run FCOTe inputting bits, and
indistinguishability of the outputs follows from correctness and privacy of FCOTe.

Let us consider the second case. As before, since there is no interaction among parties, we only need to

show outputs indistinguishability. In the real execution we could have that some shares {m(k)
h } are shifted

by the value e
(i,k)
h ∗∆(k), that is exactly what the simulator tells to output to the functionality. Note that

the flag Errork can be set to true also during the Initialize phase, when parties run n-Share on dummy input

x1, . . . , xκ. Now imagine that mh = xh ·∆ +
∑
k 6∈A e

(i,k)
h ∗∆(k), let S

(i,k)
h be the set of indices where e

(i,k)
h

is 1 and set S = ∪i∈AS(i,k)
h . In the ideal world, the simulator can query the functionality with a description

of an affine space S ⊂ Fκ2 . In both the executions the adversary may guess |S| bit of ∆(k) with the same
probability 2−|S|.

ut

F.3 Generalized Bucket Sacrificing for F2 Triples

In this section we generalize the bucket-based sacrificing step by Larraia et al. [16], abstracting away the key
properties that are required. This means the procedure could be reused for other purposes, such as checking
different kinds of triples or preprocessing data. We also obtain a tighter proof than Larraia et al., allowing
the bucket size to be just 3 when checking batches of 1 million triples, whereas previously this required
bucket size 4.

Definition 2. We say that a data type is (R, p)-checkable if:

- Values of the data type consist of a fixed-length list of secret shared and MACed values.
- There is a predicate R that is efficiently computable if the data is revealed.
- There is an algorithm CheckR and associated value p that takes as input two items a, b and outputs either
Good or Bad, such that:

- If R(a) = 1 and R(b) = 1 then CheckR(a, b) = Good.
- If R(a) = 0 and R(b) = 0 then Pr[CheckR(a, b) = Good] ≤ p.
- If R(a) = 0, R(b) = 1 or R(a) = 1, R(b) = 0 then CheckR(a, b) = Bad

31



Subprotocol ΠCheckTriples

The protocol is parametrized by the number ` of triples generated, the size T and T ′ of buckets, and a positive
integer c which is used to control how much cut-and-choose we perform.

Input: Let N = T (T ′`) + c be the number of inputs denoted by {aTi}i∈[N ], where aTi = {JxiK, JyiK, JziK}
Phase-I Cut-and-choose:

1. Using FRand, the parties sample a random vector v ∈ FN2 with c of non-zero entries.
2. Let J be the set of indices j such that vj 6= 0 and ∀j ∈ J . The parties partially open {aTj}j∈J and
∀j ∈ J , verify the predicate R(aTj). If R = 0 happens, then Abort.

Phase-II Bucket-Sacrifice: After Phase I we are left with T (T ′`) aTs. Set t = T ′`.
1. Permute each of the unopened items according to a random permutation π on Tt indices, again using
FRand. Then renumber the permuted unopened sets of values such that j = 1, . . . , T t and, for i = 1, . . . , t
create the i’th bucket as {aTj}iTj=iT−T+1.

2. Parties compute a BucketHead(i) for each i = 1, . . . , t, i.e. return the first (lexicographically) element in
the i’th bucket.

3. For i = 1, . . . , t, check the correctness of BucketHead(i) against every other item in the bucket. That is,
for j = iT − T + 2, . . . , iT :

- Run CheckR(BucketHead(i), aTj)
- If CheckR outputs Bad, then Abort.

Phase-III Combine: After Phase I and II, there are t = T ′` authenticated triples.
1. Repeat Step 1. of Phase II to permute the remaining aTi and split them into ` buckets of size T ′.
2. Recursively combine the triples in each bucket as follows:

a) Consider the first two elements in the bucket, say aTi and aTj
b) Parties open 〈yi + yj〉
c) Parties set: JxkK = Jxi + xjK, JykK = JyiK and JzkK = Jzi + zjK + (yi + yj)JxjK.
d) Then repeat Steps b) and c) with aTk and the next element in the bucket.

Phase-IV Mac Check :
1. The parties execute the protocol ΠMACCheck on all partially opened values from Phase I, II and III.
2. If ΠMACCheck does not abort then output the resulting combined triples bucket aTk for k = 1, . . . , ` as

correct authenticated triples.

Fig. 23. Checking triples

- If CheckR(a, b) = Good and b is discarded then no information about the secret shared data a is
revealed.

Here we want to verify that an authenticated triple, aT = {JxK, JyK, JzK}, where x,y, z ∈ F, verifies the
multiplicative relation. This means that R is true, i.e. R(aT) = 1, if and only if the opened values x,y, z
satisfy x · y = z. Note that if p is negligible in the statistical security parameter then we can check the
relation R by simple pairwise sacrificing, that here we denote by CheckR(·, ·), as with the main methods of
Dam̊ard et al. [10,8]. If p is non-negligible, we do the bucket-based sacrifice given in Figure 23.

Lemma 9. Let t = `T ′. For an (R, p)-checkable data type, the sacrifice procedure, e.g. (Phase I and II in
ΠCheckTriples), with c = 3 log2 t and T ≥ s

log2 t−log2 p
+ 1 outputs t values satisfying R with error probability

2−s.

Proof. Correctness in the semi-honest model is straightforward. For active security, first note that by the
properties of the CheckR procedure, the only way an incorrect tuple evades detection is if it is not opened
in Phase I and then if all of the tuples in its bucket in Phase II are incorrect, in which case the test passes
with probability pT−1.

Let m > 0 be the number of initial tuples that do not satisfy R. If m > T · t then the check in Phase I will
never succeed, and similarly if m mod T 6= 0 then the checks in Phase II will never succeed. Furthermore,
note that for the check to pass m must be a multiple of k, otherwise there will always be at least one bucket
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with both correct and incorrect triples. So let m = k · T for some k ∈ {1, . . . , t}. As in Larraia et al. [16],
let E1 denote the event that the cut-and-choose step (Phase I) passes, and E2 the event that the sacrificing
step (phase II) also passes. The cut-and-choose step passes only if none of the c triples chosen to be checked
are incorrect, and since m out of all the N triples are incorrect, we have:

Pr[E1] =
N −m
N

· N −m− 1

N − 1
. . .

N −m− c+ 1

N − c+ 1
.

It is easy to see that:

Pr[E2] = Pr[E1] · pk(T−1) ·
(
t

k

)
·
(
tT

kT

)−1

.

Note that the quantities Pr[E1] and pk(T−1) are less than one and strictly decrease as k increases. Let

ρ(k) :=
(
t
k

)
·
(
tT
kT

)−1
, the right-hand term in the above expression, and notice that this is symmetric around

k = t/2, i.e. ρ(k) = ρ(t− k), and is minimized at k = t/2. Therefore for k ∈ {1, . . . , t}, Pr[E2] is maximized
either at k = 1 (when ρ(k) = ρ(1) = ρ(t− 1)) or k = t (when ρ(k) = ρ(0)). We now examine the choices for
c that lead to Pr[E2] being maximal at k = 1. If this is the case, we have:

Pr[E2]|k=1 ≥ Pr[E2]|k=t

⇔ N − T
N

· · · N − T − c+ 1

N − c+ 1
· pT−1 · t ·

(
Tt

T

)−1

≥ N − tT
N

· · · N − tT − c+ 1

N − c+ 1
· pt(T−1)

⇔ (N − T ) · · · (N − T − c+ 1) · t · T !(T (t− 1))!

(Tt)!
≥ (N − tT ) · · · (N − tT − c+ 1) · p(t−1)(T−1)

⇔ (N − T ) · · · (N − c+ 1) · t · T ! ≥ c! · p(t−1)(T−1)

Recall that p ≤ 1, and notice that if c ≥ T and N − c+ 1 ≥ T + 1 then the above equation is always true,
so we now impose these constraints on c and continue to inspect Pr[E2], assuming k = 1.

Pr[E2] =
N − T
N

· · · N − T − c+ 1

N − c+ 1
· t ·
(
Tt

T

)−1

· pT−1

≤ t ·
(
Tt

T

)−1

· pT−1

≤ t1−T · pT−1

= t1−T · pT−1

=

(
t

p

)1−T

= 2−(T−1)(log2 t−log2 p)

so choosing T ≥ s
log2 t−log2 p

+ 1 ensures that Pr[T2] ≤ 2−s. Since the last inequality above is independent of

the cut-and-choose parameter c, it suffices to set c = T , meaning the amount of cut-and-choose performed
is essentially negligible. ut

The following Lemma shows that the combining step in the triple checking protocol suffices to remove
leakage from our F2 triples.

Lemma 10. Phase III in ΠCheckTriples outputs leaky triples with negligible probability ≤ 2−s if T ′ > s−1
log2(`) +1.
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# triples s T , T ′

1024 40 5
16384 40 4
1048576 40 3
1024 64 8
16384 64 6
1048576 64 5

Table 2. Bucket sizes for F2 triple checking and combining with statistical security parameter s.

Proof. Straightforward from Theorem 8 by Nielsen et al. [18]. ut

For the case of bit triples, the bucket checking procedure has detection probability p = 1 when a bucket
contains both good and bad triples. This means we have the following requirements:

F.4 Bit Triples – Theorem 2

Let A be a real world adversary corrupting up to n− 1 parties, we describe an ideal world adversary S for
A. S has access to FTriples, and we show that no environment Z can distinguish between its interaction with
S and FTriples and its interaction with the real adversary A and real parties. The ideal world adversary S
internally runs a copy of A setting dummy parties π1, . . . , πn, and then it simulates for them a real execution
of ΠBitTriples. The communication of Z with the adversary A is handled as follows: every input value received
by the simulator from Z is written on A’s input tape. Likewise, every output value written by A on its
output tape is copied to the simulator’s output tape (to be read by the environment Z).

S simulates an internal copy of ΠBitTriples as follows.

1. Simulating the Initialize phase: It samples random shares {∆̂(k)}k 6∈A for honest πk and receives {∆̂(j)}j∈A
internally from A. Then it emulates FCOTe and FJ·K.Init to check the consistency of ∆̂ and ∆, with the
input of the honest (dummy) parties sampled at random, and with the input of corrupt parties specified
by A. Then it proceeds as in the protocol performing local computations. If it receives Abort, then it
forwards Abort to the functionality, and it halts. Otherwise, it inputs Triples, together with the set A of
corrupt parties and all the extracted shares for Pi, i ∈ A.

2. Simulating the COTe phase: The simulator runs internal copies of F2κ,`
COTe. It sends {t̂(j,k)

h , q̂
(j,k)
h }j∈A to A.

If A inputs vectors instead of bits to some πk, k 6∈ A, then it sets the flag MacError to true and computes

e =
∑
k 6∈A e

(i,k)
h ·∆(k), for some i ∈ A. It sends (MacError, e) to the functionality.

3. Simulating the Triple generation phase: For j ∈ A, S receives s
(j,i)
h from A and sets y

(j)
h = s

(j,i)
h +v

(j,i)
0,h +

v
(j,i)
1,h . S internally sends random {s(k,i)

h }k 6∈A to A acting as FAT. If A gives any inconsistent y
(j)
h for

j ∈ A, or an inconsistent n
(i,j)
h , i ∈ A, S sets flag badTriples to true.

4. Simulating the Authentication phase: If during the pairwise calls of FCOTe, A misbehaves in such a
way that dummy parties {π1, . . . , πn} hold incorrect authenticated bits, then the simulator sets the
flag badAuth to true; if A inputs vectors instead of bits set the flag MacError to true and compute the

subset S
(k)
h ⊆ {1, . . . , κ} and e =

∑
k 6∈A e

(i,k)
h · ∆(k), for some i ∈ A. Hence it sends (MacError, e) to

the functionality. Also, if A authenticates something different to what it was generated in the Triple
generation step, then S sets flag badTriples to true.

5. Simulating the Check triples phase: In the MacCheck step the simulator uses the dummy input
{∆(k)}k 6∈A to run ΠMACCheck with A.

Now the simulator checks what happened during the internal execution of the protocol.

34



If during this execution an abort occurred, the simulator sends Abort to the functionality; both the real
and the ideal process abort and the simulation is perfect.

Otherwise, it sends {∆(j)}j∈A and Triples to the functionality together with all the extracted corrupted

shares. Notice that the simulator only sends the last κ components ∆(j) of ∆̂(j) to the functionality.
Now, if the flag badAuth is true and no Abort occurred, the simulator acknowledges itself to the environment.
In this case Z always distinguishes between the two executions of the protocol: we have corrected authenti-
cated triples in the ideal world and bad authenticated values in the real execution. By Theorem 3 we know
that this happens with negligible probability 2−κ+1.

Consider the case badTriples true and again no Abort occurred. This happens either if some y
(j)
h are

inconsistent, for j ∈ A, or if corrupted parties authenticate something different to what it was generated
in the triple generation phase. In both cases, in a real execution of the protocol, this will produce a faulty

representation of type zh = xh · yh + x
(k)
h , for some k ∈ A. However if no abort occurred, from Lemma 9

and Lemma 10, we know that the authenticated triples that the protocol outputs are correct (i.e. satisfy
the multiplicative relation), and that the privacy on xh is guaranteed with overwhelming probability. On

the other hand, if the adversary produces inconsistent n
(i,j)
h , for some i ∈ A, then the triple will pass

CheckR if and only if s
(j,i)
h = 0 in both executions, and the privacy is again guaranteed as s

(j,i)
h is already

part of the public transcript. Both the executions output random authenticated triples and hence they are
indistinguishable.

Consider now the case when MacError is true. This means that, for some j ∈ A and k 6∈ A, we have

q
(k,j)
h = t

(j,k)
h +xh ·∆+e

(j,k)
h ∗∆(k). This faulty representation could happen both before the triples generation

step and during the authentication. First we argue indistinguishability of the transcripts: the values sk,jh are

identically distributed in both the executions, as the value v
(k,j)
0 +v

(k,j)
1 , where v

(k,j)
0 = H(q

(k,j)
h +e

(j,k)
h ∗∆(k))

and v
(k,j)
1 = H(q

(k,j)
h + e

(j,k)
h ∗∆(k) +∆(k)), is uniformly random and independent of w

(i,j)
h , and these values

perfectly mask the value y
(j)
h . If the protocol outputs the triple, we know that it is correct and that privacy

on xh is guaranteed, except with negligible probability. However we could have a leaky MAC representation:
the simulator can query the functionality with a description of an affine subspace S ⊂ (Fκ2 )n, and in both

the executions, and the adversary might guess c = |S(k)
h | bits of the global key with probability 2−c .

Finally, if no corruptions occur, we show that Z does not distinguish between the real and the ideal
process. In both processes Z can see the masks s(j,i) leaked by FAT: they look perfectly random and in-

dependent of Z’s view, as the values H(q
(j,i)
h ) and H(q

(j,i)
h + ∆(j)) (with H modeled as a random oracle)

used to pair y(j) are uniformly random, even if we allow Z to adaptively make additional calls to H. All
the partial openings in both the simulated and the real run of the protocol reveal uniform values. More
precisely, all opened values are a combination of output data and sacrificed data, with the latter that is
not part of the final output, and therefore by no means Z can reconstruct the set of opened values using
its view. Finally note that we are using the same call to FCOTe “twice”, namely to generate triples and to
authenticate xh. However the zh’s share are obtained by using only the first κ components of the ` outputs
of F2κ,`

COTe, and these values, that are hidden from Z’s view, are then randomized again through random oracle
queries to break the correlation. To authenticate xh we then use the second block of κ components, which
are hence independent of that used in the previous step. The resulting zh’share are not bind to the values
produced in the authentication phase, all the outputs are identically distributed, and all the ideal transcripts
are consistent with what FTriples outputs. ut

F.5 F2k Multiplication

In this section we introduce a new functionality FGFMult, that will be used in the next two sections to prove
the security of ΠTripleCheck. Notice that ΠGFMult essentially consists of a call to FACOT plus an additional step
at the end.

Notation. For `′, k ∈ N, let M be a matrix in F k×`
′

2 , Y ′ be a matrix in F`
′×k

2 , and I ⊂ [`′]. For {mi}i∈[`′]

denoting the columns of M , let MI ∈ Fk×|I|2 and MI ∈ Fk×(`′−|I|)
2 be the matrices consisting of the columns
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Functionality Fk,sGFMult

It involves two parties PS and PR, and an ideal adversary S. The procedure can be called repeatedly. Let
`′ = 2k + s.

- Upon receiving x ∈ F2k from PR and y ∈ F2k from PS , the functionality does the following:
Honest parties

- The functionality samples a random element q ∈ F2k . Then it computes t = q + x · y, and it outputs q
to PS and t to PR.

Corrupt parties
- If PS is corrupted:

1. The functionality waits for S to input q ∈ F2k and one of the following:

- If S inputs (RandomError, Y, f̄) such that Y ∈ F`
′×k

2 and |I| > k for I = {i ∈ [`′] | yi 6= 0}, the

functionality samples M̄ = MI ∈ Fk×|I|2 such that M̂ = M �I Y has rank k and x̂
$← F|I|2 , sets

f = M̂ x̂ + f̄ and δ = MI x̂ + x, and sends (M̄, δ) to S.
- S inputs (AddError, f).

2. It computes t = q + x · y + f , and sends t to PR, q to PS .
- If PR is corrupted, the functionality waits for S to input x. Then it samples q ∈ F2k and computes

u = q + x · y, outputs u to S, waits for S to input t, and outputs t to PR and q to PS .

Fig. 24. Fk,sGFMult – Galois field multiplication

1. Emulating Fk,sACOT, get y from PS .

2. Similarly, wait for Z to input Q ∈ Fk×k2 and (MultError, Y ′) for Y ′ ∈ F`
′×k

2 .
3. Let {y′i}i∈I denote the rows of Y ′ and define I = {i ∈ [`′] | y′i 6= 0}.
4. Sample M

$← Fk×`
′

2 .

- If MI has rank k, sample δ
$← F2k and f

$← im(M �I Y ′), and input (AddError, f) to Fk,sGFMult.

- Otherwise, if M �I Y ′ has rank k, sample x′I
$← F|I|2 , input (RandomError, Y ′,MIx

′
I) to Fk,sGFMult, receive

(M̂, δ) from Fk,sGFMult, and replace MI by M̂ .
- Otherwise, abort.

5. Send (M, δ) to Z.
6. Compute q = eQe> and send q and Y ′ to FkGFMult.

Fig. 25. Simulator for F2k multiplication (corrupted PS)

of {mi}i∈I and {mi}i/∈I , respectively. Furthermore, (M �I Y ′) ∈ Fk×|I|2 be the matrix consisting of the
columns {y′i ·mi}i∈I .

Lemma 11. The protocol Πk
GFMult, described in Figure 9, implements Fκ,sGFMult (Fig. 24) in the Fk,sACOT-hybrid

model with statistical security s.

Proof. If both parties follow the protocol,

t + q = e(T +Q)e> = e(x⊗ y)e> = (ex)⊗ (ey) = x · y.

Note that, for x ∈ Fk2 , ex denotes the representation of x in F2k , and hence, the tensor product collapses to
the field product in F2k in the last equality.

The case of PR being corrupt is trivial. For corrupt PS we use the simulator in Figure 25. On input

(MultError, Y ′) from Z to Fk,sACOT in the real world, Fk,sACOT will sample M ∈ Fk×`
′

2 and x′ ∈ F`′2 , compute
δ = Mx′ + x, and output (M, δ) to Z. It is easy to see that

t + q = x · y + eMDx′Y
′e>

36



for t and q output by PR and PS in ΠGFMult. If mi ∈ F2k and y′i ∈ F2k denote the columns of M and rows
of Y ′, respectively, it holds that

eM = (m1, . . . ,m`′) and

Y ′e> = (y′1, . . . ,y
′
`′)
>.

It follows that

eMDx′Y
′e> =

`′∑
i=1

x′i ·mi · y′i

=
∑
i∈I

x′i ·mi · y′i

= (M �I Y ′)x′I
for x′I consisting of the elements of x′ with index in I.

By definition, MI has the same distribution in both worlds. The same holds for MI even though it is
generated twice if M �I Y ′ has rank k. The second generation is executed to match this condition. We now
consider the same distinction for real-world M as in the simulator.

- If MI has rank k, MIx
′
I is distributed uniformly in F2k for uniformly random x′I and thus is

δ = Mx′ + x = MIx
′
I +MIx

′
I + x.

f
$← im(M �I Y ′) and eMDx′Y

′e> = (M �I Y ′)x′I are trivially distributed identically because x′I and
x′I are independent.

- In the case of M �I Y ′ having rank k, x̂ is distributed identically to x′I , and hence f = (M �I Y ′)v̂x is
so to (M �I Y ′)xI and so is MI x̂ +MIx

′
I + x to Mx′ + x.

- Neither MI nor M�I Y ′ having rank k happens with probability at most 2−s. According to Lemma 5, it

happens with probability 2−(`′−|I|−k) for MI and 2−(|I|−k) for either MI and M �I Y ′. The latter holds
because mi is sampled uniformly and yi 6= 0 for all i ∈ I, and therefore, mi · yi is distributed uniformly
for all i ∈ I. Since MI and (MI ,M �I Y ′) are distributed independently, the probability of neither MI
nor both MI and M �I Y ′ having full rank is 2−(`′−|I|−k) · 2−(|I|−k) = 2−(`′−2k) = 2−s using the union
bound.

We conclude that the statistical distance between real and ideal execution is 2−s.

Lemma 12. Let M
$← Fk×`

′

2 consisting of columns {mi}`
′

i=1, Y ′ ∈ F`
′×k

2 consisting of rows {yi}`
′

i=1, I =
{i ∈ [`′] | y′i 6= 0} and M �I Y ′ as above. Furthermore, let f and f ′ denote the linear map defined by
MI and (M �I Y ′), respectively. Then, if not all non-zero rows of Y ′ are the same, the probability that
kerMI ⊂ ker(M �I Y ′) is at most 2−k.

Proof. For all i ∈ I, let Yi ∈ Fk×k2 denote the matrix induced by the multiplication with y′i in F2k . kerMI ⊂
ker(M �I Y ′) is equivalent to (M �I Y ′) +NMI = 0 for some matrix N ∈ Fk×k2 , which means that, for all

x ∈ F|I|2 , ∑
i∈I

xi · (Yi +N)mi = 0,

which is equivalent to
(Yi +N)mi = 0

for all i ∈ I. By assumption, there exist j, j′ ∈ I such that Yj 6= Yj′ . Yj+Yj′ is invertible because it represents
the multiplication with y′j + y′j′ and thus has rank k. Let Yj +N have rank k′. It follows that Yj′ +N has
rank k−k′ because (Yj +N) + (Yj′ +N) = Yj +Y ′j , which has rank k. We conclude that the probability that

both (Yj +N)mj = 0 and (Yj′ +N)mj′ = 0 is 2−k
′

and 2−k+k′ , respectively, and hence, the probability of
both events is 2−k.
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Initialize:
1. Emulating FJ·K, receive {∆(i)}i∈A from Z.

2. Input {∆(i)}i∈A to FUncheckedTriples.
Triple generation:

1. Emulate all instances of Fk,sGFMult between honest and corrupted parties.
- For every corrupt party i ∈ A and every honest party j ∈ B, define a(i,j) and b(i,j) to be the inputs

of party Pi to the Fk,sGFMult instances with party Pj .
- For every i ∈ A, define a(i) = a(i,ι̂) and b(i) = b(i,ι̂).
- For every j ∈ B′, define f

(j)
a =

∑
i∈A(a(i,j) − a(i)) and f

(j)
b =

∑
i∈A(b(i,j) − b(i)).

- If the adversary inputs (RandomError, Y (i,j), f̄ (i,j)) to any instance of Fk,sGFMult, define C as the set of
all such instances.

- For all (i, j) ∈ B ×A \ C, A inputs (AddError, f̄ (i,j)) to the respective Fk,sGFMult instance.
- Compute f̄ =

∑
(i,j)∈B×A\C f (i,j).

- For all i ∈ B and j ∈ A, in the instance with party i as PS and party j as PR, sample U (i,j) $← Fk×k2

and output it to Z. Wait for A to input T (i,j) ∈ Fk×k2 . Set f̄ ← f̄ +
∑
i∈B,j∈A(t(i,j) + u(i,j)).

2. Emulate FF
2k

J·K .

- If Z inputs (Error, {e(i)1,h, e
(i)
2,h, e

(i)
3,h}k∈B,h∈[k]), define ϕ

(i)
a,h = e

(i)
1,h, ϕ

(i)
b,h = e

(i)
2,h, and ϕ

(i)
c,h = e

(i)
3,h for all

i ∈ B, h ∈ [k].

3. Wait for Z to input {m(i)
a ,m

(i)
b ,m

(i)
c }i∈A.

4. Add the cumulative errors in the outputs of corrupted parties to f̄ , ψa, ψb, ψc.
5. Input {f (i)a , f

(i)
b }i∈B′ , {ϕ(i)

a,h, ϕ
(i)
b,h, ϕ

(i)
c,h}i∈B,h∈[k], f̄ , ψa, ψb, ψc to FUncheckedTriples, C and

{(Y (i,j), f̄ (i,j))}(i,j)∈C to the functionality.

6. Receive {(M̄ (i,j), δ(i,j))}(i,j)∈C and forward (M̄ (i,j), δ(i,j)) to Z emulating Fk,sGFMult between party i and
j for all (i, j) ∈ C.

Fig. 26. Simulator for FUncheckedTriples

F.6 SPDZ Triple Generation – Lemma 3

Proof. If all parties behave honestly in ΠUncheckedTriples in Figure 10, it holds that∑
i∈P

c(i) =
∑
i∈P

a(i) · b(i) +
(∑
j 6=i

a(i) · b(j)
)

=
∑
i∈P

∑
j∈P

a(i) · b(j)

= a · b.

For the case of corrupted parties, we use the simulator in Figure 26. Most aspects of the indistinguisha-
bility can be seen with a straightforward computation that merely involves summing up the outputs of all
instance of Fk,sGFMult.

F.7 SPDZ Triple Checking – Theorem 1

Proof. We construct a simulator S for the ideal functionality FTriples such that no environment Z distinguishes
with a non-negligible probability whether it is interacting with the A in the real setting or with S in the
ideal setting.

1. Simulating the Initialize phase: Emulating FUncheckedTriples, S receives {∆(i)}i∈A internally from A and it
inputs {∆(i)}i∈A to FTriples.

2. Simulating the Triple generation phase:
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(a) It emulates FUncheckedTriples with input of corrupt parties, {a(i)
j ,b

(i)
j }i∈A,j∈[2N ], specified by A, to-

gether with {f (i)
aj , f

(i)
bj
}i∈B′ , {ϕ(i)

aj ,h
, ϕ

(i)
bj ,h

, ϕ
(i)
cj ,h
}i∈B,h∈[k], f̄j , ψaj , ψbj , ψcj ∈ F2k , Cj ⊂ B × A, and

{Y (i,i′)
j }(i,i′)∈Cj for all j ∈ [2N ].

(b) Let I(i,i′)
j = {h ∈ [`′] | yh 6= 0} as in Fk,sGFMult. The functionality samples δ

(i,i′)
j

$← F2k and M̄
(i,i′)
j

such that M̄
(i,i′)
j �I(i,i′j

Y
(i,i′)
j for every (i, i′) ∈ C, and sends {δ(i,i′)

j }(i,i′)∈Cj to A.

(c) Then, it provides {c(i)
j ,m

(i)
aj ,m

(i)
bj
,m

(i)
cj }i∈A,j∈[2N ]

$← F2k to A, and it inputs {(a(i)
j ,b

(i)
j , c

(i)
j ,m

(i)
aj ,

m
(i)
bj
,m

(i)
cj )}i∈A,j∈[N ] to FTriples.

(d) Emulating FRand, it samples t, t′, t′′
$← F2k , and forwards these values to all corrupted parties.

(e) For every i ∈ B and j ∈ [N ], S samples r
(i)
j , s

(i)
j

$← F2k , and computes

rj =
∑
i∈B

r
(i)
j +

∑
i′∈A

(t · b(i′)
j + t′ · b(i′)

j+N ), sj =
∑
i∈B

s
(i)
j +

∑
i′∈A

(t′ · a(i′)
j + t′′ · a(i′)

j+N ).

(f) S emulates the communication channels: it sends {r(i,i′)
j , s

(i,i′)
j }j∈[N ] from every party i ∈ B to every

party i′ ∈ A; and, in the same way, for every j ∈ [N ], it receives r
(i′,i)
j and s

(i′,i)
j sent from every

party i′ ∈ A to every party i ∈ B.

(g) For every j ∈ [N ] and i ∈ B, compute f
(i)
rj =

∑
i′∈A(r

(i′,i)
j + r

(i)
j ) and f

(i)
sj =

∑
i′∈A(s

(i′,i)
j + s

(i)
j ).

(h) S emulates FBatchCheck: it computes {χrj}j∈[N ] and {χsj}j∈[N ], and it sends them to A. Then it
receives ζr and ζs. Hence, for every j ∈ [N ], it computes

ϕ
(i)
rj ,h

= t · ϕ(i)
bj ,h

+ t′ · ϕ(i)
bj+N ,h

, ϕ
(i)
sj ,h

= t′ · ϕ(i)
aj ,h

+ t′′ · ϕ(i)
aj+N ,h

,

for every i ∈ B, h ∈ [k], as well as

ψrj = t · ψbj + t′ · ψbj+N , ψsj = t′ · ψaj + t′′ · ψaj+N

ξrj =
∑
i∈A

((t · bj + t′ · bj+N ) ·∆(i) + t ·m(i)
bj

+ t′ ·m(i)
bj+N

)

and

ξsj =
∑
i∈A

((t′ · aj + t′′ · aj+N ) ·∆(i) + t′ ·m(i)
aj + t′′ ·m(i)

aj+N ).

The simulator solves∑
j∈[N ]

χrj ·
( ∑
h∈[k],i∈B

∆
(i)
h ·Xh−1 · (f (i)

rj + ϕ
(i)
rj ,h

) + ψrj + ξrj

)
= ζr (3)

∑
j∈[N ]

χsj ·
( ∑
h∈[k],i∈B

∆
(i)
h ·Xh−1 · (f (i)

rj + ϕ
(i)
sj ,h

) + ψsj + ξsj

)
= ζs (4)

for bits {∆(i)
h }i∈B,h∈[k]. If such a solution exists, it queries FTriples with the solution space, otherwise

it sends Abort to FTriples. For every j ∈ [N ], S computes∑
i∈B,h∈[k]

∆
(i)
h ·Xh−1 · ϕ(i)

aj ,h
+ ϕaj ,

∑
i∈B,h∈[k]

∆
(i)
h ·Xh−1 · ϕ(i)

bj ,h
+ ϕbj

(see below for details), and inputs them to FTriples with MacError.
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(i) S emulates FBatchCheck: it computes {χdj}j∈[N ] and it outputs it to A. Then it receives ζd. For every
j ∈ [N ], it computes

ϕ
(i)
dj ,h

= t · ϕ(i)
cj + t′′ · ϕ(i)

cj+N + (rj + f (i)
rj ) · (ϕ(i)

aj ,h
+ ψaj ) + (sj + f (i)

sj ) · (ϕ(i)
bj+N

+ ψbj+N ),

for every i ∈ B, h ∈ [k], and

ψdj = t · ψcj + t′′ · ψcj+N + rj · ψaj + sj · ψbj+N

ξdj =
∑
i∈A

t ·m(i)
cj + t′′ ·m(i)

cj+N + rj ·m(i)
aj + sj ·m(i)

bj+N
.

For every j ∈ [N ], S solves∑
j∈[N ]

χdj ·
( ∑
h∈[k],i∈B

∆
(i)
h ·Xh−1 · ϕ(i)

dj ,h
+ ψdj + ξdj

)
= ζd

for bits {∆(i)
h }i∈B,h∈[k]. If such a solution exists, S queries FTriples with the solution space, otherwise

it sends Abort to FTriples. For every j ∈ [N ], compute
∑
i∈B,h∈[k]∆

(i)
h ·Xh−1 · ϕ(i)

cj ,h
+ ϕcj (see below

for details), and it inputs them to FTriples with MacError. Furthermore, it inputs
∑

(i,i′)∈C δ
(i,i′)
j + f̄j

to FTriples with ValueError for cj .

At a high level, we can see the simulation consisting of two main parts, simulating the opening of
(rj , sj) and simulating the MAC checks. The first is straightforward: We receive the corrupted parties’
shares of {aj ,bj , cj}j∈[N ] from A and randomly chose their shares of {aj ,bj , cj}j∈[N+1,2N ] as well all
shares of {rj , sj}j∈[N ]. This is indistinguishable to the real protocol because the environment never learns
{aj ,bj , cj}j∈[N+1,2N ] and thus {rj , sj}j∈[N ] are uniformly random from the environment’s view.

In the FBatchCheck we simulate the fact the adversary can test the single bits of honest parties’ shares of

∆ using the ϕ
(i)
h variables. The simulator computes the successful space of those variables and tests it with

FTriples, which will abort if unsuccessful.
The first invocation of FBatchCheck in the real world succeeds if the first equality of the following holds:

ζr =
∑
i∈B
j∈[N ]

χrj ·
(
(rj + f (i)

rj ) ·∆(i) + t ·m(i)
bj

+ t′ ·m(i)
bj+N

)
=
∑
i∈B
j∈[N ]

χrj ·
((∑

i′∈P
(t · b(i′)

j + t′ · b(i′)
j+N ) + f (i)

rj

)
·∆(i) + t ·m(i)

bj
+ t′ ·m(i)

bj+N

)

=
∑
i∈B
j∈[N ]

χrj ·
(
(t · bj + t′ · bj+N + f (i)

rj ) ·∆(i) + t ·m(i)
bj

+ t′ ·m(i)
bj+N

)
=
∑
j∈[N ]

χrj ·
(

(t · bj + t′ · bj+N ) ·
(
∆+

∑
i∈A

∆(i)
)

+
∑
i∈B

f (i)
rj ·∆(i)

+ t ·
(
bj ·∆+

∑
i∈B,h∈[k]

∆
(i)
h ·Xh−1 · ϕ(i)

bj
+ ψbj +

∑
i∈A

m
(i)
bj

)
+ t′ ·

(
bj+N ·∆+

∑
i∈B,h∈[k]

∆
(i)
h ·Xh−1 · ϕ(i)

bj+N
+ ψbj+N +

∑
i∈A

m
(i)
bj+N

))
=
∑
j∈[N ]

χrj ·
(

(t · bj + t′ · bj+N ) ·
∑
i∈A

∆(i) +
∑
i∈B

f (i)
rj ·∆(i)

+ t ·
( ∑
i∈B,h∈[k]

∆
(i)
h ·Xh−1 · ϕ(i)

bj
+ ψbj +

∑
i∈A

m
(i)
bj

)
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+ t′ ·
( ∑
i∈B,h∈[k]

∆
(i)
h ·Xh−1 · ϕ(i)

bj+N
+ ψbj+N +

∑
i∈A

m
(i)
bj+N

))
=
∑
j∈[N ]

χrj ·
( ∑
i∈B,h∈[k]

∆
(i)
h ·Xh−1 · (f (i)

rj + t · ϕ(i)
bj ,h

+ t′′ · ϕ(i)
aj+N ,h

) + ψrj + ξrj

)
.

This equals the equality 3 in the simulation. Applying Corollary 1 with

fj,1 : {∆(i)
h }i∈B,h∈[k] 7→

∑
i∈B,h∈[k]

∆
(i)
h ·Xh−1 · ϕ(i)

bj ,h

fj,2 : {∆(i)
h }i∈B,h∈[k] 7→

∑
i∈B,h∈[k]

∆
(i)
h ·Xh−1 · ϕ(i)

aj+N ,h

as the linear maps for j ∈ [N ], we get that the probability of the check passing and∑
i∈B,h∈[k]

∆
(i)
h ·Xh−1 · ϕ(i)

bj ,h

not being uniquely defined for any j ∈ [N ] is 2−k+1. Similarly, one can prove the same for∑
i∈B,h∈[k]

∆
(i)
h ·Xh−1 · ϕ(i)

aj ,h
.

By solving the linear equation, this allows to compute
∑
i∈B,h∈[k]∆

(i)
h ·Xh−1 ·ϕ(i)

aj ,h
+ϕaj and

∑
i∈B,h∈[k]∆

(i)
h ·

Xh−1 · ϕ(i)
bj ,h

+ ϕbj as required by the simulator.
The last invocation of FBatchCheck in the real world succeeds if the first equality of the following holds:

ζd =
∑

i∈B,j∈[N ]

χdj ·
(
t ·m(i)

cj + t′′ ·mcj+N + rj ·m(i)
aj + sj ·m(i)

bj+N

)
=
∑
j∈[N ]

χdj ·
(
t ·
(
cj ·∆+

∑
i∈B,h∈[k]

∆
(i)
h ·Xh−1 · ϕ(i)

cj + ψcj +
∑
i∈A

m(i)
cj

)
+ t′′ ·

(
cj+N ·∆+

∑
i∈B,h∈[k]

∆
(i)
h ·Xh−1 · ϕ(i)

cj+N + ψcj+N +
∑
i∈A

m(i)
cj+N

)
+
∑
i∈B

(
rj ·m(i)

aj + sj ·m(i)
bj+N

))
=
∑
j∈[N ]

χdj ·
(
t ·
((

aj · bj +
∑
i∈B′

a
(i)
j · f (i)

aj +
∑
i∈B′

b
(i)
j · f

(i)
bj

+ fj

)
·∆+

∑
i∈A

m(i)
cj

)
+ t′′ ·

((
aj+N · bj+N +

∑
i∈B′

a
(i)
j+N · f

(i)

aj+N
+
∑
i∈B′

b
(i)
j+N · f

(i)
bj+N

+ fj+N

)
·∆+

∑
i∈A

m(i)
cj+N

)
+ t′ ·

( ∑
i∈B,h∈[k]

∆
(i)
h ·Xh−1 · ϕ(i)

cj ,h
+ ψcj

)
+ t′′ ·

( ∑
i∈B,h∈[k]

∆
(i)
h ·Xh−1 · ϕ(i)

cj+N ,h
+ ψcj+N

)
+ (t · bj + t′ · bj+N ) · aj ·∆+ rj ·

( ∑
i∈B,h∈[k]

∆
(i)
h ·Xh−1 · ϕ(i)

aj ,h
+ ψaj +

∑
i∈A

m(i)
aj

)
+ (t′ · aj + t′′ · aj+N ) · bj+N ·∆+ sj ·

( ∑
i∈B,h∈[k]

∆
(i)
h ·Xh−1 · ϕ(i)

bj+N ,h
+ ψbj+N +

∑
i∈A

m
(i)
bj+N

)
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=
∑
j∈[N ]

χdj ·
((

t ·
( ∑
i∈B′

a
(i)
j · f (i)

aj +
∑
i∈B′

b
(i)
j · f

(i)
bj

+ fj

)
+ t′′ ·

( ∑
i∈B′

a
(i)
j+N · f (i)

aj+N +
∑
i∈B′

b
(i)
j+N · f

(i)
bj+N

+ fj+N

))
·∆

+
∑

i∈B,h∈[k]

∆
(i)
h ·Xh−1 · ϕ(i)

dj ,h
+ ψdj + ξdj

)
.

In the real world, if the adversary inputs f̄ C, and {Y (i,i′}(i,i′)∈C to FUncheckedTriples in the j-th triple gen-

eration, fj =
∑

(i,i′)∈C f
(i,i′)
j + f̄ for f

(i,i′)
j uniformly distributed in M̂ (i,i′)(M̄ (i,i′))−1(δ

(i,i′)
j + a

(i)
j ). Clearly,

the larger the set is the lower the probability that the above equality holds and the MAC check succeeds.
Therefore, we assume that the set collapses to a set of size one. This holds if ker M̄ (i,i′) ⊂ ker M̂ (i,i′). By
definition, M̂ (i,i′) = (M̄ (i,i′)�Y ′). Lemma 12 implies that the condition only holds with probability at most

2−k if not all rows of Y ′ are the same, say y(i,i′). Hence, f
(i,i′)
j = δ

(i,i′)
j + a

(i)
j · y(i,i′), and

fj =
∑

(i,i′)∈C
f

(i,i′)
j + f̄j =

∑
(i,i′)∈C

δ
(i,i′)
j + a

(i)
j · y(i,i′) + f̄j .

It follows that the equation above can be rewritten as

ζd =
∑
j∈[N ]

χdj ·
((

t ·
( ∑
i∈B′

a
(i)
j ·

(
f (i)
aj +

∑
(i,i′)∈C

y(i,i′
)

+
∑
i∈B′

b
(i)
j · f

(i)
bj

+
∑

(i,i′)∈C
δ

(i,i′)
j + f̄j

)
+ t′′ ·

( ∑
i∈B′

a
(i)
j+N ·

(
f (i)
aj+N +

∑
(i,i′)∈C

y(i,i′
)

+
∑
i∈B′

b
(i)
j+N · f

(i)
bj+N

+
∑

(i,i′)∈C
δ

(i,i′)
j + f̄j+N

))
·∆

+
∑

i∈B,h∈[k]

∆
(i)
h ·Xh−1 · ϕ(i)

dj ,h
+ ψdj + ξdj

)
.

Considering that {a(i)
j ,b

(i)
j }i∈B′,j∈[2N ] are uniformly random independent of all other variables and {χdj}j∈[N ], t, t

′′

are uniformly random, Lemma 7 implies that the check only passes with probability 3 · 2−k if any of

{(f (i)
aj +

∑
(i,i′)∈Cj y

(i,i′)
j ) · ∆, f (i)

bj
· ∆}i∈B′,j∈[2N ] is not zero. Since ∆ 6= 0 with probability 2−k, {((f (i)

aj +∑
(i,i′)∈Cj y

(i,i′)
j ), f

(i)
aj )}i∈B′,j∈[2N ] must be zero for the check to pass with non-negligible probability. This

establishes that

cj = aj · bj +
∑
i∈B′

a(i) · f (i)
a +

∑
i∈B′

b(i) · f (i)
b +

∑
(i,i′)∈Cj

f (i,i′) + f̄j

= aj · bj +
∑
i∈B′

a
(i)
j ·

(
f (i)
aj +

∑
(i,i′)∈C

y(i,i′
)

+
∑
i∈B′

b
(i)
j · f

(i)
bj

+
∑

(i,i′)∈C
δ

(i,i′)
j + f̄j

= aj · bj +
∑

(i,i′)∈C
δ

(i,i′)
j + f̄j ,

which is used for the ValueError input to FTriples. Similarly, for f̂j = f̄j +
∑

(i,i′)∈C δ
(i,i′)
j , we assume that

ζd =
∑
j∈[N ]

χdj ·
(

(t · f̂j + t′′ · f̂j+N ) ·∆+
∑

i∈B,h∈[k]

∆
(i)
h ·Xh−1 · ϕ(i)

dj ,h
+ ψdj + ξdj

)
=
∑
j∈[N ]

χdj ·
(

(t · f̂j + t′′ · f̂j+N ) ·
∑
i∈A

∆(i)

+
∑

i∈B,h∈[k]

∆
(i)
h ·Xh−1 · (ϕ(i)

dj ,h
+ t · f̂j + t′′ · f̂j+N ) + ψdj + ξdj

)
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=
∑
j∈[N ]

χdj ·
(

(t · f̂j + t′′ · f̂j+N ) ·
∑
i∈A

∆(i)

+
∑

i∈B,h∈[k]

∆
(i)
h ·Xh−1 · (t · (ϕ(i)

cj ,h
+ f̂j) + t′′ · (ϕ(i)

cj+N ,h
+ f̂j+N )

+ (rj + f̂ (i)
rj ) · (ϕ(i)

aj ,h
+ ψaj ) + (sj + f̂ (i)

sj ) · (ϕ(i)
bj+N,h

+ ψbj+N )) + ψdj + ξdj

)
.

With

fj,1 : {∆(i)
h }i∈B,h∈[k] 7→

∑
i∈B,h∈[k]

∆
(i)
h ·Xh−1 · (ϕ(i)

cj ,h
+ f̂j)

fj,2 : {∆(i)
h }i∈B,h∈[k] 7→

∑
i∈B,h∈[k]

∆
(i)
h ·Xh−1 · (ϕ(i)

cj+N ,h
+ f̂j+N ),

for all j ∈ [N ], Corollary 1 implies that the probability of the check passing and∑
i∈B,h∈[k]

∆
(i)
h ·Xh−1 · (ϕ(i)

cj ,h
+ f̂j)

not being clearly defined for all j ∈ [N ] is at most 2−k+1. Again, this allows to compute
∑
i∈B,h∈[k]∆

(i)
h ·

Xh−1 · (ϕ(i)
cj ,h

+ f̂j) + ψcj as required by the simulator.
Summing up using the union bound, we find that the statistical distance between the real world and

simulation is at most 2 · 2−k+1 + 2−k3 · 2−k + 2−k + 2−k+1 = 11 · 2−k. We conclude that ΠTripleCheck (k − 4)-
securely implements FTriples in the (FUncheckedTriples,FRand)-model.

G MiniMAC Protocols and Security Proofs

In this section we describe the ideal functionalities, protocols and proofs of our MiniMAC preprocessing. This
section is organized as follows: In subsection G.1 we present the ideal functionalities for the preprocessing
aspects of MiniMAC. Afterwards, in subsection G.2 we present the ideal functionality, protocol and proof of
the codeword authentication protocol. Following this in subsection G.3 we describe the ideal functionalities,
protocols, simulators and proofs needed in the construction of the multiplication triples. Finally in subsec-
tion G.4 and G.5 we present the protocol and simulator for construction of the Schur triples, respectively
reorganization triples.

Throughout this section we will interchangeably be viewing elements expressible with u ·m (or u · k) bits
as either bit vectors (Fu·m2 ), elements of the characteristic 2 Galois extension field of order 2u·m (F2u·m) or
a vector of m elements in the characteristic 2 Galois extension field of order 2u (Fm2u).

G.1 Preprocessing Functionality

In this subsection we define the ideal functionalities needed to realize the MiniMAC preprocessing. We do
this in Fig. 27 and 28, using the macros defined in Fig. 29.

G.2 Codeword Authentication

We now describe the codeword authentication protocol. This protocol allows parties to authenticate
shares of components of a codeword such that the output is guaranteed to be authenticated shares of a valid
codeword. There are two main stages: firstly a BigMAC is constructed which consists of a (big) MAC on
each component of a codeword. Then these are combined and compressed into a single MiniMAC for the
entire codeword.
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This functionality generates offline material used in the MiniMAC online protocol. We denote by A the set of
parties controlled by the adversary.

Initialize: On input (Init,m, k, d, u,G) from all parties, store integers m, k, d, u and generator matrix G for a
linear [m, k, d]-code C over the field F2u .
1. For each corrupt party Pi with i ∈ A, get element ∆(i) ∈ Fm2u from the adversary.
2. Pick each share ∆(i) for i 6∈ A uniformly at random from Fm2u and define ∆ =

∑n
i=1∆

(i).
3. If the functionality receives the signal Abort from the adversary then halt and output Abort.
4. Output ∆(i) to party Pi.

Computation: On input DataGen from all honest parties and the adversary, and only if the functionality
received Proceed (or BreakDown is set to true) it executes the data generation procedures specified in Figure
28 composed with the macro Bracket in Figure 29.

Fig. 27. Ideal functionality for MiniMAC offline generation

This functionality generates offline material used in the MiniMAC online protocol. We denote by A the set of
parties controlled by the adversary.

Schur Pair (JC (r)K∗, JC∗ (s)K∗):
1. Receive the shares

{
C(r(i)), C∗(s(i))

}
i∈A

from the adversary, where C(r(i)) and C∗(s(i)) are equal in

the first k positions. Similarly pick the shares
{
C(r(i)), C∗(s(i))

}
i 6∈A

for each of the honest parties, such

that C(r(i)) and C∗(s(i)) are equal in the first k positions and the following k∗ − k positions of C∗(s(i))
are chosen uniformly at random.

2. Run the Bracket macros
{
C(r(i)),∆(i)

}
i∈[n]

and
{
C∗(s(i)),∆(i)

}
i∈[n]

and return the output.

Reorganization (JC (r)K∗, JC (f(r))K∗):
1. Receive the shares

{
C(r(i))

}
i∈A

from the adversary and pick the shares
{
C(r(i))

}
i 6∈A

uniformly at

random for each of the honest parties.

2. Run the BigBracket macro on
{
C(r(i)),∆(i)

}
i∈[n]

to get

{
C(r(i)),

{
m

(i)

(r,h)

}
h∈[m]

}
.

3. Letting JrhK be defined by
(
〈r[h]〉, 〈m(i)

(r,h)〉, 〈∆〉
)

for h ∈ [k], apply f and then C to Jr1K, . . . , JrkK, to

obtain JC(f(r))1K, . . . , JC(f(r))kK where C(f(JrhK)) = JC(f(r))hK.
4. Finally return

{
C(r(i)),m

(i)∗
r

}
and

{
C(f(r(i))),m

(i)∗
f(r)

}
where m

(i)∗
r ,m

(i)∗
f(r) ∈ Fm2u and m

(i)∗
r [h] =

m
(i)

(r,h)[h], respectively m
(i)∗
f(r)[h] = m

(i)

(f(r),h)[h] for h ∈ [m].

Multiplication (JC (a)K∗, JC (b)K∗, JC∗ (c)K∗):
1. Sample shares

{
C(a(i)), C(b(i))

}
i∈[n]

and compute C∗(c(i)) = C(a(i)) ∗ C(b(i)).

2. Run the Bracket macro on
{
C(a(i)),∆(i)

}
i∈[n]

,
{
C(b(i)),∆(i)

}
i∈[n]

and
{
C∗(c(i)),∆(i)

}
i∈[n]

.

3. Output JC (a)K∗, JC (b)K∗, JC∗ (c)K∗.
Key queries: On input of a description of an affine subspace S ⊂ (Fm·u2 )n, return Success if (∆(1), . . . ,∆(n)) ∈

S. Otherwise return Abort.

Fig. 28. Ideal functionality for MiniMAC offline generation (continued)

We present the codeword authentication protocol ΠCodeAuth in Fig. 30 and its ideal functionality FCodeAuth

in Fig. 31. The protocol uses the FJ·K functionality, which is described in Fig. 5.

The BigMAC part of the protocol consists of first having each party i give as input the non-parity

components x
(i)
1 , . . . ,x

(i)
k ∈ F2u of his shares of a systematic codeword C(x). Each component share then

gets authenticated using FCodeAuth using an m ·u bit global key. Thus each party will thus have a MAC share
in Fm2u of the authentication of each of the k components. The authentications of the last m− k components
of the shares of C(x) are then computed through linear combinations of the BigMACs using the generator
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Ideal Authentication Macros

The macros take input
(
{x(i),∆(i)}, C

)
i∈[n]

, where each x(i) ∈ Fk2u , C is a code of degree k and dimension m,

and ∆(i) ∈ Fm2u .

Bracket:
1. Let x =

∑
i∈[n] x

(i). Furthermore let m = C(x) ∗∆.

2. For every corrupt party Pi for i ∈ A the adversary specifies a share m(i).
3. The functionality sets each share m(i) for i 6∈ A uniformly random under the constraint that∑

i∈[n] m
(i) = m.

4. If the adversary inputs (Error, {e(i)h,j}i/∈A,h∈[k],j∈[m·u]). with elements in F2m·u , set m(i) := m(i) + e(i),

where e(i) ∈ Fm2u and

e(i)[h] =

m·u∑
j=1

e
(i)
h,j ·∆

(i)
j ·X

j−1

where ∆
(i)
j denotes the j-th bit of ∆(i) for h ∈ [m].

5. Output the shares (x(i),m(i)) to each party Pi.
BigBracket:

1. Let the h-th component of x(i) be denoted by x(i)[h].
2. Next let x[h] =

∑
i∈[n] x

(i)[h]. Furthermore let mh = x[h] ·∆.

3. For every corrupt party Pi for i ∈ A the adversary specifies shares
{

m
(i)
h

}
h∈[k]

.

4. The functionality sets the shares
{

m
(i)
h

}
h∈[k]

for i 6∈ A uniformly random under the constraint that∑
i∈[n] m

(i)
h = mh for h ∈ [k].

5. If the adversary inputs (Error, {e(i)h,j}i/∈A,h∈[k],j∈[m·u]) with elements in F2m·u , set m
(i)
h = m

(i)
h +

∑m·u
j=1 e

(i)
h,j ·

∆
(i)
j ·X

j−1 where ∆
(i)
j denotes the j-th bit of ∆(i).

6. For i ∈ [n] and h ∈ [k + 1;m], compute the values m
(i)
h by applying the code C to {m(i)

h }h∈[k], and

similarly for {x(i)[h]}h∈[k+1;m].

7. For each i 6∈ A and h ∈ [m], output the shares {x(i),m
(i)
h } to Pi.

Fig. 29. Macro for ideal MiniMAC authentication.

matrix of C. The Compress part of the protocol then takes as input all the m BigMAC shares of each party
and simply uses the h’th component of the BigMAC authenticating the h’th component of C(x) as the h’th
component of the MiniMAC. That is, if we view the BigMACs as columns in a matrix (the first column
being the BigMAC of the first component of C(x) and so on up to the m’th component) then the MiniMAC
of C(x) is simply the diagonal of this matrix.

The intuition of why this is secure is that since the authentication of the parity components of the code-
word are computed from the authenticated non-parity components using a public algorithm (the generator
matrix) then an adversary can only try to cheat locally. Furthermore, if he later on tries to change the value
that is MAC’ed to, then he will have to guess the honest parties’ share of d components, because of the
code’s minimal distance.

CodeAuth Security.

Lemma 13. For every static adversary A corrupting up to n − 1 parties, the protocol ΠCodeAuth k securely
implements FCodeAuth of Figure 31 in the FJ·K-hybrid model.

Proof. Let S be a simulator that has access to FCodeAuth, we show that no environment Z can distinguish
between an interaction with S and an interaction with the real adversary A and real parties with access to
the functionality FJ·K.
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Protocol ΠCodeAuth

Initialize: Call FF2u·m
J·K .(Init) to initialize the BigMAC key ∆ ∈ F2m·u .

BigMAC: On input (BigMAC, C,x(i)) from every party Pi, where x(i) ∈ Fk2u and C is a systematic, linear code
over F2u of dimension k and length m, do the following:

1. For each party i ∈ [n] call FJ·K.(n-Share) with input (Authenticate,x(i)[1], . . . ,x(i)[k]) to obtain
{〈mh〉}h∈[k] and in turn the authenticated shares {Jx[h]K}h∈[k] = {〈x[h]〉, 〈mh〉, 〈∆〉}h∈[k].

2. Locally encode these shares using the code C, to obtain JC(x)K, a length m vector of F2u elements,
where every component is authenticated under ∆. That is,

JC(x)K =
(
{〈C(x)[h]〉, 〈mh〉}h∈[m] , 〈∆〉

)
.

Where C(x)[h] = (x · G)[h] and m
(i)
h =

∑k
l=1 m

(i)
l · G[l, h] when G is the generator matrix of the code

C and x is viewed as a row vector.

Compress: On input (Compress, JC(x)K) from all parties, do the following:

1. View ∆(i) and m
(i)
h as elements of Fm2u by letting each block of u bits be one component in F2u .

2. Parse JC(x)K as

{〈C(x)[h]〉, 〈mh〉, 〈∆〉}h∈[m] =

{{
C(x(i))[h],m

(i)
h ,∆(i)

}
h∈[m]

}
i∈[n]

.

3. Now define a new componentwise sharing JC(x)K∗ to be

{〈C(x)〉, 〈m〉, 〈∆〉} =
{
C(x(i)),m(i)∗,∆(i)

}
i∈[n]

,

where m(i)∗ ∈ Fm2u and m(i)∗[h] = m
(i)
h [h] for h ∈ [m].

Fig. 30. Protocol ΠCodeAuth - Used for codeword authentication with a BigMAC key and a MiniMAC key.

The simulator invokes an internal copy of A and sets dummy parties πi, i ∈ P. Let A be the set of corrupt
parties, it proceeds as follows:

1. Simulating the Initialize phase: S inputs (Init) to the FCodeAuth functionality, together with the set A of
corrupt parties and all their extracted inputs

{
∆(i)

}
i∈A. It then runs an internal copy of FJ·K.(Init) using

the shares it extracted from the adversary and the shares it got back from FCodeAuth. If it receives Abort,
then it forwards Abort to the FCodeAuth functionality, and it halts.

2. Simulating the BigMAC phase: S extracts the adversary’s input to FJ·K.(n-Share),
{

x
(i)
h ,m

(i)
h

}
h∈[k]

for

i ∈ P and passes it on to FCodeAuth.BigMAC. It then picks the shares
{

x
(i)
h

}
h∈[k]

for i 6∈ P uniformly at

random and sends it to FCodeAuth.BigMAC, which sends back the honest parties’ MAC shares,
{

m
(i)
h

}
h∈[k]

.

If the adversary inputs (Error, {e(i)
h,j}i/∈A,h∈[k],j∈[m·u]) then the simulator passes on this call to FCodeAuth

and locally updates the honest parties share by setting m
(i)
h = m

(i)
h +

∑m·u
j=1 e

(i)
h,j ·∆

(i)
j ·Xj−1 where ∆

(i)
j

denotes the j-th bit of ∆(i).

3. Simulating the Compress phase: S simply passes on the call to the FCodeAuth functionality and returns
what it gets back.

To argue indistinguishability first notice that if during the internal execution of the protocol an abort
occurred, then an abort occurs in both the ideal and the real world, and the simulation in this case is perfect.

For the rest simply notice that everything is done in perfect accordance with the ΠCodeAuth (and FJ·K)
since everything is passed on directly to the FCodeAuth functionality or done with local computations.
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Functionality FCodeAuth

Let A be the indices of corrupt parties. Running with parties P1, . . . , Pn and an ideal adversary S, the function-
ality operates as follows.

Initialize: On input (Init) the functionality activates and waits for the adversary to input a set of shares
{∆(j)}j∈A in Fm·u2 . It samples random {∆(i)}i/∈A in Fm·u2 for the honest parties, defining ∆ :=

∑
i∈[n]∆

(i).
If any j ∈ A outputs Abort then the functionality aborts.

BigMAC: On input (BigMAC, C,x(i)) from all parties Pi, where x(i) ∈ Fk2u and C is a systematic, linear code
over F2u of dimension k and length m:

- Run the macro BigBracket with input
(

(x(i)[1],∆(i)), . . . , (x(i)[k],∆(i)), C
)

from Pi.

Compress: On input (Compress, JC(x)K) from all parties Pi, do as follows:
1. Parse JC(x)K as

{〈C(x)[h]〉, 〈mh〉, 〈∆〉}h∈[m] =

{{
C(x(i))[h],m

(i)
h ,∆(i)

}
h∈[m]

}
i∈[n]

.

Now define a new componentwise sharing JC(x)K∗ to be

{〈C(x)〉, 〈m〉, 〈∆〉} =
{
C(x(i)),m(i)∗,∆(i)

}
i∈[n]

,

where m(i)∗ ∈ Fm2u and m(i)∗[h] = m
(i)
h [h] for h ∈ [m].

2. Return JC(x(i))K∗ =
(
C(x(i)),m(i)∗,∆(i)

)
to each party i.

Key queries: On input of a description of an affine subspace S ⊂ (Fm·u2 )n, return Success if (∆(1), . . . ,∆(n)) ∈
S. Otherwise return Abort.

Fig. 31. Functionality FCodeAuth - Used for generating authenticated codewords.

G.3 Multiplication Triples

In this part we describe the remaining ideal functionalities, protocols and proofs needed in order to con-
struct MiniMAC multiplication triples. First, we show in Fig. 32 how to use the amplified correlation OT
functionality FACOT from Fig. 3 to generate an XOR sharing of the tensor product of two unauthenticated
codewords (one chosen by each party). We then describe the protocol ΠUncheckedMiniTriples in Fig. 33 (with
ideal functionality FUncheckedMiniTriples described in Fig. 34 and its simulator SUncheckedMiniTriples described in
Fig. 35) how to use these components of unauthenticated multiplication triples, along with the codeword
authentication functionality FCodeAuth from Fig. 31, to construct unchecked MiniMAC multiplication triples.
We then show the protocol ΠMiniTriples in Fig. 36 (whose ideal functionality is part of Fig. 28 and whose
simulator SMiniTriples is described in Fig. 37) how to combine a pair of unchecked MiniMAC triples along with
the Schur triple into a MiniMAC multiplication triple.

CodeOT Subprotocol. The CodeOT subprotocol uses FACOT to create an XOR sharing of the component-
wise product of vectors (over F2u) input by two parties. It does so by first getting an XOR sharing of two
u · k bit vectors from FACOT. These shares are then converted to k elements of the field F2u by viewing each
element as a coefficient of an up to u−1 degree polynomial and then constructing the polynomial, that is an
element of F2u , by summing over the appropriate coefficients, multiplied with an X power to create a term.
Finally, each row/column of this matrix is then expanded from k× k to m×m by viewing each row/column
as an element in Fk2u and then using the linearity of C to encode each of these. This makes it possible for
the parties to end up with an XOR sharing of the outer product of an encoding of a Fk2u value of each their
choice.
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Subprotocol CodeOTC

Let C be a systematic, [m, k, d] linear code over F2u , and let s be a statistical security parameter.

Initialize: Run FACOT.Initialize.
Input: PR inputs a ∈ Fk2u and PS b ∈ Fk2u
Correlated OT: Run Fu·k,sACOT with input a,b, so PR receives a matrix T ′ ∈ Fu·k×u·k2 and PS receives Q′ ∈

Fu·k×u·k2 such that

Q′ = T ′ + a⊗ b

Convert to field:

1. Consider Q′ and T ′ as k × k block matrices, where entry (i, j) is given by an XOR share of the u × u
matrix over F2: 

ai[1] · bj [1] ai[1] · bj [2] . . . ai[1] · bj [u]
ai[2] · bj [1] ai[2] · bj [2] . . . ai[2] · bj [u]

...
. . .

...
ai[u] · bj [1] ai[u] · bj [2] . . . ai[u] · bj [u]


2. Let entry (i, j) be the F2u field element given by:

fi,j =

u∑
i′=1

u∑
j′=1

ai[i
′] · bj [j′] ·Xi′+j′−2

so now Q′, T ′ are k × k matrices over F2u , where entry (i, j) contains an XOR share of the product of
a[i] and b[j].

Encode: Now expand Q′ and T ′ into m×m matrices of codewords:
1. PR sets T to be the matrix obtained by applying C(·) to each row and each column of T ′, seen as a

vector in Fk2u .
2. PS sets Q to be the matrix obtained by applying C(·) to each row and each column of Q′, seen as a

vector in Fk2u .
Note that Q and T are u ·m × u ·m matrices over F2, whose rows and columns are codewords in C when
viewed as vectors in Fm2u .
Note that if Qi, Ti are the i-th rows of Q,T then Qi = Ti + ai ·b for i ∈ [m], and now every column of Q,T
is a codeword.
Now PR has T ∈ Fm×m2u and PS has Q ∈ Fm×m2u such that:

Q = T + C(a)⊗ C(b).

Fig. 32. Subprotocol for codeword OT extension between Pr and Ps.

Since it only consists of local computation we do not model this with a separate functionality, instead
just using it as a subprotocol in triple generation. We describe this subprotocol in Fig. 32.

Unchecked Multiplication Triples. The protocol ΠUncheckedMiniTriples constructs weakly authenticated
multiplication triples. This is done by having each party pick two random elements in Fk2u and executing
the CodeOT protocol with each other party on each of these elements to get an XOR sharing. Every party
then computes a share of the Schur product based on his own chosen random values and the diagonal of
each of the tensor products from CodeOT. Finally each party authenticates their respective shares using the
FCodeAuth functionality.

Lemma 14. For every static adversary A corrupting up to n − 1 parties, the protocol ΠUncheckedMiniTriples k
securely implements the FUncheckedMiniTriples functionality in the (FACOT,FCodeAuth)-hybrid model.
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Initialize: Call FCodeAuth.Initialize.
Triple Generation: This generates a triple {〈C(a)〉, 〈C(b)〉, 〈C∗(c)〉} with C(a), C(b), C∗(c) ∈ Fm2u for which

it holds that C∗(c) = C(a) ∗ C(b).

1. Each party Pi generates a(i),b(i) $← Fk2u .
2. Each pair of parties (Pi, Pj) (i 6= j) calls FCCodeOT with input a(i),b(j), to obtain a random XOR sharing

of the m×m matrix Ci,ji +Ci,jj = C(a(i))⊗C(b(j)). (Note the tensor product is over F2u , so each entry
of the matrix is a product of F2u elements.)

3. Each party Pi computes C∗(c(i)) = C(a(i)) ∗ C(b(i)) + diag(
∑
j 6=i C

i,j
i + Cj,ii ), where diag(M) is the

vector containing the diagonal entries in the matrix M .
4. Pi calls FCodeAuth.BigMAC with input (C,a(i)), (C,b(i)) and (C∗, c(i)) to obtain shares

JC(a)K, JC(b)K, JC∗(c)K and then calls FCodeAuth.Compress to obtain J·K∗ sharings.

Fig. 33. Protocol ΠUncheckedMiniTriples - Generation of unchecked MiniMAC triples

Functionality FUncheckedMiniTriples

Let B denote the set of honest parties, and let ι̂ be the lowest index in B. Furthermore, let B′ = B \ {ι̂} and
A = [n] \B the set of corrupted parties.
Initialize:

1. Sample ∆
$← F2u·m and output a random share ∆(i) to Pi, consistent with shares for corrupted parties input

by S.

Triple generation:

1. Sample random shares of codewords 〈C(a)〉, 〈C(b)〉, using shares for corrupted parties input by the adversary.

2. Wait for S to input {f (i)a , f
(i)
b }i∈B′ , and f ∈ Fk2u .

3. Compute

C∗(c) = C(a) ∗ C(b) +
∑
i∈B′

(
C(a(i)) ∗ C(f (i)a ) + C(b(i)) ∗ C(f

(i)
b )
)

+ C(f)

and shares of C∗(c) that are consistent with any adversarial inputs.
4. Run the macro Bracket on input 〈C(a)〉, 〈C(b)〉, 〈C∗(c)〉.
5. Output JC (a)K∗, JC (b)K∗, JC∗ (c)K∗.

Fig. 34. Functionality FUncheckedMiniTriples - Used for generation of unchecked MiniMAC triples

Proof. The simulation for unchecked MiniMAC triples, given in Fig. 35, is very close to the proof for
unchecked SPDZ triples in F2k . The main aspect of arguing indistinguishability is if the adversary inputs
Error in one of the FACOT instances. Following the same argument as the SPDZ proof, it follows that the
resulting error term in F2k·u in the real world is statistically close to uniform, corresponding to the uniform
value f that is added in the simulation.

For the remaining indistinguishability argument, observe that the codeword C∗(c) that results from the
output of the simulation (from FUncheckedMiniTriples), assuming the adversary does not input Error, is given by:

C∗(c) = C(a) ∗ C(b) +
∑
i∈B′

(
C(a(i)) ∗ C(f (i)

a ) + C(b(i)) ∗ C(f
(i)
b )
)

where f
(i)
a , f

(i)
b are adversarially chosen. In the protocol, if A does not input MultError to FACOT, we have

C∗(c) =

n∑
i=1

C∗(c(i)) =

n∑
i=1

C(a(i)) ∗ C(b(i)) + diag(

n∑
j 6=i

Ci,ji + Cj,ii )
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Simulator SUncheckedMiniTriples

Initialize:

1. Receive ∆(i) ∈ Fm·u2 for i ∈ A as input to FCodeAuth.
2. Input {∆(i)}i∈A to FUncheckedMiniTriples.

Triple generation:

1. Emulate Fk·u,k·uACOT similarly to step 1 of the simulator for SPDZ triples (Fig. 26):
- Receive inputs a(i,j),b(i,j) for i ∈ A and j ∈ B from corrupt parties Pi, corresponding to their input to

the FACOT instance with honest Pj .

- Calculate the errors for these inputs as in Fig. 26, giving Fu·k2 elements {f (i)a , f
(i)
b }i∈B′ , corresponding to

multiplicative errors, and an additive error f , which is uniformly random if the adversary input Error to
FACOT and zero otherwise.

- For each i ∈ A and j ∈ B, output a uniformly random matrix U (i,j) ∈ Fk·u×k·u2 as Pi output for FACOT

with Pj . Wait for Z to input T (i,j) and adjust the additive error f accordingly (as in Fig. 26).
2. Emulate FCodeAuth as follows:

- Receive new shares a′(i),b′(i), c′(i) for i ∈ A.
- If A inputs (Error, e

(i)
h,j) for honest i ∈ B for one of the inputs, then submit the corresponding errors

to FUncheckedMiniTriples, along with the errors {f (i)a , f
(i)
b }i∈B′ , f and the shares a′(i),b′(i), c′(i), passing the

output to the adversary.

Fig. 35. Simulator for unchecked MiniMAC triples.

=

n∑
i=1

C(a(i)) ∗ C(b(i)) + diag(

n∑
j 6=i

C(a(i,j))⊗ C(b(j,i)))


=

n∑
i=1

C(a(i)) ∗ C(b(i)) +

n∑
j 6=i

C(a(i,j)) ∗ C(b(j,i))


= C(a) ∗ C(b) +

∑
i∈B′

(
C(a(i)) ∗ C(f

(i)
b ) + C(b(i)) ∗ C(f (i)

a )
)

where f
(i)
a , f

(i)
b are the sum of the deviations in the adversary’s interactions with Pi in FACOT. This clearly

corresponds perfectly to the simulated result.
ut

Checked Multiplication Triples. To construct fully secure MiniMAC multiplication triples we implement
a pairwise sacrificing to verify both the MACs, the multiplicative relation and that shares indeed sum up to
codewords.

To prove that this is enough to securely implement the triples stage of the functionality, we use the
following proposition.

Proposition 1. If the MiniMAC pairwise sacrifice is performed on any two triples where at least one is
incorrect, then the probability the check passes is at most 2−u·min(d,k), where d is the minimum distance and
k is the dimension of the code over F2u .

Proof. This follows because the inputs to the sacrifice step are guaranteed to be authenticated codewords.
Note that if the check passes, we have:

JC∗ (t ∗ (c0 − a0 ∗ b0))K∗ = JC∗ (c1 − a1 ∗ b1)K
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Initialization:
1. Call FUncheckedMiniTriples.Initialize.
2. Generate two unchecked triples JC (a0)K∗, JC (b0)K∗, JC∗ (c0)K∗ and JC (a1)K∗, JC (b1)K∗, JC∗ (c1)K∗ using
FUncheckedMiniTriples.

3. Generate a random Schur pair JC (r)K∗, JC∗ (r′)K∗ using FSchur.
Sacrificing:

1. Sample t
$← Fk2u using FRand.

2. Open C(t) ∗ C(b0)− C(b1) as ρ and C(a0) + C(a1) as σ.
3. Open JC∗ (c0)K∗ − JC∗ (r′)K∗ to get C∗(y).
4. Re-encode the first k components of y into C and add this to JC (r)K∗ to get JC (c0)K∗.
5. Locally compute

JC∗ (x)K∗ = C(t) ∗ JC (c0)K∗ + JC∗ (c1)K− JC (a0)K∗ ∗ ρ− JC (b1)K ∗ σ
= JC∗ (t ∗ (c0 − a0 ∗ b0) + c1 − a1 ∗ b1)K∗

and check the shares open to 0.
6. Check that all opened values are valid codewords in C∗ and check their MACs using ΠMACCheck. If any

checks fail, output Abort.
7. Output (JC (a0)K∗, JC (b0)K∗, JC∗ (c0)K∗) as a valid multiplication triple.

Fig. 36. Protocol ΠMiniTriples - Generation of MiniMAC triples

Simulator SMiniTriples

Let A denote the set of corrupted parties and B the honest parties. Let FMiniTriples denote the functionality
consisting of the Multiplication stage of FMiniPrep.

Initialize:
1. Receive ∆(i) for corrupt Pi for the Initialize step of FUncheckedMiniTriples.
2. Input ∆(i) to FMiniPrep for i ∈ A.

Triple generation:
1. Emulate FUncheckedMiniTriples for the both triples, receiving shares C(a

(i)
0 ), C(b

(i)
0 ) and C(a

(i)
1 ), C(b

(i)
1 ), as

well as sets of errors Ej for j ∈ B if the adversary inputs the Error flag.

2. Emulating FSchur, receive shares C(r(i)), C(r′(i)) and corresponding MAC shares C(m
(i)
r ), C(m

(i)

r′ ) for
i ∈ A.

3. Emulating FUncheckedMiniTriples, receive shares C(c
(i)
0 ), C(c

(i)
1 ) and MAC shares C(m

(i)
a0 ), C(m

(i)
b0

), etc for
i ∈ A.

4. Call FMiniTriples with input C(a
(i)
0 ), C(b

(i)
0 ), C(c

(i)
0 ) and their MACs for corrupt Pi, along with the errors

Ej for j ∈ B.

5. Emulating FRand, sample t
$← Fk2u and send this to A.

6. Perform each of the sacrifice checks as in the protocol, using shares input by the adversary for corrupt
parties and generating random codewords for the partial openings of ρ,σ, C∗(y) and C∗(x). If any of
the checks fail then abort.

7. Simulate the MACCheck procedure in the same manner as the FBatchCheck procedure in the F2k simulation
(described in Section F.7). If the MAC check passes despite some errors introduced by the adversary,
compute the solution spaces S(i) ⊂ Fm2u corresponding to the possible values of each honest party’s ∆(i)

for which the check would have passed, and submit {S(i)}i∈B to the key query stage of FMiniPrep. If this
aborts then abort.

Fig. 37. Simulator for MiniMAC triples, after sacrificing.

for a uniformly random t ∈ Fk2u . By the minimum distance of the code C, C(t) must be non-zero in at least
d positions with overwhelming probability in u · k. Now if one of the triples is incorrect, it follows that they
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Protocol ΠSchur

Initialization: Call FCodeAuth.Initialize with input (Init).
Schur Pair Generation:

1. Each party Pi generates random r(i) ∈ Fk2u and r(i)
′
∈ Fk

∗−k
2u . Let 0 ∈ Fk2u be the 0-vector (in F2u) of

k elements. Now define r(i)
′′

= (0‖r(i)
′
) ∈ Fk

∗
2u .

2. Call FCodeAuth.BigMAC with input (BigMAC, C, r(i)) and (BigMAC, C∗, r(i)
′′

) from Pi to obtain JC(r)K
and JC∗(r′′)K.

3. For h ∈ [k] let m
(i)

(r,h) be the MAC share of the h’th components of Pi’s shares of JC∗(r′′)K. Each party

commits to m
(i)

(r,h) using FComm. Then all parties open their commitments and check that
∑n
i=1 m

(i)

(r,h) = 0

for h ∈ [k].
4. Call FCodeAuth.Compress with input (Compress, C, JC(r)K)) and (Compress, C∗, JC(r)K+JC∗(r′′)K) to obtain

JC(r)K∗ and JC∗(s)K∗, so that r is equal to s in the first k components.
5. Output JC(r)K∗, JC∗(s)K∗

Fig. 38. Protocol ΠSchur - Generation of Schur pairs.

both must be incorrect, otherwise just one side of the above equation would be zero. If j is an index of one
of the (at least) d positions where t is non-zero then we can write

C(t)[j] = (C(c1[j])− C(a1[j]) · C(b1[j])) / (C(c0[j])− C(a0[j]) · C(b0[j]))

for every such j. Since tj is uniformly random and unknown to the adversary when they choose shares of the
triples, each of these equations is satisfied with probability 2−u. However, note that C(t) is fully determined
by any of its k positions, so at most k positions are independently uniform. This means we get a total success
probability of no more than 2−u·min(d,k).

ut
Lemma 15. For every static adversary A corrupting up to n − 1 parties, the protocol ΠMiniTriples imple-
ments the Multiplication stage of Fig. 28 in the (FSchur,FCodeAuth)-hybrid model with statistical security
u ·min(k, d), where FSchur is a functionality representing the Schur pair stage of Fig. 28.

Proof. Correctness and indistinguishability of the transcripts when there are no errors follows from straight-
forward calculations, since the adversary’s shares and errors in the protocol align exactly with what is allowed
by the functionality, similarly to the protocol for F2k triples.

By Proposition 1, if the sacrifice check passes in the real world then with overwhelming probability we

are guaranteed that the shares of triples are correct. This means that the errors f
(i)
ab and f

(i)
bb

(for b = 0, 1)
submitted to FUncheckedMiniTriples were all zero. In this case the only errors possible (in both worlds) are the
MAC errors, which are modeled identically in both the protocol and the functionality, so will be distributed
the same. Finally, the MAC checking stage is simulated as in the proof of F2k triples – the simulator computes
the solution space (in the unknown honest parties’ shares of ∆) for which the adversary’s inputs to the MAC
check would pass, and tests this using the key query stage of FMiniPrep. This implies that the probability of
abort corresponds to the probability of passing the MAC check in the real world.

ut

G.4 Schur Pairs

The construction of a Schur pair is described by the ΠSchur protocol (Fig. 38). It consists of having each
party generate a random element in Fk2u and a random element of Fk∗2u , but under the constraint that the
first k elements are 0. The random element in Fk2u is then encoded and BigMACed with C using FCodeAuth.
Similarly the random element in Fk∗2u is then encoded and BigMACed with C∗ using FCodeAuth. The first is
compressed, so is the addition of the two. This results in two MiniMAC authentications of the same same
element, but where one is in C and the other in C∗.
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Simulator SSchur

Let A denote the set of corrupted parties.

Initialization: On input (Init) from all parties, receive
{
∆(i)

}
i∈A

. It then passes on these values to the ideal

Initialize call in FCodeAuth and receives back the shares
{
∆(i)

}
i 6∈A

, defining ∆ =
∑
i∈[n]∆

(i).

Schur Pair Generation:

1. Receive the shares

{
r(i),

{
m

(i)

(r,h)

}
h∈[k]

}
, respectively

{
r(i)
′′
,
{

m
(i)

(r′′,h)

}
h∈[k∗]

}
for each corrupted party

i ∈ A from the environment as input to FCodeAuth.BigMAC for JC (r)K, respectively JC∗ (r′′)K. If r′′ 6= 0‖r′
for some r′ ∈ Fk

∗
2u then output abort.

2. It then passes the values C(r(i)), C∗(r(i) + r(i)
′′

) and m
(i)
r , m

(i)
r + m

(i)

r′′ on to the ideal functionality for

Schur pair generation on behalf of the corrupted parties. Here it lets m
(i)
r [h] = m

(i)

(r,h)[h] and (m
(i)
r +

m
(i)

r′′ )[h] = (m
(i)

(r,h) + m
(i)

(r′′,h))[h] for h ∈ [k] and then for h ∈ [k + 1;m] it defines the shares m
(i)

(r,h)[h] =∑k
l=1 m

(i)

(r,l)[h] ·G[l, h], where G is the generator matrix for C. Similarly for the shares of m
(i)
r + m

(i)

r′′ .

3. The simulator receives back from the functionality the shares
{
C(r(i)),m

(i)
r

}
and

{
C∗(s(i)),m

(i)
s

}
for

each i 6∈ A, under the constraint that mr = C(r) ∗ ∆ and ms = C∗(s) ∗ ∆ (where ∆(i) for i ∈ A has
previously been given by the environment during initialization).

4. The simulator then emulates the execution of (BigMAC, C, r(i)) and (BigMAC, C∗, r(i)
′′

) by using the
shares it got from the adversary and the ideal functionality. More specifically for h ∈ [k] when i 6∈ A
it picks a uniformly random value m

(i)

(r,h) ∈ F2u·m under the constraint that m
(i)

(r,h)[h] = m
(i)
r [h] and

when i ∈ A it uses the values given by the adversary. For h ∈ [k + 1;m] and all i ∈ [n] it sets

m
(i)

(r,h)[h] =
∑k
l=1 m

(i)

(r,l)[h] · G[l, h], where G is the generator matrix for C. Similarly for the shares of

m
(i)
r + m

(i)

r′′ .

5. If the adversary inputs (Error, {e(i)h,j}i/∈A,h∈[k],j∈[m·u]) with elements in F2m·u then it locally sets m
(i)

(r,h) =

m
(i)

(r,h) +
∑m·u
j=1 e

(i)
h,j · ∆

(i)
j · X

j−1 where ∆
(i)
j denotes the j-th bit of ∆(i). Similarly for the shares of

m
(i)
r + m

(i)

r′′ .
6. The simulator receives the shares of the MAC on the first k components and then broadcasts the shares

of the MAC of the honest parties, emulating FComm. It checks that all shares sum up to 0 and outputs
abort if that is not the case.

7. It then emulates the Compress phase of FCodeAuth. It does so just like the protocol ΠCodeAuth since this
part is non-interactive.

Fig. 39. Simulator for generation of Schur pairs.

Lemma 16. For every static adversary A corrupting up to n − 1 parties, the protocol ΠSchur in Fig. 38 k
securely implements the Schur Pair call of Fig. 28 in the (FCodeAuth,FComm)-hybrid model.

Proof. We use the simulator SSchur of Figure 39 which has access to the functionality Schur Pair of Fig. 28
and show that no environment Z can distinguish between an interactions with SSchur and a real adversary
A and real parties with access to the functionality FCodeAuth. This is relatively straightforward; we see that
in the simulation, like the protocol, each malicious party gets to choose its shares r(i), r(i)′ and that r(i)′′ is
uniquely defined from r(i)′ . Using these values and the adversarial shares of the MACs given to the BigMAC

call we construct each adversarial share of the last m − k components of m
(i)
r , respectively m

(i)
s , just like

they would be after the call to Compress in the end of the protocol. So for the corrupted parties the simulator
is indistinguishable from the protocol.

Next, consider the honest parties i 6∈ A. We notice that based on the output of the ideal functionality we
simulate their shares in the BigMAC call exactly like in ΠSchur by picking the values uniformly at random and

using the parts m
(i)
(r,h)[h] we got from the ideal functionality while keeping the constraint that m(r,h) = r[h]·∆.

We see that for h ∈ [k] this follows since we are given the adversarial values for m
(i)
(r,h) and that we are free
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Protocol ΠReorg

Initialize: Take as input a linear function f : Fk2u → Fk2u and call FCodeAuth.Initialize with input (Init).
Reorganization Pair Generation:

1. Call ΠCodeAuth with input (BigMAC, C, r(i)), for random r(i) ∈ Fk2u from Pi, to obtain JC(r)K.
2. Let Jr(1)K, . . . , Jr(k)K be the first k components of the BigMAC-authenticated codeword JC(r)K.
3. Each party locally applies f and then C to Jr(1)K, . . . , Jr(k)K, to obtain JC(f(r))K.
4. Call ΠCodeAuth with input (Compress, C, JC(r)K) and (Compress, C, JC(f(r))K) to obtain JC(r)K∗ and

JC(f(r))K∗

5. Output JC(r)K∗, JC(f(r))K∗

Fig. 40. Protocol ΠReorg - Generation of pairs of authenticated codewords for reorganization of elements.

to choose the values for the honest parties (of which there will be at least one), thus this is trivial to ensure
since we also know ∆(i) for all parties from the Initialization. Since the last m−k values are uniquely defined
from the first k values, by the generator matrix G, and since we have correctness for FCodeAuth.Compress this

also follows trivially. Similarly for the m
(i)
(r′′,h) values.

Now assume w.l.o.g. that there is only one honest party, party i (more honest parties will give us more

wriggle room). To see we can still keep the constraint while using the component m
(i)
(r,h)[h] given by the ideal

functionality for h ∈ [k + 1;m], first remember that this component is uniquely determined by the formula

m
(i)
(r,h)[h] = C(r)[h] ·∆[h]−∑j∈A

(∑k
l=1 m

(j)
(r,l)[h] ·G[l, h]

)
in the ideal functionality. We simulate this share

by defining it to be

m
(i)
(r,h)[h] : =

k∑
l=1

m
(i)
(r,l)[h] ·G[l, h]

=

k∑
l=1

C(r)[l] ·∆[h]−

∑
j∈A

m
(j)
(r,l)[h]

 ·G[l, h]

=

(
k∑
l=1

C(r)[l] ·∆[h] ·G[l, h]

)
−

k∑
l=1

∑
j∈A

m
(j)
(r,l)[h]

 ·G[l, h]

=

(
k∑
l=1

C(r)[l] ·G[l, h]

)
·∆[h]−

∑
j∈A

k∑
l=1

m
(j)
(r,l)[h] ·G[l, h]

= C(r)[h] ·∆[h]−
∑
j∈A

k∑
l=1

m
(j)
(r,l)[h] ·G[l, h]

We see that they are both equally defined and so the simulation is good.
Next we see that the potential input of Error by the adversary is emulated like in the protocol. Then we

notice that the MAC check is also handled (without interaction) as in the protocol and the same goes for
the Compress call and so we are done.

G.5 Reorganization Pairs

The reorganization pairs are constructed in almost the same manner as the Schur pairs: Each party selects a
random element in Fk2u and authenticates it with a BigMAC using FCodeAuth. The linear function f : Fk2u →
Fk2u , given as input, is then applied component wise to each of the authenticated components. Finally, the
results are compressed to MiniMACs.
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Simulator SReOrg

Initialization: On input (Init) from all parties, receive
{
∆(i)

}
i∈A

. It then passes on these values to the ideal

Initialize functionality in FCodeAuth and receives back the shares
{
∆(i)

}
i6∈A

, defining ∆ =
∑
i∈[n]∆

(i).

Reorganization Pair Generation:

1. Receive the shares

{
r(i),

{
m

(i)

(r,h)

}
h∈[k]

}
for each corrupted party i ∈ A from the environment as input to

FCodeAuth.BigMAC for JC (r)K. It then passes these values on to the ideal functionality for Reorganization
pair generation.

2. If the adversary inputs (Error, {e(i)h,j}i/∈A,h∈[k],j∈[m·u]) with elements in F2m·u , it passes on the call to the
ideal functionality.

3. The simulator receives back from the functionality the shares

{
C(r(i)),

{
m

(i)

(r,h)

}
h∈[k]

}
for the honest

parties.
4. The simulator then emulates the execution of (BigMAC, C, r(i)) by using exactly the shares it got from

the adversary and the ideal functionality.
5. The simulator applies f and then C to Jr[1]K, . . . , Jr[k]K, to obtain JC (f(r))K, just like in the real protocol.
6. It then emulates the Compress phase of FReOrg. It does so just like the protocol ΠReorg since this part

is non-interactive.

Fig. 41. Simulator for generation of Reorganization Pairs.

Lemma 17. For every static adversary A corrupting up to n − 1 parties, the protocol ΠReorg in Fig. 40 k
securely implements the Reorganization call of Fig. 28 in the FCodeAuth-hybrid model.

Proof. We use the simulator SReOrg of Figure 41 which has access to the functionality Schur Pair of Fig. 28
and show that no environment Z can distinguish between an interactions with SReOrg and a real adversary A
and real parties with access to the functionality FCodeAuth. This is relatively straightforward; we see that in
the simulation, like the protocol, each malicious party gets to choose its shares r(i). Using these values and
the adversarial shares of the MACs given to the BigMAC call, the simulator uses the ideal functionality to get

the adversarial shares
{

m
(i)
(r,h)

}
h∈[k+1;m]

for i ∈ A. These shares are constructed by the ideal functionality

exactly like in the real protocol so for the corrupted parties the simulator is indistinguishable from the
protocol.

Next, consider the honest parties i 6∈ A. We notice that the output of the ideal functionality for the
honest parties is consistent with the values constructed by the BigMAC call in the real protocol.

Finally we see that the potential input of Error by the adversary is emulated similarly to the real protocol.
Then we notice that the construction of JC (f(r))K is also handled (without interaction) as in the real protocol
and the same goes for the Compress call and so we are done.

H MiniMAC Online Phase

For completeness we here describe the online phase of the MiniMAC protocol. Furthermore, we have in-
troduced a few small optimizations, such as removing the need for a public codeword and a more efficient
amortized MAC check, so our online phase is slightly different from the one by Damg̊ard et al. [11].

First consider arithmetic operations on shares: Remember that shares JC (x)K∗ and JC (y)K∗ are given by
triples (〈C(x〉, 〈mx〉, 〈∆〉) and (〈C(y)〉, 〈my〉, 〈∆〉) respectively. Now see how we do some basic operations
on such shares:

JC (x)K∗ + JC (y)K∗ =
((
C(x(1)) + C(y(1)), C(x(2)) + C(y(2)), . . . ,

C(x(n)) + C(y(n))
)
,
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(
m(1)

x + m(1)
y ,m(2)

x + m(2)
y , . . .m(n)

x + m(n)
y

)
, 〈∆〉

)
= JC (x + y)K∗

C(x) + JC (y)K∗ =
((
C(x) + C(y(1)), C(y(2)), . . . , C(y(n))

)
,(

C(x) ∗∆(1) + m(1)
y , C(x) ∗∆(2) + m(2)

y , . . . ,

C(x) ∗∆(n) + m(n)
y

)
, 〈∆〉

)
= JC (x + y)K∗

C(x) ∗ JC (y)K∗ =
((

C(x) ∗ C(y(1)), C(x) ∗ C(y(2)), . . . , C(x) ∗ C(y(n))
)
,(

C(x) ∗m(1)
y , C(x) ∗m(2)

y , . . . , C(x) ∗m(n)
y

)
, 〈∆〉

)
= JC∗ (x ∗ y)K∗

We now present the online protocol in Fig. 42 which uses the MAC checking procedure from Fig. 16. It
also uses the ideal triple macros from Fig. 29 and assumes pools of preprocessed material in accordance with
the ideal descriptions in Fig. 27 and 28.
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Initialize: The parties first invoke the preprocessing protocols to get a sufficient amount of multiplication
triples {JC (a)K∗, JC (b)K∗, JC∗ (c)K∗}, Schur triples {JC (r)K∗, JC∗ (s)K∗} and reorganization triples for each
of the different linear functions needed {JC (r)K∗, JC (f(r))K∗}.

Rand: The parties call (BigMAC, C, r(i)) for a random r(i) ∈ Fk2u and thus learn a sharing JC (r)K. This is
followed by a call to (Compress, JC (r)K) to learn a sharing JC (r)K∗.

Input: To share party Pi’s input x ∈ Fk2u all parties call (BigMAC, C, r(i)) for a random r(i) ∈ Fk2u and thus
learn a sharing JC (r)K. This is followed by a call to (Compress, JC (r)K) to learn a sharing JC (r)K∗. Party Pi
then locally computes the encoding of x, C (x) ∈ Fm2u and then does as follows:

1. Party Pi sets m(i) := m(i) +
(
C(x)− C(r(i))

)
·∆(i) and stores C(x) instead of C(r(i)) as its message

share.
2. Party Pi then sends δ = C(x)− C(r(i)) to party Pj for each j 6= i.
3. Each party Pj where j 6= i verifies that δ is in fact a codeword and aborts if that is not the case. Pj

then sets m(j) := m(j) + δ ·∆(j).
Add: To add the triples JC (x)K∗ and JC (y)K∗, the parties locally compute JC (x + y)K∗ = JC (x)K∗+JC (y)K∗.
Multiply: To multiply JC (x)K∗ and JC (y)K∗ the parties take a multiplication triple
{JC (a)K∗, JC (b)K∗, JC∗ (c)K∗} and a Schur pair {JC (r)K∗, JC∗ (s)K∗} from the pool of available ones
and do:
1. Partially open JC (x)K∗ − JC (a)K∗ to get ε and JC (y)K∗ − JC (b)K∗ to get δ.
2. Compute JC∗ (c)K∗ + ε ∗ JC (b)K∗ + δ ∗ JC (a)K∗ + ε ∗ δ = JC∗ (x ∗ y)K∗.
3. Partially open JC∗ (x ∗ y)K∗ − JC∗ (s)K∗ to get C∗(x ∗ y − s) = η∗ ∈ C∗. Party P1 then computes

C(x ∗ y − r) = η, which he broadcasts.
4. All parties then check that both η and η∗ are in fact codewords for the same value. The parties then

locally compute η + JC (r)K∗.
Reorganize: Let x = (x1, x2, . . . , xk) be the vector of blocks containing the output bits of a given layer in

the circuit. To reorganize these bits as inputs for the next layer the parties first identify the f matching this
reorganizing and take the preprocessed pair {JC (r)K∗, JC (f(r))K∗}. The parties then do as follows:
1. Partially open JC (x)K∗ − JC (r)K∗ = JC (x− r)K∗.
2. The parties then extracts x− r from C(x− r) and locally computes C(f(x− r)).
3. The parties then compute JC (f(x))K∗ = C(f(x− r)) + JC (f(r))K∗.

Output: This stage is entered when the parties have JC (x)K∗ for (possibly incorrect) but not opened output
value x.
1. Let Jz1K∗, Jz2K∗, . . . , JznK∗ be all partially opened values so far, the parties then call MACCheck with

their shares of these values.
2. The parties then partially open JC (x)K∗ and call MACCheck with their shares of this value.

If no calls to MACCheck aborts the parties output x.

Fig. 42. Protocol Online - MiniMAC online protocol

57


	A Unified Approach to MPC  with Preprocessing using OT
	Introduction
	Our Contributions

	Notation
	Authenticating Secret-shared Values

	OT Extension Protocols
	Amplified Correlated OT with Errors

	Authentication Protocol
	Triple Generation in F2 and F2k
	F2k Triples
	F2 Triples

	Triple Generation for MiniMACs
	Raw Material
	Authentication
	Multiplication Triples
	Schur and Reorganization Pairs

	Complexity Analysis
	Estimating Runtimes

	Acknowledgements
	UC Security
	Information Theoretic Tags for Dishonest Majority
	Batch Checking
	IKNP extension and other OT functionalities
	Other functionalities
	Security proofs
	Amplified Correlated OT – Lemma 1
	Authentication – Lemma 2
	Generalized Bucket Sacrificing for F2 Triples
	Bit Triples – Theorem 2
	F2k Multiplication
	SPDZ Triple Generation – Lemma 3
	SPDZ Triple Checking – Theorem 1

	MiniMAC Protocols and Security Proofs
	Preprocessing Functionality
	Codeword Authentication
	Multiplication Triples
	Schur Pairs
	Reorganization Pairs

	MiniMAC Online Phase


