
On the Power of Pair Encodings: Frameworks for Predicate

Cryptographic Primitives

Mridul Nandi and Tapas Pandit
Indian Statistical Institute, Kolkata

mridul@isical.ac.in,tapasgmmath@gmail.com

Abstract

Recently Attrapadung (Eurocrypt 2014) proposed a generic framework for fully (adaptively) secure
predicate encryption (PE) based on a new primitive, called pair encodings. The author shows that if
the underlying pair encoding scheme is either perfectly secure or computationally (doubly-selectively)
secure, then the PE scheme will be fully secure. Although the pair encodings were solely introduced
for PE, we show that these can also be used to construct predicate signatures, a signature analogue
of PE. More precisely, we propose a generic construction for predicate signature (PS) from the pair
encoding schemes. Our construction provides the signer privacy, and unforgeability in the adaptive-
predicate model. Thereafter, we instantiate many PS schemes with new results, e.g., the first practical
PS schemes for regular languages, the first attribute-based signature (ABS) scheme with constant-size
signatures in adaptive-predicate model, the unbounded ABS with large universes in key-policy flavor,
etc.

Following the CCA conversions of Yamada et al. (PKC 2011, 2012) and Nandi et al. (ePrint
Archive: 2015/457), one can have CCA-secure PE from CPA-secure PE if the primitive PE has either
verifiability or delegation. We show that the fully secure CPA-construction of Attrapadung possesses
the verifiability. The aforesaid approach degrades the performance of the resultant CCA-secure PE
scheme. As an alternative, we provide a direct fully secure CCA-construction for PE from the pair
encoding scheme. This costs an extra computation of group element in encryption and three extra
pairing computations in decryption as compared to the CPA-construction of Attrapadung.

The predicate signcryption (PSC) is a super class of the existing class, the attribute-based sign-
cryption (ABSC), where the confidentiality, unforgeability and signer privacy are well preserved. By
combining the proposed frameworks for PS and PE, we provide a generic construction for PSC from the
pair encodings. It achieves the perfect privacy, and the strong unforgeability and CCA security in the
adaptive-predicates model. The construction has the support of combined-setup, where the distributions
of public parameters and keys in the underlying signature and encryption schemes are identical. The
proposed PSC provides many new results, e.g., the first PSC schemes for regular languages, the first
ABSC with constant-size signcryptions and constant-size keys respectively, the unbounded ABSC with
large universes in adaptive-predicates model, etc.

Keywords: Pair encodings, predicate encryption, predicate signature, predicate signcryption.

1 Introduction

The dual system methodology of Waters [50] is a well known tool for constructing the predicate encryption
scheme. But, for some predicates, e.g., regular languages, the adaptively secure predicate encryption
was not known, even though their selectively-secure version was available. Therefore, for those class of
predicates, the dual system technique of Waters [50] was unreachable. Recently, Attrapadung [2] introduced

1

mridul@isical.ac.in, tapasgmmath@gmail.com

a new primitive, called pair encoding schemes which are implicitly contained in many predicate encryption
schemes. Using the pair encodings [2], the author proposed a generic framework for adaptively secure
predicate encryption, which captures the core technique of the dual system methodology [50]. They
showed that by applying the generic approach on the pair encoding, the adaptively-secure PE is possible.
Their conversion assumes either the perfect security or computational (doubly-selective) security of the
underlying pair encoding scheme. Using this framework, the author constructed the first fully secure
predicate encryption schemes for which only selectively secure schemes were known. They instantiated some
surprising results, e.g., PE for regular languages, unbounded ABE for large universes, ABE with constant-
size ciphertexts, etc. Concurrently and independently, Wee [52] proposed the notion of predicate encodings
which is exactly identical to the perfectly secure pair encodings of [2]. Some of the instantiations in [52]
are similar to [2], viz., the ABE for small universe with improved efficiency and doubly-spatial encryption.
Later, Attrapadung and Yamada [6] showed a conversion for obtaining the dual of a computationally secure
pairing encoding scheme. The conversion is required to construct dual of a predicate encryption scheme
which is based on computational secure pair encoding scheme.

Predicate signature (PS) [4] is a signature analogue of predicate encryption (PE) [13], where Alice
signs a document under an associated data index (policy), provided Alice’s key index x ∈ X is related to
the associated data index y ∈ Y. The term “related” is defined by a binary relation ∼, called predicate
defined over X × Y, where X and Y are respectively called key space and associated data space. Some
times, we call the tuple (∼,X ,Y) as predicate tuple. The attribute-based signature (ABS) [36] is a larger
subclass of PS. Like ABS, the predicate signature schemes are available in two forms, key-policy predicate
signature (KP-PS) and signature-policy predicate signature (SP-PS). If the contents of X have complex
representations than the contents of Y, then the predicate signature is called KP-PS, otherwise it is SP-PS.
Similar to ABS, we have two types of security, the unforgeability and signer privacy. The former ensures
that the signatures are generated by a valid user and later protects from revealing the signer key index.

The concept of signcryption was introduced by Zheng [56]. Since then, many signcryption schemes
[1, 38, 35] have been proposed. Among the three well known paradigms of [1], the paradigm “Commit
then Encrypt and Sign (CtE&S)” runs faster as the implicit subroutines execute in parallel in signcrypt
and unsigncrypt algorithms.

Attribute-based signcryption (ABSC) [24] is a natural extension of attribute-based encryption (ABE)
and attribute-based signature (ABS) such that the confidentiality, unforgeability and signer privacy are
well maintained. Like ABS, if the key is labeled with the set of attributes and the policies (signer policy
and receiver policy) are associated with the signcryption, then the ABSC is known to be the key-policy
attribute-based signcryption (KP-ABSC) and its dual form is called the signcryption-policy attribute-
based signcryption (SCP-ABSC). The combined-setup in ABSC [17, 43] and combining public-key scheme
[27, 48] allow to keep the distributions of public parameters and keys in the underlying signature and
encryption schemes identical. In this setup [17, 43], the underlying ABS and ABE schemes have identical
setup and key-gen algorithms. On the contrary, the setup and key-gen algorithms for ABS and ABE in
independent-setup are not necessarily identical and they are run independently to generate the keys and
public parameters for the individual primitives, ABS and ABE. We note that the same keys and public
parameters are used for both the primitives, ABS and ABE in combined-setup as opposed to independent-
setup. Therefore, the schemes in combined-setup have a benefit of sizes of key and public parameters than
the schemes in independent-setup.

Predicate signcryption (PSC) is a generalization of the attribute-based signcryption. In this paper,
we have a special interest the PSC with combined-setup. Let (∼,X ,Y) be a predicate tuple. For this
setup, a user will have a key SKx for some key-index x ∈ X . This key will be used for both signcrypt and
unsigncrypt. To signcrypt a message m ∈M, the sender has to choose two data-indices, ys ∈ Y and ye ∈ Y.

2

The data-index ys is called the sender data-index. A sender with a key SKx can signcrypt the message m
on behalf of community represented by ys if x ∼ ys. The data-index ye is called the receiver data-index. A
receiver with a key SKx can legitimately unsigncrypt a signcryption with the underlying receiver policy, ye
if x ∼ ye. Similar to ABSC, if the contents of X have complex representations than the contents of Y, then
the predicate signcryption is called key-policy predicate signcryption (KP-PSC). Its dual form is called
signcryption-policy predicate signcryption (SCP-PSC). For example, consider a predicate signcryption for
regular languages over an alphabet Σ. If the key-indices are represented by the regular languages over Σ
and both the data-indices are represented by the strings over Σ, then the form of PSC is called KP-PSC
for regular languages. Its dual form is called SCP-PSC for regular languages. Other forms of PSC are
possible, but in combined-setup, these are the only forms of PSC in our consideration.

A predicate signcryption scheme is said to have public verifiability if a receiver always can convince the
third party that the received message (m, ys) was actually sent by a user whose key index satisfies ys (policy
of the sender). As pointed out in [43] that any predicate signcryption which extends the CtE&S-approach
of [1] can be shown to have public verifiability. But, for that, we have to assume the relaxed-binding
property of the primitive commitment scheme.

Motivation. All the predicate encryption schemes of [2, 6, 52] were shown to be CPA-secure in the
adaptive-predicate model. Using the technique [54, 53, 39], the above CPA-secure constructions can be
lifted to show the CCA-security. In all these CCA conversions, a sort of index-transformation for predicate
family is applied to the primitive CPA-secure PE scheme for the same family. In addition to the CPA-
decryption, the CCA-decryption of the traditional approach [54, 53, 39] has to preform either delegation
or verifiability. But the problems the above techniques suffer, are (1) increased lengths of key-indices
and data-indices and (2) extra cost for performing verifiability or delegation. In the literature, most
of the predicate encryption schemes are constructed using bilinear pairing groups. If the verifiability-
based approach (where delegation is not known) is applied to those schemes, then checking in verifiability
requires a number of pairing computations which is nearly equal to the number of pairing computations
in the CPA-decryption. Altogether the techniques degrade the performance of decryption. Therefore, a
direct CCA-secure construction of PE based on pair encoding scheme whose cost is very close to that of
the existing CPA-secure construction [2] is always welcome.

The available pair encoding schemes [2, 6, 52] have been reached out for most of the practical predicate
families. Therefore, it is interesting to see a construction of predicate signatures from the pair encoding
schemes which were solely introduced for predicate encryptions.

Recently, Pandit, Pandey and Barua [43] proposed an ABSC scheme which supports perfect privacy,
public verifiability, combined-setup and follows the CtE&S paradigm. The strong unforgeability and IND-
CCA security of the ABSC scheme were proven in the adaptive-predicates models. In current state-of-art,
no generic construction of predicate signcryption with the above properties was known. Therefore, it is
interesting to see any generic construction of predicate signcryptions from the pair encoding schemes along
with all the above properties. The above discussion is summarized as the questions given below.

(1). Is it possible to construct a generic predicate signature scheme from the pair encoding scheme and
at the same time, it enjoys all the features analogous to those of [2]?

(2). Can a direct CCA-secure PE scheme be constructed from the pair encoding scheme whose perfor-
mance is very close to that of CPA-secure construction [2]?

(3). Is it possible to construct a generic predicate signcryption scheme from the pair encoding scheme
which achieves all the features and security of [43]?

3

Our Contribution. All the above questions are answered in a novel way. We provide generic construc-
tions of predicate signature, (CCA-secure) predicate encryption and predicate signcryption schemes from
the pair encoding schemes. If the underlying pair encoding scheme with a least security1, fulfills some
(natural) conditions, then the PS and PSC schemes will achieve the perfect signer privacy, and the un-
forgeability in adaptive-predicate(s) model. But to ensure the adaptive-predicate(s) IND-CCA security of
the PE and PSC schemes, we assume either both the computational security (CMH and SMH) or the PMH
security of the underlying pair encoding scheme. All the constructions are given in the setting of composite
order bilinear groups. The unforgeability (of PS and PSC) and IND-CCA security (of PE and PSC) are
proven under the three subgroup assumptions, DSG1, DSG2, DSG3 and the extra hardness assumption(s)
required for the CMH (and SMH)-security of the underlying pair encoding scheme. If the primitive pair
encoding scheme has PMH-security, then we do not need any extra hardness assumption. In this case, we
say that the corresponding predicate scheme is cost free. Through these generic constructions what we
achieved are summarized below:

– Predicate Signature. All the pair encoding schemes of [2, 6, 52] maintain the least security and satisfy
the the natural conditions (see Conditions 3.1 of Section 3.1). Therefore, the resultant predicate
signature schemes are adaptive-predicate unforgeable and perfectly private. Our generic predicate
signature can be used to derive the following new results.

• (PS for Regular Languages.) Predicate signature schemes for regular languages in both the
forms, key-policy and signature-policy are provided in this paper. Both the schemes support
the large universe alphabet. To the best of our knowledge, these are the first practical non-trivial
predicate signature schemes beyond ABS.

• (Unbounded KP-ABS.) We present an unbounded KP-ABS scheme with large universes, where
the size of the universe is super-polynomial and no restriction has been imposed on the access
polices and sets of attributes. To the best of our knowledge, this is the first large universes
KP-ABS construction with the feature unbounded.

• (Constant-size Signatures and Constant-size Keys.) Till date, the only available ABS scheme
[4] with constant-size signatures for general access structures is known to be unforgeable in the
selective-predicate model. We propose the first KP-ABS with constant-size signatures, where the
unforgeability is proven in adaptive-predicate model. A dual version, SP-ABS with constant-size
keys is also provided in this paper.

• (Cost Free Signatures.) The following predicate signatures are cost free as the underlying pair
encoding schemes are PMH secure. The schemes are ABS for both small and large universes
and predicate signatures for policy over doubly-spatial predicate. We can also obtain predicate
signature schemes with constant-size keys and constant-size signatures respectively for both
zero inner product and non-zero inner product predicates. Predicate signatures for doubly-
spatial predicate and negated spatial predicate can be derived. Spatial signature schemes with
constant-size keys and constant-size signatures respectively can be instantiated.

– CCA Secure Predicate Encryption. We obtain adaptive-predicate IND-CCA predicate encryption
schemes from the pair encoding schemes via the following two approaches:

• (Traditional Approach.) We first show that if the underlying pair encoding scheme fulfills the
condition (1) of Conditions 3.1, then the fully secure construction in Section 4.3 of [2] satisfies

1We consider two notions of security for the pair encoding scheme, perfect and computational. The perfect security is
called the perfectly master-key hiding (PMH). The computational security are of two types, the selectively master-key hiding
(SMH) and co-selectively master-key hiding (CMH). The least security means either PMH or CMH.

4

verifiability (Definition 2.9). Then, by applying the CCA conversion technique [53, 54, 39], one
can obtain adaptive-predicate IND-CCA predicate encryption schemes.

• (New Approach (Direct CCA-secure PE).) We pointed out earlier in this paper that the
traditional approach has a major drawback, the degradation of performance of the decryption.
This motivates us to study the direct adaptive-predicate CCA-secure construction of predicate
encryptions from the pair encodings. For this construction, we assume the conditions (1) and
(3) of Conditions 3.1 on the pair encodings. It has one extra group element in ciphertext and
three extra pairing computations in decryption as compared to the CPA construction of [2].

All the underlying pair encodings [2, 6, 52] satisfy the conditions (1) and (3) of Conditions 3.1.
Therefore, using this new approach, we are able to achieve CCA security of all the predicate encryp-
tions found in [2, 6, 52].

Recently, Blömer and Liske [8] proposed a direct CCA-secure construction of predicate encryptions
from the pair encodings. Although they did not use the traditional approach, a sort of verifiability
checking is involved before the actual CPA-decryption. The number of pairing computations for this
checking is nearly equal to the number of paring computations in CPA-decryption. Therefore, our
direct CCA-secure construction of PE has a better performance than [8].

– Predicate Signcryption. All the pair encoding schemes of [2, 6, 52] either have both the computational
security (CMH and SMH) or the PMH security. Also, the aforementioned pair encodings fulfill
the natural conditions, Conditions 3.1. Therefore, the resultant predicate signcryption schemes
are strongly unforgeable and IND-CCA secure in adaptive-predicates models, and perfectly private.
All the predicate signcryption schemes have the combined-setup, public verifiability and follow the
CtE&StS paradigm of [43]. To the best of our knowledge, all the results described below are new
except the SCP-ABSC with small universes construction of [43].

• (PSC for Regular Languages.) We present predicate signcryptions for regular languages in
both policies, key-policy (KP) and signcryption-policy (SCP) which support the large universe
alphabet.

• (Unbounded ABSC.) Unbounded ABSC schemes with large universes in both forms, KP and
SCP are provided in this paper.

• (Constant-size Signcryptions and Constant-size keys.) A KP-ABSC with constant-size signcryp-
tions and an SCP-ABSC with constant-size keys are proposed in this paper.

• (Cost Free Signcryptions.) We can instantiate many cost free predicate signcryptions which are
analogous to the cost free predicate signatures.

Outline of Our Constructions. In brief, a pair encoding scheme [2] consists of four deterministic
algorithms, Param,Enc1,Enc2 and Pair. Let N ∈ N. Param(j) → n, where j is the index for a system
parameter and n describes the length of the common parameters h ∈ ZnN . Enc1(x) → (kx,m2), where
kx is a sequence of polynomials over ZN with |kx| = m1 and m2 is length of the random coin r ∈ Zm2

N .
Enc2(y) → (cy, ω2), where cy is a sequence of polynomials over ZN with |cy| = ω1 and ω2 + 1 is length
of the random coin s = (s0, . . . , sω2) ∈ Zω2+1

N . Pair(x, y) → E ∈ Zm1×ω1
N . The correctness says for x ∼ y,

(kx,m2)← Enc1(x), (cy, ω2)← Enc2(y) and E ← Pair(x, y), we have kx(α, r,h)Ec>y (s,h) = αs0.

1. Outline for PS. Before describing the outline of the predicate signature, we state the following two
facts:

–Fact 1. A signature in nothing but a diluted key for a policy y computed from an actual (strong) key
SKx with x ∼ y, where the message m and the policy y are to be binded.

5

–Fact 2. To maintain the signer privacy, the signature is labeled with policy y, at least not labeled with
the key-index x.

The above facts are implicitly used in many predicate signatures and also provide an insight to the predicate
signature. Let (N := p1p2p3,G,GT , e) be a composite order bilinear groups and gT := e(g, g), where
g ∈ Gp1 and G = Gp1 ×Gp2 ×Gp3 .

In the following, we first give an outline of the initial structure of our predicate signature using structure
of predicate encryption of [2] based on pair encodings. Recall that SKx = gkx(α,r,h) · R3 ∈ Gm1 with
R3 ∈ Gm1

p3 is the key structure of [2] for the key-index x.

– Signature Generation. Suppose Alice is playing the role of a sender. Let SKx = gkx(α,r,h) ·R3 ∈ Gm1 be
the key of Alice. To sign a message m under a policy y with x ∼ y, Alice first runs E ← Pair(x, y).

Then, it generates the signature as δy := SKEx ·R′3 ∈ Gω1 where R′3
U←− Gω1

p3 . On simplification, we

have δy = gkx(α,r,h)E · R̃3, where R̃3 := RE
3 ·R′3. This signature δy plays the role of a diluted key,

derived from the actual key SKx.

– Signature Verification. The verification process considered here is a probabilistic one as it is performed by
running the routines which are similar to the encryption and decryption of the predicate encryption
of [2]. Since, a signature is a poor or diluted key, so verifying a signature is nothing but checking
its capability to extract out some information from the part of a ciphertext. Therefore, to verify a
signature δy, we first prepare a verification text (it is same as the ciphertext, but without the message
m) V := (V INT := gαs0T ,Vy := gcy(s,h)). The signature is accepted if e(δy,Vy) = V INT else rejected.
We note that the Gp3 part of δy gets canceled in the verification due to the orthogonal property of
the composite order bilinear groups.

– Correctness. For x ∼ y, e(δy,Vy) = e(g, g)kx(α,r,h)Ec>y (s,h) = gαs0T , where the last equality is obtained
from the correctness of pair encoding scheme.

Limitations of the initial structure of the signature. The above initial structure of the signature
only shows that Alice is capable to generate such a signature. We note that neither the message nor the
policy is binded in the above signature which is very crucial to guarantee unforgeability. Although the
above signature is not labeled with the key-index x, it misses a very important property of the predicate
signature, the perfect-privacy of the signer.

To overcome the limitations of the above signature, we have to modify the initial structure. The
modifications are explained briefly in the following two steps.

– Step 1. The initial structure of the signature is δy = gkx(α,r,h)E ·R̃3 ∈ Gω1 . To ensure unforgeability, the
message m and the policy y are to be binded to δy. The binding is to be done in such a way that the
binding part of the signature cannot be updated, once the signature has been generated. The binding
is made in the following way. A collision resistance hash function H : {0, 1}∗ → ZN and two others
parameters, gθ1 , gθ2 are added to the public parameters PP. A group element, gτ(θ1~+θ2) is composed

with the first component of gkx(α,r,h)E , where τ
U←− ZN and ~ = H(m, y). Additionally, g−τ is given

as a part of the signature. In other words, the modified signature becomes, δy = gv · R̃3 ∈ Gω1+1,
where v is implicitly set to v := (−τ,ψ+kx(α, r,h)E) ∈ Zω1+1

N and ψ := (τ(θ1~+θ2), 0, . . . , 0) ∈ Zω1
N .

To verify this signature, the verification text is to be changed to V := (V INT := gαs0T ,Vy :=

gc
M
y (s,θ1,θ2,h)), where cMy (s, θ1, θ2,h) := (c0(s0, θ1, θ2, ~), cy(s,h)) ∈ Zω1+1

N , c0(s0, θ1, θ2, ~) := s0(θ1~+
θ2) and ~ := H(m, y). The verification is same as before, i.e., the signature is accepted if e(δy,

6

Vy) = V INT else rejected. For correctness of the verification, we assume that cy,ι(s,h) = s0 for some
ι ∈ [ω1].

– Step 2. For perfect-privacy, the authors of [37] assume the perfectly hiding property of the underlying
non-interacting witness-indistinguishable (NIWI) scheme. For the ABS schemes of [41, 42, 43], an
additional secret sharing (0-sharing) was used to assure the perfect-privacy. For perfect-privacy of
the proposed signature, we explore a novel approach (for details, refer to Section 3.4) which works
irrespective of the predicate families. This is done by uniformly sampling from the orthogonal space
(VM)⊥ of VM := {cMy (s, θ1, θ2,h) ∈ Zω1+1

N | s := (s0, . . . , sω2) ∈ Zω2+1
N }. The final signature of the

proposed construction (for complete description, refer to Section 3.3) has the form, δy = gv+vsp ·R̃3 ∈
Gω1+1, where vsp

U←− (VM)⊥. The verification is same as before, where vsp gets canceled due to the
orthogonality of vsp and cMy (s, θ1, θ2,h).

We show that uniformly sampling from (VM)⊥ is done by solving the homogeneous system,

A>X = 0, where A ∈ Zω1×(ω2+1)
N . For 1 ≤ ι ≤ ω1 and 0 ≤ j ≤ ω2, the (ι, j)th entry of the matrix

A is of the form, aι,j +
∑

i∈[n] aι,j,ihi, where aι,j and aι,j,i are co-efficients of ιth polynomial of cy.

The only available information to solve the system are aι,j , aι,j,i and ghi for 1 ≤ ι ≤ ω1, 0 ≤ j ≤ ω2

and i ∈ [n]. Since, hi’s are not given explicitly, applying Gaussian elimination on A is troublesome.
Although hi’s are not given explicitly, we manage to solve the system A>X = 0 smoothly. For
that we assume a restriction on the underlying pair encoding scheme which is very natural. This
restriction is given as condition (2) in Section 3.1. To the best of our knowledge, most of the pair
encodings (in fact, all the pair encoding of [2, 6, 52]) satisfy this condition.

One of the motivations of this paper is to achieve the adaptive security. We utilize the dual system
proofs of [50] in a novel way to guarantee the adaptive unforgeability of the proposed construction. For
the proof of adaptive-predicate unforgeability of the proposed signature, we abstract the dual system
methodology of [50] as a signature analogue of [2]. The hybrid arguments over the games in this signature
analogue of the dual system proof technique follow the style of [41, 43]. However, the hybrid arguments in
[41, 43] were handled for a particular ABS through the linear secret sharing scheme (LSSS). But, here we
manage the dual system proof technique generically for arbitrary predicates. In this style, we consider the
semi-functional (mimic) forms of the original objects, the verification text, signatures and keys. Through
the hybrid arguments, we finally reach to a game, where the V INT is chosen independently and uniformly
at random from GT . This implies that the forgery will be invalid with respect to the verification text V.

2. Outline for Direct CCA-secure PE. We have already observed that the initial structure of the
verification text for the predicate signature is similar to the structure of the ciphertext of [2]. We also
notice that the verification text for the final signature has a structure which is similar to a variant of the
ciphertext of [2]. In fact, if a message m is included in the verification text, the structure of the ciphertext

becomes, CT := (y, CINT := m·gαs0T , CM
y := gc

M
y (s,θ1,θ2,h)) with ~ = H(m, y). After a rearrangement, we have

CT := (Ccpa, C0 := gs0(θ1~+θ2)), where Ccpa := (y, CINT,Cy := gcy(s,h)). Now, look at the major concern in
the construction of the CCA-secure ciphertext. It simply says that a new ciphertext (mostly well-formed or
ill-formed but up to certain extent) cannot be created from a given ciphertext. In the traditional approach
[53, 54], the aforementioned concern is handled by using a strong one-time signature (OTS) scheme. We
also note that for the traditional approach, the Ccpa part of the CT is not required. However, in this direct
CCA-secure construction, the hash value, ~ appearing in C0 is changed to H(Ccpa) to form CCA-secure
ciphertext CT. We note that the additional component C0 in CT is a natural replacement for OTS in the
traditional approach [53, 54], where s0 plays the role of a signing key of the OTS.

7

For the decryption of the CCA-ciphertext, we use the chemistry between the verification text Vy and
predicate signature δy. In fact, given a ciphertext CT = (y, CINT,C

M
y = (C0,Cy)) and a key SKx, the

decryption is performed in the following way. It first creates an alternative key SKM
x := gv · R̃3 exactly in

the same manner as δy found in Step 1. Then, it returns CINT/e(SKM
x ,Cy). For complete description of

the direct CCA-secure PE, refer to Section 6.1.

The adaptive security is obtained by modifying the dual system proof style of [2] (which incorporates the
dual system methodology of [50]). This modification is required to answer the decrypt queries appropriately.

3. Outline for PSC. Our proposed predicate signature and predicate encryption have the identical
key distribution and identical PP distribution. Using the advantage of these distributions, we take a step
towards the first generic construction of predicate signcryptions from the pair encodings. Recall the outline
of the construction of ciphertext in direct CCA-secure predicate encryption. It first runs the encryption of
[2] (we call it Encrypt∗) to create the CPA-secure ciphertext Ccpa. Then, an additional (delayed) component
C0 := gs0(θ1~+θ2) is computed to complete the CCA-ciphertext CT := (Ccpa, C0).

Both the proposed modules, the predicate signature and predicate encryption use the individual hash
functions. In the proposed predicate signcryption, we handle the hash values in signature and encryption
using a single hash function H. Let ~s and ~e be the hash values respectively used in predicate signature
and predicate encryption. To distinguish the hash values ~s and ~e, we respectively use the prefix bit of
the hash arguments to be ‘1’ and ‘0’.

Suppose Alice has a key SKx for the key-index x. To signcrypt a message m under a sender’s policy ys
and a receiver’s policy ye, Alice does the following. She runs in parallel (com, decom) ← Commit(m) and
(vk, signk)← OTS.Gen(1κ). Computes ~s := H(1, vk, ys). Then, runs in parallel δys ← PS.Sign(vk,SKx, ys)
and Ccpa ← PE.Encrypt∗(decom, ye). To bind all the components, Alice computes the hash value,
~e := H(0, com, δys , vk,Ccpa). Similar to the direct CCA-ciphertext, she computes the delayed compo-
nent C0 := gs0(θ1~e+θ2). Then, the one-time signature is generated as δo ← OTS.Sign(C0||ys, signk). The
final signcryption is of the form, U := (com, δ := (δys , δo, vk),CT).

Given a signcryption U, key SKx and sender’s policy ys, the unsigncrypt algorithm does the fol-
lowing steps. If the output of OTS.Ver(C0||ys, δ0, vk) is 0, it returns ⊥. Otherwise, it runs in par-
allel flag ← PS.Ver(vk, δys , ys) and decom ← PE.Decrypt(CT,SKx). If flag = 0, it returns ⊥ else
m← Open(com, decom).

We note that the OTS is used mainly to provide the strong unforgeability of the signcryption. In the
original CtE&S paradigm of [1], com is signed and decom is encrypted. We deviate a bit from the approach
of CtE&S [1], where we sign (under PS) vk, instead of com. Later, we derive a simple predicate signcryption
by a minor modification (viz., ignoring the primitive scheme, commitment) of the current signcryption.
For details of modification, we refer to Section 7.

Again for the security of PSC, we utilize the dual system methodology of [50]. The proof for unforge-
ability of the proposed PSC implements the dual system proof of [50] in almost similar way as it is done
for PS. But, in the unforgeability model for PSC, we have to answer the extra queries, the unsigncrypt
queries. Similarly, we have to respond the extra queries, the signcrypt queries in the confidentiality model
for PSC. The distributions of the objects involved in the dual system methodology for PSC are the joint
distributions of the objects (of some forms) involved in the dual system methodology for PS and PE.
Therefore, we re-use the part of the proofs for PS and PE in the security proof for PSC. This style is
similar to [43], where we handled it for a particular ABSC through LSSS. But, in this novel approach, we
are able to manage it generically for arbitrary predicates.

8

Related Works. In addition to the fully CPA-secure construction of PE, Attrapadung [2] showed a dual
conversion for the pair encodings. If the source pair encoding P is perfectly secure, then the dual of P,
denoted by D(P) is also perfectly secure encoding. Using this conversion the full security of the dual of a
PE, denoted by D(PE), is guaranteed if the underlying pair encoding P has the perfect security. However,
there are many PE schemes for which the perfectly secure encodings were not known, so the fully secure
realizations of their dual form were unsolved. Later, Attrapadung and Yamada [6] showed that the same
dual conversion of [2] actually works for the computationally secure encodings. By applying this conversion
on the underlying pair encoding of previously proposed KP-ABE [2], the authors achieved the first fully
secure unbounded CP-ABE and a CP-ABE with short keys for Boolean formulas. Recently, Chen, Gay and
Wee [19] and Attrapadung [3] proposed new generic frameworks for achieving adaptively secure ABE in
the prime order bilinear groups which are nothing but the prime order version of [52] and [2] respectively.
The main difference between the frameworks of [19] and [3] is that the former deals with only the perfectly
secure encodings, whereas the later can deal with the computationally secure encodings.

Attribute-based signature. In the literature many ABS schemes [36, 37, 41, 23, 42, 34, 46, 47, 55, 47, 55]
have been studied. Among them only the schemes [37, 41, 23] were known to achieve the signer privacy,
adaptive-predicate unforgeability in the standard model and support the general access structures. In
[37], the authors proposed a general framework for ABS using the credential bundle and NIWI scheme as
primitives. This general framework provides the attribute-based signatures for monotone span programs in
signature-policy form. The authors showed two practical instantiations of ABS in the standard model using
Groth-Sahai proof system [26] for satisfiability of pairing product equations. In the first instantiation, they
used Boneh-Boyen signature [10] as the candidate for credential bundle, whereas in the second instantiation,
other Boneh-Boyen signature [9] was used. The ABS construction of [41] is based on the concept of dual
pairing vector space of [40] and relies on DLIN assumption. The authors first utilized the dual system
methodology [50] in ABS for adaptive unforgeability. The ABS of [41] is more efficient as compared to [37],
since the later uses the Groth-Sahai non-interactive zero-knowledge (NIZK) proof systems [26] as building
blocks. Although the performance of the ABS construction [41] defeats the same of [37], the scheme [41]
has the following drawbacks. The size of the public parameters is linear to the size of sub-universe and
a bound is imposed on the number of times an attribute could appear in a policy. The ABS schemes
[37, 41, 23] have signature-policy form, among them the schemes [37, 41] support the large universe.

Functional signature. Bellare and Fuchsbauer [7] proposed a notion of policy-based signature which
unifies the existing signatures, e.g., group signatures [16], mess signatures [14], attribute-based signatures
[37], etc. For a policy-based signature (PBS) scheme, the authors defined the policy language L to be any
member of the complexity class NP. In this scheme, a key SKp which is associated with policy p can sign
a message m (without revealing p) if (p,m) ∈ L. Since L ∈ NP, the message m together with the witness
w is to be supplied while generating the signature. If we restrict the policy language to come from the
complexity class P (⊆ NP), then what we have is nothing but the predicate signatures, where the witness
is computed in polynomial time. At the same time, Boyle, Goldwasser and Ivan [15] introduced a concept
of functional signatures. In this signature, a key SKf is associated with a function f and the key SKf
has the power to sign a message m if m belongs to its range. This can be considered as a special case of
PBS, in which the policy language L is the set of all pairs, (f,m) such that m is in the range of f and the
witness for (f,m) is a pre-image m under f .

The authors [7] showed a generic construction of attribute-based signature from PBS, but they did
not explicitly mention the practical instantiation of ABS. If we instantiate the ABS of [7] using Groth-
Ostrovsky-Sahai proof system [25] for NP-complete languages such as circuit satisfiability, then there is
a huge blowup in the size of the signature due to Karp reduction. On the other hand, if we use Groth-
Sahai proof system [26] for satisfiability of pairing product equations, then the ABS supports only the

9

restricted predicate family, viz., the conjunction and disjunction of pairing product equations. Recently,
Sakai, Attrapadung and Hanaoka [45] proposed an efficient ABS for arbitrary circuits from the symmetric
external Diffie-Hellman assumption. Their ABS construction is based on the efficiency of Groth-Sahai
proof system [26] and the expressiveness of Groth-Ostrovsky-Sahai proof system [25].

Attribute-based signcryption. In recent years, many ABSC schemes [49, 44, 43, 21, 17] have been
proposed to deal with various aspects, e.g., efficiency, expressibility, security feature, model, etc. Among
them only the scheme of [43] has the support of combined setup, signer privacy, and confidentiality and
unforgeability in the adaptive-predicates model. However, we show that this can be instantiated from our
framework.

Functional signcryption. Recently, Datta, Dutta and Mukhopadhyay [20] proposed a concept of func-
tional signcryption (FSC) which provides the functionalities of functional signature [15] and functional
encryption [12] together. Using indistinguishability obfuscation, CPA-secure PKE, statistical simulation-
sound NIZK proof system with proof of knowledge and a weakly unforgeable signature scheme as building
blocks, they proposed a generic construction of FSC. They showed an ABSC scheme for general circuits
from the proposed functional signcryption. The authors did not provided any practical instantiation of
ABSC scheme. As discussed above, if Groth-Ostrovsky-Sahai proof system [25] (modified form to assure
statistical simulation-sound) for NP-complete language is applied, then size of signcryption will blow up
a huge due to Karp reduction. However, this construction neither supports combined-setup nor enjoys
public verifiability. The security of the ABSC scheme was shown to be secure in the selective-predicates
models (Definitions 2.20 and 2.24).

Organization. This paper is organized as follows. The basic notation, composite order bilinear groups,
hardness assumptions, the syntaxes and security definitions of commitment, one-time signature, predicate
encryption, predicate signature, predicate signcryption and pair encoding schemes, and other related things
are given in Section 2. Framework, security and instantiations of predicate signature are respectively
provided in Section 3, Section 4 and Section 5. A direct-CCA secure PE and its security proof are given
in Section 6. Framework, security and instantiations of predicate signcryption are illustrated respectively
in Section 7, Section 8 and Section 9.

2 Preliminaries

2.1 Notations

For a set X, x
R←− X denotes that x is randomly picked from X according to the distribution R. Likewise,

x
U←− X indicates x is uniformly selected from X. For an algorithm A and variables x, y, the notation

x ←− A(y) (or A(y) −→ x) carries the meaning that when A is run on the input y, it outputs x. The
symbols, poly and PPT stand for polynomial and probabilistic polynomial-time respectively. For a, b ∈ N,
define [a, b] := {i ∈ N : a ≤ i ≤ b} and [b] := [1, b]. Let str1|| . . . ||strn denote the concatenation of the
strings, str1, . . . , strn ∈ {0, 1}∗. For algorithms A1, . . . , An and variables x1, . . . , xn, y1, . . . , yn, the notation
x1 ←− A1(y1); ‖ . . . ; ‖ xn ←− An(yn); stands for the parallel execution of x1 ←− A1(y1), . . . , xn ←−
An(yn).

Throughout this paper, bold character denotes vector objects. For h ∈ ZnN and p|N , we define h
mod p := (h1 mod p, . . . , hn mod p). For a vector x (resp. xk), the ith component is denoted by xi
(resp. xki). For x,y ∈ ZnN , we define < x,y >:=

∑n
i=1 xi · yi. For S ⊂ ZnN and α ∈ ZnN , we define

α+ S := {α+ β | β ∈ S}.

10

For a matrix M , the notations M> and Mij denotes the transpose of M and entry of M at (i, j)th

position respectively. The notation M i denotes the ith row of the matrix M . Null(M) represents the
nullity of the matrix M . The notation 0m×n stands for an m × n matrix with all the entries as 0. For a
group G and n ∈ N, the entries from Gn are assumed to be the row vectors.

Let G be a cyclic group of order N with respect to the group operation ‘·’. For g ∈ G and h ∈ ZnN , we
define gh := (gh1 , . . . , ghn). ForX,Y ∈ Gn, the notationX ·Y stands for component wise group operations,
i.e., X · Y := (X1 · Y1, . . . , Xn · Yn) ∈ Gn. For W ∈ Gn and E ∈ Zn×mN , we define WE := z ∈ Gm, where

zi := WE1i
1 · · ·WEni

n . If W = gw, for g ∈ G and w> ∈ ZnN , then we can write WE = gwE .

For a matrix A ∈ Z`×ϑq , we define the linear space Ker(A) := {u ∈ Z`q | u>A = 0}. For (X,x) ∈
Z`×ϑq × Z`q, an affine space generated by (X,x) is defined by Aff(X,x) := {Xu+ x | u ∈ Zϑq } ⊂ Z`q. The

nullity of a matrix A is defined by Null(A) := the dimension of Ker(A>).

2.2 Composite Order Bilinear Groups

Composite order bilinear groups [11, 32] are defined to be a tuple J := (N := p1p2p3,G, GT , e), where
p1, p2, p3 are three distinct primes and G and GT are cyclic groups of order N and e : G × G → GT is a
map with the following properties:

1. (Bilinear). For all g1 ∈ G1, g2 ∈ G2 and ∀s, t ∈ Zp, e(gs1, gt2) = e(g1, g2)st.

2. (Non-degenerate). e(g1, g2) has order p in GT .

3. (Computable). There is an efficient algorithm for computing e(g1, g2) for all g1 ∈ G1 and g2 ∈ G2.

Let Gcbg denote an algorithm which takes 1κ as a security parameter and returns a description of composite
order bilinear groups J = (N = p1p2p3,G,GT , e). Composite order bilinear groups enjoy orthogonal
property defined below.

Definition 2.1 (Orthogonal Property). Let Gp1 ,Gp2 and Gp3 denote subgroups of G of order p1, p2 and
p3 respectively. The subgroups Gp1 ,Gp2 and Gp3 are said to have orthogonal property if for all hi ∈ Gpi

and hj ∈ Gpj with i, j ∈ {1, 2, 3} and i 6= j, it holds that e(hi, hj) = 1.

Additional Notations. Let 1G and 1 denote the identity elements of G and GT respectively. For
X,Y ∈ Gn, we define e(X,Y) :=

∏n
i=1 e(Xi, Yi). For three distinct primes, p1, p2 and p3, a cyclic group

G of order N = p1p2p3, can be written as G = Gp1Gp2Gp3 , where Gpi ’s are subgroups of G of order pi. So,
each element X ∈ G can be expressed as X = X1X2X3, where Xi ∈ Gpi . For X ∈ G, the notation X

∣∣
Gpi

means the projection of X over Gpi , i.e., Xi = X
∣∣
Gpi

. For Y ∈ Gn, let Y
∣∣
Gpi

denote (Y1

∣∣
Gpi
, . . . , Yn

∣∣
Gpi

).

Let gT stand for the element e(g, g), where g ∈ Gp1 .

2.3 Hardness Assumptions in Composite Order Bilinear Groups

We describe here three Decisional SubGroup (DSG) assumptions [33] for 3 primes, DSG1, DSG2 and

DSS3 in composite order bilinear groups. Let J := (N = p1p2p3,G,GT , e)
U←− Gcbg(1κ) be the common

parameters for each assumptions. In the following, we define instance for each assumption.

• DSG1. Let g
U←− Gp1 ;Z3

U←− Gp3 ;T0
U←− Gp1 ; T1

U←− Gp1p2 . Define D := (J , g, Z3).

11

• DSG2. Let g, Z1
U←− Gp1 ; Z2,W2

U←− Gp2 ; W3, Z3
U←− Gp3 ; T0

U←− Gp1p3 ; T1
U←− G. Then define

D := (J , g, Z1Z2,W2W3, Z3).

• DSG3. Let α, s
U←− ZN ; g

U←− Gp1 ; W2, Y2, g2
U←− Gp2 ; Z3

U←− Gp3 ; T0 := e(g, g)αs; T1
U←− GT .

Define D := (J , g, gαY2, g
sW2, g2, Z3).

The advantage of an algorithm A in breaking DSGi, for i = 1, 2, 3 is defined by

AdvDSGi
A (κ) =

∣∣Pr [A (D, T0) = 1]− Pr [A (D, T1) = 1]
∣∣.

We say that the DSGi assumption holds in J if for every PPT algorithm A , the advantage AdvDSGi
A (κ) is

negligible in security parameter κ.

2.4 Some Results of Linear Algebra

We recall the three types of elementary row operations (for details, refer to [29]) on a matrix.

• type-1: Interchange rows i and j (in short, we write Ri ↔ Rj).

• type-2: Multiply row i by k, with k 6= 0 (in short, Ri ← kRi).

• type-3: Add k times row j to row i (in short, Ri ← Ri + kRj).

Similarly, we can define three types of elementary column operations. Let E be a matrix obtained by
applying a single elementary row operation on the identity matrix, called elementary matrix. Note that
the affect of a single elementary row (resp. column) operation on a matrix B can also be obtained by pre
(resp. post)-multiplying the matrix B by the corresponding elementary matrix E (resp. E>).

Definition 2.2. A matrix M is said to be row (resp. column) equivalent to a matrix B if M is obtained
from B by applying a finite sequence of elementary row (resp. column) operations.

Definition 2.3. A non-zero row of a matrix R is said to be row reduced if (1) the first non-zero entry of
the row is equal to 1 (called leading 1) and (2) the column containing the leading 1 has all its other entries
0.

Definition 2.4. A matrix R is said to be row reduced if each of its non-zero rows is row reduced.

A well known result that will be used very often is given below.

Theorem 2.1. If two matrices B and M are row equivalent, then the systems BX = 0 and MX = 0
have the same solutions.

But, the scenario is slightly changed in case of column equivalence.

Theorem 2.2. Suppose the matrix M is obtained from B by applying n elementary column operations, i.e.,
BE>1 E>2 · · ·E>n = M , where E i’s are elementary matrices. Then, v is a solution of the system MX = 0
if and only if E>1 E>2 · · ·E>n v is a solution of BX = 0.

Theorem 2.3. Let R be a ring with 1. Let B ∈ Rm×n be a matrix such that for i ∈ [m], Bi1 = 1 if i = 1 else
0. For t ∈ R, define t̃ := (t, 0, . . . , 0)> ∈ Rm×1. Let BM := [̃t : B] ∈ Rm×(n+1) be the augmented matrix.
Then, (v1, . . . , vn)> is a solution of BX = 0 if and only if for each v0 ∈ R, (v0,−tv0 + v1, v2, . . . , vn)> is
a solution of the system BMX = 0.

Proof. The proof is straightforward.

Remark 2.1. From the above theorem, we have Null(BM) = Null(B) + 1.

12

Assumption: The factorization problem is intractable. For our purpose, we mainly apply the
elementary row operations of type-2 and type-3. However, for simple representation of the solutions, one
may use elementary row and column operations of type-1. Theorems 2.1 and 2.2 assume the fact that
k 6= 0 (involved in type-2 operation) which implies that k in invertible. When matrices are considered
over a field, then k 6= 0 implies k is invertible. But if the matrices are not defined over field, then we may
be in trouble. Here we consider the matrix A over ZN , with N = p1p2p3 which is not a field. Since we
assume that the factorization problem is intractable, perhaps it can help out from the said trouble. Let
0 6= k ∈ ZN . It is sufficient to show that k is co-prime to N . If k is not a co-prime to N , then we can
establish an algorithm for breaking the factorization problem in polynomial time of the parameter κ. In
fact, gcd(k,N) is a non-trivial factor of N , which is a contradiction.

2.5 Commitment scheme

A non-interactive commitment scheme consists of three PPT algorithms - Setup, Commit and Open.

• Setup: It takes a security parameter κ and outputs a public commitment key CK.

• Commit: It takes as input a message m, the public commitment key CK and returns a pair
(com, decom), where com is a commitment of the message m and decom is the decommitment.

• Open: takes a pair (com, decom), the public commitment key CK as input and outputs m or ⊥.

For correctness, it is required that2 Open(Commit(m)) = m for all message m ∈ M, where M is the
message space.

2.6 Security of Commitment

A commitment scheme is said to have hiding, binding and relaxed-binding properties if it satisfies the
following respectively:

Hiding: For all PPT A the following is negligible:∣∣∣∣∣Pr

[
CK ←− CSetup(1κ), (m0,m1, st)←− A (CK),

b
U←− {0, 1}, (comb, decomb)←− Commit(CK,mb),

: A (CK, st, comb) = b

]
− 1

2

∣∣∣∣∣ .
Binding: For all PPT A the following is negligible:

Pr

[
CK ←− CSetup(1κ), (com, decom, decom′)←− A (CK),
m←− Open(com, decom), m′ ←− Open(com, decom′),

: (m 6= m′) ∧ (m,m′ 6=⊥)

]
.

Relaxed-Binding: For all PPT A the following is negligible:

Pr

[
CK ←− CSetup(1κ), (m, st)←− A (CK), (com, decom)←− Commit(m),

decom′ ←− A (CK, st, com, decom), m′ ←− Open(com, decom′),
: (m 6= m′) ∧ (m′ 6=⊥)

]
.

Remark 2.2. It is immediate that the relaxed-binding property is weaker than the binding property.

2For brevity, we just omit CK in Open and Commit algorithm throughout this paper

13

2.7 Signature Scheme

A signature scheme consists of three PPT algorithms - Gen, Sign and Ver.

• Gen: It takes a security parameter κ as input and outputs a verification key vk and a signing key
signk.

• Sign: It takes a message m and a signing key signk as input and returns a signature σ.

• Ver: It receives a message m, a signature σ and a verification key vk as input and returns a boolean
value 1 for acceptance or 0 for rejection.

2.8 Strongly Unforgeable One-Time Signature

Strongly unforgeable one-time signature (OTS) model is defined as a game between a challenger B and an
adversary A , where A has to forge a signature for a message. It consists of the following phases:

Gen: The challenger B runs Gen(1κ) −→ (vk, signk). Then vk is given to the adversary A .

Query: The adversary A is given access to the oracle Sign(., signk) at most once. Let (m,σ) be the
corresponding query message and relied signature.

Forgery: The adversary outputs a signature (m∗, σ∗).

We say the adversary succeeds in this game if Ver(m∗, σ∗, vk) = 1 and (m,σ) 6= (m∗, σ∗).

Let AdvsUF−CMA
A ,OTS (κ) denote the success probability for any adversary A in the above experiment. A signa-

ture scheme is said to be strongly unforgeable one-time signature or simply strong OTS if AdvsUF−CMA
A ,OTS (κ)

is at most negligible function in κ.

2.9 Predicate Family

To define a predicate-based cryptosystem, we have to define predicate family. The predicate family is
defined for an index set Λ. For most of the predicate families, the index sets are considered to be subsets
of {j : j ∈ Ni and i ∈ N}. The following definition of predicate family is adopted from [8, 2].

Definition 2.5 (Predicate Family). For an arbitrary index set Λ, we define predicate family to be ∼:=
{∼j}j∈Λ, where ∼j : Xj × Yj → {0, 1} is an indicator function, and Xj and Yj are respectively called key
space and associative data space.

The function ∼j is also called predicate or binary relation over Xj ×Yj . For (x, y) ∈ Xj ×Yj , we write
x ∼j y if ∼j (x, y) = 1 else x 6∼j y. For a predicate family, the corresponding index set Λ is called system-
index space. A member j of the index space Λ is called index for system parameter or simply system-index.
To design a predicate-based scheme for some predicate family, first a system-index j is fixed for that family.
Then, this index will define a predicate tuple (∼j ,Xj ,Yj) for the corresponding predicate-based scheme.
For example, the system-indices for predicate families, regular languages, circuits, access structures, inner
product and doubly-spatial relation are respectively alphabet, maximum depth and number variables for
circuits, attribute universe or size of the attribute universe, length of vectors and dimension of affine space.

In the current study, there are many predicate families which are used to provide access control over
the data. In the following, we describe some of the predicates. Note that for most of the relations described
below, the system-indices are not given explicitly as it will be understood from the context.

14

Equality relation. Let X = Y = {0, 1}∗. For x, y ∈ {0, 1}∗, we define x ∼ y if and only if x = y. The
well known predicate encryption for the equality relation is called identity-based encryption (IBE).

Inner product relation. Let X = Y = Z`q. For x = (x1, . . . , x`) ∈ X and y = (y1, . . . , y`) ∈ Y, we define
x ∼ y if and only if < x, y >= 0. This relation is called zero inner product relation. Similarly, a
non-zero inner product relation is defined by x ∼ y if and only if < x, y >6= 0. The corresponding
encryption schemes are known as inner-product encryption (IPE).

(Doubly)-spatial relation. X = Y := {Aff(A,a) | (A,a) ∈ Z`×kq × Z`q, 0 ≤ k ≤ `}. For x ∈ X
and y ∈ Y, doubly-spatial relation is defined by x ∼ds y if and only if y ∩ x 6= ∅. For spatial
relation, we restrict Y to be Z`q. In [18], the doubly-spatial relation was defined over X × Y, where

X := {Ker(X) | X ∈ Z`×kq , 0 ≤ k ≤ `} and Y := {Aff(A,a) | (A,a) ∈ Z`×kq × Z`q, 0 ≤ k ≤ `}.
The predicate encryption using the (doubly)-spatial relation is called (doubly)-spatial encryption
((D)SE). The authors in [18] showed that predicate encryption for doubly-spatial relation defined
later generalizes the predicate encryption for the former defined doubly-spatial relation.

Access structure based relation. Let U be a universe of attributes. Define X = 2U and Y be the set
of all access structures over U . For A ∈ X and Γ ∈ Y, we define a binary relation A ∼ Γ if and only
if A ∈ Γ. The encryption scheme realizing this relation is called attribute-based encryption (ABE)
for access structures.

Policy over doubly-spatial relation. We have defined access structure based relation above through
the equality relation over universe of attributes. Here we define a new access structure based relation
of [2], called policy over doubly-spatial relation using the doubly-spatial relation over universe of affine
subspaces. This predicate generalizes the former access structure based relation. Let ` be a system-
index for this new access structure based relation. We define U := {Aff(A,a) | (A,a) ∈ Z`×kq ×Z`q, 0 ≤
k ≤ `}. Let X := 2U and Y be the set of all policies of the form (M , ρ), where M ∈ Zd×rq and
ρ : [d] → U is a row labeling function. For S := {Y1, . . . , Yt} ∈ X and A := (M , ρ) ∈ Y, we define
S ∼ A if and only if there exist coefficients {µi}i∈I with I = {i ∈ [d] | ∃Yj ∈ S with ρ(i) ∼ds Yj}
such that

∑
i∈I µiM i = (1,0). The encryption scheme realizing this relation is called policy over

doubly-spatial encryption [6, 2].

Acceptance relation in regular language. A deterministic finite automaton M is defined to be a quin-
tuple (Q,Σ, δ, q0, F), where Q is a finite set of states, Σ is a finite set of symbols, called alphabet,
q0 ∈ Q is called the start state, F ⊆ Q is called the set of final states and δ : Q × Σ → Q is called
transition function. The language, also called regular language, recognized by a deterministic finite
automaton (DFA) M is defined as

L(M) = {σ1σ2 · · ·σn ∈ Σ∗ : δ(· · · δ(δ(q0, σ1), σ2) · · ·σn) ∈ F}.

Let Tr denote the set of all transitions (qx, qy, σ) ∈ Q×Q×Σ with the understanding that δ(qx, σ) = qy.
If we identify the δ by Tr, then a DFA M can always be represented by (Q,Σ,Tr, q0, F). Let Σ be an
alphabet, X := Σ∗ and Y be the set of all DFAs with the same alphabet Σ. For w ∈ X and M ∈ Y, we
define a binary relation w ∼ M if w ∈ L(M). We also call this relation as DFA-based relation. The
corresponding encryption scheme is known as functional encryption (FE) [51] for regular languages.

A relation defined over X ×Y is called symmetric if X = Y and x ∼ y ⇔ y ∼ x for all x, y ∈ X , otherwise
it is called asymmetric. For an asymmetric relation, we can define its dual relation as follows.

15

Definition 2.6 (Dual predicate). For a predicate tuple (∼,X ,Y), its dual predicate tuple (∼̄, X̄ , Ȳ) is
defined by X̄ := Y, Ȳ := X and for (x, y) ∈ X̄ × Ȳ, x∼̄y holds if and only if y ∼ x holds. The predicate ∼̄
is called dual predicate of ∼.

Remark 2.3. In this paper, we consider predicate-based constructions for all the relations described above
and their dual (for asymmetric relations). By predicate-based constructions, we mean predicate encryption
(PE), predicate signature (PS) and predicate signcryption (PSC). If the underlying predicate or relation
of PE, PS and PSC is not clearly stated, we assume that the PE, PS and PSC stand for one of the
aforementioned relations.

Here we are interested to design the predicate signature, predicate encryption and predicate signcryption
over composite order bilinear groups (CBG) and let N be the order of the groups. This N describes some
domain, for example, the domain of IBE is ZN with equality predicate. We therefore reserve the first entry
of j to be N as described in [2]. For notational simplicity, we omit j and write (∼N ,XN ,YN) or simply
(∼,X ,Y) depending upon requirements.

Definition 2.7. (Domain-transferable [2]). We say that ∼ is domain-transferable if for p dividing N , the
projection map f1 : XN → Xp and f2 : YN → Yp such that for all (x, y) ∈ XN × YN , we have:

• (Completeness). If x ∼N y then f1(x) ∼p f2(y).

• (Soundness). (1) If x 6∼N y, then f1(x) 6∼p f2(y) or (2) there exists an algorithm which takes (x, y)
as input, where (1) does not hold, outputs a non-trivial factor F such that p|F |N .

Remark 2.4. Attrapadung [2] showed that the equality predicate (for IBE) is domain-transferable. Since,
all other predicates are defined through the equality predicate, all the predicates of [2, 52] are domain-
transferable.

2.10 Predicate Encryption

A predicate encryption (PE) scheme for a predicate family ∼ consists of four PPT algorithms - Setup,
KeyGen, Encrypt and Decrypt.

• Setup: It takes a security parameter κ and a system-index j as input, outputs public parameters PP
and master secret key MSK.

• KeyGen: It takes as input PP, MSK and a key-index x ∈ X and outputs a secret key SKx corre-
sponding to x.

• Encrypt: It takes PP, a message m ∈M and an associated data-index y ∈ Y and returns a ciphertext
C, which implicitly contains y.

• Decrypt: It takes as input PP, a ciphertext C and a key SKx. It returns a value from M∪ {⊥}.

Correctness. For all (PP,MSK)←− Setup(1κ, j), all y ∈ Y, all x ∈ X , SKx ←− KeyGen(PP,MSK, x)
and for all messages m ∈M, it is required that

Decrypt(PP,Encrypt(PP,m, y),SKx) = m (resp. ⊥) if x ∼ y (resp. x 6∼ y).

Public Data-Index PE. In the syntax of predicate encryption, we keep data-index y as a part of the ci-
phertext. The predicate encryption of this form is called public data-index PE or PE with public data-index.

16

There is another notion of predicate encryption, called PE with hidden data-index. In this encryption,
plaintext and data-index are both concealed. Predicate encryption considered throughout this paper is the
predicate encryption with public data-index. Unless stated otherwise, by a predicate encryption we mean
the predicate encryption with public data-index.

Form of PE. Unlike ABE, we cannot define ciphertext-policy and key-policy for predicate encryption in
general. But, for further references in this paper, we specify CP-PE and KP-PE for some relations defined
in Section 2.9. A functional encryption for the acceptance relation in regular languages is called CP-FE for
regular languages and the functional encryption for its dual relation is called KP-FE for regular languages.
A predicate encryption for the policy over doubly-spatial relation is called ciphertext-policy over doubly-
spatial encryption (CP-DSE) and the predicate encryption for its dual relation is called key-policy over
doubly-spatial encryption (KP-DSE).

Definition 2.8. A ciphertext C is said to be ill-formatted if for all m ∈ M, y ∈ Y,
Pr[Encrypt(PP,m, y) = C] = 0. Otherwise it is called correctly-formatted.

Definition 2.9 (Verifiability [53]). A predicate encryption scheme PE is said to have verifiability property
if there is a polynomial time algorithm Verify such that for all ciphertexts C (possibly ill-formatted) with
the data-index y ∈ Y, and all x, x̃ ∈ X with x ∼ y, x̃ ∼ y, it holds that (for simplicity, we skip PP from
Decrypt):

• (Soundness). Verify(PP,C, x, x̃) = 1⇒ Decrypt(C,SKx) = Decrypt(C,SKx̃).

• (Completeness). Verify(PP,C, x, x̃) = 1 if C is correctly-formatted ciphertext.

Roughly speaking, verifiability verifies that a ciphertext is correctly-formatted or if it is ill-formatted
then it can be decrypted to the same message under two keys with two different indices both related to
the associated data-index.

2.11 Security of Predicate Encryption

Definition 2.10 (Adaptive-Predicate IND-CCA Security). A PE scheme is said to be IND-CCA secure in
adaptive-predicate model (or AP-IND-CCA secure) if for all PPT algorithms A := (A1,A2), the advantage

AdvAP−IND−CCA
A ,PE (κ) :=

∣∣∣∣Pr
[
b = b′ ∧ NRn

]
− 1

2

∣∣∣∣
in ExpAP−IND−CCA

A ,PE (κ) defined in Figure 1 is negligible function in security parameter κ, where A is provided
access to key-gen oracle OK and decrypt oracle OD (described below) and NRn is a natural restriction that
(C∗, x) with x ∼ y∗ was never queried to OD and for each key-index x queried to OK , it holds that x 6∼ y∗.

• KeyGen oracle (OK): Given a key-index x, oracle returns SKx ←− KeyGen(PP, MSK, x).

• Decrypt oracle (OD): Given (C, x), it runs SKx ←− KeyGen(MSK, x) if SKx has not been generated
previously3, and then returns Decrypt(PP,C,SKx).

We may refer the above security model as AP-IND-CCA security model in this paper.

3The challenger maintains a log for storing the pairs of the forms (x,SKx). Before generating a key for an index x, it
searches x in the log. If x is not found, then it runs SKx ←− KeyGen(PP,MSK, x) and inserts (x,SKx) in the log, otherwise
it answers the query using SKx available in the log.

17

ExpAP−IND−CCA
A ,PE (κ):

• (PP,MSK)←− Setup(1κ, j)

• (m0,m1, y∗, st)←− A
{OK, OD}
1 (PP) with |m0| = |m1|

• b
U←− {0, 1}

• C∗ ←− Encrypt(PP,mb, y∗)

• b′ ←− A
{OK, OD}
2 (PP,C∗, st)

Figure 1: Experiment for confidentiality (adaptive-predicate IND-CCA Security)

Definition 2.11 (Selective-Predicate IND-CCA Security). Likewise in IND-CCA security in selective-
predicate model (or SP-IND-CCA security), the adversary A submits the challenge data-index y∗ before
receiving PP of PE. In this case, the advantage of A is denoted by AdvSP−IND−CCA

A ,PE (κ).

Definition 2.12 (IND-CPA Security). A weaker notion of the above security can be defined similarly
as above except, A is not given access to OD oracle. It is called IND-CPA security in both adaptive-
predicate (AP-IND-CPA) and selective predicate (SP-IND-CPA) models. The advantages of A in the
respective models are denoted by AdvAP−IND−CPA

A ,PE (κ) and AdvSP−IND−CPA
A ,PE (κ).

2.12 Predicate Signature

A predicate signature (PS) scheme for a predicate family ∼ consists of four PPT algorithms - Setup,
KeyGen, Sign and Ver.

• Setup: It takes a security parameter κ and a system-index j as input, outputs public parameters PP
and master secret key MSK.

• KeyGen: It takes as input PP, MSK and a key-index x ∈ X and outputs a secret key SKx corre-
sponding to x.

• Sign: It takes PP, a message m ∈ M, a secret key SKx and an associated data-index y ∈ Y with
x ∼ y and returns a signature δ.

• Ver: It receives PP, a message m ∈M, a signature δ and a claimed associated data-index y as input.
It returns a boolean value 1 for acceptance or 0 for rejection.

Correctness. For all (PP,MSK) ←− Setup(1κ, j), all m ∈ M, all x ∈ X , SKx ←−
KeyGen(PP,MSK, x) and all y ∈ Y with x ∼ y, it is required that

Ver(PP,m,Sign(PP,m,SKx, y), y) = 1.

Remark 2.5. As in ABS of [37], we assume that signer sends both signature and data-index y to receiver.

Public Data-Index PS. The predicate signature defined above allows the data-index to be publicly
available to the receiver. This form of predicate signature is called public data-index PS or PS with public

18

data-index. From now onwards, by predicate signature we mean the predicate signature with public data-
index.

Form of PS. Similar to the form of PE, we specify signature-policy predicate signature (SP-PS) and
key-policy predicate signature (KP-PS) for some relations defined in Section 2.9. A predicate signature for
the access structure based relation is called signature-policy attribute-based signature (SP-ABS) for access
structures and its dual form is called key-policy attribute-based signature (KP-ABS) for access structures.
A predicate signature for the acceptance relation in regular languages is called SP-PS for regular languages
and its dual form is called KP-PS for regular languages. A predicate signature for the policy over doubly-
spatial relation is called signature-policy over doubly-spatial signature (SP-DSS) and its dual form is called
key-policy over doubly-spatial signature (KP-DSS).

2.13 Security of Predicate Signature

Definition 2.13 (Signer Privacy). A PS scheme is said to be perfectly private if for all (PP,MSK)←−
Setup(1κ, j), all x1, x2 ∈ X , SKx1 ←− KeyGen(PP,MSK, x1), SKx2 ←− KeyGen(PP,MSK, x2), all
m ∈ M, and all y ∈ Y with x1 ∼ y and x2 ∼ y, the distributions of Sign(PP,m,SKx1 , y) and
Sign(PP,m,SKx2 , y) are identical, where the random coins of the distributions are only the random coins
involved in the Sign algorithm.

Note that the signer-privacy defined above is also called perfect-privacy. A predicate signature scheme
with signer-privacy is called perfectly private.

Definition 2.14 (Adaptive-Predicate Unforgeability). A PS scheme is said to be existential unforgeable
in adaptive-predicate model (or AP-UF-CMA) if for all PPT algorithms A , the advantage

AdvAP−UF−CMA
A ,PS (κ) := Pr [Ver(PP,m∗, δ∗, y∗) = 1 ∧ NRn]

in ExpAP−UF−CMA
A ,PS (κ) defined in Figure 2 is negligible function in κ, where A is provided access to key-gen

oracle OK and sign oracle OSg (described below) and NRn is a natural restriction that (m∗, x, y∗) with
x ∼ y∗ was never queried to OSg oracle and for each key-index x queried to OK , it holds that x 6∼ y∗.

• KeyGen oracle (OK): Given a key-index x, oracle returns SKx ←− KeyGen(PP, MSK, x).

• Sign oracle (OSg): Given (m,x, y), it runs SKx ←− KeyGenPP,MSK, x) if SKx has not been
generated previously, and then returns δ ←− Sign(PP,m,SKx, y).

ExpAP−UF−CMA
A ,PS (κ):

• (PP,MSK)←− Setup(1κ, j)

• (δ∗,m∗, y∗)←− A {OK, OSg}(PP)

Figure 2: Experiments for unforgeability

We may refer the above security model as AP-UF-CMA security model in this paper.

19

Definition 2.15 (Selective-Predicate Unforgeability). There is another variant of unforgeability, called
selective-predicate existential unforgeability (SP-UF-CMA), where A submits a challenge data-index y∗ ∈
Y (later on which A will forge) before obtaining the PP of ABS.

Definition 2.16 (Strong Unforgeability). The unforgeability defined in Definition 2.14 and 2.15 are called
weak unforgeability because A is not allowed to forge on queried messages. In strong unforgeability, A is
allowed to forge δ∗ even on the queried message (m∗, y∗) but then δ∗ 6= δ must hold, where δ is a signature
obtained from sign oracle on the query message (m∗, y∗).

We use the notations, AP-sUF-CMA and SP-sUF-CMA respectively for strong unforgeability in
adaptive-predicate and selective-predicate models.

2.14 Predicate Signcryption

A predicate signcryption (PSC) scheme for a predicate family ∼ consists of four PPT algorithms - Setup,
KeyGen, Signcrypt and Unsigncrypt.

• Setup: It takes a security parameter κ and a system-index j as input, outputs public parameters PP
and master secret key MSK.

• KeyGen: It takes PP, master secret MSK and a key-index x ∈ X as input and outputs a secret key
SKx corresponding to x.

• Signcrypt: It takes PP, a message m ∈ M, a signing key SKx, an associated data-index ys ∈ Y
for sender with x ∼ ys and an associated data-index ye ∈ Y for receiver as input and returns a
signcryption U for (ys, ye) (we assume that U implicitly contains ye).

• Unsigncrypt: It takes as input PP, a signcryption U, a secret key SKx and an associated data-index
ys ∈ Y for sender. It returns a value from M∪ {⊥}.

Correctness. For all (PP,MSK) ←− Setup(1κ, j), all m ∈ M, all key-indices x ∈ X , SKx ←−
KeyGen(PP,MSK, x), all sender’s associated data-indices ys ∈ Y with x ∼ ys, all receiver’s asso-
ciated indices ye ∈ Y, all signcryptions U ←− Signcrypt(PP,m,SKx, ys, ye) and all indices x̃ ∈ X ,
SKx̃ ←− KeyGen(PP,MSK, x̃), it is required that Unsigncrypt(PP,U,SKx̃, ys) = m (resp. ⊥) if x̃ ∼ ye
(resp. x̃ 6∼ ye).

Remark 2.6. Similar to predicate signature, we assume that the signer sends both signcryption and
sender’s data-index ys to the receiver in predicate signcryption. Again, the syntax of predicate signcryption
defined above says that U implicitly contains ye. So, the predicate signcryption allows the data-index of
sender and receiver to be publicly available to the receiver. In other words, the predicate signcryption
defined above is called public data-indices PSC or PSC with public data-indices. From now onwards, by
predicate signcryption we mean the predicate signcryption with public data-indices. Similar to the forms
of PS and PE, we can define the forms of PSC for the relations defined in Section 2.9.

2.15 Security of Predicate Signcryption

Definition 2.17 (Signer Privacy). A PSC scheme is said to be perfectly private if for all (PP,MSK)←−
Setup(1κ, j), all key-indices x1, x2 ∈ X , all keys SKx1 ←− KeyGen(PP,MSK, x1), SKx2 ←−
KeyGen(PP,MSK, x2), all messages m ∈M, all sender’s associated data-indices ys ∈ Y such that x1 ∼ ys

20

and x2 ∼ ys, and all receiver’s associated data-indices ye ∈ Y, the distributions of Signcrypt(PP, m, SKx1 ,
ys, ye) and Signcrypt(PP,m,SKx2 , ys, ye) are identical, where the random coins of the distributions are
only the random coins involved in Signcrypt algorithm.

The signer-privacy defined above is also called perfect-privacy. A PSC scheme with signer-privacy is
called perfectly private.

Definition 2.18 (Adaptive-Predicates IND-CCA Security). A PSC scheme is said to be IND-CCA secure
in adaptive-predicates model (or APs-IND-CCA secure) if for all PPT algorithms A := (A1,A2), the
advantage

AdvAPs−IND−CCA
A ,PSC (κ) :=

∣∣∣∣Pr
[
b = b′ ∧ NRn

]
− 1

2

∣∣∣∣
in ExpAPs−IND−CCA

A ,PSC (κ) defined in Figure 3 is negligible function in security parameter κ, where A is
provided access to key-gen oracle OK , signcrypt oracle OS and unsigncrypt oracle OU (described below),
and NRn is a natural restriction that (U∗, x, y∗s) with x ∼ y∗e was never queried to OU and for each key-index
x queried to OK , it holds that x 6∼ y∗e .

• KeyGen oracle (OK): Given a key-index x, oracle returns SKx ←− KeyGen(PP, MSK, x).

• Signcrypt oracle (OS): Given (m,x, ys, ye), it runs SKx ←− KeyGen(PP,MSK, x) if SKx has not
been generated previously, and then returns Signcrypt(PP,m,SKx, ys, ye).

• Unsigncrypt oracle (OU): Given (U, x, ys), it runs SKx ←− KeyGen(PP,MSK, x) if SKx has not been
generated previously, and then returns Unsigncrypt(PP,U, SKx, ys).

ExpAPs−IND−CCA
A ,PSC (κ):

• (PP,MSK)←− Setup(1κ, j)

• (m0,m1, x, y∗s , y
∗
e , st)←− A

{OK, OS, OU}
1 (PP) with |m0| = |m1|

• b
U←− {0, 1}

• U∗ ←− Signcrypt(PP,mb,SKx, y∗s , y∗e)

• b′ ←− A
{OK, OS, OU}
2 (PP,U∗, st)

Figure 3: Experiment for confidentiality (adaptive-predicates IND-CCA security)

We may refer the above security model as APs-IND-CCA security model in this paper.

Definition 2.19 (Selective-Predicate IND-CCA Security). Similarly to Definition 2.18, except in this
model, A has to submit the challenge receiver’s data-index y∗e before receiving PP of PSC and the challenge
sender’s data-index y∗s in the challenge phase.

Remark 2.7. The selective-predicate IND-CCA (SP-IND-CCA) security model (Definition 2.19) is weaker
than APs-IND-CCA security model (Definition 2.18).

Definition 2.20 (Selective-Predicates IND-CCA Security). Similarly to Definition 2.18, except in this
model, A has to submit the challenge receiver’s data-index y∗e and challenge sender’s data-index y∗s before
receiving PP of PSC.

21

Remark 2.8. Selective-predicates IND-CCA (SPs-IND-CCA) security model (Definition 2.20) is weaker
than SP-IND-CCA security model (Definition 2.19).

Definition 2.21 (Adaptive-Predicates Unforgeability). A PSC scheme is said to be existential unforgeable
in adaptive-predicates model (or APs-UF-CMA secure) if for all PPT A , the advantage

AdvAPs−UF−CMA
A ,PSC (κ) := Pr [m∗ 6=⊥ ∧ NRn]

in ExpAPs−UF−CMA
A ,PSC (κ) defined in Figure 4 is negligible function in κ, where A is provided access to key-

gen oracle OK , signcrypt oracle OS and unsigncrypt oracle OU (described below), and NRn is a natural
restriction that for each tuple (m,x, ys, ye) queried to OS oracle, (m, ys, ye) 6= (m∗, y∗s , y

∗
e) and for each

key-index x ∈ X queried to OK oracle, it holds that x 6∼ y∗s .

• KeyGen oracle (OK): Given a key-index x, oracle returns SKx ←− KeyGen(PP, MSK, x).

• Signcrypt oracle (OS): Given (m,x, ys, ye), it runs SKx ←− KeyGen(PP,MSK, x) if SKx has not
been generated previously, and then returns Signcrypt(PP,m,SKx, ys, ye).

• Unsigncrypt oracle (OU): Given (U, x, ys), it runs SKx ←− KeyGen(PP,MSK, x) if SKx has not been
generated previously, and then returns Unsigncrypt(PP,U, SKx, ys).

ExpAPs−UF−CMA
A ,PSC (κ):

• (PP,MSK)←− Setup(1κ, j)

• (U∗, y∗s , y
∗
e)←− A {OK, OS, OU}(PP)

• m∗ ←− Unsigncrypt(PP,U∗,SKx, y∗s , y∗e) where x ∼ y∗e

Figure 4: Experiment for unforgeability (adaptive-predicates UF-CMA security)

We may refer the above security model as APs-UF-CMA security model in this paper.

Definition 2.22 (Adaptive-Predicates Strong Unforgeability). The above unforgeability (Definition 2.21)
is also called weak unforgeability in the sense that in forgery A is not allowed to forge for the queried mes-
sages. In strong unforgeability (we use notation, APs-sUF-CMA), the restriction (m, ys, ye) 6= (m∗, y∗s , y

∗
e)

is replaced by (U,m, ys, ye) 6= (U∗,m∗, y∗s , y
∗
e), where U is the reply for the query (m,x, ys, ye) to OS oracle.

Definition 2.23 (Selective-Predicate Strong Unforgeability). Similarly to Definition 2.22, except in this
model, A has to submit the challenge sender’s data-index y∗s before receiving PP of PSC and the challenge
receiver’s data-index y∗e at the time of forgery.

Remark 2.9. The selective-predicate sUF-CMA (SP-sUF-CMA) security model (Definition 2.23) is weaker
than APs-sUF-CMA security model (Definition 2.22).

Definition 2.24 (Selective-Predicates Strong Unforgeability). Similarly to Definition 2.22, except in this
model, A has to submit the challenge sender’s data-index y∗s and challenge receiver’s data-index y∗e before
receiving PP of PSC.

Remark 2.10. Selective-predicates sUF-CMA (SPs-sUF-CMA) security model (Definition 2.24) is weaker
than SP-sUF-CMA security model (Definition 2.23).

22

2.16 Pair Encoding Scheme

A Pair Encoding Scheme [2], P for a predicate family, ∼ consists of four deterministic algorithms, Param,
Enc1, Enc2 and Pair.

– Param(j) −→ n ∈ N. n describes the number of common variables involved in Enc1 and Enc2. Let
h := (h1, . . . , hn) ∈ ZnN denotes the common variables in Enc1 and Enc2.

– Enc1(x ∈ X , N) −→ (kx := (k1, . . . , km1),m2), where kι’s for ι ∈ [m1] are polynomial over ZN and
m2 ∈ N specifies the number of its own variables. We require that each polynomial kι is a linear
combination of monomials, α, rj , hirj , where α, r1, . . . , rm2 , h1, . . . , hn are variables. In other words,
it outputs a set of coefficients {bι, bι,j , bι,j,i}ι∈[m1],j∈[m2],i∈[n] which define the sequence of polynomials(

kι(α, r,h) := bια+
(∑
j∈[m2]

bι,jrj
)

+
(∑
j∈[m2]
i∈[n]

bι,j,ihirj
))

ι∈[m1]

where r := (r1, . . . , rm2).

– Enc2(y ∈ Y, N) −→ (cy := (c1, . . . , cω1), ω2), where cι’s for ι ∈ [ω1] are polynomial over ZN and ω2 ∈ N
specifies the number of its own variables. We require that each polynomial cι is a linear combination
of monomials sj , hisj , where s0, . . . , sω2 , h1, . . . , hn are variables. In other words, it outputs a set of
coefficients {aι,j , aι,j,i}ι∈[ω1],j∈[0,ω2],i∈[n] which define the sequence of polynomials(

cι(s,h) :=
∑

j∈[0,ω2]

aι,jsj +
∑

j∈[0,ω2]
i∈[n]

aι,j,ihisj

)
ι∈[ω1]

, where s := (s0, . . . , sω2).

– Pair(x, y,N) −→ E ∈ Zm1×ω1
N .

Correctness:

1. For all N ∈ N, (kx,m2) ←− Enc1(x,N), (cy, ω2) ←− Enc2(y,N), and E ←− Pair(x, y,N), we have
kx(α, r,h)Ec>y (s,h) = αs0 if x ∼ y.

2. For p|N , if (kx,m2) ←− Enc1(x,N) and (k′x,m2) ←− Enc1(x, p), then we require that k′x = kx
mod p. Similar type of condition is required for Enc2.

Properties of pair encoding scheme. We define two properties of pair encoding scheme as follows

• (Param-Vanishing): k(α,0,h) = k(α,0,0).

• (Linearity):

k(α1, r1,h) + k(α2, r2,h) = k(α1 + α2, r1 + r2,h)

c(s1,h) + c(s2,h) = c(s1 + s2,h).

23

2.17 Security of Pair Encoding Scheme

We consider two forms of security, viz., perfect security and computational security as defined in [2].

– Perfect Security: A pair encoding scheme is said to be perfectly master-key hiding (PMH) if for N ∈ N,
x 6∼N y, n ←− Param(j), (kx,m2) ←− Enc1(x,N) and (cy, ω2) ←− Enc2(y,N), the following two
distributions are identical:

{cy(s,h),kx(α, r,h)} and {cy(s,h),kx(0, r,h)}

where the random coins of the distributions are α
U←− ZN , h

U←− ZnN , s
U←− Zω2+1

N and r
U←− Zm2

N .

– Computational Security: Here we consider two types of computational security, viz., selectively master-key
hiding (SMH) and co-selectively master-key hiding (CMH). A pair encoding scheme is said to have

G security for G ∈ {SMH,CMH} if for b
U←− {0, 1}, all PPT adversary A := (A1,A2), the advantage

AdvG
A ,P(κ) :=

∣∣Pr[ExpGA ,0(κ) = 1]− Pr[ExpGA ,1(κ) = 1]
∣∣ in the experiment ExpGA ,b(κ) defined below is

negligible function in security parameter κ:

ExpGA ,b(κ) :=



(N := p1p2p3,G,GT , e)←− Gcbg(1κ);

(g, g2, g3)
u←− Gp1 ×Gp2 ×Gp3 ;

α
U←− ZN ; n←− Param(j); h

U←− ZnN ;

st←− A
O1
G,b,α,h(.)

1 (g, g2, g3);

b′ ←− A
O2
G,b,α,h(.)

2 (st)


where A is provided the access to two oracles, O1

G,b,α,h(.) and O2
G,b,α,h(.) defined below:

• For Selective Security: O1 is allowed only once, while O2 is allowed to query polynomially many
times

– O1
SMH,b,α,h(y∗): Run (cy∗ , ω2) ←− Enc2(y∗, p2), pick s

U←− Zω2+1
N and return Cy∗ :=

g
cy∗ (s,h)
2 .

– O2
SMH,b,α,h(x): If x ∼p2 y

∗, return ⊥. Run (kx,m2) ←− Enc1(x, p2), pick r
U←− Zm2

N and
return

Kx :=

{
g
kx(0,r,h)
2 if b = 0

g
kx(α,r,h)
2 if b = 1.

• For Co-selective Security: Both the oracles, O1 and O2 are allowed to query only once.

– O1
CMH,b,α,h(x∗): Run (kx∗ ,m2)←− Enc1(x∗, p2), pick r

U←− Zm2
N and then return

Kx∗ :=

{
g
kx∗ (0,r,h)
2 if b = 0

g
kx∗ (α,r,h)
2 if b = 1.

– O2
CMH,b,α,h(y): If x∗ ∼p2 y, return ⊥. Run (cy, ω2) ←− Enc2(y, p2), pick s

U←− Zω2+1
N and

then return Cy := g
cy(s,h)
2 .

Remark 2.11. In the above definition of computational security, if the oracles, O1 and O2 are allowed to
access respectively t1 and t2 times, then SMH (resp. CMH)-security, will be referred as (t1, t2)-SMH (resp.
(t1, t2)-CMH) security. What considered in [2], are (1, poly)-SMH and (1, 1)-CMH security respectively for
selectively and co-selectively master-key hiding. It is clear from the definitions of PMH and CMH-security
that the PMH-security of a pair encoding scheme implies the CMH-security.

24

3 Framework for Predicate Signature

For better explanation of the uniform sampling process used in sign algorithm, we define h-free variable
for the random variables appearing in Enc2 as follows.

Definition 3.1. A variable (or coin) sj for some j ∈ [0, ω2] appearing in Enc2 of a pair encoding scheme
is called “h-free” variable (or coin) if there exists a unique ι ∈ [ω1] such that cι(s,h) = aι,jsj , otherwise it
is called “non-h-free” variable (or coin).

3.1 Natural Requirements on Pair Encodings

For the correctness of the proposed constructions, we keep a restriction on the underlying pair encoding
scheme. The condition (1) defined in Conditions 3.1 is such a restriction on the pair encodings. The
condition (1) is also used in the security proof to ensure perfectness of the simulation.

One of the important features considered in the proposed predicate signature and signcryption is the
signer-privacy. To ensure the perfect-privacy of the signer in the proposed constructions, we have to
uniformly sample from V⊥ := {v ∈ Zω1

N | < v,u >= 0 ∀ u ∈ V}, where V := {cy(s,h) ∈ Zω1
N | s :=

(s0, . . . , sω2) ∈ Zω2+1
N }. Now, finding the elements of V⊥ is nothing but solving the system A>X = 0,

where A is a matrix of dimension ω1 × (ω2 + 1). More precisely, the matrix A is completely given by:

A :=

aι,j +
∑
i∈[n]

aι,j,ihi


1≤ι≤ω1
0≤j≤ω2

Note that hi’s are not given explicitly, but available in the form of ghi , where g is a generator for the
underlying group. To solve the system A>X = 0, we will apply the Gaussian elimination method which is
simply a sequence of elementary row (and/or column) operations. Since, hi’s are not known, it is difficult
to find the inverses of some elements of A which are required for the elementary operations of type-2.
So, to smooth the process of elementary operations, we impose a restriction on the pair encodings. The
condition (2) given in Conditions 3.1 is such a restriction of the pair encoding.

The security of the proposed constructions is proven using the dual system methodology of Waters
[50]. In this methodology, by applying the hybrid arguments over the hybrid games we reach to a final
game. The last game change (from previous to final game) relies on the DSG3 assumption. In the final
game change, to maintain the correct distribution of the semi-functional signatures (resp. alt-keys4) for
predicate signature (resp. CCA-secure predicate encryption), we impose the following restriction on the
pair encoding scheme. For (x, y) ∈ X ×Y with x ∼ y, (kx,m2)←− Enc1(x,N) and E ←− Pair(x, y,N), we
require that kx(α,0,0)E := (∗, 0, . . . , 0) ∈ Zω1

N , where ∗ is any entry from ZN . This restriction is fulfilled
by the condition (3) defined in Conditions 3.1 on the pair encodings. We could replace the condition (3)
by the former restriction, but the condition (3) is easily evaluated on the pair encoding scheme.

Conditions 3.1 (Sufficient). We put the following conditions on the pair encodings. To best of our
knowledge, most of the pair encoding schemes satisfy these conditions.

1. cι(s,h) = s0 for some ι ∈ [ω1]. W.l.o.g, we assume c1(s,h) = s0.

2. For j ∈ [0, ω2], either (a) [case - sj is h-free]: there is a unique ι ∈ [ω1] such that cι(s,h) = aι,jsj
or (b) [case - sj is non-h-free]: first the case-(a) has not happened, then if aι,j,i′ 6= 0 (appearing at

4A special key is created to answer the decrypt query.

25

(ι, j) position of the matrix A) for some ι ∈ [ω1], i′ ∈ [n], we require that i′ must be unique and for
all ι ∈ [ω1], i ∈ [n] with i 6= i′, aι,j,i = 0, aι,j = 0 (appearing at (ι, j) position of the matrix A) and
hi′ is co-prime to N.

3. For (x, y) ∈ X × Y with x ∼ y, let (kx,m2)←− Enc1(x,N) and E ←− Pair(x, y,N). Suppose there
are ι1, . . . , ι` ∈ [m1] such that bιi 6= 0 for i ∈ [`]. W.l.o.g, we assume that ιi = i, i.e., bi 6= 0 for i ∈ [`].
Then, we require that Eij = 0 for i ∈ [`] and j ∈ [2, ω1].

We note that the 1st and 2nd conditions are put on Enc2 and 3rd condition is imposed on Enc1 and Pair.
A pair encoding which satisfies the 1st condition is referred as normal in [6]. Most of the pair encoding
schemes considered in [2, 52, 6] satisfy the condition 2(a), i.e., for j ∈ [0, ω2], the coin sj is h-free. For
better understanding, we work out the following pair encoding schemes of [2].

The pair encoding scheme given in Figure 5 was used to realize unbounded KP-ABE with large universe.
We show that this pair encoding satisfies Conditions 3.1. The condition (1) is so obvious. To verify the
condition (2), we see that for each the random variable si, there is a component cι such that cι(s,h) = si.
Therefore, it is an example, where all the coins are h-free. For verifying the condition (3), we first notice
that only b1 6= 0. Hence, we have to show that E1j = 0 for j ∈ [2, ω1]. From the correctness of the scheme,
we find that the monomials containing k1 appear in the correctness are exactly k1c1, so the first row of the
matrix E must be (1,0). Hence, we are done.

– Param→ 6. Let h := (h0, h1, φ1, φ2, φ3, η).

– Enc1(Γ := (M , ρ))→ k(α, r,h) = (k1, k2, k3, {k4,i, k5,i, k6,i}i∈[`]), where k1 := α+ rφ1 +uη,

k2 := u, k3 := r, k4,i := M iv
> + riφ3, k5,i := ri, k6,i := ri(h0 + h1ρ(i)), and v1 := rφ2,

r := (r, u, r1, . . . , r`, v2, . . . , vk), v := (v1, . . . , vk).

– Enc2(S ⊆ ZN) → c(s,h) = (c1, c2, c3, c4, {c5,y}y∈S , {c6,y}y∈S), where c1 := s, c2 := sη,
c3 := sφ1 +wφ2, c4 := w, c5,y := wφ3 +sy(h0 +h1y), c6,y := sy and s := (s, w, {sy}y∈S).

– Correctness: If x ∼ y, i.e., Γ(S) = True, there exist reconstruction coefficients {µi}i∈I , with
I := {i ∈ [`] | ρ(i) ∈ S} such that

∑
i∈I µiM iv

> = v1 = rφ2. So the following linear
combination reveals αs as: k1c1−k2c2−k3c3 +

∑
i∈I µi(k4,ic4−k5,ic5,ρ(i) +k6,ic6,ρ(i)) =

αs− rwφ2 +
∑
i∈I µi(M iv

>w) = αs.

Figure 5: Pair Encoding Scheme 4: Used in Unbounded KP-ABE with Large Universes

– Param(|U|)→ |U|+ 1. Let h := (φ, {hi}i∈U).

– Enc1(S ⊆ U)→ k(α, r,h) = (k1 := α+ φr, {k2,x := rhx}x∈S , k3 := r), where r := r.

– Enc2(Γ := (M , ρ)) → c(s,h) = (c1, {c2,i, c3,i}i∈[`]), where M ∈ Z`×kN , c1 := s, c2,i :=

φM iv
> + s′ihρ(i), c3,i := s′i and s := (s, v2, . . . , vk, s

′
1, . . . , s

′
`), v := (s, v2, . . . , vk).

– Correctness: If Γ(S) = True, we have
∑
i∈I µiM iv

> = α. So the following linear combination
reveals αs as: k1c1 +

∑
i∈I µi(k3c2,i − k2,ρ(i)c3,i) = αs.

Figure 6: Pair Encoding Scheme 10: Used in CP-ABE with Small Universes

The author [2] extracted Pair Encoding Scheme 10 (given in Figure 6) from the fully secure CP-ABE
[33]. Again the condition (1) is obvious. For the random variables s, s′1, . . . , s

′
`, the condition 2(a) holds.

26

But, for v2, . . . , vk, the condition 2(b) holds. For all the vj , the unique hi′ is φ (for a clear view, see the
matrix A> in Example 3.7). So, we require that during setup φ is chosen to be co-prime to N . The
condition (3) works similarly as that of Pair Encoding Scheme 4.

3.2 Dual Conversion of Pair Encodings

We illustrate the dual conversion technique [2, 6] for converting a pair encoding for ∼ to another pair
encoding for its dual predicate (Definition 2.6) ∼̄.

Let P be a given pair encoding scheme for the predicate ∼. We construct a pair encoding scheme D(P)
for the predicate ∼̄ as follows: For (n,h) ← Param, we define Param := (n + 1, h̄), where h̄ := (h, φ) and
φ is a new variable.

– Enc1(x,N): It runs (c′x(s′,h), ω2) ← Enc2(x,N), where s′ := (s′0, . . . , s
′
ω2

). Then sets r := s′ and
kx(α, r, h̄) := (c′x(s′,h), α+ φ.s′). Finally, it outputs (kx(α, r, h̄), ω2), where α is new variable.

– Enc2(y,N): Runs (k′y(α
′, r′,h),m2) ← Enc1(y,N). Then sets s := (s0, r

′) and cy(s, h̄) :=
(k′y(φ.s0, s, h̄), s0), and returns (cy(s, h̄),m2), where s0 is a new variable.

The correctness is verified as follows: If x∼̄y, then y ∼ x, so from the correctness of P we have

k′y(α
′, r′,h)E′c′>x (s′,h) = α′s′0 = (φ · s0)s′0.

Then using the additional components, we have (α+ φ · s′0)(s0)− (φ · s0)s′0 = αs0.

Proposition 3.1. ([2]) If a pair encoding scheme P for ∼ is perfectly master-key hiding, then the pair
encoding scheme D(P) for ∼̄ is also perfectly master-key hiding.

Proposition 3.2. ([6]) If a pair encoding scheme P for ∼ is normal and (1, 1)-co-selectively master-key
hiding, then the pair encoding scheme D(P) for ∼̄ is (1, 1)-selectively master-key hiding.

Proposition 3.3. ([6]) If a pair encoding scheme P for ∼ is normal and (1, 1)-selectively master-key
hiding, then the pair encoding scheme D(P) for ∼̄ is (1, 1)-co-selectively master-key hiding.

Observation 3.2. We first note that the pair encoding scheme, D(P) satisfies the condition (1) of
Conditions 3.1 due to newly added variable s0. Let us examine the 3rd condition. W.l.o.g, we
set cy,1 = s0 and kx,1 = α + φ · s′0. The correctness of D(P) says that kx(α, r,h)Ec>y (s,h) =

kx,1 · cy,1 − k′y(α′, r′,h)E′c′>x (s′,h) = αs0. If E′ has dimension (m′1 × ω′1), then the dimension of E
is (m1 × ω1), where m1 = ω′1 + 1 and ω1 = m′1 + 1. Hence, the matrix, E has the following form:

Eij :=


1 if i = 1, j = 1

0 if i = 1, j ∈ [2, ω1]

0 if i ∈ [2,m1], j = 1

−E′(j−1)(i−1) if i ∈ [2,m1], j ∈ [2, ω1].

Therefore, it is straightforward to check that the dual pair encoding scheme D(P) satisfies the condition (3)
of Conditions 3.1. We note that the condition (2) of Conditions 3.1 is imposed on the Enc2, similarly
it could be defined over Enc1 and let us call it condition (2̄). One can verify that if a pair encoding scheme
P for predicate, ∼ fulfills the condition (2̄), then its dual, D(P) for ∼̄ satisfies the condition (2). So far,
we check that dual of all the pair encoding schemes [2, 6, 52] satisfy Conditions 3.1. Therefore, all the
pair encoding schemes of [2, 6, 52] and their dual satisfy Conditions 3.1 and, have either computational
security (CMH and SMH) or the PMH security.

27

3.3 Predicate Signature from Pair Encoding Scheme

Terminology: For fixed θ1, θ2, ~ ∈ ZN and h ∈ ZnN , we define hM := (θ1, θ2,h), θ := (θ1, θ2, ~) and
c0(z,θ) := z(θ1~ + θ2), where z is an independent variable. Note that θ1, θ2, ~ and h will be understood
from the context. For (cy, ω2) ←− Enc2(y,N), we define cMy := (c0, cy), so |cMy | = ω1 + 1 if |cy| = ω1.

Therefore, we can write cMy (s,hM) = (c0(s0,θ), cy(s,h)) for s := (s0, . . . , sω2) ∈ Zω2+1
N . We define5

VM := {cMy (s,hM) ∈ Zω1+1
N | s := (s0, . . . , sω2) ∈ Zω2+1

N }. Now, we define an orthogonal set to be

(VM)⊥ := {vsp ∈ Zω1+1
N | < vsp,u >= 0 ∀ u ∈ VM}. The process of sampling from (VM)⊥ is given in

Section 3.4.

Let P := (Param,Enc1,Enc2,Pair) be a primitive pair encoding scheme which satisfies Conditions 3.1.

– Setup(1κ, j): It executes J := (N := p1p2p3,G,GT , e)←− Gcbg(1κ) and chooses g
U←− Gp1 ;Z3

U←− Gp3 .

Then runs n ←− Param(j) and picks h
U←− ZnN . Again picks α, θ1, θ2

U←− ZN and sets hM :=
(θ1, θ2,h) ∈ Zn+2

N . Let H : {0, 1}∗ −→ ZN be a hash function. The public parameters and master
secret are given by

PP := (J , g, ghM , gαT := e(g, g)α, Z3, H) and MSK := (α).

– KeyGen(PP,MSK, x): It runs (kx,m2) ←− Enc1(x,N). Let |kx| = m1. Picks r
U←− Zm2

N and R3
U←−

Gm1
p3 . It outputs the secret key

SKx := (x, Kx := gkx(α,r,h) ·R3).

– Sign(PP,m,SKx, y): If x 6∼ y, returns ⊥. Let SKx = (x, Kx). It runs6 Kx := gkx(α,r,h) · R3 ←−
Re-Randomize(Kx) and Pair(x, y) −→ E ∈ Zm1×ω1

N . Then, computes ~ := H(m, y). It picks τ
U←−

ZN , vsp
U←− (VM)⊥ and R′3

U←− Gω1+1
p3 . Sets v := (−τ,ψ + kx(α, r,h)E) ∈ Zω1+1

N , where ψ :=
(τ(θ1~ + θ2), 0, . . . , 0) ∈ Zω1

N . The signature is given by

δy := gv+vsp · (1G,RE3) ·R′3 ∈ Gω1+1.

where 1G is the zero element of the source group G. We note that δy can be easily computed from
SKx, ghM , E and the random coins involved in the sign algorithm. In fact, δy is computed as follows:

δy = (g−τ , 1G, . . . , 1G)︸ ︷︷ ︸
Gω1+1

· (1G, (gθ1)τ~ · (gθ2)τ , 1G, . . . , 1G)︸ ︷︷ ︸
Gω1+1

· (1G,KE
x)︸ ︷︷ ︸

Gω1+1

· gvsp︸︷︷︸
Gω1+1

· R′3︸︷︷︸
Gω1+1

.

– Ver(PP,m, δy, y): It runs (cy, ω2)←− Enc2(y,N) and picks s := (s0, s1, . . . , sω2)
U←− Zω2+1

N . Computes
cMy (s,hM) := (c0(s0,θ), cy(s,h)) ∈ Zω1+1

N , where |cy| = ω1, θ := (θ1, θ2, ~), ~ := H(m, y) and

c0(s0,θ) := s0(θ1~ + θ2). Then computes a verification text, V := (V INT := gαs0T ,Vy := gc
M
y (s,hM)). It

returns 1 if e(δy,Vy) = V INT else 0.

5We note that the set VM depends on cMy . A natural notation for the set could be VcMy
, but for simplicity, we use VM.

6The linear property of the pair encodings guarantees the re-randomization of the keys. In fact, let Kx = gkx(α,r̃,h) · R̃3,

where r̃ ∈ Zm2
N , R̃3 ∈ Gm1

p3 and (kx,m2) ←− Enc1(x,N). Re-Randomize picks r′
U←− Zm2

N and R′3
U←− Gm1

p3 and sets

Kx := gkx(α,r̃,h) · R̃3 · gkx(0,r′,h) ·R′3 = gkx(α,r,h) ·R3, where r := r̃ + r′ ∈ Zm2
N and R3 := R̃3 ·R′3 ∈ Gm1

p3 .

28

Correctness: For x ∼N y (⇒ x ∼p1 y by domain-transferability), we have

e(δy,Vy) = g
<v+vsp, cMy (s,hM)>

T

(
by orthogonality

of CBG

)
= g

<v, cMy (s,hM)>

T (since vsp ∈ (VM)⊥)

= g
<(−τ, 0,...,0)+(0, ψ)+(0, kx(α,r,h)E, cMy (s,hM)>

T (by definition of v)

= g
−τc0(s,θ)+τ(θ1~+θ2)cy,1(s,h)+<kx(α,r,h)E, cy(s,hM)>
T

= g
−τs0(θ1~+θ2)+τs0(θ1~+θ2)+kx(α,r,h)Ec>y (s,hM)

T (since cy,1(s,h) = s0)

= gαs0T (by correctness of P)

Remark 3.3. In Sign algorithm, two random coins, τ and vsp are used, among them vsp is assigned only
for signer privacy and τ is the only coin that provides randomness in unforgeability. If signer privacy is
not required, we can ignore vsp.

Fact 3.4. We note that size of the signature for a message (m, y) is ω1 + 1, where |cy| = ω1 and number of
pairings in Ver is ω1 + 1. Therefore, if cy of the underlying pair encoding scheme is of constant-
size, then the corresponding signature will be constant-size and the number of pairings in
verification will be constant-size. One example of such pair encodings is Pair Encoding Scheme 5 of
[2].

3.4 How to Uniformly Sample from (VM)
⊥

Let V := {cy(s,h) ∈ Zω1
N | s := (s0, . . . , sω2) ∈ Zω2+1

N } and V⊥ := {v ∈ Zω1
N | < v,u >= 0 ∀ u ∈ V}.

Note that there is no known method to sample uniformly from V⊥ for arbitrary pair encoding schemes.
However, it is possible if we put a condition on Enc2 of P. Condition (2) of Conditions 3.1 is such a
condition. Let s = (s0, . . . , sω2) and h = (h1, . . . , hn). Write cy(s,h) = c(s,h) = (c1(s,h), . . . , cω1(s,h)),
where cι(s,h) is given by

cι(s,h) :=
∑

j∈[0,ω2]

aι,jsj +
∑

j∈[0,ω2]
i∈[n]

aι,j,ihisj .

Then, c>y (s,h) can be written as c>y (s,h) = As>, where the matrix A ∈ Zω1×(ω2+1)
N is given by:

A :=

aι,j +
∑
i∈[n]

aι,j,ihi


1≤ι≤ω1
0≤j≤ω2

For simplicity of the description, we assign the label for the columns of A from 0 to ω2. The matrix
A, we call the associated matrix for cy(s,h). The matrix A is described by aι,j , aι,j,i and hi, where
ι ∈ [ω1], j ∈ [0, ω2] and i ∈ [n]. Note that aι,j ’s and aι,j,i’s are the coefficients of the polynomials cι’s with
(cy, ω2) ←− Enc2(y,N). Therefore, the matrix A is completely determined by y ∈ Y and h. Since the
part, h is fixed, we say that A is associated with y ∈ Y. Then from the definition of V⊥, we have

V⊥ = {v ∈ Zω1
N | < v,u >= 0 ∀ u ∈ V}

= {v ∈ Zω1
N | vc

>
y (s,h) = 0 ∀ s ∈ Zω2+1

N }
= {v ∈ Zω1

N | vAs
> = 0 ∀ s ∈ Zω2+1

N }
= {v ∈ Zω1

N | vA = 0}
= {v ∈ Zω1

N | A
>v> = 0}.

29

Now, sampling from V⊥ boils down to solving the homogeneous system, A>X = 0, with X> :=
(x1, . . . , xω1). Before proceeding further, we note that the sampling of V⊥ gives rise to the
sampling of (VM)⊥ if c1(s,h) = s0. It is assured using Theorem 2.3, where A>M is defined from A> and
t := θ1~ + θ2.

Our goal is to compute gv, where v
U←− V⊥. Note that gh is given but not h. If each component

vj of v is linear combination of hi’s, then we will be able to compute gv. In fact, for each ι ∈ [ω1], if
vι =

∑n
i=1 χι,ihi, where χι,i ∈ ZN for i ∈ [n], then gvι can be computed as (gh1)χι,1 · · · (ghn)χι,n .

Since hi’s are not known, we are not able to compute h−1
i required for the elementary operations of

type-2 (for details of the elementary operations, refer to Section 2.4). It may even happen that the hi’s are
not invertible in ZN . So the only information of A available in the process of elementary operations are
aι’s, a

′
ι,i’s, aι,j ’s and aι,j,i’s. Therefore, throughout the elementary operations, we treat hi’s as symbols,

where the symbols h−1
i ’s are not known. But, if we find some row of A> is a multiple of hi, then we can

multiple the row by h−1
i (provided it exists in ZN) to make the row hi free. Under these multiplications

solution of the system remains unchanged.

Suppose M is obtained by applying say n elementary column operations on A>, then we have
A>E>1 E>2 · · ·E>n = M , where E i’s are elementary matrices. If the column operations are other than
the type-1 operation, then there is a chance that hi may appear in the elementary matrix E>j . Since for

each solution v := (v1, . . . , vω1)> of MX = 0, E>1 E>2 · · ·E>n v is a solution of A>X = 0 and vι’s are linear
combination of hi’s, the terms like hi1hi2 · · ·hik may appear in v to complicate things. For this reason, we
avoid the elementary column operations in the sampling process.

Below, we define the leading h-free column of a matrix which comes in connection with h-free coins
(Definition 3.1). The definition says that for each h-free coin sj , there is a unique leading h-free column of
the matrix A>.

Definition 3.2. A ιth column of A> is said to be “leading h-free” column if there exists a j ∈ [0, ω2] such
that all the entries of the ιth column of A> are 0 except A>j,ι = aι,j .

For Examples 3.6 and 3.7, the leading h-free columns of A> are {1, 4, 6, 8, 10} and {1, 3, 5, 7, 9} respec-
tively.

More Notations. We define Shf := {ι ∈ [ω1] | ∃ j ∈ [0, ω2] such that cι(s,h) = aι,jsj} and Thf := {j ∈
[0, ω2] | ∃ι ∈ [ω1] such that cι(s,h) = aι,jsj}. We remark that Shf and Thf are respectively the collection
of indices for h-free columns and h-free coins. Let Snon−hf := [ω1] \ Shf and Tnon−hf := [0, ω2] \ Thf . The
main task is to find which variables are free and which are not among x1, . . . , xω1 with X := (x1, . . . , xω1)>

for the homogeneous system, A>X = 0. Let Sfv and Snon−fv respectively represent the indices for free
variables and non-free variables.

Remark 3.5. Since, the factorization problem is assumed to be intractable, all aι,j ’s appearing in condition
2(a) are invertible in ZN (as discussed in Section 2.4). For most of the existing pair coding schemes, aι,j ’s
are found to be 1. When all the variables are h-free, then Tnon−hf = ∅.

Algorithm for sampling. As discussed above that sampling from V⊥ boils down to solving A>X = 0
with X> = (x1, . . . , xω1). The matrix A is completely determined by aι,j , aι,j,i and hi, where ι ∈ [ω1],
j ∈ [0, ω2] and i ∈ [n]. Since hi’s are not known, the input matrix A to the algorithm is supplied by aι,j ,
aι,j,i and ghi , where ι ∈ [ω1], j ∈ [0, ω2] and i ∈ [n]. We call this form of input for the matrix A as implicit
form of A. The algorithm returns (gx1 , . . . , gxω1), where (x1, . . . , xω1) is a uniform solution of A>X = 0
which we call implicit form of solution for the system. We describe Algorithm 1 for sampling in details
which takes as input the matrix A in implicit form associated with some y ∈ Y and outputs a uniform
solution in implicit form of the system A>X = 0. Algorithm 1 separately handles two cases, all sj ’s are

30

h-free and not all sj ’s are h-free. The additional comments for the statements of Algorithm 1 are described
in details below.

• (All sj’s are h-free.) From line no.2 to 11 represents the case that all sj ’s involved in cy(s,h) are h-
free. For this case, we do not require any elementary operation. In this case, Null(A>) = ω1−(ω2+1).
For better understanding this case, we refer to Example 3.6.

– From line no.7 to 9: For each ι ∈ Shf , there is a unique j ∈ [0, ω2] such that cι(s,h) = aι,jsj by
condition 2(a). The condition 2(a) guarantees that no non-free variable contributes during the
computation of others.

• (Not all sj’s are h-free.) From line no.12 to 36 represents the case that not all sj ’s involved in cy(s,h)
are h-free. In this case, Null(A>) ≤ ω1 − (ω2 + 1). For better understanding, we refer to Example
3.7.

– For line no.14: For each j ∈ Tnon−hf , there is a unique i′ such that aι,j,i′ 6= 0 and for all ι ∈ [ω1],
i ∈ [n] with i 6= i′, aι,j,i = 0, aι,j = 0 by condition 2(b). On line no.14, the jth row of A is
multiplied by h−1

i′ symbolically to makes each element of the jth row free from h-term. Under
these changes the h-free variables remain h-free as the corresponding leading h-free columns are
unaffected. Since, hi′ is invertible (by condition 2(b)), the solutions of the system A>X = 0
remain unaltered

– From line no.16 to 25: It applies the elementary row operations of type-2 and type-3 until each
row j ∈ Tnon−hf becomes row reduced.

– From line no.18 to 20: Solves the factorization problem in polynomial time in κ and aborts. In
this case, gcd(k,N) is a factor of N .

– For line no.23: It applies the elementary row operations of type-3 to reduce all other elements of
the column containing the leading 1 to 0.

– For line no.25: Under the elementary row operations of type-2 and type-3 used in line no.22 and
23, the h-free variables remain h-free as the corresponding leading h-free columns are unaffected,
but some non-h-free variables become h-free. These new h-free variables make the free variables
to non-free variables.

– For line no.26: Snon−fv is the set of new non-free variables.

– From line no.32 to 34: Note that the set of non-free variables to the system, MX = 0 is Snon−fv :=
Shf∪Snew. As in first case, for each ι ∈ Shf , there is a unique j ∈ [0, ω2] such that cι(s,h) = aι,jsj
by condition 2(a). For each ι ∈ Snew, there is a unique j ∈ [0, ω2] such that cι(s,h) = aι,jsj by
line no.16 to 25.

Example 3.6. For better understanding of Algorithm 1, we work out Pair Encoding Scheme 4 (given in
Section 3.1). We customize a set of attributes to be S := {y2, y3, y4} ⊂ ZN . Enc2(S) → c(s,h) = (c1 :=
s, c2 := sη, c3 := sφ1 + wφ2, c4 := w, {c5,y, c6,y}y∈S), where c5,y := wφ3 + sy(h0 + h1y), c6,y := sy and

31

Algorithm 1: An algorithm for uniform sampling from V⊥.

Input: aι,j , aι,j,i and ghi , where ι ∈ [ω1], j ∈ [0, ω2] and i ∈ [n] (A in implicit form).

Output: g(x1,...,xω1
), where (x1, . . . , xω1

)> is a uniform solution of the system A>X = 0.
1 It computes the sets Shf , Snon−hf and Tnon−hf ;
2 if All sj’s are h-free then
3 Snon−fv := Shf and Sfv := [ω1] \ Snon−fv ;
4 for i ∈ Sfv do

5 xi := χi
U←− ZN ; // free variables are assigned uniformly

6 end
7 for ι ∈ Snon−fv do

8 xι := −a−1ι,j
∑
i∈Sfv

A>j,iχi ; // for each ι ∈ Snon−fv ∃!j ∈ [0, ω2]

9 end
10 return (gx1 , . . . , gxω1) ; // refer to Example 3.6

11 end
12 else
13 for j ∈ Tnon−hf do

14 A>j ← h−1i′ A
>
j ; // jth row of A> is multiplied by h−1i′

15 end
16 for j ∈ Tnon−hf do
17 k := the first non-zero (leading) element of the jth row ;
18 if gcd(k,N) > 1 then
19 return gcd(k,N) ; // solves factorization problem for N
20 end
21 else

22 A>j ← k−1A>j ; // make the leading element to 1

23 all other elements of the column containing the leading 1 are changed to 0 ;

24 end

25 end

; // M := matrix obtained by applying above operations on A>

26 Snew := {ι ∈ Snon−hf | ∃j ∈ Tnon−hf s.t Miι = δi,j} ;
27 Snon−fv := Shf ∪ Snew ; // set of non-free variables for MX = 0
28 Sfv := [ω1] \ Snon−fv ; // set of free variables for MX = 0
29 for i ∈ Sfv do

30 xi := χi
U←− ZN ; // free variables are assigned uniformly

31 end
32 for ι ∈ Snon−fv do

33 xι := −(Mj,ι)
−1
∑
i∈Sfv

Mj,iχi; // for each ι ∈ Snon−fv ∃!j ∈ [0, ω2]

34 end
35 return (gx1 , . . . , gxω1); // refer to Example 3.7

36 end

32

s := (s0 := s, s1 := w, s2, s3, s4) with si := syi for i ≥ 2. The matrix7 of the system A>X = 0 is given by:

A> =



c1 c2 c3 c4 c5,y2 c6,y2 c5,y3 c6,y3 c5,y4 c6,y4

s0 1 η φ1 0 0 0 0 0 0 0

s1 0 0 φ2 1 φ3 0 φ3 0 φ3 0

s2 0 0 0 0 h0 + h1y2 1 0 0 0 0

s3 0 0 0 0 0 0 h0 + h1y3 1 0 0

s4 0 0 0 0 0 0 0 0 h0 + h1y4 1


This is a case, where all the coins are h-free. Here ω1 = 10, ω2 = 4, Shf := {1, 4, 6, 8, 10} and
Thf := {0, 1, 2, 3, 4}. Therefore, Snon−fv := Shf = {1, 4, 6, 8, 10} and Sfv := [10] \ Snon−fv = {2, 3, 5, 7, 9}.
For each i ∈ Sfv, xi := χi

U←− ZN . The non-free variables are computed as: x1 := −ηχ2 − φ2χ3, x4 :=
−φ2χ3−φ3(χ5 +χ7 +χ9), x6 := −(h0 +h1y2)χ5, x8 := −(h0 +h1y3)χ7, x10 := −(h0 +h1y4)χ9. Therefore,
(x1, . . . , x10)> is a solution of the system A>X = 0. If v = (x1, . . . , x10), then gv is computed as follows.
gx1 := (gη)−χ2 .(gφ2)−χ3 , gx2 := gχ2 , gx3 := gχ3 , gx4 := (gφ2)−χ3 .(gφ3)−(χ5+χ7+χ9), gx5 := gχ5 , gx6 :=
(gh0)−χ5 .(gh1)−y2χ5 , gx7 := gχ7 , gx8 := (gh0)−χ7 .(gh1)−y3χ7 , gx9 := gχ9 and gx10 := (gh0)−χ9 .(gh1)−y4χ9

Example 3.7. We also consider Pair Encoding Scheme 10 (described in Section 3.1) which explains other
case of Algorithm 1. Let Γ := (M , ρ) be a span program, where ρ : [4]→ U is some row labeling function
and M is given below:

M =


1 2 3
2 3 4
3 2 1
3 1 3


If we run Enc2 of Pair Encoding Scheme 10 on Γ, we have following output: c(s,h) = (c1, {c2,i, c3,i}i∈[4]),

where c1 := s, c2,i := φM iv
> + s′ihρ(i), c3,i := s′i and s := (s0 := s, s1 := v2, s2 := v3, s3 := s′1, s4 :=

s′2, s5 := s′3, s6 := s′4), v := (s, v2, v3). The matrix of the system A>X = 0 is given by:

A> =



c1 c2,1 c3,1 c2,2 c3,2 c2,3 c3,3 c2,4 c3,4

s0 1 φ 0 2φ 0 3φ 0 3φ 0
s1 0 2φ 0 3φ 0 2φ 0 φ 0
s2 0 3φ 0 4φ 0 φ 0 3φ 0

s3 0 hρ(1) 1 0 0 0 0 0 0

s4 0 0 0 hρ(2) 1 0 0 0 0

s5 0 0 0 0 0 hρ(3) 1 0 0

s6 0 0 0 0 0 0 0 hρ(4) 1


This is a case, where all the coins are not h-free. For all the non-h-free coins (there are only two
non-h-free coins, v2 and v3), there is a unique h-term which is φ. Here ω1 = 9, ω2 = 6, Shf := {1, 3, 5, 7, 9},
Snon−hf := [9] \ Shf = {2, 4, 6, 8}, Thf := {0, 3, 4, 5, 6} and Tnon−hf := [0, 6] \ Thf = {1, 2}. Note that the
labeling of the rows are started with 0. For each j ∈ Tnon−hf , the jth row is multiplied by φ−1 to make
the jth row free from φ. We now apply the following elementary row operations of type-2 and type-3 to
make each row j ∈ Tnon−hf of A> row reduced: R2 ← 2−1R2, R1 ← R1 + (−φ)R2, R3 ← R3 + (−3)R2,
R4 ← R4 +(−hρ(1))R2, R3 ← (−2)R3, R1 ← R1 +(−φ/2)R3, R2 ← R2 +(−3/2)R3, R4 ← R4 +3hρ(1)/2R3

and R5 ← R5 + (−hρ(2))R3. Let M (given below) be the matrix obtained from A> after applying the

7The box in the jth row indicates that the coin sj is h-free and the corresponding column containing the box is leading
h-free column.

33

above elementary row operations. The elements appearing in the double boxes of the row reduced rows of
M are the new leading elements of the corresponding rows.

M =



1 0 0 0 0 0 0 4φ 0

0 1 0 0 0 −5 0 5 0

0 0 0 1 0 4 0 −3 0

0 0 1 0 0 5hρ(1) 0 −5hρ(1) 0

0 0 0 0 1 −4hρ(2) 0 3hρ(2) 0

0 0 0 0 0 hρ(3) 1 0 0

0 0 0 0 0 0 0 hρ(4) 1


Snew := {2, 4}. So Snon−fv := Shf ∪Snew = {1, 2, 3, 4, 5, 7, 9} and Sfv := {6, 8}. For each i ∈ Sfv, xi := χi

U←−
ZN . The non-free variables are computed as: x1 := −4φχ8, x2 := 5(χ6 − χ8), x3 := −5hρ(1)(χ6 − χ8),

x4 := −4χ6 + 3χ8, x5 := hρ(2)(4χ6− 3χ8), x7 := −hρ(3)χ6 and x9 := −hρ(4)χ8. Therefore, (x1, . . . , x10)> is

a solution of the system MX = 0 and hence, a solution of the system A>X = 0. If v = (x1, . . . , x9), then
gv is computed as follows. gx1 := (gφ)−4χ8 , gx2 := g5(χ6−χ8), gx3 := (ghρ(1))−5(χ6−χ8), gx4 := g−4χ6+3χ8 ,
gx5 := (ghρ(2))4χ6−3χ8 , gx6 := gχ6 , gx7 := (ghρ(3))−χ6 , gx8 := gχ8 and gx9 := (ghρ(4))−χ8 .

4 Security Proof of Proposed Predicate Signature

4.1 Signer Privacy

Theorem 4.1. Our proposed PS scheme in Section 3.3 is perfectly private (Definition 2.13).

Proof. For s := (s0, . . . , sω2) ∈ Zω2+1
N , we define (VM)αs0 := {v ∈ Zω1+1

N | < v, cMy (s,hM) >= αs0}.
One can easily check that for arbitrary ṽ ∈ (VM)αs0 , ṽ + (VM)⊥ = (VM)αs0 . Since, the distribution of a
signature for (m, y) is

δy = gv+vsp ·R3 ∈ Gω1+1

where v ∈ (VM)αs0 for some s = (s0, . . . , sω2) ∈ Zω2+1
N . So, it is sufficient to prove that v+vsp is uniformly

distributed over (VM)αs0 for each s ∈ Zω2+1
N . Since, vsp is chosen uniformly and independently from (VM)⊥

and v + (VM)⊥ = (VM)αs0 , so we are done.

4.2 The Proof of Unforgeability

To prove the unforgeability of the proposed construction in Section 3.3, we apply the signature variant of
the dual system methodology [50] deployed in [2]. This signature variant of the dual system is similar to
the style of [41, 43]. In this variant, the original unforgeability game is changed to the final game through
some intermediate games. These changes are made under three subgroup decision problems and CMH or
PMH-security of the underlying pair encoding scheme. In the final game, V INT of the verification text is
sampled uniformly and independently from GT . Therefore, the forgery in the final game will be invalid. If
ν1 and ν2 are respectively the number of key query and signature query made by A , then the reduction
cost is O(ν1 + ν2). We use the abbreviations ‘vText’ and ‘sf-type’ respectively for verification text and
semi-functional type. For all the games, we define the semi-functional keys, signatures and verification
texts of various type as follow.

34

– SFSetup(1κ, j): It runs (PP,MSK)←− Setup(1κ, j) and in addition it returns semi-functional param-

eters, g2
U←− Gp2 , θ̂1, θ̂2

U←− ZN and ĥ
U←− ZnN . We set ĥM := (θ̂1, θ̂2, ĥ).

– SFKeyGen(PP,MSK, x, g2, type, ĥ): It runs (kx,m2)←− Enc1(x,N) with |kx| = m1. It chooses α̂
U←−

ZN , r, r̂
U←− Zm2

N and R3
U←− Gm1

p3 . It outputs the semi-functional key SKx := (x,Kx), where Kx

is given by:

Kx :=


gkx(α,r,h) · gkx(0,r̂,ĥ)

2 ·R3 if type= 1

gkx(α,r,h) · gkx(α̂,r̂,ĥ)
2 ·R3 if type= 2

gkx(α,r,h) · gkx(α̂,0,0)
2 ·R3 if type= 3.

– SFSign(PP,m,SKx, y, g2, type): If x 6∼ y, returns ⊥. It runs δy ←− Sign(PP, m, SKx, y). Note that

δy = gv+vsp ·R3 with R3 ∈ Gω1+1
p3 . It picks b, ι

U←− ZN and returns the semi-functional signature

δy · gv̂2 , where v̂ ∈ Zω1+1
N is given by:

v̂ :=

{
(b, ι, 0, . . . , 0) if type= 1

(0, ι, 0, . . . , 0) if type= 2.

– SFVText(PP,m, y, g2, type, ĥM): It runs (cy, ω2) ←− Enc2(y,N) and picks s := (s0, . . . , sω2), ŝ :=

(ŝ0, . . . , ŝω2)
U←− Zω2+1

N . Computes cMy (s,hM) := (c0(s0,θ), cy(s,h)) ∈ Gω1+1 and cMy (ŝ, ĥM) :=

(c0(ŝ0, θ̂), cy(ŝ, ĥ)) ∈ Gω1+1, where |cy| = ω1, θ := (θ1, θ2, ~), θ̂ := (θ̂1, θ̂2, ~), ~ := H(m, y),

c0(s0,θ) := s0(θ1~ + θ2) and c0(ŝ0, θ̂) := ŝ0(θ̂1~ + θ̂2). It returns the semi-function verification
text as:

V :=


(
V INT := gαs0T ,Vy := gc

M
y (s,hM) · gc

M
y (ŝ,ĥM)

2

)
if type= 1(

V INT
U←− GT ,Vy := gc

M
y (s,hM) · gc

M
y (ŝ,ĥM)

2

)
if type= 2.

Condition 4.1. To go through some of the arguments in the unforgeability proof, we assume the following
condition on the pair encodings. This condition is imposed on kx and E of the pair encodings. We note
that this is weaker than the condition (3) of Conditions 3.1.

For (x, y) ∈ X × Y with x ∼ y, (kx,m2)←− Enc1(x,N) and E ←− Pair(x, y,N), it holds that
kx(α,0,0)E = (∗, 0, . . . , 0), where ∗ is any entry from ZN .

Remark 4.2. (Construction of sf-type 2 signature from sf-type 3 key.) We apply this construction (to
Lemma A.8) for reaching to GameFinal using DSG3 assumption. We see later that the sf-type 3 key is
easily computed from the instance of the DSG3 assumption. But, the computation of sf-type 2 signature is
not possible unless we assume Condition 4.1. Although one can directly compute the sf-type 2 signature
from the parameters of DSG3 (without computing sf-type 3 key), for simplicity of the simulation we show
the construction of sf-type 2 signature from sf-type 3 key. If we apply the Sign algorithm to the sf-type 3
key, SKx, we have the following distribution (viz., the Gp2 part):

δy
∣∣
Gp2

= (g0
2, g

kx(α̂,0,0)E
2)

= (g0
2, g

(∗,0,...,0)
2) (by Condition 4.1)

= g
(0,∗,0,...,0)
2

35

Then, randomize it by composing g
(0,ι′,0,...,0)
2 ∈ Gω1+1

p2 for ι′
U←− ZN and finally what we get is the sf-type

2 signature.

Theorem 4.2. Let P be a pair encoding scheme for a predicate ∼ which satisfies Conditions 3.1 and ∼
is domain-transferable. Suppose P has CMH-security, the assumptions, DSG1, DSG2 and DSG3 hold in
J and H is a collision resistant hash function, then the proposed predicate signature scheme PS in Section
3.3 for the predicate ∼ is adaptive-predicate existential unforgeable (Definition 2.14).

Proof. Suppose there are at most ν1 (resp. ν2) key (resp. signature) queries made by an adversary A .
Then the security proof consists of hybrid argument over a sequence of 3ν1 + 2ν2 + 4 games which are
defined below:

– GameReal := Original AP-UF-CMA game of predicate signature scheme.

– GameRes := This is same as GameReal except x 6∼N y∗ is replaced by x 6∼p2 y
∗ for each key query x

made by A .

– Game0 (= Game1−0−3) is just like GameRes except that the vText is of sf-type 1.

– In Game1−k−1 (for 1 ≤ k ≤ ν1) is same as Game1−(k−1)−3 except the kth key is sf-type 1.

– Game1−k−2 (for 1 ≤ k ≤ ν1) is same as Game1−k−1 except the kth key is sf-type 2.

– Game1−k−3 (for 1 ≤ k ≤ ν1) is same as Game1−k−2 except the kth key is sf-type 3.

– In Game2−k−1 (for 1 ≤ k ≤ ν2) is same as Game2−(k−1)−2 except the kth signature is of sf-type 1. In
this sequel, we define Game2−0−2 = Game1−ν1−3.

– Game2−k−2 (for 1 ≤ k ≤ ν2) is same as Game2−k−1 except the kth signature is of sf-type 2.

– GameFinal is similar to Game2−ν2−2 except that the vText is of sf-type 2.

In GameFinal, the part, V INT is chosen independently and uniformly at random from GT . This implies
that the forgery will be invalid with respect to the vText. Therefore, the adversary A has no advantage
in GameFinal. The outline of the hybrid arguments over the games is given below, where Lem stands for
Lemma.

Real

Lem A.1
|

DSG2
|

=⇒ Res

Lem A.2
|

DSG1
|

=⇒ 0

Lem A.3
|

DSG2
|

=⇒ 1− 1− 1 . . . 1− (k − 1)− 3

Lem A.3
|

DSG2
|

=⇒ 1− k − 1

1− k − 1

Lem A.4
|

CHM
|

=⇒ 1− k − 2

Lem A.5
|

DSG2
|

=⇒ 1− k − 3 . . . 1− ν1 − 3

Lem A.6
|

DSG2,CRH

|
=⇒ 2− 1− 1

. . . 2− (k − 1)− 2

Lem A.6
|

DSG2,CRH

|
=⇒ 2− k − 1

Lem A.7
|

DSG2
|

=⇒ 2− k − 2 . . . 2− ν2 − 2

Lem A.8
|

DSG3
|

=⇒ Final

36

Using the lemmas referred in the above box (for details of the lemmas, refer to Appendix A), we have the
following reduction:

AdvAP−UF−CMA
A ,PS (κ) ≤AdvDSG1

B1
(κ) + (2ν1 + 2ν2 + 1)AdvDSG2

B2
(κ) + ν1AdvCMH

B3,P(κ)+

ν2AdvCRH
B4

(κ) + AdvDSG3
B5

(κ)

where AdvCRH
B4

(κ) is the advantage of B4 in breaking collision resistant property of H and
B1,B2,B3,B4,B5 are PPT algorithms whose running times are same as that of A . This completes
the proof.

Theorem 4.3. Let P be a pair encoding scheme for a predicate ∼ which satisfies Conditions 3.1 and ∼
is domain-transferable. Suppose P has PMH-security, the assumptions, DSG1, DSG2 and DSG3 hold in
J and H is a collision resistant hash function, then the proposed predicate signature scheme PS in Section
3.3 for the predicate ∼ is adaptive-predicate existential unforgeable.

Proof. Similar to the proof of Theorem 4.2. The reduction of the proof is given by

AdvAP−UF−CMA
A ,PS (κ) ≤ AdvDSG1

B1
(κ) + (2ν1 + 2ν2 + 1)AdvDSG2

B2
(κ)+

ν2AdvCRH
B3

(κ) + AdvDSG3
B4

(κ)

where B1,B2,B3 and B4 are PPT algorithms whose running times are same as that of A .

5 Instantiations of Predicate Signature

In this section, we instantiate different predicate signature schemes from various pair encoding schemes.
The different variants of PS with many new features which did not exist earlier in the literature are
presented here. Also we show that some existing PS schemes can be obtained by applying our framework.
If the underlying pair encoding scheme with either PMH or CMH-security satisfies the sufficient Conditions
3.1, then our construction of predicate signature in Section 3.3 guarantees the signer privacy and adaptive-
predicate unforgeability. For instantiations, we consider only the pair encoding schemes8 presented in
[2, 6, 52] as they are having either PMH or CMH-security and satisfy the aforementioned conditions. Other
reasons for considering the pair encoding schemes mainly from [2, 6, 52] are that they are available in
ready-made forms and many PS schemes with new features can be derived from them. In the following,
we briefly describe the instantiations of predicate signature using the pair encodings of [2, 6, 52].

Our framework provides predicate signature scheme for regular languages in key-policy and signature-
policy forms. The KP-PS and SP-PS for regular languages are instantiated from Pair Encoding Schemes 3
and 7 of [2] respectively. These are the first practical non-trivial predicate signature schemes beyond ABS.

We can derive an unbounded KP-ABS with large universes from Pair Encoding Scheme 4 of [2]. Here
unbounded means there is no restriction on the sizes of policies and attribute sets, and the repetition of
attributes in a policy. An ABS with large universes will have super-polynomial size attribute universe. The
universe of attributes is considered to be ZN and size of the public parameters is constant. The only known
adaptive-predicate unforgeable ABS with large universes available in the literature are the construction of
[41, 37], among them only ABS of [37] has the feature, unbounded. However, these constructions are known
to have signature-policy form. Therefore, the proposed ABS scheme is the first unbounded KP-ABS with

8Since, the predicate encodings of [52] have the similar structure with the pair encodings of [2], w.l.o.g we refer the predicate
encodings of [52] as pair encodings in the paper. All the pair encoding schemes of [52] are perfectly master-key hiding.

37

PS Form Feature Pair Encoding SPES

PS KP Regular Languages PES 3 [2] CMH
PS SP Regular Languages PES 7 [2] CMH
ABS KP Unbounded, Large Universes PES 4 [2] CMH
ABS SP Unbounded, Large Universes Dual[6] of PES 4 [2] CMH
ABS KP Constant-size signatures PES 5 [2] CMH
ABS SP Constant-size keys Dual[6] of PES 5 [2] CMH
KP-DSS KP It generalizes KP-ABS PES 6 [2] CMH
SP-DSS SP It generalizes SP-ABS Dual[6] of PES 6 [2] CMH
ABS KP Cost Free PES 8 [2] PMH
ABS SP Cost Free PES 10 [2] PMH
ABS KP Cost Free, Large Universes PES 12 [2] PMH
ABS SP Cost Free, Large Universes PES 13 [2] PMH
IPS NA Cost Free, Const-size signatures PES [52] PMH
IPS NA Cost Free, Const-size keys PES [52] PMH
NIPS NA Cost Free, Const-size signatures PES [52] PMH
NIPS NA Cost Free, Const-size keys PES [52] PMH
SS KP Cost Free, Const-size signatures PES [52] PMH
SS SP Cost Free, Const-size keys Dual [2] of PES [52] PMH
DSS NA Cost Free PES 14 [2] PMH
NSS NA Cost Free PES 15 [2] PMH

Table 1: Instantiations of predicate signature using existing pair encodings

large universes which is unforgeable in adaptive-predicate model. We can also instantiate an unbounded
SP-ABS with large universes from dual [6] of Pair Encoding Scheme 4 of [2], but it is less efficient than
SP-ABS of [37].

We can achieve a KP-ABS with constant-size signatures using Pair Encoding Scheme 5 of [2]. The
unforgeability of the only known constant-size signature [4] for non-monotone access structures was proven
in the selective-predicate model. Therefore, the proposed ABS scheme is the first ABS with constant-
size signature which is existential unforgeable in the adaptive-predicate model. Similarly, by applying our
framework on dual [6] of Pair Encoding Scheme 5 of [2], we achieve adaptive-predicate unforgeable SP-ABS
with constant-size keys.

The authors [2, 6] proposed new encryption schemes for policy over doubly-spatial relation (see Section
2.9) in key-policy and ciphertext-policy forms. These predicate encryption schemes are called key-policy
over doubly-spatial encryption (KP-DSE) and ciphertext-policy over doubly-spatial encryption (CP-DSE)
respectively. These predicate encryption schemes work in similar manner as ABE except the equality
relation is replaced by doubly-spatial relation [28]. The signature analogue of KP-DSE and CP-DSE
are called key-policy over doubly-spatial signature (KP-DSS) and signature-policy over doubly-spatial
signature (SP-DSS) respectively. If we apply our framework on Pair Encoding Scheme 6 and its dual,
we can obtain KP-DSS and SP-DSS respectively. Similar to KP-DSE (resp. CP-DSE), KP-DSS (resp.
SP-DSS) generalizes the existing class, KP-ABS (resp. SP-ABS).

By applying our framework on Pair Encoding Schemes 8 and 9 of [2], we can obtain KP-ABS and
SP-ABS with small universes respectively, where a restriction is imposed only on the polices. Since, the
underlying pair encodings are perfectly master-key hiding, both the ABS schemes are cost free. The
SP-ABS of [43] can be viewed by the proposed SP-ABS.

Attrapadung [2] constructed new cost free ABE schemes with large universes in key-policy and

38

ciphertext-policy forms. The KP-ABE and CP-ABE were constructed from Pair Encoding Schemes 12
and 13 respectively. These pair encoding schemes were constructed based on cover-free families [22, 31].
Analogously, by applying our framework on Pair Encoding Schemes 12 and 13, we obtain cost free KP-ABS
and SP-ABS with large universes. Unlike ABS with small universes, bounds on both, the sizes of attribute
sets and the sizes of access structures are imposed.

We also instantiate many other cost free predicate signatures as follows. A doubly-spatial signature
(DSS) scheme (as a signature analogue of DSE [28]) can be derived using Pair Encoding Scheme 14 of
[2]. The signature analogue of negated spatial encryption [5] is called negated spatial signature (NSS).
An NSS can be instantiated from Pair Encoding Scheme 15 of [2]. Using the pair encodings of [52] for
inner product predicate, we can obtain inner product signature (IPS) schemes with constant-size keys and
constant-size signatures respectively. We can also instantiate non-zero inner product signature (NIPS)
schemes with constant-size keys and constant-size signatures respectively using the pair encodings of [52]
for non-zero inner product predicate. We note that non-zero inner product predicate is a special case of
negated spatial predicate. We can also obtain a spatial signature scheme with constant-size signatures
using the pair encoding of [52].

A summary of the instantiations of the predicate signature using the pair encodings of [2, 6, 52] is
provided in Table 1. The abbreviations NA, KP, SP, PES and SPES stand for not-applicable, key-policy,
signature-policy, Pair Encoding Scheme and security of pair encoding scheme respectively. All the pair
encodings shown in Table 1 are either perfectly (PMH) secure or computationally (both, SMH and CMH)
secure. The right most column stands for the security of the corresponding pair encoding scheme. The
security given in Table 1 are used for unforgeability of the predicate signatures. The notations, DSS, KP-
DSS, SP-DSS, IPS, NIPS, SS and NSS respectively denote doubly-spatial signature, key-policy over DSS,
signature-policy over DSS, inner product signature, non-zero IPS, spatial signature and negated spatial
signature.

6 Framework for CCA Secure PE

In the traditional techniques [53, 54, 39] for CCA conversion, the primitive CPA-secure PE schemes must
have either verifiability or delegation property. One good side towards this direction is that if the underlying
pair encoding scheme fulfills the condition (1) of Conditions 3.1, then the fully secure construction in
Section 4.3 of [2] always satisfies verifiability (Definition 2.9). In fact, the verifiability is defined as follows.

Verifiability. In the following, we define the algorithm, verify where y is the data-index implicitly con-
tained in Ccpa, and x and x̃ are key-indices. Let E := Pair(x, y) and E′ := Pair(x̃, y).

Verify(PP, Ccpa, x, x̃) :=


⊥ if x 6∼ y or x̃ 6∼ y

1 if Event

0 otherwise

Event :=


e(gkx(0,1i,h)E , Cy) = 1 ∀ i ∈ [m2] (1)

e(gkx̃(0,1i,h)E′ , Cy) = 1 ∀ i ∈ [m′2] (2)

e(gkx(1,0,h)E , Cy) = e(gkx̃(1,0,h)E′ , Cy) = e(g, Cy,1) (3)

For R3 ∈ Gp3 , e(R3, Cy,ι) = 1 ∀ ι ∈ [ω1] (4)

where 1i is a vector whose ith position is 1 and rest are 0.

39

Soundness of verifiability. Suppose Verify(PP, Ccpa, x, x̃) = 1, then we show that both the keys, SKx
and SKx̃ output the same message on decryption. Let ∆d := Decrypt(PP, Ccpa,SKx).

∆d = CINT/e(K
E
x ,Cy)

= CINT/e(g
kx(α,r,h)E ,Cy) (by (4))

= CINT/e(g
(kx(0,r,h)+kx(α,0,h))E ,Cy) (by linearity of P)

= CINT/e(g
(
∑
i∈[m2]

rikx(0,1i,h)+αkx(1,0,h))E
,Cy) (by linearity of P)

= CINT/
(∏
i∈[m2]

e(gkx(0,1i,h)E ,Cy)
ri .e(gkx(1,0,h)E ,Cy)

α
)

= CINT/
(∏
i∈[m2]

1ri .e(g, Cy,1)α
)

(by (1) and (3))

= CINT/e(g, Cy,1)α.

Since x is arbitrary, similarly we have Decrypt(PP, Ccpa,SKx̃) = CINT/e(g, Cy,1)α.

Completeness of verifiability. It follows from the correctness of the pair encoding scheme P, orthog-
onality of CBG and the assumption cy,1(s,h) = s0.

Therefore, most of the fully CPA-secure schemes in [2, 6, 52] can be converted to fully CCA-secure
schemes using the conversions [53, 54, 39] as the underlying pair encoding schemes satisfy condition (1) of
Conditions 3.1.

6.1 Direct CCA-secure Predicate Encryption from Pair Encoding Scheme

We explore a direct CCA-secure construction of predicate encryptions from the pair encodings. Using this
construction, we achieve CCA security of all the predicate encryptions found in [2, 6, 52] directly from the
pair encodings of [2, 6, 52] with almost the same cost of CPA construction of [2]. In fact, the difference
between the construction of ours and [2] is that, we use an extra component in ciphertext and three extra
pairing computations in decryption.

Terminology: For (cy, ω2) ←− Enc2(y,N), we define cMy := (c0, cy), so |cMy | = ω1 + 1, where c0(z,θ) :=
z(θ1~ + θ2), θ := (θ1, θ2, ~) ∈ Z3

N , z is the independent variable and |cy| = ω1.

Let P := (Param,Enc1,Enc2,Pair) be a primitive pair encoding scheme with the following condition (already
defined in Conditions 3.1)

Here we assume that for some ι ∈ [ω1], cy,ι(s,h) = s0. W.l.o.g, we assume that cy,1(s,h) = s0.

– Setup(1κ, j): Same as the Setup in Section 3.3.

– KeyGen(PP,MSK, x): Same as the KeyGen in Section 3.3.

– Encrypt(PP,m, y): It runs (cy, ω2) ←− Enc2(y,N) and picks s := (s0, . . . , sω2)
U←− Zω2+1

N . Then
computes Ccpa := (y,Cy := gcy(s,h), CINT := m · gαs0T) and ~ := H(Ccpa). It sets cMy (s,hM) :=

(c0(s0,θ), cy(s,h)) ∈ Zω1+1
N , where |cy| = ω1, θ := (θ1, θ2, ~), and c0(s0,θ) := s0(θ1~ + θ2). Returns

CT := (y,CM
y := gc

M
y (s,hM), CINT).

40

– Decrypt(PP,CT,SKx): It parses CT as (y,CM
y = (C0,Cy), CINT) with C0 = gc0(s0,θ) and Cy = gcy(s,h).

Then sets Ccpa := (y,Cy, CINT) and computes ~ := H(Ccpa). It chooses R
U←− Gp3 . If x 6∼ y or

e(g · R,C0) 6= e(gθ1~+θ2 , C1), returns ⊥. Otherwise, it sets SKM
x := (K0,Ψ ·KE

x) ∈ Gω1+1, where

K0 := g−τ · R0, Ψ := gψ with ψ := (τ(θ1~ + θ2), 0, . . . , 0) ∈ Zω1
N , τ

U←− ZN , R0
U←− Gp3 and

E ← Pair(x, y). It returns CINT/e(SKM
x ,C

M
y).

Correctness: Let ∆ := e(SKM
x ,C

M
y). For x ∼N y (⇒ x ∼p1 y by domain-transferability), we have

∆ = g
<(−τ, ψ+kx(α,r,h)E), cMy (s,hM)>

T (by orthogonality of CBG)

= g
<(−τ, 0,...,0)+(0, ψ)+(0, kx(α,r,h)E), cMy (s,hM)>

T (by linearity)

= g
−τc0(s,θ)+τ(θ1~+θ2)cy,1(s,h)+<kx(α,r,h)E, cy(s,hM)>
T

= g
−τs0(θ1~+θ2)+τs0(θ1~+θ2)+kx(α,r,h)Ec>y (s,hM)

T (by assumption: cy,1(s,h) = s0)

= gαsT . (by correctness of P)

Remark 6.1. Note that the CCA secure ciphertext is also represented as CT = (Ccpa, C0), where the
algorithm Encrypt can be thought as algorithm Encrypt∗ (the Encrypt of CPA construction in [2]), then
followed by the computation of C0.

Remark 6.2. The key SKM
x defined in Decrypt, we call the alternative key (in short alt-key) whose

distribution is exactly the same as the signature δy, if we ignore the random coin vsp used for signer
privacy. Using this alternative key if we run AltDecrypt (defined later), we have the same message as in
Decrypt using the original key SKx.

Fact 6.3. We note that size of the ciphertext is ω1 + 2, where |cy| = ω1 and number pairings in Decrypt
is ω1 + 1. Therefore, if cy of the underlying pair encoding scheme is of constant-size, then the
corresponding ciphertext will be constant-size and the number of pairings in decryption will
be constant-size.

6.2 Security Proof of Proposed Predicate Encryption

The proof strategy is based on the dual system style of [50, 2]. Again to pass the argument in Lemma B.11,
we assume the Condition 4.1 (which is implied by condition (3) of Conditions 3.1). In the following,
we define the algorithms either to generate the semi-functional objects or answer the oracle queries.

– SFSetup(1κ, j): Same as the SFSetup in Section 4.2.

– SFKeyGen(PP,MSK, x, g2, type, ĥ): Same as the SFKeyGen in Section 4.2.

– SFEncrypt(PP,m, y, g2, type, ĥM): It runs (cy, ω2) ←− Enc2(y,N) and picks s := (s0, . . . , sω2), ŝ :=

(ŝ0, . . . , ŝω2)
U←− Zω2+1

N . Computes cMy (s,hM) := (c0(s0,θ), cy(s,h)) ∈ Gω1+1 and cMy (ŝ, ĥM) :=

(c0(ŝ0, θ̂), cy(ŝ, ĥ)) ∈ Gω1+1, where |cy| = ω1, θ := (θ1, θ2, ~), θ̂ := (θ̂1, θ̂2, ~), ~ := H(Ccpa), Ccpa :=

(y,Cy := gcy(s,h), CINT := m · gαs0T), c0(s0,θ) := s0(θ1~ + θ2) and c0(ŝ0, θ̂) := ŝ0(θ̂1~ + θ̂2). It picks

gt
U←− GT and returns the following semi-functional ciphertext CT:

CT :=


(
y,CM

y := gc
M
y (s,hM) · gc

M
y (ŝ,ĥM)

2 , CINT := m · gαs0T

)
if type= 1(

y,CM
y := gc

M
y (s,hM) · gc

M
y (ŝ,ĥM)

2 , CINT := m · gt
)

if type= 2.

41

– SFAltKeyGen(PP,MSK,CT, x, g2, type): It parses CT as (Ccpa, C0), computes ~ := H(Ccpa) and picks

τ
U←− ZN , R0

U←− Gp3 . It first generates the normal key, SKx := [x, Kx := gkx(α,r,h) · R3].
Then, it creates the alt-key SKM

x := (K0,Ψ · KE
x) ∈ Gω1+1, where K0 := g−τ · R0, Ψ := gψ

with ψ := (τ(θ1~ + θ2), 0, . . . , 0) ∈ Zω1
N and E ← Pair(x, y). It picks b, ι

U←− ZN and returns the
semi-functional alt-key SKM

x · gv̂2 , where v̂ ∈ Zω1+1
N is given by:

v̂ :=

{
(b, ι, 0, . . . , 0) if type= 1

(0, ι, 0, . . . , 0) if type= 2.

– AltDecrypt(PP,CT,SKM
x): This is same as Decrypt algorithm, but here we do not need to compute the

alt-key as it is supplied. For sake of completeness: It picks R
U←− Gp3 . If x 6∼ y or e(g · R,C0) 6=

e(gθ1~+θ2 , C1), it returns ⊥ else CINT/e(SKM
x ,C

M
y).

Remark 6.4. If we identify the challenge ciphertext and alt-keys respectively with the verification text
and queried signatures in the unforgeability proof of the predicate signature scheme in Section 3.3, then
most of the part of CCA-security proof of the proposed predicate encryption scheme in Section 6.1 will
follow the unforgeability proof in Section 4.2.

Theorem 6.1. Let P be a pair encoding scheme for a predicate ∼ which satisfies the conditions (1) and
(3) of Conditions 3.1 and ∼ is domain-transferable. Suppose P has both the security, SMH and CMH,
the assumptions, DSG1, DSG2 and DSG3 hold in J and H is a collision resistant hash function, then
the proposed predicate encryption scheme PE in Section 6.1 for the predicate ∼ is AP-IND-CCA secure
(Definition 2.10).

Proof. Suppose there are at most q (resp. ν) key (resp. decrypt) queries made by an adversary A . Then
the security proof consists of hybrid argument over a sequence of 3q1 + 2ν + 7 games, where among the q
key queries, q1 and q2 respectively be the number of pre-challenged and post-challenged key queries. The
games are defined below:

– GameReal := Original AP-IND-CCA game of predicate encryption scheme.

– GameRes := This is same as GameReal except x 6∼N y∗ is replaced by x 6∼p2 y
∗ for each key query x

made by A .

– Game0 (= Game1−0−3) is just like GameRes except that the challenge ciphertext is of sf-type 1.

– In Game1−k−1 (for 1 ≤ k ≤ q1) same as Game1−(k−1)−3 except the kth queried key is sf-type 1.

– Game1−k−2 (for 1 ≤ k ≤ q1) is same as Game1−k−1 except the kth queried key is sf-type 2.

– Game1−k−3 (for 1 ≤ k ≤ q1) is same as Game1−k−2 except the kth queried key is sf-type 3.

– Game1−(q1+1)−i (for 1 ≤ i ≤ 3) is same as Game1−q1−3 except the last q2 queried keys are of sf-type i.
Similar to [2], we restrict the form of queried keys of type-2 and type-3 after the challenge phase.
That is, for all the post key queries xj (q1 + 1 ≤ j ≤ q = q1 + q2), α̂’s appearing in Gp2 components
of SKxj are identical.

– In Game2−k−1 (for 1 ≤ k ≤ ν) is same as Game2−(k−1)−2 except the kth decrypt query is answered by
sf-type 1 alt-key. In this sequel, we define Game2−0−2 = Game1−(q1+1)−3.

42

– Game2−k−2 (for 1 ≤ k ≤ ν) is same as Game2−k−1 except the kth decrypt query is answered by sf-type
2 alt-key.

– GameFinal is similar to Game2−ν−2 except that the challenge ciphertext is of sf-type 2.

In GameFinal, the challenge message mb is masked with an independently and uniformly chosen element
from GT implying the component CINT does not leak any information about the challenge message mb.
Therefore, the adversary A has no advantage in GameFinal. The outline of the hybrid arguments over the
games is given below, where Lem stands for Lemma.

Real

Lem B.1
|

DSG2
|

=⇒ Res

Lem B.2
|

DSG1
|

=⇒ 0

Lem B.3
|

DSG2
|

=⇒ 1− 1− 1 . . . 1− (k − 1)− 3

Lem B.3
|

DSG2
|

=⇒ 1− k − 1

1− k − 1

Lem B.4
|

CHM
|

=⇒ 1− k − 2

Lem B.5
|

DSG2
|

=⇒ 1− k − 3 . . . 1− q1 − 3

Lem B.6
|

DSG2
|

=⇒ 1− (q1 + 1)− 1

1− (q1 + 1)− 1

Lem B.7
|

SHM
|

=⇒ 1− (q1 + 1)− 2

Lem B.8
|

DSG2
|

=⇒ 1− (q1 + 1)− 3

Lem B.9
|

DSG2,CRH

|
=⇒ 2− 1− 1

. . . 2− (k − 1)− 2

Lem B.9
|

DSG2,CRH

|
=⇒ 2− k − 1

Lem B.10
|

DSG2
|

=⇒ 2− k − 2 . . . 2− ν − 2

Lem B.11
|

DSG3
|

=⇒ Final

Using the lemmas referred in the above box (for details of the lemmas, refer to Appendix B), we have the
following reduction:

AdvAP−IND−CCA
A ,PE (κ) ≤ AdvDSG1

B1
(κ) + (2q1 + 2ν + 3)AdvDSG2

B2
(κ) + q1AdvCMH

B3,P(κ)+

AdvSMH
B4,P(κ) + νAdvCRH

B5
(κ) + AdvDSG3

B6
(κ)

where B1,B2,B3,B4,B5 and B6 are PPT algorithms whose running times are same as that of A . This
completes the proof.

Theorem 6.2. Let P be a pair encoding scheme for a predicate ∼ which satisfies the conditions (1) and (3)
of Conditions 3.1 and ∼ is domain-transferable. Suppose P has PMH security, the assumptions, DSG1,
DSG2 and DSG3 hold in J and H is a collision resistant hash function, then the proposed predicate
encryption scheme PE in Section 6.1 for the predicate ∼ is AP-IND-CCA secure (Definition 2.10).

Proof. Similar to the proof of Theorem 6.1. The reduction of the proof is given by

AdvAP−IND−CCA
A ,PE (κ) ≤ AdvDSG1

B1
(κ) + (2q + 2ν + 1)AdvDSG2

B2
(κ)+

νAdvCRH
B3

(κ) + AdvDSG3
B4

(κ)

where q and ν respectively be the number of key and decrypt queries made A and B1,B2,B3,B4 are
PPT algorithms whose running times are same as that of A .

43

7 Framework for Predicate Signcryption

In this section, we present a construction of predicate signcryption using the pair encodings as black-box.
The proposed signcryption supports the combined-setup, i.e., the distributions of public parameters and
keys of the implicit primitive schemes, PS and PE are identical. Here we consider signcryption in CtE&StS-
paradigm of [43] to guarantee the faster execution of the algorithms in Signcrypt and Unsigncrypt, stronger
security and public verifiability.

Let PE := (Setup, KeyGen, PE.Encrypt, PE.Decrypt) and PS := (Setup, KeyGen, PS.Sign, PS.Ver)
be respectively the predicate encryption scheme in Section 6.1 and predicate signature scheme in Sec-
tion 3.3 constructed from pair encoding scheme. Let OTS := (OTS.Gen,OTS.Sign,OTS.Ver) and C :=
(CSetup,Commit,Open) be the one-time signature scheme (for details of OTS, refer to Appendix 2.7) and
commitment scheme respectively. To distinguish the hash values ~s and ~e involved in PS and PE, we
keep the first argument of the hash function H to be 1 and 0 respectively, viz., ~s := H(1, vk, ys) and
~e := H(0, com, δys , vk, Ccpa)

– Setup(1κ, j): Same as the Setup in Section 3.3 except the PP additionally contains the public commit-
ment key, CK.

– KeyGen(PP,MSK, x): Same as the KeyGen in Section 3.3.

– Signcrypt(m,SKx, ys, ye) :=



(com, decom)←− Commit(m); ‖ (vk, signk)←− OTS.Gen(1κ);

δys ←− PS.Sign(vk,SKx, ys); ‖ Ccpa ←− PE.Encrypt∗(decom, ye);

~e := H(0, com, δys , vk, Ccpa);

C0 := gs0(θ1~e+θ2),where s0 is a randomness in PE.Encrypt∗;

δo ←− OTS.Sign(C0||ys, signk);

returns U := (com, δ := (δys , δo, vk),CT := (Ccpa, C0))



– Unsigncrypt(U,SKx, ys) :=


m if


OTS.Ver(C0||ys, δo, vk) = 1;

PS.Ver(vk, δys , ys) = 1; ‖ decom←− PE.Decrypt(CT,SKx);

let m←− Open(com, d)


⊥ otherwise.

Correctness. Following the correctness of primitive predicate signature scheme PS, predicate encryption
scheme PE, commitment scheme C and one-time signature scheme OTS, we have the correctness of the
proposed construction.

Fact 7.1. Following Facts 3.4 and 6.3, we have if |cy| = ω1, then size of the signcryption (mainly the
#group elements) is 2ω1 + 3 and the number of pairings in Unsigncrypt is 2(ω1 + 1). Since Ver and Decrypt
run in parallel in Unsigncrypt, the number of pairings is counted to be ω1 + 1. Therefore, if cy of the
underlying pair encoding scheme has constant-size, then the corresponding signcryption will
be of constant-size and the number of pairings in Unsigncrypt is constant.

Remark 7.2. The Signcrypt and Unsigncrypt work almost in black-box manner except the ~e is computed
as H(0, com, δys , vk, Ccpa) instead of H(Ccpa) in Encrypt and Decrypt.

44

Discussion 7.3. We see later that for confidentiality of the proposed signcryption, we require hiding
property of the primitive commitment scheme C. But, for unforgeability, we do not assume any property
of the commitment scheme C.

Variants of signcryption. Below, we discuss the simple variants of our proposed signcryption.

– If we ignore the objects related to commitment from the proposed construction and make a minor
change, Ccpa ← PE.Encrypt∗(m, ye), then we obtain a simple predicate signcryption. This variant of
signcryption has the same performance as the proposed signcryption except the simple variant does
not attain the public verifiability.

– If we ignore the OTS scheme and apply the modification, δys ← PS.Sign(com||ye, SKx, ye) to the original
construction, we obtain a new signcryption. This variant has the same performance as the proposed
signcryption except the new variant does not guarantee the strong unforgeability. For proving the
weak unforgeability of this new signcryption, we have to assume the relax-binding property of C.

8 Security of the Proposed Predicate Signcryption

The algorithms of PE and PS run almost as black-boxes in Signcrypt and Unsigncrypt algorithms of the
proposed PSC. But, the confidentiality and unforgeability of the proposed PSC is proven without assuming
PE and PS as black-boxes respectively. The reason is the following. All the signcrypt (resp. unsigncrypt)
oracle queries made by A in APs-IND-CCA (resp. APs-UF-CMA) model could not be answered using
black-box proof of PE in Section 6.1 (resp. PS in Section 3.3).

Theorem 8.1. Our proposed predicate signcryption scheme in Section 7 is perfectly private (Definition
2.17).

Proof. Since the SKx is only used to generate δys and the PS scheme in Section 3.3 is perfectly private,
so we are done.

Theorem 8.2. Let P be a pair encoding scheme for a predicate ∼ which satisfies Conditions 3.1 and ∼ is
domain-transferable. Suppose P has both the security, SMH and CMH, the assumptions, DSG1, DSG2 and
DSG3 hold in J , the one-time signature scheme OTS has strong unforgeability, the commitment scheme C
has the hiding property and H is a collision resistant hash function, then the proposed predicate signcryption
scheme PSC in Section 7 for the predicate ∼ is IND-CCA secure in adaptive-predicates model (Definition
2.18).

Proof. For proof, refer to Appendix C

Theorem 8.3. Let P be a pair encoding scheme for a predicate ∼ which satisfies Conditions 3.1 and ∼
is domain-transferable. Suppose P has the CMH security, the assumptions, DSG1, DSG2 and DSG3 hold
in J , the one-time signature scheme OTS has strong unforgeability and H is a collision resistant hash
function, then the proposed predicate signcryption scheme PSC in Section 7 for the predicate ∼ is strongly
existential unforgeable in adaptive-predicates model (Definition 2.22).

Proof. For proof, refer to Appendix C

45

9 Instantiations of Predicate Signcryption

Using the different pair encoding schemes of [2, 6, 52], we instantiate many new results which are given
below.

– Our framework for PSC provides predicate signcryptions for regular languages in both policies, key-
policy (KP) and signcryption-policy (SCP). Both the signcryptions support large universe alphabet
set. The KP-PSC and SCP-PSC are derived using Pair Encoding Schemes 3 and 7 of [2] respectively.

– Unbounded KP-ABSC and SCP-ABSC schemes with large universes can be instantiated using Pair
Encoding Scheme 4 of [2] and its dual [6] respectively.

– We provide a KP-ABSC scheme with constant-size signcryptions and the number of pairings required
to unsigncrypt is also constant. This signcryption is instantiated from Pair Encoding Scheme 5 of
[2]. Since |cy| = 6, following Fact 7.1, we have |U| = 15 and the number of pairings in Unsigncrypt is
14. Similarly, by applying dual [6] on Pair Encoding Scheme 5 of [2], we can obtain an SCP-ABSC
scheme with constant-size keys.

– If we consider signcryption analogue of KP-DSS, then we have a new predicate signcryption, called key-
policy over doubly-spatial signcryption (KP-DSSC). A KP-DSSC is instantiated from Pair Encoding
Scheme 6 of [2]. The dual version of KP-DSSC is called signcryption-policy over doubly-spatial
signcryption (SCP-DSSC). By applying our framework on dual [6] of Pair Encoding Scheme 6 of [2],
we can instantiate an SCP-DSSC. Similar to KP-DSS (resp. SP-DSS), KP-DSSC (resp. SCP-DSSC)
generalizes the existing class, KP-ABSC (resp. SCP-ABSC).

– Cost-free ABSC schemes in both KP and SCP forms with small universes can be derived from Pair
Encoding Schemes 8 and 10 of [2] respectively.

– Similar to the cost free ABS with large universes (in Section 5), we can also obtain cost free ABSC
schemes with large universes in signcryption-policy and key-policy forms. The KP-ABSC and SCP-
ABSC with large universes are instantiated from Pair Encoding Schemes 12 and 13 of [2] respectively.

– (Other Cost Free Signcryptions.) Similar to the other cost free signatures (in Section 5), we instantiate
other cost free signcryptions as follows. A doubly-spatial signcryption (DSSC) (special case of KP-
DSSC) is instantiated using Pair Encoding Scheme 14 of [2]. A predicate signcryption for negated
spatial predicate [5] is obtained using Pair Encoding Scheme 15 of [2]. Using the pair encodings of
[52] for the inner product predicate [30], we obtain inner product signcryption (IPSC) schemes with
constant-size keys and constant-size signcryptions respectively. We generate non-zero inner product
signcryption (NIPSC) schemes with respectively constant-size keys and constant-size signcryptions
using the pair encodings of [52] for non-zero inner product predicate. A spatial signcryption (special
case of DSSC) scheme with constant-size signcryptions can be obtained using a pair encoding of [52].

10 Conclusion

In this paper, for the first time we showed that the pair encodings provide the adaptively unforgeable
predicate signatures with prefect privacy. Then, we have shown that the pair encodings can also be applied
to construct fully CCA-secure predicate encryption with almost the same cost as the CPA-secure PE of
[2]. Finally, we explored a generic framework for predicate signcryptions using the pair encodings. The

46

proposed signcryptions have been shown to be strongly unforgeable and IND-CCA secure in the adaptive-
predicates models and achieve signer privacy. Since, the Sign (resp. Ver) and Encrypt (resp. Decrypt) run
in parallel in Signcrypt (resp. Unsigncrypt), the execution is comparatively faster. For all the frameworks,
we have instantiated many schemes with new features using the existing pair encoding schemes. In future,
similar to the prime order variants [3, 19] of [2, 52], we will be focusing on the prime order variant of all
the constructions presented in this paper.

Acknowledgements. We would like to thank Prof. Rana Barua, Subhabrata Samajder and the anony-
mous reviewers of PKC, 2016 for their comments and suggestions that helped in polishing the technical
and editorial content of this paper.

References

[1] Jee Hea An, Yevgeniy Dodis, and Tal Rabin. On the security of joint signature and encryption. In
EUROCRYPT, volume 2332 of LNCS, pages 83–107. Springer, 2002.

[2] Nuttapong Attrapadung. Dual system encryption via doubly selective security: Framework, fully
secure functional encryption for regular languages, and more. In EUROCRYPT, volume 8441 of
LNCS, pages 557–577. Springer, 2014.

[3] Nuttapong Attrapadung. Dual system encryption framework in prime-order groups. Cryptology ePrint
Archive, Report 2015/390, 2015. http://eprint.iacr.org/.

[4] Nuttapong Attrapadung, Goichiro Hanaoka, and Shota Yamada. Conversions among Several Classes of
Predicate Encryption and Applications to ABE with Various Compactness Tradeoffs. In ASIACRYPT,
volume 9452 of LNCS, pages 575–601. Springer, 2015.

[5] Nuttapong Attrapadung and Benôıt Libert. Functional encryption for inner product: Achieving
constant-size ciphertexts with adaptive security or support for negation. In PKC, volume 6056 of
LNCS, pages 384–402. Springer, 2010.

[6] Nuttapong Attrapadung and Shota Yamada. Duality in ABE: Converting attribute based encryption
for dual predicate and dual policy via computational encodings. In CT-RSA, volume 9048 of LNCS,
pages 616–637. Springer, 2015.

[7] Mihir Bellare and Georg Fuchsbauer. Policy-based signatures. In PKC, volume 8383 of LNCS, pages
520–537. Springer, 2014.

[8] Johannes Blömer and Gennadij Liske. Construction of fully cca-secure predicate encryptions from
pair encoding schemes. In CT-RSA, volume 9610 of LNCS, pages 431–447. Springer, 2016.

[9] Dan Boneh and Xavier Boyen. Efficient selective-ID secure identity-based encryption without random
oracles. In EUROCRYPT, volume 3027 of LNCS, pages 223–238. Springer, 2004.

[10] Dan Boneh and Xavier Boyen. Secure identity based encryption without random oracles. In CRYPTO,
volume 3152 of LNCS, pages 443–459. Springer, 2004.

[11] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-dnf formulas on ciphertexts. In TCC,
volume 3378 of LNCS, pages 325–341. Springer, 2005.

[12] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and challenges. In
TCC, volume 6597 of LNCS, pages 253–273. Springer, 2011.

47

http://eprint.iacr.org/

[13] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: a new vision for public-key
cryptography. Communications of the ACM, 55(11):56–64, 2012.

[14] Xavier Boyen. Mesh signatures. In EUROCRYPT, volume 4515 of LNCS, pages 210–227. Springer,
2007.

[15] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom functions.
In PKC, volume 8383 of LNCS, pages 501–519. Springer, 2014.

[16] David Chaum and Eugéne van Heyst. Group signatures. In EUROCRYPT, volume 547 of LNCS,
pages 257–265. Springer, 1991.

[17] Cheng Chen, Jie Chen, Hoon Wei Lim, Zhenfeng Zhang, and Dengguo Feng. Combined public-key
schemes: The case of ABE and ABS. In PROVSEC, volume 7496 of LNCS, pages 53–69. Springer,
2012.

[18] Jie Chen and Hoeteck Wee. Doubly spatial encryption from DBDH. Cryptology ePrint Archive,
Report 2014/199, 2014. http://eprint.iacr.org/.

[19] Jie Chen and Hoeteck Wee. Improved dual system ABE in prime-order groups via predicate encodings.
In EUROCRYPT, volume 9057 of LNCS, pages 595–624. Springer, 2015.

[20] Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay. Functional signcryption: Notion, construc-
tion, and applications. In PROVSEC, volume 9451 of LNCS, pages 268–288. Springer, 2015.

[21] Keita Emura, Atsuko Miyaji, and Mohammad Shahriar Rahman. Dynamic attribute-based signcryp-
tion without random oracles. International Journal of Applied Cryptography, 2(11):199–211, 2012.

[22] Paul Erdös, Peter Frankl, and Zoltán Füredi. Families of finite sets in which no set is covered by the
union of r others. Israel Journal of Mathematics, 51(1-2):79–89, 1985.

[23] Alex Escala, Javier Herranz, and Paz Morillo. Revocable attribute-based signatures with adaptive
security in the standard model. In AFRICACRYPT, volume 6737 of LNCS, pages 224–241. Springer,
2011.

[24] Martin Gagné, Shivaramakrishnan Narayan, and Reihaneh Safavi-Naini. Threshold attribute-based
signcryption. In SCN, volume 6280 of LNCS, pages 154–171. Springer, 2010.

[25] Jens Groth, Rafail Ostrovsky, and Amit Sahai. New techniques for non-interactive zero-knowledge.
Journal of ACM, 59(3):11:1–11:35, June, 2012.

[26] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. In EURO-
CRYPT, volume 4965 of LNCS, pages 415–432. Springer, 2008.

[27] Stuart Haber and Benny Pinkas. Securely combining public-key cryptosystems. In ACM Conference
on Computer and Communications Security, pages 215–224. ACM, 2001.

[28] Mike Hamburg. Spatial encryption. Cryptology ePrint Archive, Report 2011/389, 2011. http:

//eprint.iacr.org/.

[29] Kenneth Hoffman and Ray Kunze. Linear Algebra. Prentice Hall of India, New Delhi, 2nd edition,
1991.

48

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

[30] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting disjunctions, polyno-
mial equations, and inner products. In EUROCRYPT, volume 4965 of LNCS, pages 146–162. Springer,
2008.

[31] Ravi Kumar, Sridhar Rajagopalan, and Amit Sahai. Coding constructions for blacklisting problems
without computational assumptions. In CRYPTO, volume 1666 of LNCS, pages 609–623. Springer,
1999.

[32] Allison Lewko and Brent Waters. New techniques for dual system encryption and fully secure HIBE
with short ciphertexts. In TCC, volume 5978 of LNCS, pages 455–479. Springer, 2010.

[33] Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent Waters. Fully
secure functional encryption: Attribute-based encryption and (hierarchical) inner product encryption.
In EUROCRYPT, volume 6110 of LNCS, pages 62–91. Springer, 2010.

[34] Jin Li, Man Ho Au, Willy Susilo, Dongqing Xie, and Kui Ren. Attribute-based signature and its
applications. In ACM Conference on Computer and Communications Security, pages 60–69. ACM,
2010.

[35] Benôıt Libert and Jean-Jacques Quisquater. Efficient signcryption with key privacy from gap diffie-
hellman groups. In PKC, volume 2947 of LNCS, pages 187–200. Springer, 2004.

[36] Hemanta Maji, Manoj Prabhakaran, and Mike Rosulek. Attribute-based signatures: Achiev-
ing attribute-privacy and collusion-resistance. Cryptology ePrint Archive, Report 2008/328, 2008.
http://eprint.iacr.org/.

[37] Hemanta Maji, Manoj Prabhakaran, and Mike Rosulek. Attribute-based signatures. In CT-RSA,
volume 6558 of LNCS, pages 376–392. Springer, 2011.

[38] Takahiro Matsuda, Kanta Matsuura, and Jacob C. N. Schuldt. Efficient constructions of signcryption
schemes and signcryption composability. In INDOCRYPT, volume 5922 of LNCS, pages 321–342.
Springer, 2009.

[39] Mridul Nandi and Tapas Pandit. Generic conversions from CPA to CCA secure functional encryption.
Cryptology ePrint Archive, Report 2015/457, 2015. http://eprint.iacr.org/, submited to journal.

[40] Tatsuaki Okamoto and Katsuyuki Takashima. Hierarchical predicate encryption for inner-products.
In ASIACRYPT, volume 5912 of LNCS, pages 214–231. Springer, 2009.

[41] Tatsuaki Okamoto and Katsuyuki Takashima. Efficient attribute-based signatures for non-monotone
predicates in the standard model. In PKC, volume 6571 of LNCS, pages 35–52. Springer, 2011.

[42] Tatsuaki Okamoto and Katsuyuki Takashima. Decentralized attribute-based signatures. In PKC,
volume 7778 of LNCS, pages 125–142. Springer, 2013.

[43] Tapas Pandit, Sumit Kumar Pandey, and Rana Barua. Attribute-based signcryption: Signer privacy,
strong unforgeability and IND-CCA2 security in adaptive-predicates attack. In PROVSEC, volume
8782 of LNCS, pages 274–290. Springer, 2014.

[44] Y. Sreenivasa Rao and Ratna Dutta. Expressive bandwidth-efficient attribute based signature and
signcryption in standard model. In ACISP, volume 8544 of LNCS, pages 209–225. Springer, 2014.

[45] Yusuke Sakai, Nuttapong Attrapadung, and Goichiro Hanaoka. Attribute-based signatures for circuits
from bilinear map. In PKC, volume 9614 of LNCS, pages 283–300. Springer, 2016.

49

http://eprint.iacr.org/
http://eprint.iacr.org/

[46] Siamak F Shahandashti and Reihaneh Safavi-Naini. Threshold attribute-based signatures and their
application to anonymous credential systems. In AFRICACRYPT, volume 5580 of LNCS, pages
198–216. Springer, 2009.

[47] Guo Shaniqng and Zeng Yingpei. Attribute-based signature scheme. In ISA, pages 509–511. IEEE,
2008.

[48] Maŕıa Isabel González Vasco, Florian Hess, and Rainer Steinwandt. Combined (identity-based) public
key schemes. Cryptology ePrint Archive, Report 2008/466, 2008. http://eprint.iacr.org/.

[49] Changji Wang and Jiasen Huang. Attribute-based signcryption with ciphertext-policy and claim-
predicate mechanism. In Computational Intelligence and Security (CIS), 2011 Seventh International
Conference on, pages 905–909. IEEE, 2011.

[50] Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE under simple assump-
tions. In CRYPTO, volume 5677 of LNCS, pages 619–636. Springer, 2009.

[51] Brent Waters. Functional encryption for regular languages. In CRYPTO, volume 7417 of LNCS, pages
218–235. Springer, 2012.

[52] Hoeteck Wee. Dual system encryption via predicate encodings. In TCC, volume 8349 of LNCS, pages
455–479. Springer, 2014.

[53] Shota Yamada, Nuttapong Attrapadung, Goichiro Hanaoka, and Noboru Kunihiro. Generic construc-
tions for chosen-ciphertext secure attribute based encryption. In PKC, volume 6571 of LNCS, pages
71–89. Springer, 2011.

[54] Shota Yamada, Nuttapong Attrapadung, Bagus Santoso, Jacob C. N. Schuldt, Goichiro Hanaoka, and
Noboru Kunihiro. Verifiable predicate encryption and applications to CCA security and anonymous
predicate authentication. In PKC, volume 7293 of LNCS, pages 243–261. Springer, 2012.

[55] Piyi Yang, Zhenfu Cao, , and Xiaolei Dong. Fuzzy identity based signature. Cryptology ePrint Archive,
Report 2008/02, 2008. http://eprint.iacr.org/.

[56] Yuliang Zheng. Digital signcryption or how to achieve cost(signature & encryption)� cost(signature)
+ cost(encryption). In CRYPTO, volume 1294 of LNCS, pages 165–179. Springer, 1997.

A Lemmas Used in the Proof of Theorem 4.2

Lemma A.1. GameReal and GameRes are indistinguishable under the DSG2 assumption. That is, for
every adversary A , there exists a PPT algorithm B such that

|AdvReal
A ,PS(κ)− AdvRes

A ,PS(κ)| ≤ AdvDSG2
B (κ).

Proof. Suppose an adversary can distinguish the games with a non-negligible probability. Then we will
establish a PPT simulator B for breaking the DSG2 assumption with the same probability. An instance of

DSG2, (J , g, Z1Z2,W2W3, Z3, Tβ) with β
U←− {0, 1} is given to B. The only difference between the games,

GameReal and GameRes is that if x is a queried key-index and y∗ is a challenge associated data-index,
then it holds: x ∼p2 y

∗ but, x 6∼N y∗. We show that the above scenario will not happen. In fact, from
the soundness of domain-transferability of ∼, we can find a factor F such that p2|F |N . There are three

50

http://eprint.iacr.org/
http://eprint.iacr.org/

possibilities of F : (1) F = p2, (2) F = p1p2 and (3) F = p2p3. We remark the aforesaid cases are recognized
using the parameters of the given instance of DSG2. Suppose F = p2. Let B := N/F = p1p3 and then

by checking TBβ
?
= 1G, B can break the DSG2 assumption. Now suppose F = p1p2 or F = p2p3. Let

B := N/F . If B = p3, it computes Y2 := (W2W3)B = W p3
2 else Y2 := (Z1Z2)B = Zp12 . In both case, we

have Y2 ∈ Gp2 , then by checking e(Tβ, Y2)
?
= 1, B can break the DSG2 assumption.

Lemma A.2. GameRes and Game0 are indistinguishable under the DSG1 assumption. That is, for every
adversary A , there exists a PPT algorithm B such that

|AdvRes
A ,PS(κ)− Adv0

A ,PS(κ)| ≤ AdvDSG1
B (κ).

Proof. We establish a PPT simulator B who receives an instance of DSG1, (J , g, Z3, Tβ) with β
U←− {0, 1}

and depending on the distribution of β, it simulates either GameRes or Game0.

Setup: B chooses α, θ1, θ2
U←− ZN , h

U←− ZnN and sets hM := (θ1, θ2,h). Let H : {0, 1}∗ −→ ZN be a
hash function. Then, it provides PP := (J , g, ghM , gαT := e(g, g)α, Z3, H) to A and keeps MSK := (α) to

itself. It implicitly sets ĥM :≡ hM mod p2. By Chinese Remainder Theorem (CRT), ĥM is independent
from hM mod p1 and so ĥM is perfectly distributed.

Query Phase: It consists of the following queries in adaptive manner:

– KeyGen(x): It is a query for normal key. B can handle the key query of A , since the MSK is known
to him.

– Sign(m,x, y): If x 6∼ y, it returns ⊥. It is a query for normal signature. B can answer the query of A ,
since he can construct SKx using the MSK known to him.

Forgery: A outputs a signature δy∗ for (m∗, y∗). Then, B prepares a vText for (m∗, y∗) as follows: It
computes ~∗ := H(m∗, y∗). Runs (cy∗ , ω2)←− Enc2(y∗, N) with |cy∗ | = ω1 and sets cMy∗ := (c0, cy∗). Then

picks s′ := (s′0, . . . , s
′
ω2

)
U←− Zω2+1

N . Finally, computes the vText as V := (V INT := e(gα, Tβ)s
′
0 ,Vy∗ :=

T
cM
y∗ (s′,hM)

β). B returns 1 if e(δy∗ ,Vy∗) = V INT else 0.

Analysis: We will show that all the objects are perfectly distributed as required. B implicitly sets

gt1 := Tβ
∣∣
Gp1

and for β = 1, gt22 := Tβ
∣∣
Gp2

. Then by linearity of P, we have g
t1cMy∗ (s′,hM)

= g
cM
y∗ (t1s′,hM)

and

g
t2cMy∗ (s′,hM)

2 = g
cM
y∗ (t2s′,ĥM)

2 . B implicitly sets s :≡ t1s′ mod p1 and for β = 1, ŝ :≡ t2s′ mod p2. By CRT,
s′ mod p1 is independent from s′ mod p2 and therefore s and ŝ are perfectly distributed as required.
Altogether, we have that the joint distribution of all the objects simulated by B is identical to that of
GameRes if β = 0 else Game0.

Lemma A.3. Game1−(k−1)−3 and Game1−k−1 are indistinguishable under DSG2 assumption. That is, for
every adversary A , there exists a PPT algorithm B such that

|Adv
1−(k−1)−3
A ,PS (κ)− Adv1−k−1

A ,PS (κ)| ≤ AdvDSG2
B (κ) for 1 ≤ k ≤ ν1.

Proof. We establish a PPT simulator B who receives an instance of DSG2, (J , g, Z1Z2, W2W3, Z3, Tβ)

with β
U←− {0, 1} and depending on the distribution of β, it simulates either Game1−(k−1)−3 or Game1−k−1.

51

Setup: B chooses α, θ1, θ2
U←− ZN , h

U←− ZnN and sets hM := (θ1, θ2,h). Let H : {0, 1}∗ −→ ZN be a
hash function. Then, it provides PP := (J , g, ghM , gαT := e(g, g)α, Z3, H) to A and keeps MSK := (α) to

itself. It implicitly sets ĥM :≡ hM mod p2. By CRT, ĥM is independent from hM mod p1 and so ĥM is
perfectly distributed.

Query Phase: It consists of the following queries in adaptive manner:

– KeyGen(x): Let xj be the jth query key-index. B answers the key SKxj as follows:

• If j > k, then B runs the KeyGen algorithm and gives the normal key to A .

• If j < k, then it is of sf-type 3 key. B runs (kxj ,m2) ←− Enc1(xj , N) with |kxj | = m1. Picks

α′j
U←− ZN , rj

U←− Zm2
N and R3

U←− Gm1
p3 . It computes the sf-type 3 key as defined below:

SKxj := gkxj (α,rj ,h) · (W2W3)kxj (α′j ,0,0) ·R3.

It implicitly sets α̂j := w2α
′
j , where W2W3 = gw2

2 gw3
3 . So, SKxj is properly distributed sf-type

3 key.

• If j = k then it is either normal or sf-type 1 key. B runs (kxk ,m2) ←− Enc1(xk, N) with

|kxk | = m1. Picks r′k, r̂
′
k

U←− Zm2
N and R3

U←− Gm1
p3 . It generates the following SKxj using Tβ

of the instance of DSG2:

SKxk := gkxk (α,r′k,h) · Tkxk (0,r̂′k,h)

β ·R3.

B implicitly sets gt1 := Tβ
∣∣
Gp1

and for β = 1, gt22 := Tβ
∣∣
Gp2

. Then by linearity of P, we

have gkxk (α, r′k, h) · gt1kxk (0, r̂′k, h) = gkxk (α, r′k+t1r̂
′
k, h) and g

t2kxk (0, r̂′k, h)

2 = g
kxk (0, t2r̂

′
k, ĥ)

2 . B
implicitly sets rk := r′k + t1r̂

′
k and r̂k := t2r̂

′
k. Since r′k and r̂′k are chosen uniformly and

independently from Zm2
N , then so are rk and r̂k. Therefore, SKxk is perfectly distributed normal

(resp. sf-type 1) key if β = 0 (resp. β = 1).

– Sign(m,x, y): If x 6∼ y, it returns ⊥. It is a query for normal signature. B can answer the query of A
as the MSK is known to him.

Forgery: A outputs a signature δy∗ for (m∗, y∗). Then, B prepares a vText for (m∗, y∗) as follows: It com-
putes ~∗ := H(m∗, y∗). Runs (cy∗ , ω2)←− Enc2(y∗, N) with |cy∗ | = ω1 and sets cMy∗ := (c0, cy∗). Then picks

s′ := (s′0, . . . , s
′
ω2

)
U←− Zω2+1

N . Finally, computes V := (V INT := e(gα, Z1Z2)s
′
0 ,Vy∗ := (Z1Z2)

cM
y∗ (s′,hM)

). B
returns 1 if e(δy∗ ,Vy∗) = V INT else 0.

Analysis: We will show that all the objects are perfectly distributed as required. Let Z1Z2 = gz1gz22 .

Then by linearity of P, we have g
z1cMy∗ (s′,hM)

= g
cM
y∗ (z1s′,hM)

and g
z2cMy∗ (s′,hM)

2 = g
cM
y∗ (z2s′,ĥM)

2 . B implicitly
sets s :≡ z1s

′ mod p1 and ŝ :≡ z2s
′ mod p2. By CRT, s′ mod p1 is independent from s′ mod p2 and

therefore s and ŝ are perfectly distributed as required. Altogether, we have that the joint distribution of
all the objects simulated by B is identical to that of Game1−(k−1)−3 if β = 0 else Game1−k−1.

Lemma A.4. Game1−k−1 and Game1−k−2 are indistinguishable under the CMH security of primitive pair
encoding scheme, P. That is, for every adversary A , there exists a PPT algorithm B such that

|Adv1−k−1
A ,PS (κ)− Adv1−k−2

A ,PS (κ)| ≤ AdvCMH
B,P (κ) for 1 ≤ k ≤ ν1.

52

Proof. Suppose A can distinguish Game1−k−1 and Game1−k−2 with non-negligible probability. Then we
will construct a PPT simulator B for breaking the CMH security of P with the same probability.

Setup: The challenger CH of P gives (g, g2, g3) ∈ Gp1 × Gp2 × Gp3 to B. B chooses α, θ1, θ2
U←− ZN ,

h
U←− ZnN and sets hM := (θ1, θ2,h). Let H : {0, 1}∗ −→ ZN be a hash function. Then, it provides

PP := (J , g, ghM , gαT := e(g, g)α, Z3 := g3, H) to A and keeps MSK := (α) and g2 to itself.

Query Phase: It consists of the following queries in adaptive manner:

– KeyGen(x): Let xj be the jth query key-index. B answers the key SKxj as follows:

• If j > k, then B runs the KeyGen algorithm and gives the normal key to A .

• If j < k, then it is of sf-type 3 key. Using PP, MSK and g2, B can generate the required key.

• If j = k then it is either of sf-type 1 or sf-type 2 key. B runs (kxk ,m2) ←− Enc1(xk, N) with

|kxk | = m1. Picks rk
U←− Zm2

N and R3
U←− Gm1

p3 . It makes a query with xk to CH and let

T := g
kxk (β,r̂k,ĥ)

2 be the reply, where β = 0 or random element from ZN . Then B returns the
following key

SKxk := gkxk (α,rk,h) · T ·R3

to A . Therefore, SKxj is perfectly distributed sf-type 1 key if β = 0 else sf-type 2.

– Sign(m,x, y): If x 6∼ y, it returns ⊥. It is a query for normal signature. B can answer the query of A
as the MSK is known to him.

Forgery: A outputs a signature δy∗ for (m∗, y∗). Then, B prepares a vText for (m∗, y∗) as follows: It
computes ~∗ := H(m∗, y∗). Runs (cy∗ , ω2) ←− Enc2(y∗, N) with |cy∗ | = ω1 and sets cMy∗ := (c0, cy∗).

Then, picks s := (s0, . . . , sω2)
U←− Zω2+1

N . Then, it makes a query with y∗ to CH and let D := g
cy∗ (ŝ,ĥ)
2

be the reply. Finally, computes a vText as V :=
(
V INT := e(g, g)αs0 ,Vy∗ := g

cM
y∗ (s,hM) · g

cM
y∗ (ŝ,ĥM)

2

)
, where

g
cM
y∗ (ŝ,ĥM)

2 := (g
ŝ(θ1~∗+θ2)
2 , D). B returns 1 if e(δy∗ ,Vy∗) = V INT else 0.

Analysis:

– Correctness: B follows the restriction of CMH security game (while interacting with CH) as long as A
does so in unforgeability game with B. In fact, by natural restriction, for all key queries x made
by A , we have x 6∼p2 y

∗, in particular for kth query, xk 6∼p2 y
∗. Therefore, B does not violate the

restriction of the CMH security game with CH.

– Perfectness: By the assumption: cy∗,1(ŝ, ĥ) = ŝ0, the first component of D is gŝ02 . So, the first component

of g
cM
y∗ (ŝ,ĥM)

2 can be computed as g
ŝ0(θ1~∗+θ2)
2 = (gŝ02)θ1~

∗+θ2 . B implicitly sets (θ̂1, θ̂2) :≡ (θ1, θ2)

mod p2. By CRT, (θ̂1, θ̂2) is independent from (θ1, θ2) mod p1 and therefore V is perfectly distributed
sf-type 1 vText. Altogether, we have that the joint distribution of all the objects simulated by B is
identical to that of Game1−k−1 if β = 0 else Game1−k−2.

Lemma A.5. Game1−k−2 and Game1−k−3 are indistinguishable under the DSG2 assumption. That is, for
every adversary A , there exists a PPT algorithm B such that

|Adv1−k−2
A ,PS (κ)− Adv1−k−3

A ,PS (κ)| ≤ AdvDSG2
B (κ) for 1 ≤ k ≤ ν1.

53

Proof. We establish a PPT simulator B who receives an instance of DSG2, (J , g, Z1Z2, W2W3, Z3, Tβ)

with β
U←− {0, 1} and depending on the distribution of β, it simulates either Game1−k−2 or Game1−k−3.

Description of the simulation is same as that of Lemma A.3 except the answering kth key query. Below,
we only describes the simulation of kth query:

The kth key is either sf-type 2 or sf-type 3. B runs (kxk ,m2) ←− Enc1(xk, N) with |kxk | = m1. Picks

r′k, r̂
′
k

U←− Zm2
N and R3

U←− Gm1
p3 . It generates the following SKxk using Tβ of the instance of DSG2:

SKxk := gkxk (α,r′k,h) · (W2W3)kxk (α′k,0,0) · T
kxj (0,r̂′k,h)

β ·R3.

If W2W3 = gw2
2 gw3

3 and Tβ = gt1gt22 g
t3
3 (for β = 1), then B implicitly sets α̂k := w2α

′
k, rk := r′k + t1r̂

′
k

and r̂k := t2r̂
′
k. Note that here we use the linearity and param-vanishing properties of the pair encoding,

P. Since r′k and r̂′k are chosen uniformly and independently from Zm2
N , then so are rk and r̂k. Therefore,

SKxk is perfectly distributed sf-type 2 (resp. sf-type 3) key if β = 1 (resp. β = 0).

Lemma A.6. Game2−(k−1)−2 and Game2−k−1 are indistinguishable under DSG2 assumption and collision
resistant property of H. That is, for every adversary A , there exists a PPT algorithm B such that

|Adv
2−(k−1)−2
A ,PS (κ)− Adv2−k−1

A ,PS (κ)| ≤ AdvDSG2
B (κ) + AdvCRH

B (κ) for 1 ≤ k ≤ ν2.

Proof. We establish a PPT simulator B who receives an instance of DSG2, (J , g, Z1Z2, W2W3, Z3, Tβ)

with β
U←− {0, 1} and depending on the distribution of β, it simulates either Game2−(k−1)−2 or Game2−k−1.

Setup: Same as Lemma A.3.

Query Phase: It consists of the following queries in adaptive manner:

– KeyGen(x): Here all the keys are of sf-type 3 and simulation of the keys are same as the sf-type 3 keys
of Lemma A.3.

– Sign(m,x, y): If x 6∼ y, it returns ⊥. Let (mj , xj , yj) be the jth signature query made A . B answers
the signature δyj as follows:

• If j > k, it is normal signature. B can answer the queries of A as the MSK is known to him.

• If j < k, it is sf-type 2 signature. B first computes the normal signature δyj , picks ι′j
U←− ZN

and then returns
δ̃yj := δyj · (W2W3)(0, ι′j , 0,...,0).

If W2W3 = gw2
2 gw3

3 , then B implicitly sets ιj := w2ι
′
j . So, δ̃yj is properly distributed sf-type 2

signature.

• If j = k, it is either normal signature or sf-type 1 signature. B runs (kxk ,m2)←− Enc1(xk, N)

and Pair(xk, yk) −→ E ∈ Zm1×ω1
N . Picks vsp

U←− (VM)⊥, r
U←− Zm2

N and R3
U←− Gω1+1

p3 . It
computes ~k := H(mk, yk) and then returns the following signature:

δyk := g(0, kxk (α,r,h)E) · gvsp · T (−1, 0,...,0)
β · T (0, θ1~k+θ2,...,0)

β ·R3.

54

Let gτ := Tβ
∣∣
Gp1

and for β = 1, gt22 := Tβ
∣∣
Gp2

. Then, the Gp1 component of δyk can be written

as gv+vsp , where v := (−τ,ψ + kxk(α, r,h)E) and ψ := (τ(θ1~k + θ2), 0, . . . , 0). If β = 1,
the Gp2 component of δyk is expressed as gv̂2 where B implicitly sets b :≡ −t2 mod p2 and
ι :≡ t2(θ1~k + θ2) mod p2. Since θ1~k + θ2 mod p1 are independent from θ1~k + θ2 mod p2

by CRT, therefore δyk is perfectly distributed signature unless some correlation with vText is
found later.

Forgery: A outputs a signature δy∗ for (m∗, y∗). Then, B prepares a vText for (m∗, y∗) as follows: It
computes ~∗ := H(m∗, y∗). Runs (cy∗ , ω2) ←− Enc2(y∗, N) with |cy∗ | = ω1 and sets cMy∗ := (c0, cy∗).

Then picks s′ := (s′0, . . . , s
′
ω2

)
U←− Zω2+1

N . It computes a vText as V := (V INT := e(gα, Z1Z2)s
′
0 ,Vy∗ :=

(Z1Z2)
cM
y∗ (s′,hM)

). B returns 1 if e(δy∗ ,Vy∗) = V INT else 0.

Analysis: Now, we mainly concentrate on the joint distribution of kth signature and vText as there may
be a correlation between them. More precisely, we observe the distributional relation between c∗0(ŝ0, θ̂) :=
ŝ0(θ̂1~∗ + θ̂2) :≡ s̃0(θ1~∗ + θ2) mod p2 and cy∗,1(ŝ, ĥ) := ŝ0 :≡ s̃0 mod p2 with s̃0 :≡ z1s

′
0 involved in

cMy∗(ŝ, ĥM) of vText. Unfortunately, a similar kind of relation is found in v̂, viz., between b :≡ −t2 mod p2

and ι :≡ t2(θ1~j+θ2) mod p2. But that correlation does not hamper our life: since H has collision resistant
property and (mj , yj) 6= (m∗, y∗), we have ~j 6= ~∗. By applying the argument of [32], we have θ1~j + θ2

and θ1~∗+θ2 are independently and uniformly distributed9 over Zp2 . Therefore, (s̃0, s̃0(θ1~∗+θ2)) mod p2

is uncorrelated from (b, ι). Altogether, we have that the joint distribution of all the objects simulated by
B is identical to that of Game2−(k−1)−2 if β = 0 else Game2−k−1.

Lemma A.7. Game2−k−1 and Game2−k−2 are indistinguishable under the DSG2 assumption. That is, for
every adversary A , there exists a PPT algorithm B such that

|Adv2−k−1
A ,PS (κ)− Adv2−k−2

A ,PS (κ)| ≤ AdvDSG2
B (κ) for 1 ≤ k ≤ ν2.

Proof. We establish a PPT simulator B who receives an instance of DSG2, (J , g, Z1Z2, W2W3, Z3, Tβ)

with β
U←− {0, 1} and depending on the distribution of β, it simulates either Game2−k−1 or Game2−k−2.

The simulation is almost similar to Lemma A.6 except the answering kth signature query. Note that
in this case, we do not require the collision resistant property of H. We only illustrate here the kth

signature. The kth signature is of either sf-type 1 or sf-type 2. B runs (kxk ,m2) ←− Enc1(xk, N) and

Pair(xk, yk) −→ E ∈ Zm1×ω1
N . Picks ι′k

U←− ZN , vsp
U←− (VM)⊥, r

U←− Zm2
N and R3

U←− Gω1+1
p3 . It

computes ~k := H(mk, yk) and then returns the signature as given below:

δyk := g(0, kxk (α,r,h)E) · gvsp · T (−1, 0,...,0)
β · T (0, θ1~k+θ2,...,0)

β · (W2W3)(0, ι′k, 0,...,0) ·R3.

Let W2W3 = gw2
2 gw3

3 . Let gτ := Tβ
∣∣
Gp1

and for β = 1, gt22 := Tβ
∣∣
Gp2

. Then, the Gp1 component of

δyk can be written as gv+vsp , where v := (−τ,ψ + kxk(α, r,h)E) and ψ := (τ(θ1~k + θ2), 0, . . . , 0). If
β = 1 (resp. β = 0), the Gp2 component of δyk is expressed as gv̂2 , with v̂ := (b, ι, 0, . . . , 0) ∈ Zω1+1

N where
B implicitly sets b :≡ −t2 mod p2 (resp. b :≡ 0 mod p2) and ι :≡ t2(θ1~k + θ2) + w2ι

′
k mod p2 (resp.

ι :≡ w2ι
′
k mod p2). Therefore, δyk is perfectly distributed sf-type 1 (resp. sf-type 2) signature if β = 1

(resp. β = 0).

9To apply [32], we require that ~j − ~∗ 6≡ 0 mod p2. From ~j − ~∗ 6≡ 0 mod N , we have ~j − ~∗ 6≡ 0 mod p for at least
one p such that p ∈ {p1, p2, p3}. One can show that ~j − ~∗ 6≡ 0 mod p for all p with p ∈ {p1, p2, p3} assuming factorization
problem is hard. However, if ~j − ~∗ ≡ 0 mod p2 we can find a factor F of N with p2|F and which leads to break the DSG2
assumption, a contradiction.

55

Lemma A.8. Game2−ν2−2 and GameFinal are indistinguishable under the DSG3 assumption. That is, for
every adversary A , there exists a PPT algorithm B such that

|Adv2−ν2−2
A ,PS (κ)− AdvFinalA ,PS(κ)| ≤ AdvDSG3

B (κ).

Proof. We establish a PPT simulator B who receives an instance of DSG1, (J , g, gαY2, gs0W2, g2, Z3, Tβ)

with β
U←− {0, 1} and depending on the distribution of β, it simulates either Game2−ν2−2 or GameFinal.

Setup: B chooses θ1, θ2
U←− ZN , h

U←− ZnN and sets hM := (θ1, θ2,h). Let H : {0, 1}∗ −→ ZN be a hash

function. Then, it provides PP := (J , g, ghM , gαT := e(g, gαY2), Z3, H) to A . Implicitly sets ĥM :≡ hM

mod p2. By Chinese Remainder Theorem (CRT), ĥM is independent from hM mod p1 and so ĥM is
perfectly distributed.

Query Phase: It consists of the following queries in adaptive manner:

– KeyGen(x): It is sf-type 3 key. B runs (kx,m2) ←− Enc1(x). Then picks r
U←− Zm2

N , α̂′
U←− ZN and

R3
U←− Gm1

p3 . Finally it returns

SKx := (gαY2)kx(1,0,0) · gkx(0,r,h) · gkx(α̂′,0,0)
2 ·R3.

If Y2 = gy22 , B implicitly sets α̂ := y2 + α̂′ mod p2 and so, SKx is a perfectly distributed sf-type 3
key.

– Sign(m,x, y): If x 6∼ y, it returns ⊥. It is a query for sf-type 2 signature. B first creates sf-type 3 key
SKx and then using SKx, it can compute the sf-type 2 signature as described in Remark 4.2.

Forgery: A outputs a signature δy∗ for (m∗, y∗). Then, B prepares a vText for (m∗, y∗) as follows: It
computes ~∗ := H(m∗, y∗). Runs (cy∗ , ω2) ←− Enc2(y∗, N) with |cy∗ | = ω1 and sets cMy∗ := (c0, cy∗).

It picks (s′1, . . . , s
′
ω2

)
U←− Zω2

N and sets s′ := (1, s′1, . . . , s
′
ω2

) ∈ Zω2+1
N . Finally, computes a vText as

V := (V INT := Tβ,Vy∗ := (gs0W2)
cM
y∗ (s′,hM)

). B returns 1 if e(δy∗ ,Vy∗) = V INT else 0.

B implicitly sets s :≡ s0s
′ mod p1 and ŝ :≡ s0s

′ mod p2. By CRT, s′ mod p1 is independent from s′

mod p2 and so, s and ŝ are perfectly distributed as required. Therefore, V is perfectly distributed sf-type
1 vText if β = 0 else sf-type 2 vText.

Analysis: All the components simulated above are perfectly distributed as required. Therefore, the joint
distribution of all the objects simulated by B is identical to that of Game2−ν2−2 if β = 0 else GameFinal.

B Lemmas Used in the Proof of Theorem 6.1

Lemma B.1. GameReal and GameRes are indistinguishable under the DSG2 assumption. That is, for
every adversary A , there exists a PPT algorithm B such that

|AdvReal
A ,PE(κ)− AdvRes

A ,PE(κ)| ≤ AdvDSG2
B (κ).

Proof. The proof follows from Lemma 27 of [2] or Lemma A.1 in this paper.

56

Lemma B.2. GameRes and Game0 are indistinguishable under the DSG1 assumption. That is, for every
adversary A , there exists a PPT algorithm B such that

|AdvRes
A ,PE(κ)− Adv0

A ,PE(κ)| ≤ AdvDSG1
B (κ).

Proof. The proof is similar to Lemma 28 of [2] and Lemma A.2 in this paper.

Lemma B.3. Game1−(k−1)−3 and Game1−k−1 are indistinguishable under DSG2 assumption. That is, for
every adversary A , there exists a PPT algorithm B such that

|Adv
1−(k−1)−3
A ,PE (κ)− Adv1−k−1

A ,PE (κ)| ≤ AdvDSG2
B (κ)

for 1 ≤ k ≤ q1, where q1 is the number of pre-challenged key queries.

Proof. For proof, refer to the proof of Lemma 29 of [2] and Lemma A.3 in this paper.

Lemma B.4. Game1−k−1 and Game1−k−2 are indistinguishable under CMH security of the primitive pair
encoding scheme, P. That is, for every adversary A , there exists a PPT algorithm B such that

|Adv1−k−1
A ,PE (κ)− Adv1−k−2

A ,PE (κ)| ≤ AdvCMH
B,P (κ) for 1 ≤ k ≤ q1.

Proof. Following the proof of Lemma 30 of [2] and Lemma A.4 in this paper, it can be proven. Note that
condition (1) of Conditions 3.1 will be used here.

Lemma B.5. Game1−k−2 and Game1−k−3 are indistinguishable under the DSG2 assumption. That is, for
every adversary A , there exists a PPT algorithm B such that

|Adv1−k−2
A ,PE (κ)− Adv1−k−3

A ,PE (κ)| ≤ AdvDSG2
B (κ) for 1 ≤ k ≤ q1.

Proof. The proof is similar to that of Lemma 31 of [2] and Lemma A.5 in this paper.

Lemma B.6. Game1−q1−3 and Game1−(q1+1)−1 are indistinguishable under the DSG2 assumption. That
is, for every adversary A , there exists a PPT algorithm B such that

|Adv1−q1−3
A ,PE (κ)− Adv

1−(q1+1)−1
A ,PE (κ)| ≤ AdvDSG2

B (κ).

Proof. For proof, we refer to Lemma 32 of [2].

Lemma B.7. Game1−(q1+1)−1 and Game1−(q1+1)−2 are indistinguishable under the SMH security of of the
primitive pair encoding scheme, P. That is, for every adversary A , there exists a PPT algorithm B such
that

|Adv
1−(q1+1)−1
A ,PE (κ)− Adv

1−(q1+1)−2
A ,PE (κ)| ≤ AdvSMH

B,P (κ).

Proof. The proof is similar to Lemma 33 of [2]. Note that condition (1) of Conditions 3.1 is applied
here.

Lemma B.8. Game1−(q1+1)−2 and Game1−(q1+1)−3 are indistinguishable under the DSG2 assumption.
That is, for every adversary A , there exists a PPT algorithm B such that

|Adv
1−(q1+1)−2
A ,PE (κ)− Adv

1−(q1+1)−3
A ,PE (κ)| ≤ AdvDSG2

B (κ).

Proof. The proof can be done in similar manner as in Lemma 34 of [2].

57

Lemma B.9. Game2−(k−1)−2 and Game2−k−1 are indistinguishable under the DSG2 assumption and col-
lision resistant property of H. That is, for every adversary A , there exists a PPT algorithm B such
that

|Adv
2−(k−1)−2
A ,PE (κ)− Adv2−k−1

A ,PE (κ)| ≤ AdvDSG2
B (κ) + AdvCRH

B (κ) for 1 ≤ k ≤ ν.

Proof. We establish a PPT simulator B who receives an instance of DSG2, (J , g, Z1Z2, W2W3, Z3, Tβ)

with β
U←− {0, 1} and depending on the distribution of β, it simulates either Game2−(k−1)−2 or Game2−k−1.

Setup: B chooses α, θ1, θ2
U←− ZN , h

U←− ZnN and sets hM := (θ1, θ2,h). Let H : {0, 1}∗ −→ ZN be a
hash function. Then, it provides PP := [J , g, ghM , gαT := e(g, g)α, Z3, H] to A and keeps MSK := (α)

to itself. Implicitly sets ĥM :≡ hM mod p2. By CRT, ĥM is independent from hM mod p1 and so ĥM is
perfectly distributed.

Query Phase-1: It consists of the following queries in adaptive manner:

– KeyGen(x): Here all the keys are of sf-type 3 and simulation of the keys are same as the sf-type 3 keys
of Lemma B.3.

– Decrypt(CT, x): Let (CTj , xj) be the jth decrypt query made A . B first constructs the alt-key SKM
xj as

shown below and then answers to A by running AltDecrypt algorithm :

• If j > k, it is normal alt-key. B can compute the key as the MSK is known to him.

• If j < k, it is sf-type 2 alt-key. B first computes the normal alt-key SKM
xj , picks ι′j

U←− ZN and
then creates the sf-type 2 alt-key as follows:

S̃KM
xj := SKM

xj · (W2W3)(0, ι′j , 0,...,0).

If W2W3 = gw2
2 gw3

3 , then B implicitly sets ιj := w2ι
′
j . So, S̃KM

xj is properly distributed sf-type
2 alt-key.

• If j = k, it is either normal or sf-type 1 alt-key. B runs (kxk ,m2) ←− Enc1(xk, N) and

Pair(xk, yk) −→ E ∈ Zm1×ω1
N . Picks r

U←− Zm2
N and R3

U←− Gω1+1
p3 . It computes the alt-key as

given below:

SKM
xk

:= g(0, kxk (α,r,h)E) · T (−1, 0,...,0)
β · T (0, θ1~k+θ2,...,0)

β ·R3.

where ~k := H(C
(k)
cpa). Let gτ := Tβ

∣∣
Gp1

and for β = 1, gt22 := Tβ
∣∣
Gp1

. Then, B sets gv :=

SKM
xk

∣∣
Gp1

, where v := (−τ,ψ + kxk(α, r,h)E) and ψ := (τ(θ1~k + θ2), 0, . . . , 0). If β = 1, it

sets gv̂2 := SKM
xk

∣∣
Gp2

with v̂ := (b, ι, 0, . . . , 0) ∈ Zω1+1
N , where B implicitly sets b :≡ −t2 mod p2

and ι :≡ t2(θ1~k + θ2) mod p2. Therefore, SKM
xk

is perfectly distributed normal (resp. sf-type
1) alt-key if β = 0 (resp. β = 1).

Challenge Phase: A provides two equal length messages m0,m1 and the challenge index y∗ to B. Then,

B picks b
U←− {0, 1}. Runs (cy∗ , ω2) ←− Enc2(y∗, N) with |cy∗ | = ω1 and picks s′ := (s′0, . . . , s

′
ω2

)
U←−

Zω2+1
N . It first computes C∗cpa := (y∗,Cy∗ := (Z1Z2)cy∗ (s′,h), CINT := mb ·e(gα, Z1Z2)s

′
0) and then computes

~∗ := H(C∗cpa). Finally, returns the challenge ciphertext CT∗ := (y∗,CM
y∗ := (C∗0 ,Cy∗), CINT), where

C∗0 := (Z1Z2)s
′
0(θ1~∗+θ2). If Z1Z2 = gz1gz22 , it implicitly sets s := z1s

′ mod p1 and ŝ := z2s
′ mod p2.

Since, s′ mod p1 is independent from s′ mod p2, therefore CT∗ is perfectly distributed sf-type 1 challenge
ciphertext.

Query Phase-2: It consists of the following queries in adaptive manner:

58

– KeyGen(x): Again note that for all the post key queries x, α̂’s appearing in Gp2 components of SKx are

identical. B picks α′
U←− ZN . Let xj be the jth (j > q1) query key-index. B runs (kxj ,m2)←− Enc1(xj , N)

with |kxj | = m1. It chooses rj
U←− Zm2

N and R3
U←− Gm1

p3 . It computes SKxj as defined below:

SKxj := gkxj (α,rj ,h) · (W2W3)kxj (α′,0,0) ·R3.

It implicitly sets α̂ := w2α
′, where W2W3 = gw2

2 gw3
3 . So, SKxj is properly distributed sf-type 3 key.

– Decrypt(CT, x): Similar to Query Phase-1 except for the kth decrypt query (CTk, xk), i.e., if CT∗ 6= CTk
and ~∗ = ~k, then B aborts.

Guess: A sends a guess b′ to B. If b′ = b then B returns 1 else 0.

Analysis: By the natural restriction of the security game, A is allowed to decrypt query (CTk, xk) if
CT∗ 6= CTk. The analysis part is similar to that of Theorem A.6. For this analysis, we have to make sure
that ~∗ 6= ~k. In fact, if ~∗ = ~k, then B aborts the game in query-2 phase. Therefore, we only have
to show that the probability of abort is negligible. By Fact B.1, we have that the probability of abort is
bounded by the advantage of an adversary in breaking DSG2 assumption. Altogether, we have that the
joint distribution of all the objects simulated by B is identical to that of Game2−(k−1)−2 if β = 0 else
Game2−k−1.

Fact B.1. If for the kth decrypt query (CTk, xk), CT∗ 6= CTk and ~∗ = ~k, then B can solve the given
instance of DSG2 assumption.

Proof of Fact B.1. We start with the following equalities:

CT∗ 6= CTk and ~∗ = ~k (5)

Since, H is a collision resistant hash function, from the equation (5), we have

C∗0 6= C
(k)
0 and C∗cpa = C

(k)
cpa (6)

From the definition of AltDecrypt, we have the following equations:

C
(k)
0

∣∣
Gp3

= 1G and e(g, C
(k)
0) = e(gθ1~k+θ2 , C

(k)
1) (7)

From the challenge ciphertext, we have

C∗0
∣∣
Gp3

= 1G and e(g, C∗0) = e(gθ1~
∗+θ2 , C∗1) (8)

Using the 2nd part of the equations (5), (6) (viz., C∗1 = C
(k)
1), (7) and (8), we have e(g, C∗0) = e(g, C

(k)
0)

which in turn implies that

C∗0
∣∣
Gp1

= C
(k)
0

∣∣
Gp1

(9)

Since C
(k)
0

∣∣
Gp3

= 1G, C∗0
∣∣
Gp3

= 1G, using equation (9), we must have

Y2 := (C∗0)−1 · C(k)
0 ∈ Gp2 .

Since C∗0 6= C
(k)
0 , we have Y2 6= 1G. Therefore, B can break the given instance of DSG2 assumption using

Y2.

59

Lemma B.10. Game2−k−1 and Game2−k−2 are indistinguishable under the DSG2 assumption. That is,
for every adversary A , there exists a PPT algorithm B such that

|Adv2−k−1
A ,PE (κ)− Adv2−k−2

A ,PE (κ)| ≤ AdvDSG2
B (κ) for 1 ≤ k ≤ ν.

Proof. We establish a PPT simulator B who receives an instance of DSG2, (J , g, Z1Z2, W2W3, Z3, Tβ)

with β
U←− {0, 1} and depending on the distribution of β, it simulates either Game2−k−1 or Game2−k−2.

The simulation is almost similar to Lemma B.9 except the answering kth decrypt query. Note that in this
case, we do not need the collision resistant property of H. We illustrate here only the kth alt-key :

The kth alt-key is of either sf-type 1 or sf-type 2. B runs (kxk ,m2) ←− Enc1(xk, N) and Pair(xk, yk) −→
E ∈ Zm1×ω1

N . Picks ι′k
U←− ZN and R3

U←− Gω1+1
p3 . It computes the alt-key as given below:

SKM
xk

:= g(0, kxk (α,r,h)E) · T (−1, 0,...,0)
β · T (0,θ1~k+θ2, ...,0)

β · (W2W3)(0, ι′k, 0,...,0) ·R3,

where ~k := H(C
(k)
cpa).

Let W2W3 = gw2
2 gw3

3 . Let gτ := Tβ
∣∣
Gp1

and for β = 1, gt22 := Tβ
∣∣
Gp1

. Then, B sets gv = SKM
xk

∣∣
Gp1

,

where v := (−τ,ψ + kxk(α, r,h)E) and ψ := (τ(θ1~k + θ2), 0, . . . , 0). If β = 1 (resp. β = 0), it sets
gv̂2 := SKM

xk

∣∣
Gp2

with v̂ := (b, ι, 0, . . . , 0) ∈ Zω1+1
N , where B implicitly sets b :≡ −t2 mod p2 (resp. b :≡ 0

mod p2) and ι :≡ t2(θ1~k + θ2) + w2ι
′
k mod p2 (resp. ι :≡ w2ι

′
k mod p2). Therefore, SKM

xk
is perfectly

distributed sf-type 1 (resp. sf-type 2) alt-key if β = 1 (resp. β = 0).

Lemma B.11. Game2−ν−2 and GameFinal are indistinguishable under the DSG3 assumption. That is,
for every adversary A , there exists a PPT algorithm B such that

|Adv2−ν
A ,PE(κ)− AdvFinalA ,PE(κ)| ≤ AdvDSG3

B (κ).

Proof. For proof, we refer to Lemma 35 of [2] and Lemma A.8 in this paper. Note that condition (3) of
Conditions 3.1 is applied here.

C Semi-Functional Objects for Confidentiality and Unforgeability

To obtain confidentiality and unforgeability in adaptive-predicates models, we use the dual system proof
technique [50], but its signcryption version as used in [43]. We consider two kinds of signcryptions, the
replied signcryption (obtained from signcrypt oracle) and challenge signcryption. The former has three
forms, N (stands for normal), sf-type I and sf-type II, whereas the later is of five forms, N, sf-type 1, sf-type
2, sf-type 3 and sf-type 4. For simplicity, we ignore the one-time signature and write signcryption :=
(signature (δys), ciphertext (CT)). We also consider a new object, called verification text key (in short
vTextKey) which is composed of alt-key and vText, i.e., better to write vTextKey := (alt-key, vText). This
vTextKey will be used to unsigncrypt the signcryption (queried through the unsigncrypt oracle) using
a new algorithm, AltUnsigncrypt described below. Similar to the forms of signcryption, we consider two
kinds of vTextKeys, one is used to answer the unsigncrypt oracle queries and other to unsigncrypt the
forgery signcryption. The former has three forms, N, sf-type I and sf-type II, whereas the later is of five
forms, N, sf-type 1, sf-type 2, sf-type 3 and sf-type 4. The signcrypt (resp. unsigncrypt) is performed by
running the two algorithms, Sign (resp. Ver)and Encrypt (resp. Decrypt) almost in black-box manner. We
describe the different forms of signcryptions (resp. vTextKeys) through already defined different forms of
signatures (resp. alt-keys) and ciphertexts (resp. vTexts). For this purpose, we define a (type converter)

60

function fconvrt : {N, I, II, 1, 2, 3, 4} → {(i, j) | i, j ∈ {N, 1, 2}}, which takes the type of a signcryption
(resp. vTextKey) as an input and outputs a pair (i, j), where i is the form of signature (resp. alt-key)
and j is the form of ciphertext (resp. vText). The function fconvrt is completely defined by the image
as fconvrt(N) := (N,N), fconvrt(I) := (1,N), fconvrt(II) := (2,N), fconvrt(1) := (N, 1), fconvrt(2) := (1, 1),
fconvrt(3) := (2, 1) and fconvrt(4) := (2, 2). From the description of fconvrt, the form of ciphertexts (resp.
vTexts) in the signcryptions (resp. vTextKeys) of sf-type I and sf-type II are always normal. In the
following, we define various algorithms either to generate the semi-functional objects or answer the oracle
queries.

– SFSetup(1κ, j): Same as the SFSetup in Section 4.2.

– SFKeyGen(PP,MSK, x, g2, type, ĥ): Same as the SFKeyGen in Section 4.2.

– SFEncrypt(PP,m, y, g2, type, ĥM): Same as the SFEncrypt in Section 6.2.

– SFSign(PP,m,SKx, y, g2, type): Same as the SFSign in Section 4.2.

– SFSigncrypt(PP,m,SKx, ys, ye, g2, type, ĥM): If x 6∼ y, returns ⊥. It first runs (com, decom) ←−
Commit(m) and (vk, signk) ←− OTS.Gen(1κ). Suppose fconvrt(type) = (i, j). It then runs
δys ←− SFSign(PP, vk,SKx, ys, g2, i) and (Ccpa, C0) ←− SFEncrypt(PP, decom, y, g2, j, ĥM), where
C0 := gs0(θ1~e+θ2) and ~e := H(0, com, δys , vk, Ccpa). It runs δo ←− OTS.Sign(C0||ys, signk) and
returns the semi-functional signcryption U := (com, δ := (δys , δo, vk), CT := (Ccpa, C0))

– SFAltKeyGen(PP,MSK,CT, x, g2, type): Same as the SFAltKeyGen in Section 6.2.

– SFVText(PP,m, y, g2, type, ĥM): Same as the SFVText in Section 4.2.

– SFVTextKey(PP,MSK,U, x, ys, g2, type, ĥM): Runs SKM
x ←− SFAltKeyGen(PP, MSK, CT, x, g2, i)

and V ←− SFVText(PP, vk, ys, g2, j, ĥM), where (i, j) = fconvrt(type). It returns the semi-functional
vTextKey, VK := (SKM

x ,V).

– AltDecrypt(PP,CT,SKM
x): Same as the AltDecrypt in Section 6.2.

– AltVer(δys ,V): This is same as Ver algorithm, but we do not require to compute the vText as it is
supplied. Let V = (V INT,Vys). It e(δys ,Vys) = V INT returns 1, else 0.

– AltUnsigncrypt(PP,U,VK, ys): Let VK = (SKM
x ,V). This is same as Unsigncrypt algorithm, but here

we do not need to compute the alt-key SKM
x and vText V respectively involved in the algorithms,

Decrypt and Ver as they are supplied. In other words, it is same as Unsigncrypt algorithm, except the
Decrypt and Ver are replaced by AltDecrypt and AltVer respectively.

We note that the objects of a particular form defined above may not be used in both, the proof confiden-
tiality and unforgeability. For example, the signcryptions (resp. vTextKeys) of the forms, sf-type 1, sf-type
2, sf-type 3 and sf-type 4 are not used in the proof unforgeability (resp. confidentiality).

Remark C.1. By construction of signcryption, we have ~s 6= ~e. The function f(X) := θ1X + θ2 is
pairwise independent function. So, we do not need to pay attention on distributional relation between the
objects involved in signature and alt-key (resp. ciphertext and vText) while simulating these objects in
sf-type 1 form.

61

C.1 The Proof of Confidentiality

Theorem C.1. Let P be a pair encoding scheme for a predicate ∼ which satisfies Conditions 3.1 and ∼ is
domain-transferable. Suppose P has both the security, SMH and CMH, the assumptions, DSG1, DSG2 and
DSG3 hold in J , the one-time signature scheme OTS has strong unforgeability, the commitment scheme C
has the hiding property and H is a collision resistant hash function, then the proposed predicate signcryption
scheme PSC in Section 7 for the predicate ∼ is IND-CCA secure in adaptive-predicates model (Definition
2.18).

Proof. Suppose there are at most q, ν1 and ν2 number of key, unsigncrypt and signcrypt oracle queries
respectively made by an adversary A . Then the security proof consists of hybrid argument over a sequence
of 3q1 + 2(ν1 + ν2) + 10 games, where among the q key queries, q1 and q2 respectively be the number of
pre-challenged and post-challenged key queries.

Let U∗ = (com∗, δ∗ = (δy∗s , δ
∗
o , vk∗),CT∗ = (C∗cpa, C

∗
0)) denote the challenge signcryption for the data-

indices (y∗s , y
∗
e). Let (U, x, ys) be any unsigncrypt oracle query, where U = (com, δ = (δys , δo, vk),CT =

(Ccpa, C0)). We define an event E as

E := [(vk∗ = vk) ∧ (δ∗o ||C∗0 ||y∗s 6= δo||C0||ys)].

We will apply the hybrid arguments over the following games, where all the unsigncrypt queries are
answered by the suitable forms of vTextKeys using the algorithm AltUnsigncrypt.

– GameReal := Original APs-IND-CCA game of predicate signcryption scheme.

– Game
R̂eal

:= Same as GameReal except the challenger always returns ⊥ on unsigncrypt oracle query if
E occurs.

– GameRes := This is same as Game
R̂eal

except x 6∼N y∗ is replaced by x 6∼p2 y
∗ for each key query x

made by A .

– Game0 (= Game1−0−3) is just like GameRes except that the challenge signcryption is of sf-type 1.

– In Game1−k−1 (for 1 ≤ k ≤ q1) is same as Game1−(k−1)−3 except the kth queried key is sf-type 1.

– Game1−k−2 (for 1 ≤ k ≤ q1) is same as Game1−k−1 except the kth queried key is sf-type 2.

– Game1−k−3 (for 1 ≤ k ≤ q1) is same as Game1−k−2 except the kth queried key is sf-type 3.

– Game1−(q1+1)−i (for 1 ≤ i ≤ 3) is same as Game1−q1−3 except the last q2 queried keys10 are of sf-type i.

– In Game2−k−1 (for 1 ≤ k ≤ ν1) is same as Game2−(k−1)−2 except the kth unsigncrypt oracle query is
answered by vTextKey of the form, sf-type I. In this sequel, we define Game2−0−2 = Game1−(q1+1)−3.

– Game2−k−2 (for 1 ≤ k ≤ ν1) is same as Game2−k−1 except the kth unsigncrypt query is answered by
vTextKey of the form, sf-type II.

– In Game3−k−1 (for 1 ≤ k ≤ ν2) is same as Game3−(k−1)−2 except the replied signcryption to kth signcrypt
oracle query is of sf-type I. In this sequel, we define Game3−0−2 = Game2−ν1−2.

10Similar to the proof of Theorem 6.1, we restrict the form of queried keys of type-2 and type-3 after the challenge phase.
That is, for all the post key queries xj (q1 + 1 ≤ j ≤ q = q1 + q2), α̂’s appearing in Gp2 components of SKxj are identical.

62

– Game3−k−2 (for 1 ≤ k ≤ ν2) is same as Game3−k−1 except the replied signcryption to kth signcrypt
oracle query is of II.

– Game4 is similar to Game3−ν2−2 except that the challenge signcryption is of sf-type 2.

– Game5 is similar to Game4 except that the challenge signcryption is of sf-type 3.

– GameFinal is similar to Game5 except that the challenge signcryption is of sf-type 4.

In GameFinal, the decommitment decomb of the challenge message mb is masked with an independently
and uniformly chosen element from GT implying the component CINT does not leak any information
about decomb. Since, the primitive commitment schemes C has hiding property, comb does not reveal any
information about mb from adversary point of view. Therefore, the adversary A has no advantage in
GameFinal. The outline of the hybrid arguments over the games is given below, where Lem stands for
Lemma.

Real

Lem C.2
|

CMA
|

=⇒ R̂eal

Lem C.3
|

DSG2
|

=⇒ Res

Lem C.4
|

DSG1
|

=⇒ 0

Lem C.5
|

DSG2
|

=⇒ 1− 1− 1 . . . 1− (k − 1)− 3

Lem C.5
|

DSG2
|

=⇒ 1− k − 1

Lem C.6
|

CHM
|

=⇒ 1− k − 2

Lem C.7
|

DSG2
|

=⇒ 1− k − 3 . . . 1− q1 − 3

Lem C.8
|

DSG2
|

=⇒

1− (q1 + 1)− 1

Lem C.9
|

SHM
|

=⇒ 1− (q1 + 1)− 2

Lem C.10
|

DSG2
|

=⇒ 1− (q1 + 1)− 3

Lem C.11
|

DSG2, H

|
=⇒ 2− 1− 1

. . . 2− (k − 1)− 2

Lem C.11
|

DSG2,CRH

|
=⇒ 2− k − 1

Lem C.12
|

DSG2
|

=⇒ 2− k − 2 . . . 2− ν1 − 2

Lem C.13
|

DSG2,CRH

|
=⇒ 3− 1− 1

3− 1− 1 . . . 3− (k − 1)− 2

Lem C.13
|

DSG2,CRH

|
=⇒ 3− k − 1

Lem C.14
|

DSG2
|

=⇒ 3− k − 2 . . . 3− ν2 − 2

3− ν2 − 2

Lem C.15
|

DSG2,CRH

|
=⇒ 4

Lem C.16
|

DSG2
|

=⇒ 5

Lem C.17
|

DSG3
|

=⇒ Final

Using the lemmas referred in the above box (for details of the lemmas, refer to Appendix C.2) and Lemma
C.18, we have the following reduction:

AdvAPs−IND−CCA
A ,PSC (κ) ≤ AdvsUF−CMA

B0,OTS (κ) + AdvDSG1
B1

(κ)+

(2q1 + 2ν1 + 2ν2 + 5)AdvDSG2
B2

(κ) + q1AdvCMH
B3,P(κ)+

AdvSMH
B4,P(κ) + (ν1 + ν2 + 1)AdvCRH

B5
(κ)+

AdvDSG3
B6

(κ) + AdvHiding
B7

(κ)

63

where B0,B1,B2,B3,B4,B5,B6 and B7 are PPT algorithms whose running times are same as that of
A . This completes the proof.

Discussion C.2. By the definition of Game
R̂eal

, B returns ⊥ to A if E occurs. When E does not occur,
there are three possibilities, (a) [(vk∗ = vk) ∧ (δ∗o ||C∗0 ||y∗s = δo||C0||ys)], (b) [(vk∗ 6= vk) ∧ (δ∗o ||C∗0 ||y∗s =
δo||C0||ys)] and (c) [(vk∗ 6= vk) ∧ (δ∗o ||C∗0 ||y∗s 6= δo||C0||ys)]. Since, for a valid unsigncrypt oracle query
U = (com, δ,CT), the case (a) implies that (U∗, y∗s) = (U, ys) which is forbidden by the natural restriction
of the APs-IND-CCA game. The case (b) is impossible as C∗0 = C0 implies vk∗ = vk which is absurd.
Therefore, from Game

R̂eal
onwards B answers the unsigncrypt queries of A by running AltUnsigncrypt

algorithm if the case (c) only occurs else returns ⊥.

C.2 Lemmas Used in the Proof of Theorem C.1

Lemma C.2. GameReal and Game
R̂eal

are indistinguishable under the strong unforgeability of OTS. That

is, for every adversary A , there exists a PPT algorithm B such that |AdvReal
A ,PSC(κ) − AdvR̂ealA ,PSC(κ)| ≤

AdvsUF−CMA
B,OTS (κ).

Proof. Suppose A can distinguish the games with a non-negligible probability, then we will program a
PPT algorithm B for breaking the strong unforgeability of OTS with the same probability. Here B plays
the role of an adversary in sUF-CMA game and the role of a challenger in APs-IND-CCA game. Let CH
be the challenger for OTS. CH runs (vk∗, signk∗)←− OTS.Gen and gives vk∗ to B. Then, B runs the Setup
algorithm, keeps MSK to itself and gives the public parameters PP to A .

Query Phase-1: It consists of the following queries in adaptive manner:

– KeyGen: Let x be any key query made by A . Since B knows MSK, it replies SKx to A .

– Signcrypt: Let (m,x, ys, ye) be any signcrypt query made by A . Then, B constructs a key SKx using
MSK. Then, using this key it runs Signcrypt algorithm (in Section 7) and answers the signcryption
U to A .

– Unsigncrypt: Let (U, x, ys) be any unsigncrypt query made by A , where U = (com, δ,CT). If this
query satisfies the event E, B returns δo and aborts. B first constructs the normal vTextKey
VK := (SKM

x ,V), then using VK it runs AltUnsigncrypt and returns the output to A .

Challenge Phase: A submits two equal length message m0,m1, a key-index x, a challenge associated
data-index y∗s of sender and a challenge associated data-index y∗e of receiver to B. Then, B computes

the key SKx as it knows MSK. Picks b
U←− {0, 1} and runs Signcrypt(PP,mb,SKx, y∗s , y∗e), where it

queries for one-time signature to CH for the message C∗0 ||y∗s and gets the replied signature δ∗o . It returns
U∗ := (com∗, δ∗,CT∗), where δ∗ := (δy∗s , δ

∗
o , vk∗) to A .

Query Phase-2: Similar to phase-1.

Guess: A sends a guess b′ to B. (B does nothing with this b′)

Analysis: Since both the games are identical except the event E with probability ε. By the event E, we
have δ∗o ||C∗0 ||y∗s 6= δo||C0||ys. Therefore, δo is a valid forgery for the message C0||ys.

64

Lemma C.3. Game
R̂eal

and GameRes are indistinguishable under the DSG2 assumption. That is, for
every adversary A , there exists a PPT algorithm B such that

|AdvR̂ealA ,PSC(κ)− AdvRes
A ,PSC(κ)| ≤ AdvDSG2

B (κ).

Proof. Similar to Lemma B.1.

Lemma C.4. GameRes and Game0 are indistinguishable under the DSG1 assumption. That is, for every
adversary A , there exists a PPT algorithm B such that

|AdvRes
A ,PSC(κ)− Adv0

A ,PSC(κ)| ≤ AdvDSG1
B (κ).

Proof. The only difference between the games is the form of the challenge signcryption, normal or sf-type
1. In both forms of signcryptions, the signature part is normal, but the ciphertext part is normal or sf-type
1 according to the challenge signcryption is normal or sf-type 1. Therefore, the proof could be done in
similar way as in Lemma B.2.

Lemma C.5. Game1−(k−1)−3 and Game1−k−1 are indistinguishable under DSG2 assumption. That is, for
every adversary A , there exists a PPT algorithm B such that

|Adv
1−(k−1)−3
A ,PSC (κ)− Adv1−k−1

A ,PSC(κ)| ≤ AdvDSG2
B (κ) for 1 ≤ k ≤ q1.

Proof. For proof, refer to Lemma B.3.

Lemma C.6. Game1−k−1 and Game1−k−2 are indistinguishable under CMH security of the primitive pair
encoding scheme, P. That is, for every adversary A , there exists a PPT algorithm B such that

|Adv1−k−1
A ,PSC(κ)− Adv1−k−2

A ,PSC(κ)| ≤ AdvCMH
B,P (κ) for 1 ≤ k ≤ q1.

Proof. Following the proof of Lemma B.4, it can be proven.

Lemma C.7. Game1−k−2 and Game1−k−3 are indistinguishable under the DSG2 assumption. That is, for
every adversary A , there exists a PPT algorithm B such that

|Adv1−k−2
A ,PSC(κ)− Adv1−k−3

A ,PSC(κ)| ≤ AdvDSG2
B (κ) for 1 ≤ k ≤ q1.

Proof. The proof is similar to that of Lemma B.5.

Lemma C.8. Game1−q1−3 and Game1−(q1+1)−1 are indistinguishable under the DSG2 assumption. That
is, for every adversary A , there exists a PPT algorithm B such that

|Adv1−q1−3
A ,PSC (κ)− Adv

1−(q1+1)−1
A ,PSC (κ)| ≤ AdvDSG2

B (κ).

Proof. For proof, we refer to Lemma B.6

Lemma C.9. Game1−(q1+1)−1 and Game1−(q1+1)−2 are indistinguishable under SMH security of the prim-
itive pair encoding scheme, P. That is, for every adversary A , there exists a PPT algorithm B such
that

|Adv
1−(q1+1)−1
A ,PSC (κ)− Adv

1−(q1+1)−2
A ,PSC (κ)| ≤ AdvSMH

B,P (κ).

Proof. The proof is similar to Lemma B.7.

65

Lemma C.10. Game1−(q1+1)−2 and Game1−(q1+1)−3 are indistinguishable under the DSG2 assumption.
That is, for every adversary A , there exists a PPT algorithm B such that

|Adv
1−(q1+1)−2
A ,PSC (κ)− Adv

1−(q1+1)−3
A ,PSC (κ)| ≤ AdvDSG2

B (κ).

Proof. The proof can be done in similar manner as in Lemma B.8.

Lemma C.11. Game2−(k−1)−2 and Game2−k−1 are indistinguishable under the DSG2 assumption and
collision resistant property of H. That is, for every adversary A , there exists a PPT algorithm B such
that

|Adv
2−(k−1)−2
A ,PSC (κ)− Adv2−k−1

A ,PSC(κ)| ≤ AdvDSG2
B (κ) + AdvCRH

B (κ) for 1 ≤ k ≤ ν1.

Proof. The proof is similar to that of Lemma B.9. Following Discussion C.2 for a valid unsigncrypt query,
we must have vk∗ 6= vk, which in turn implies that ~∗e 6= ~e. Therefore, the proof will be simpler than than
the proof of Lemma B.9.

Lemma C.12. Game2−k−1 and Game2−k−2 are indistinguishable under the DSG2 assumption. That is,
for every adversary A , there exists a PPT algorithm B such that

|Adv2−k−1
A ,PSC(κ)− Adv2−k−2

A ,PSC(κ)| ≤ AdvDSG2
B (κ) for 1 ≤ k ≤ ν1.

Proof. The proof is similar to that of Lemma B.10.

Lemma C.13. Game3−(k−1)−2 and Game3−k−1 are indistinguishable under the DSG2 assumption and
collision resistant property of H. That is, for every adversary A , there exists a PPT algorithm B such
that

|Adv
3−(k−1)−2
A ,PSC (κ)− Adv3−k−1

A ,PSC(κ)| ≤ AdvDSG2
B (κ) + AdvCRH

B (κ) for 1 ≤ k ≤ ν2.

Proof. In both the games, the queried key is sf-type 3, the unsigncrypt oracle queries are answered by
vTextKeys of sf-type II, the challenge signcryption is of sf-type 1 (that means signature part is normal
whereas ciphertext is sf-type 1) and the ciphertext part in all the replied signcryptions to signcrypt oracle
queries are normal. The only difference between the games is the form of the replied signcryption to
kth signcrypt oracle query. More precisely, the signature part in kth replied signcryption is normal (resp.
sf-type 1) in Game3−(k−1)−2 (resp. Game3−k−1). Therefore, following the proof of Lemma A.6, it can be
done. Since, ciphertext part in the challenge signcryption is sf-type 1, so the collision resistant property of

H will be used only to guarantee ~∗e 6= ~(k)
s in the proof, where ~(k)

s := Hs(1, vk(k), y
(k)
s).

Lemma C.14. Game3−k−1 and Game3−k−2 are indistinguishable under the DSG2 assumption. That is,
for every adversary A , there exists a PPT algorithm B such that

|Adv3−k−1
A ,PSC(κ)− Adv3−k−2

A ,PSC(κ)| ≤ AdvDSG2
B (κ) for 1 ≤ k ≤ ν2.

Proof. The only difference between the games is the form of replied signcryption to the kth signcrypt oracle
query. The form of signature part in the kth replied signcryption is sf-type 1 (resp. sf-type 2) in Game3−k−1

(resp. Game3−k−2). We refer to proof of Lemma A.7.

Lemma C.15. Game3−ν2−2 and Game4 are indistinguishable under the DSG2 assumption and collision
resistant property of H. That is, for every adversary A , there exists a PPT algorithm B such that

|Adv3−ν2−2
A ,PSC (κ)− Adv4

A ,PSC(κ)| ≤ AdvDSG2
B (κ) + AdvCRH

B (κ).

66

Proof. In both the games, the queried key is sf-type 3, the unsigncrypt queries are answered by vTextKeys
of sf-type II, the replied signcryptions to signcrypt oracle queries are of sf-type II and the ciphertext part in
the challenge signcryption is sf-type 1. The only difference between the games is the form of signature in
the challenge signcryption, i.e., it is normal in Game3−ν2−2 and sf-type 1 in Game4. Therefore, the proof
can be done following the proof of Lemma A.6. In the proof, the collision resistant property of H is used
to guarantee ~∗s 6= ~∗e.

Lemma C.16. Game4 and Game5 are indistinguishable under the DSG3 assumption. That is, for every
adversary A , there exists a PPT algorithm B such that |Adv4

A ,PSC(κ)− Adv5
A ,PSC(κ)| ≤ AdvDSG2

B (κ).

Proof. The only difference between the games is the form of the signature in the challenge signcryption,
i.e., it is either sf-type 1 or sf-type 2. We refer to proof of Lemma A.7.

Lemma C.17. Game5 and GameFinal are indistinguishable under the DSG3 assumption. That is, for every
adversary A , there exists a PPT algorithm B such that |Adv5

A ,PSC(κ)− AdvFinalA ,PSC(κ)| ≤ AdvDSG3
B (κ).

Proof. The only difference between the games is the form of the ciphertext in the challenge signcryption,
i.e., it is either sf-type 1 or sf-type 2. For proof, we refer to Lemma B.11.

Lemma C.18. For every adversary A , there exists a PPT algorithm B such that AdvFinalA ,PSC(κ) ≤
AdvHiding

B (κ).

Proof. In the final game, GameFinal the decommitment part decomb of the challenge message mb is infor-
mation theoretically hidden in the ciphertext part of the challenge signcryption. The only counter part of
mb remains in challenge signcryption is the commitment part comb. Since, the commitment scheme C has
hiding property, comb does not leak any information about mb from adversary point of view. We skip the
details of the simulation as it is very straightforward.

Theorem C.19. Let P be a pair encoding scheme for a predicate ∼ which satisfies Conditions 3.1 and
∼ is domain-transferable. Suppose P has the PMH security, the assumptions, DSG1, DSG2 and DSG3
hold in J , the one-time signature scheme OTS has strong unforgeability, the commitment scheme C has
the hiding property and H is a collision resistant hash function, then the proposed predicate signcryption
scheme PSC in Section 7 for the predicate ∼ is IND-CCA secure in adaptive-predicates model.

Proof. Similar to the proof of Theorem C.1.

C.3 The Proof of Unforgeability

Theorem C.20. Let P be a pair encoding scheme for a predicate ∼ which satisfies Conditions 3.1 and
∼ is domain-transferable. Suppose P has the CMH security, the assumptions, DSG1, DSG2 and DSG3
hold in J , the one-time signature scheme OTS has strong unforgeability and H is a collision resistant hash
function, then the proposed predicate signcryption scheme PSC in Section 7 for the predicate ∼ is strongly
existential unforgeable in adaptive-predicates model (Definition 2.22).

Proof. Let A be an adversary in APs-sUF-CMA model who can break the strong unforgeability of the
proposed predicate signcryption scheme with non-negligible advantage ε. Let ν2 be the number of sign-

crypt oracle queries made by A . Let (m(i), x(i), y
(i)
s , y

(i)
e) be the ith query and U(i) = (comi, δ

(i) =

67

(δ
y
(i)
s
, δ

(i)
o , vk(i)),CT(i)) be the corresponding replied signcryption. Let U∗ = (com∗, δ∗,CT∗) be the forgery

made by A for the message (m∗, y∗s , y
∗
e). We define an event as

Forged := vk∗ 6∈ {vk(i)
∣∣ i ∈ [ν2]}.

Then, we have

ε ≤ Pr[A Succeeds] := Pr[A Succeeds ∧ Forged] + Pr[A Succeeds ∧ ¬Forged]

=⇒ Pr[A Succeeds ∧ Forged] ≥ ε/2 or Pr[A Succeeds ∧ ¬Forged] ≥ ε/2

Case: ¬Forged. We will develop an algorithm BOTS for breaking the string unforgeability of the primitive
one-time signature scheme OTS with advantage at least ε/2ν2. Let CH be the challenger for the
primitive one-time signature scheme OTS. The challenger CH runs (vk∗, signk∗) ←− OTS.Gen(1κ)
and gives vk∗ to BOTS. BOTS runs the Setup algorithm (as described in Section 7), keeps MSK to

itself and sends PP to A . Then, picks i
U←− [ν2] as a guess such that vk∗ = vk(i). For notational

simplicity, we ignore the superscript (i).

– KeyGen Query: BOTS answers this query using MSK.

– Signcrypt Query: Let (m,x, ys, ye) be the jth signcrypt oracle query to BOTS by A .

− (j 6= i) : BOTS runs (com, decom) ←− Commit(m) and (vk, signk) ←− OTS.Gen(1κ). It
constructs a key SKx using MSK. Then, runs δys ←− PS.Sign(vk, SKx, ys), Ccpa ←−
PE.Encrypt∗(decom, ye) and computes ~e := H(0, com, δys , vk, Ccpa). Then, it com-
putes C0 := gs0(θ1~e+θ2) and δo ←− OTS.Sign(C0||ys, signk). Returns the signcryption
U := (com, δ := (δys , δo, vk),CT := (Ccpa, C0)) to A .

− (j = i) :
Same as above except BOTS does not execute OTS.Gen(1κ) but it sets vk := vk∗ and it makes
an one-time signature query to CH for the message C0||ys and gets the replied signature δo.

– Unsigncrypt Query: It can answer the query as it knows MSK.

– Forgery: A outputs a tuple (U∗, y∗s , y
∗
e), where U∗ := (com∗, δ∗,C∗) and δ∗ := (δy∗s , δ

∗
o , vk∗). Then,

BOTS forges the signature δ∗o for C∗0 ||y∗s to the one-time signature scheme OTS.

Analysis: With probability 1/ν2, BOTS correctly guesses i such that the event Forged is happened.
Now, we only have to show that δ∗o ||C∗0 ||y∗s 6= δo||C0||ys (we ignore the superscript, (i)). Indeed, if
δ∗o ||C0||y∗s = δo||C∗0 ||ys, we have δ∗o = δo, y

∗
s = ys and C∗0 = C0. Now C∗0 = C0 implies ~∗e = ~e, so

we have com∗ = com, δy∗s = δys and C∗cpa = Ccpa. Overall, we have (U∗,m∗, y∗s , y
∗
e) = (U,m, ys, ye)

which leads a contradiction to APs-sUF-CMA security model.

Case: Forged. Suppose there are at most q key queries and ν1 unsigncrypt queries, then the security proof
consists of hybrid argument over a sequence of 3q + 2(ν1 + ν2) + 7 games defined below:

– GameReal := Original APs-sUF-CMA game of PSC scheme.

– Game
R̂eal

:= Same as GameReal except the event Forged always happens.

– GameRes := This is same as Game
R̂eal

except x 6∼N y∗ is replaced by x 6∼p2 y
∗ for each key query

x made by A .

– Game0 (= Game1−0−3) is just like GameRes except that the vTextKey for verifying the forgery is
of sf-type 1.

68

– In Game1−k−1 (for 1 ≤ k ≤ q) is same as Game1−(k−1)−3 except the kth queried key is sf-type 1.

– Game1−k−2 (for 1 ≤ k ≤ q) is same as Game1−k−1 except the kth queried key is sf-type 2.

– Game1−k−3 (for 1 ≤ k ≤ q) is same as Game1−k−2 except the kth queried key is sf-type 3.

– In Game2−k−1 (for 1 ≤ k ≤ ν1) is same as Game2−(k−1)−2 except the kth unsigncrypt oracle query
is answered by the vTextKey of sf-type I. (In this sequel, we define Game2−0−2 = Game1−q−3)

– Game2−k−2 (for 1 ≤ k ≤ ν1) is same as Game2−k−1 except the kth unsigncrypt oracle query is
answered by the vTextKey of sf-type II.

– In Game3−k−1 (for 1 ≤ k ≤ ν2) is same as Game3−(k−1)−2 except the replied signcryption to the

kth signcrypt oracle query is of sf-type I. (So, in this sequel Game3−0−2 = Game2−ν1−2)

– Game3−k−2 (for 1 ≤ k ≤ ν2) is same as Game3−k−1 except the replied signcryption to the kth

signcrypt oracle query is of sf-type II.

– Game4 is similar to Game3−ν2−2 except that the vTextKey for verifying the forgery is sf-type 2.

– Game5 is similar to Game4 except that the vTextKey for verifying the forgery is sf-type 3.

– GameFinal is similar to Game5 except that the vTextKey for verifying the forgery is sf-type 4

In GameFinal, the component V INT in the vText part of vTextKey is chosen independently and uniformly
at random from GT . This implies that the forgery will be invalid with respect to the vTextKey. Therefore,
the adversary A has no advantage in GameFinal. The outline of the hybrid arguments over the games is
given below, where Lem stands for Lemma.

Real

Forged

|
=⇒ R̂eal

Lem C.21
|

DSG2
|

=⇒ Res

Lem C.22
|

DSG1
|

=⇒ 0

Lem C.23
|

DSG2
|

=⇒ 1− 1− 1 . . . 1− (k − 1)− 3

Lem C.23
|

DSG2
|

=⇒ 1− k − 1

Lem C.24
|

CHM
|

=⇒ 1− k − 2

Lem C.25
|

DSG2
|

=⇒ 1− k − 3 . . . 1− q − 3

Lem C.26
|

DSG2
|

=⇒ 2− 1− 1

. . . 2− (k − 1)− 2

Lem C.26
|

DSG2,CRH

|
=⇒ 2− k − 1

Lem C.27
|

DSG2
|

=⇒ 2− k − 2 . . . 2− ν1 − 2

Lem C.28
|

DSG2,CRH

|
=⇒ 3− 1− 1

. . . 3− (k − 1)− 2

Lem C.28
|

DSG2,CRH

|
=⇒ 3− k − 1

Lem C.29
|

DSG2
|

=⇒ 3− k − 2 . . . 3− ν2 − 2

Lem C.30
|

DSG2,CRH

|
=⇒ 4

4

Lem C.31
|

DSG2
|

=⇒ 5

Lem C.32
|

DSG3
|

=⇒ Final

Using the lemmas referred in the above box (for details of the lemmas, refer to Appendix C.4), we have
the following reduction:

AdvAPs−sUF−CMA
A ,PSC (κ) ≤ ν2AdvsUF−CMA

B0,OTS (κ) + AdvDSG1
B1

(κ)+

(2q + 2ν1 + 2ν2 + 3)AdvDSG2
B2

(κ) + qAdvCMH
B3,P(κ)+

(ν1 + ν2 + 1)AdvCRH
B4

(κ) + AdvDSG3
B5

(κ)

69

where B0,B1,B2,B3,B4 and B5 are PPT algorithms whose running times are same as that of A . This
completes the proof.

C.4 Lemmas Used in the Proof of Theorem C.20

Lemma C.21. Game
R̂eal

and GameRes are indistinguishable under the DSG2 assumption. That is, for
every adversary A , there exists a PPT algorithm B such that

|AdvR̂ealA ,PSC(κ)− AdvRes
A ,PSC(κ)| ≤ AdvDSG2

B (κ).

Proof. Similar to Lemma A.1.

Lemma C.22. GameRes and Game0 are indistinguishable under the DSG1 assumption. That is, for every
adversary A , there exists a PPT algorithm B such that

|AdvRes
A ,PSC(κ)− Adv0

A ,PSC(κ)| ≤ AdvDSG1
B (κ).

Proof. The proof could be done in similar way as in Lemma A.2.

Lemma C.23. Game1−(k−1)−3 and Game1−k−1 are indistinguishable under the DSG2 assumption. That
is, for every adversary A , there exists a PPT algorithm B such that

|Adv
1−(k−1)−3
A ,PSC (κ)− Adv1−k−1

A ,PSC(κ)| ≤ AdvDSG2
B (κ) for 1 ≤ k ≤ q.

Proof. For proof, refer to Lemma A.3.

Lemma C.24. Game1−k−1 and Game1−k−2 are indistinguishable under CMH security of the pair encoding
scheme P. That is, for every adversary A , there exists a PPT algorithm B such that

|Adv1−k−1
A ,PSC(κ)− Adv1−k−2

A ,PSC(κ)| ≤ AdvCMH
B,P (κ) for 1 ≤ k ≤ q.

Proof. Following the proof of Lemma A.4, it can be proven.

Lemma C.25. Game1−k−2 and Game1−k−3 are indistinguishable under the DSG2 assumption. That is,
for every adversary A , there exists a PPT algorithm B such that

|Adv1−k−2
A ,PSC(κ)− Adv1−k−3

A ,PSC(κ)| ≤ AdvDSG2
B (κ) for 1 ≤ k ≤ q.

Proof. The proof is similar to that of Lemma A.5.

Lemma C.26. Game2−(k−1)−2 and Game2−k−1 are indistinguishable under the DSG2 assumption and
collision resistant property of H. That is, for every adversary A , there exists a PPT algorithm B such
that

|Adv
2−(k−1)−2
A ,PSC (κ)− Adv2−k−1

A ,PSC(κ)| ≤ AdvDSG2
B (κ) + AdvCRH

B (κ) for 1 ≤ k ≤ ν1.

Proof. The proof is similar to that of Lemma B.9. The collision resistant property of H will be used only

to guarantee ~∗s 6= ~(k)
e (following the Remark C.1).

70

Lemma C.27. Game2−k−1 and Game2−k−2 are indistinguishable under the DSG2 assumption. That is,
for every adversary A , there exists a PPT algorithm B such that

|Adv2−k−1
A ,PSC(κ)− Adv2−k−2

A ,PSC(κ)| ≤ AdvDSG2
B (κ) for 1 ≤ k ≤ ν1.

Proof. The proof is similar to that of Lemma B.10

Lemma C.28. Game3−(k−1)−2 and Game3−k−1 are indistinguishable under the DSG2 assumption and
collision resistant property of H. That is, for every adversary A , there exists a PPT algorithm B such
that

|Adv
3−(k−1)−2
A ,PSC (κ)− Adv3−k−1

A ,PSC(κ)| ≤ AdvDSG2
B (κ) + AdvCRH

B (κ) for 1 ≤ k ≤ ν2.

Proof. In both the games, the vTextKey for verifying the forgery is of sf-type 1, the queried key is sf-type
3, the unsigncrypt oracle queries are answered by vTextKeys of sf-type II and the ciphertext part in all the
replied signcryptions to the signcrypt oracle queries are normal. The only difference between the games
is the form of the queried signcryption to the kth signcrypt oracle query. Precisely, the signature part in
the kth replied signcryption is either normal or sf-type 1. By the event Forged, we have vk∗ 6= vk(k), so

~∗s 6= ~(k)
s . Therefore, the proof can be done following the proof of Lemma A.6.

Lemma C.29. Game3−k−1 and Game3−k−2 are indistinguishable under the DSG2 assumption. That is,
for every adversary A , there exists a PPT algorithm B such that

|Adv3−k−1
A ,PSC(κ)− Adv3−k−2

A ,PSC(κ)| ≤ AdvDSG2
B (κ) for 1 ≤ k ≤ ν2.

Proof. The only difference between the games is the form of the replied signcryption to the kth signcrypt
oracle query. Precisely, the signature part is either sf-type 1 or sf-type 2. We refer to proof of Lemma
A.7.

Lemma C.30. Game3−ν2−2 and Game4 are indistinguishable under the DSG2 assumption and collision
resistant property of H. That is, for every adversary A , there exists a PPT algorithm B such that

|Adv3−ν2−2
A ,PSC (κ)− Adv4

A ,PSC(κ)| ≤ AdvDSG2
B (κ) + AdvCRH

B (κ).

Proof. In both the games, the queried key is sf-type 3, the unsigncrypt queries are answered by vTextKeys
of sf-type II, the replied signcryptions to the signcrypt oracle queries are of sf-type II and the vText part in
the vTextKey for verifying the forgery is of sf-type 1. The only difference between the games is the form of
alt-key in the vTextKey for verifying the forgery, i.e., it is either normal or sf-type 1. Therefore, the proof
can be done following the proof of Lemma A.6. The collision resistant property of H will be used only to
guarantee ~∗s 6= ~∗e (following Remark C.1) in the construction of vTextKey for verifying the forgery.

Lemma C.31. Game4 and Game5 are indistinguishable under the DSG3 assumption. That is, for every
adversary A , there exists a PPT algorithm B such that

|Adv4
A ,PSC(κ)− Adv5

A ,PSC(κ)| ≤ AdvDSG2
B (κ).

Proof. The only difference between the games is the form of the alt-key in the vTextKey for verifying the
forgery, i.e., the alt-key is either normal or sf-type 1. We refer to proof of Lemma A.7.

71

Lemma C.32. Game5 and GameFinal are indistinguishable under the DSG3 assumption. That is, for
every adversary A , there exists a PPT algorithm B such that

|Adv5
A ,PSC(κ)− AdvFinalA ,PSC(κ)| ≤ AdvDSG3

B (κ).

Proof. The only difference between the games is the form of the vText in the vTextKey for verifying the
forgery, i.e., the vText is either sf-type 1 or sf-type 2. For proof, we refer to Lemma B.11.

Theorem C.33. Let P be a pair encoding scheme for a predicate ∼ which satisfies Conditions 3.1 and
∼ is domain-transferable. Suppose P has the PMH security, the assumptions, DSG1, DSG2 and DSG3
hold in J , the one-time signature scheme OTS has strong unforgeability and H is a collision resistant hash
function, then the proposed predicate signcryption scheme PSC in Section 7 for the predicate ∼ is strongly
existential unforgeable in adaptive-predicates model.

Proof. Similar to the proof of Theorem C.20.

72

	Introduction
	Preliminaries
	Notations
	Composite Order Bilinear Groups
	Hardness Assumptions in Composite Order Bilinear Groups
	Some Results of Linear Algebra
	Commitment scheme
	Security of Commitment
	Signature Scheme
	Strongly Unforgeable One-Time Signature
	Predicate Family
	Predicate Encryption
	Security of Predicate Encryption
	Predicate Signature
	Security of Predicate Signature
	Predicate Signcryption
	Security of Predicate Signcryption
	Pair Encoding Scheme
	Security of Pair Encoding Scheme

	Framework for Predicate Signature
	Natural Requirements on Pair Encodings
	Dual Conversion of Pair Encodings
	Predicate Signature from Pair Encoding Scheme
	How to Uniformly Sample from (VM)

	Security Proof of Proposed Predicate Signature
	Signer Privacy
	The Proof of Unforgeability

	Instantiations of Predicate Signature
	Framework for CCA Secure PE
	Direct CCA-secure Predicate Encryption from Pair Encoding Scheme
	Security Proof of Proposed Predicate Encryption

	Framework for Predicate Signcryption
	Security of the Proposed Predicate Signcryption
	Instantiations of Predicate Signcryption
	Conclusion
	Lemmas Used in the Proof of Theorem 4.2
	Lemmas Used in the Proof of Theorem 6.1
	Semi-Functional Objects for Confidentiality and Unforgeability
	The Proof of Confidentiality
	Lemmas Used in the Proof of Theorem C.1
	The Proof of Unforgeability
	Lemmas Used in the Proof of Theorem C.20

