
Dismantling real-world ECC

with Horizontal and Vertical Template Attacks

Margaux Dugardin1,2, Louiza Papachristodoulou3, Zakaria Najm1, Lejla
Batina3, Jean-Luc Danger1, Sylvain Guilley1, Jean-Christophe Courrège2, and

Carine Therond2 ?

1 TELECOM ParisTech, COMELEC, 46 rue Barrault, 75014 Paris, France
firstname.lastname@telecom-paristech.fr

2 Thales Communications & Security, CESTI, 3 avenue de l'Europe, 31000 Toulouse,
France

3 Radboud University Nijmegen, Digital Security Group, P.O. Box 9010, 6500 GL
Nijmegen, The Netherlands

lejla@cs.ru.nl, louiza@cryptologio.org

Abstract. Recent side-channel attacks on elliptic curve algorithms have
shown that the security of these cryptosystems is a matter of serious
concern. The development of techniques in the area of Template Attacks
makes it feasible to extract a 256-bit secret key with only 257 traces.
This paper enhances the applicability of this attack by exploiting both
the horizontal leakage of the carry propagation during the �nite �eld
multiplication, and the vertical leakage of the input data. As a further
contribution, our method provides detection and auto-correction of pos-
sible errors that may occur during the key recovery. These enhancements
come at the cost of extra traces, while still providing a practical attack.
Finally, we show that the elliptic curve technology developed in PolarSSL
running on a ARM STM32F4 platform is completely vulnerable, when
used without any modi�cations or countermeasures.
Keywords: Side-channel analysis, horizontal leakage, vertical leakage,
scalar multiplication, Brainpool curves, NIST curves, PolarSSL.

1 Introduction

Implementing security protocols for embedded devices is a constant challenge
for the cryptographic community, due to the development of new and powerful
side-channel attack techniques. By measuring the power consumption or the
electromagnetic emanation of a device during the execution of a cryptographic
algorithm, it is possible to derive secret data from a single or multiple traces.

Within the area of side-channel attacks there exist di�erent methods of anal-
ysis; either by using a single trace (Simple Analysis) or a large number of traces
(Di�erential and Correlation Analysis) from the target device [20, 6]. Template

? This work was supported in part by the Technology Foundation (STW) through
project 12624 � SIDES, the ICT COST action IC1204 TRUDEVICE and the COST
action IC1306 Cryptography for Secure Digital Interaction, Date: 2015-10-14

Attacks belong to yet another kind of attacks and are considered to be the most
powerful method from the information-theoretic point of view, since they take
advantage of most information available in a side-channel observation [8]. The
attacker is assumed to have one or limited number of side-channel measure-
ments from the target device, i.e. power, EM traces or timing, but he has access
to a similar device, on which he can simulate the computations of the target
(template building phase). Rechberger and Oswald presented the �rst practical
template attack on RC4 running on an 8-bit micro-controller in [27].

Most notably, the work of De Mulder et al. [25] showed the �rst practical at-
tack using electromagnetic emanation of Elliptic Curve Cryptosystems (ECC) on
an FPGA implementation. The main idea of the attack presented in this paper is
a collision attack exploiting the doubling operation during an ECC computation.
Collision attacks exploit the leakage between two portions of the same or di�er-
ent traces, when the same intermediate values are reused. In [4, 10, 9, 14], these
attacks are presented as theoretical horizontal attacks using collisions. Our work
is a practical horizontal attack. The idea of attacking the doubling operation in
the elliptic curve setting was originally proposed by Fouque and Valette in [13].
Their �Doubling Attack� is based on the fact that similar intermediate values
may be manipulated when working with points P and 2P. However, in most
cases, the intermediate values during ECC scalar multiplications are di�erent
than the input point. The most e�cient result in practical template attacks on
ECC is the Online Template Attack (OTA), presented in [3], which requires one
full target trace and one template trace per key-bit. With 256 templates, Batina
et al. retrieve a 256-bit key on the twisted Edwards curve used for the Ed25519
signature scheme [15].

Our contribution. PolarSSL (recently bought by ARM and renamed to mbed

TLS [21]) is an open-source library designed initially for servers and PCs, but
easy to adapt to embedded environments, like smart-phones. We demonstrate an
attack on PolarSSL with Brainpool BP256r1 and NIST SecP256r1 curves run-
ning on an ARM Cortex-M4 micro-controller on a STM32F4 platform [23]. Our
work shows that the countermeasure of the input randomization implemented
in PolarSSL must be activated on embedded platforms.

For the demonstration of our attack, we extend the idea of Online Template
Attacks (OTA) by Batina et al. presented in [3]. These authors used one full
target trace and one template trace to determine the correct key bit. However,
this method requires an identi�cation phase, in order to compute the threshold
between matching and non-matching templates. In our case, there are two dif-
ferent leakage models, a horizontal and a vertical one. Therefore, a threshold as
described in [3] can not be established. We propose a more generic method to
distinguish the matching templates.

The horizontal leakage in PolarSSL is a consequence of the software imple-
mentation during multiplication of large numbers (256-bit �eld elements). In
most cases, the multiplication of large numbers leaks due to the potential propa-
gation of carry. This carry occurs during the register addition between two words

(de�ned by the length of register). We observed that in OpenSSL (a widely used
open-source library) the di�erent propagation of carry leaks in the same way as
in PolarSSL, making this library vulnerable not only to our attack, but also to
more trivial timing attacks. The timing side-channel leakage due to the di�erent
propagation of carry can be eliminated by using a dummy operation, such as
addition by zero. But in side-analysis an addition by zero can be detected using
vertical leakage. Therefore, this method may create a constant time implemen-
tation, but it is still not really e�cient to avoid the problem of the propagation
of carry.

The vertical leakage that we exploited comes from the Hamming weight of
the value stored in the register or the Hamming distance between two values
stored in the same register. Despite the fact that the levels of noise (from the
USB power supply and the general purpose input/output slots) on the STM32F4
platform are high, the vertical leakage can still be exploited to retrieve the scalar
bits.

The advantage of our adaptive template attack over the original OTA is the
fact that it detects and corrects errors. Making one assumption for each key
bit and deciding according to the established threshold if this bit is the correct
one, does not always give the correct result. In some instances of our attack, the
templates obtained for a �0� key-bit assumption was very similar to the template
made for the assumption that the key-bit is 1. To increase the success rate of our
attack and to determine wrong assumptions, we decided to obtain two template
traces for each key-bit. The choice to use both assumptions to create template
traces allows to detect and to adjust any possible error to get back the whole
scalar.

Organization of the paper. This paper is organized as follows: We describe
the elliptic curves and the scalar multiplication algorithms used for our attack
in Section 2. Section 3 gives an overview of the OTA methodology with vertical
and horizontal leakage. Section 4 presents our practical adaptive template attack
on Brainpool and NIST curves on a STM32F4 micro-controller and the error
correction technique used to improve OTA. Section 5 proposes a discussion about
the e�ciency of certain countermeasures against our attack. Finally, Section 6
summarizes our results and concludes the paper.

2 Mathematic background

2.1 Preliminaries on Elliptic Curves

In 1985, Miller [24] and Koblitz [19] introduced the use of elliptic curves for
asymmetric cryptography. The main advantage of using Elliptic Curve Cryptog-
raphy (ECC) over RSA is the memory and the length of the computations; two
important factors for embedded devices. The curves de�ned over a 256-bit �eld
provide security level of 128-bits, which is equivalent to a 2048-bit RSA key.

An elliptic curve E over Fp can be de�ned in terms of solutions to the reduced
Weierstrass equation y2 = x3 + ax + b over Fp. The pairs (x, y) that verify the
previous equation represent the a�ne coordinate of a point over the curve E .
For our experiments, we used the Brainpool curve BP256r1 recommended by
BSI [7] (noted BP) and the NIST curve SecP256r1 recommended by the NIST
standard [26]. These curves are de�ned over a 256-bit �eld and have security
level of 128 bits (see [16] for more details).

2.2 Scalar Multiplication Algorithm

The scalar multiplication is the main operation in cryptographic protocols using
ECC, such as ECDSA signatures [1] or the Di�e-Hellman key-exchange pro-
tocol (ECDH) [2]. The scalar multiplication is an expensive operation that a
designer wants to optimize, yet at the same time a sensitive operation, because
it manipulates the secret key or it allows to recover the secret key from a secure
component. There are a lot of scalar multiplication algorithms used for e�ciency
and/or resistance against side-channel attacks. In this paper, we perform an at-
tack against the binary left-to-right double-and-add-always algorithm (see in [12,
17]), which is considered to be resistant against simple power analysis (SPA).
Our attack applies to other regular algorithms as well, similarly to the original
OTA [3].
The double-and-add-always algorithm takes as input a point P = (xP , yP) in
a�ne coordinates and the scalar k. For our experiments the scalar is 256-bit
long. For every iteration the computation block performs a doubling operation
and an addition with P. The output is the result of the scalar multiplication
[k]P depending on the current bit of ki at the speci�c iteration.

2.3 Scalar multiplication module of PolarSSL

PolarSSL is an open-source cryptographic library [21] recently acquired by ARM.
The source code is nicely decomposed into modular blocks and it can be used
in embedded devices. Our implementation is a modi�ed version of PolarSSL
1.3.7. PolarSSL contains C and assembly code to speed up the computations
over the �nite �eld. For ECC operations, it uses the module ecp. To be more
e�cient the main functions used are doubling in Jacobian coordinates (DBL) and
mixed addition [11] between a point in Jacobian and a point in a�ne coordinates
(ADD). The cost of these operations is explained and detailed by Bernstein,
Lange et al. in [5]. PolarSSL is intended to be used in embedded systems which
include hardware multiplier, like smart-phones. Hence it relies on two steps:
multiplication, then modular reduction.

3 Attack Description

3.1 The main idea of Online Template Attack

The Online Template Attack(OTA) is an adaptive template attack. The main
di�erence with the classical template attacks as described in [27] is the absence
of the building phase. The attack consists of two phases:

1. The attacker �rst obtains a target trace from the target device.
2. For each key bit, he obtains template traces for [m]P, the m is chosen ac-

cording to the algorithm used in the target device, and the �rst m − 1 bits
found by the attacker. He decides which key bit has the highest probability
by matching the relevant template trace to the target trace.

For more details, see the App. A or [3]. The main di�erence between our attack
and the attack described by Batina et al. [3] is that we use two template traces
to retrieve one key bit e.g. 2P and 3P for the �rst bit. By using more template
traces, we can detect and correct an error to increase the success rate of the
attack.

3.2 Horizontal leakage due to propagation of carry

In case the whole doubling operation is used to construct templates, it is not
possible to achieve high similarity between our templates and the target, mainly
due to the noise and the non-constant time implementation. As explained later
in Sec. 4.3, we can not use the intermediate values (in Jacobian coordinates) as
input point (in a�ne) for the templates. However, by focusing on the operations
in the �rst doubling of the double-and-add-always algorithm to construct the
template traces, we achieve more accurate results. For the template pattern, we
need only the pattern of the �rst �nite-�eld multiplication in the doubling. In
our implementation (Alg. 13 in [29]), the �rst operations during the doubling of
point P = (X,Y, Z) are the following:

D1 ← X×X mod p

D2 ← Y×Y mod p

...

(1)

In PolarSSL a multiplication between two elements in the �nite �eld is computed
as described in [22]. The result of the multiplication is stored in a 512-bit element,
called �multiplication-before-reduction�; then the result is reduced modulo p (the
characteristic of the �nite �eld). For the curves de�ned in Sec. 2, one element
in the �nite �eld is 256-bit long. The micro-controller is Cortex-M4 (see Sec. 4.1
for more details). Therefore, one element corresponds to 8 words of 32-bits.

Let A and B be two 256-bit elements in the �nite �eld. Then, A (resp. B)
can be written as 8 words Ai for all i ∈ {0, 1, ..., 7} (resp. Bi) of 32-bits. A0

is the least signi�cant word (LSW) of A and A7 is the most signi�cant word

Algorithm 1: Multiplication in PolarSSL

Require: A and B7..B0 two elements of 256-bits long.
Ensure: X = A×B
1: X ← 0
2: for i from 7 down to 0 do
3: (C,Xi+7, Xi+6, .., Xi)← (Xi+7, .., Xi) +A×Bi

4: j ← i+ 8
5: repeat

6: (C,Xj)← Xj + C
7: j ← j + 1
8: until C 6= 0
9: end for

10: return X

(MSW) of A. Let X be the result of the multiplication A×B before reduction;
X can be represented by 16 words of 32-bits (X15X14...X0). The Alg. 1 shows
how multiplication is performed in PolarSSL. The result A × Bi is stored in
eight 32-bit words and there is a potential carry C, which needs to be stored
separately (see step 3). This potential over�ow creates a signi�cant pattern that
can be distinguished from its high amplitude when C = 1; this pattern is the
propagation of carry as depicted in Fig. 1. The leakage due to the propagation of

Fig. 1. Propagation of carry during multiplication in the �eld

carry depends on the MSW of the input data A7. For the BP curve max{A7|A ∈
Fp} = 0xA9FB57DA and the probability of having a propagation of carry is close
to p = 0.17. For the NIST curve, max{A7|A ∈ Fp} equals 232 − 1, so this
probability is close to p = 0.25. The full proof of this computation of probability
is described in App. B. As shown in Fig. 1, we can have 7 propagations during the

multiplication, but we can not detect the last propagation. So, the probability
to have two templates with the same propagation of carry, denoted by P(C), is:

P(C) =

6∑
i=0

(
6
i

)
p2i(1− p)2(6−i) (2)

where p is the probability to have an internal propagation of carry. For the BP
curve, the probability to have horizontal leakage is 0.86 using p = 0.17. For the
NIST curve, the probability to have horizontal leakage is 0.95 using p = 0.25.

However, it is more interesting from the OTA point of view to �nd out when
a di�erence in the propagation of carry occurs between the target and template
traces. This is the only part of PolarSSL that is non-constant time and we take
advantage of this timing di�erence, every time it occurs. In this case, there is
an obvious horizontal leakage between the target and the template traces, as
depicted in the Fig. 2.

Fig. 2. Squaring of two random data with di�erent propagation of carry

3.3 Vertical leakage due to signal amplitude

In constant time executions of our implementation, there is no di�erence in the
propagation of carry and the template traces are synchronized with the target
trace. In those cases, we observe only a vertical leakage due to the amplitude of
the signal and the same method as described in [3] can be used. To observe this
leakage, we use the pattern matching technique, with the Pearson correlation
computation.

4 Detailed Phases of the Attack in Practice

4.1 Acquisition Setup

The target device is an STM32F4 micro-controller, which contains an ARM
Cortex-M4 processor running at its maximum frequency (168MHz). We imported
the assembly code originally included in PolarSSL to ARM Cortex-M4 and im-
plemented the double-and-add-always procedure as described in [12, 17]. For the

acquisition, we used a 54855 In�niium Agilent oscilloscope and a Langer EMV-
TECHNIK RF-U5-2 near �eld probe. The sampling frequency is 1GSa/s with
50MHz hardware input low-pass �lter enabled. For the analysis, we used the
Inspector SCA tool [28] and Matlab 2014b. The position of the probe was de-
termined to maximize the signal related to the activity of the hardware 32× 32
multiplier.

For the curves de�ned in Sec. 2, one element in the �nite �eld is 256-bit long.
Thus, each operation over the �eld consists of manipulating eight processor words
(8 × 32 bits). In our implementation, a multiplication-before-reduction consists
of eight multiplications between a 256-bit element by each 32-bit words of the
second element. It leads to eight easily identi�able patterns of eight blocks on
EM traces. The length between two blocks can be di�erent depending on the
propagation of carry, as explained in Sec. 3.2.

4.2 Pre-proccessing Phase

The pre-processing phase starts with choosing an input point P and obtaining
the target trace from our target device; this is depicted in Fig. 3. In this trace,

Fig. 3. EM acquisition for scalar multiplication on NIST curve with k = 0xA5A5

we need to spot the multiplication patterns, which are eight blocks of 256 × 32
multiplications depicted in Fig. 4. The multiplication procedure is described in
Sec. 3.2.

Fig. 4. Pattern of multiplication-before-reduction

When we have a clear pattern for the multiplication, we cross correlate this
pattern with our target trace and we obtain the cross-correlation pattern with
one peak at the position of every multiplication. Fig. 5 shows the cross correla-
tion of the target trace with the multiplication pattern. By counting the peaks in

Fig. 5. Cross correlation between the pattern of the multiplication and the target trace

the cross-correlation trace, we can �nd the part of the computation that we are
interested in. For BP, as explained in [5], the doubling consists of 10 multiplica-
tions (except for the �rst doubling, where there are only 7 multiplications4), and
the mixed addition consists of 11 multiplications. For NIST, there is a particular
parameter equal to (−3 mod p), so the multiplication by a in the doubling can
be optimized. The doubling consists of 9 multiplications and the mixed addition
of 11 multiplications5.

In this way, we can �cut� the target trace in sections according to the loop of
the scalar multiplication operation (as in Fig. 6). The �rst iteration of the double-

Fig. 6. The �rst seven iterations of the scalar multiplication algorithm on the curve

and-add always algorithm is completed after 18 peaks of cross-correlation. For
the next iterations, we take into account that each doubling consists of 9 or 10
multiplications and each addition of 11. For the �rst bit, the interesting section
on the target is the 19th multiplication. For the second bit, the interesting section

4 Because in the beginning Z = 1 and we computed aZ4 with 3 multiplications.
5 The fact that doubling is performed faster for NIST curves, allows us to recover 7
bits of the scalar at once

is the 39th multiplication for NIST curve or 40th multiplication for BP curve.
For the third bit, the interesting section on the target is the 59th multiplication
for NIST curve or 61th multiplication for BP curve, and so on for all the other
bits of the scalar.

As the last step of this phase, we calculate multiples of the point P using our
PolarSSL implementation. We explain this in detail in the next section.

4.3 Template acquisition

In PolarSSL every input point is represented in a�ne coordinates and then
converted to Jacobian coordinates. The intermediate values are represented in
Jacobian coordinates. The input points to the device are given in a�ne coordi-
nates. To create templates, we need to �nd an input point in a�ne corresponding
to an intermediate value in Jacobian coordinates.

The target trace is obtained with input point P = (xP , yP) given in a�ne
coordinates. In order to compute the intermediate values of the points 2P =
(X2P , Y2P , Z2P) and 3P = (X3P , Y3P , Z3P) with PolarSSL, we use the formulas
de�ned in [5]. Note that this does not correspond to the point 2P and 3P in a�ne
coordinates, because Z2P , Z3P 6= 1. Therefore, we can not compare directly the
templates with input point 2P (resp. 3P), since they are not in a�ne form.

We create our templates with a speci�c input point Qi such that the �rst
�eld multiplication D1 in 2P or 3P is the same with the one attacked on the
target trace. The squaring of the X-coordinate of the intermediate value is not
a�ected by the change of coordinates system.

The way to construct the input point for templates is more sophisticated. Let
us assume that we have the input point Q0 = (xQ0

, yQ0
) in a�ne coordinates

associated to the point value 2P and Q1 = (xQ1 , yQ1) corresponding to 3P. We
need to analyze the squaring of X-coordinate in Jacobian coordinates. The input
point Q0 = (xQ0

, yQ0
) should be a solution in Fp × Fp of the following system:{

xQ0
= X2P

y2Q0
= x3Q0

+ axQ0
+ b

(3)

with a, b the parameters of the curve as de�ned in [7, 26].
The number X used as input in the squaring is random, so X3 + aX + b is

also random. If x3Q0
+ axQ0 + b is not a square in the �nite �eld, we can change

one bit in X as proposed in [3] we get another point on the curve that satis�es
Eq.(3).

We locate the �rst multiplication in the template trace corresponding to the
squaring of the X-coordinate of the input point Q0 or Q1, depicted in Figs. 8,
9 respectively. With these two patterns and the target trace (Fig. 7), we can
perform template matching.

4.4 Template Matching

In this section, we present how to perform template matching by making the
right hypothesis on a scalar-bit. This procedure is described for the cases of

Fig. 7. Pattern of the 19th

multiplication in trace with
input P

Fig. 8. Pattern of the 1st

multiplication in trace with
input Q0

Fig. 9. Pattern of the 1st

multiplication in trace with
input Q1

horizontal and vertical leakage. The probability of having a horizontal leakage
corresponds to the probability of having di�erent propagation of carry between
the two templates.

Horizontal leakage When the traces are not synchronized (86% of cases in
BP curve, and 95% in NIST curve), cross correlation between the multiplication
pattern and the target trace is performed before template matching, in order
to choose the correct part of the target trace. Then we align the template and
target traces and decide what is the correct key-bit guess.

Horizontal leakage is observed when there is di�erent propagation of carry
between two multiplications 256×32 in the �eld. In Fig. 10 we see the misalign-
ment of the traces due to propagation of carry.

Fig. 10. Misalignment of two template traces due to propagation of carry

Vertical leakage When the implementation is executed in constant time and
the template traces are synchronized with the target trace, the same method as
described in [3] can be used (14% of cases in Brainpool curve and 5% in NIST
curve). The propagation of carry is the same between the two templates and the
target as depicted in Fig. 11; therefore, we can only observe a vertical leakage in
our traces. In our experiments, we use the Pearson correlation coe�cient ρ(X,Y)

Fig. 11. Two templates with the same propagation of carry

as described in Sec. A.3 and we get a correlation of 0, 81 for the multiplication
obtained from the target trace and the template trace of 2P. The same value
drops to 0, 78 for the correlation of the target trace with the template trace of
3P.

4.5 Success Rate for one key-bit

In this part, we describe the method used to calculate and increase the success
rate of our attack. As explained in Sec. 3.2 for the NIST curve the probability
to have a di�erent propagation of carry between the two templates is 95% and
for BP 86%. The horizontal attack scenario is easy, since if two templates have
di�erent propagation of carry, then the success rate of �nding this bit is 100%.

For the vertical attack scenario, the success rate depends on the input data.
So, we keep only the input data, when the propagation of carry is the same for
the two template traces. We perform the computation of the success rate, using
random points on each curve for the target trace. We acquire 30 target traces to
attack, and for the template trace, we acquire 1000 traces for each assumption
when the propagation of carry is the same. We compute the two Pearson cor-
relations between one target trace and one template by each assumption. Each
bit ki is the notation for the correct key-bit of k. If the highest Pearson corre-
lation gives the assumption ki, then the counter corresponding to the success of
the attack increases, otherwise, the counter corresponding to the failure of the
attack increases. The success rate to retrieve one key-bit in vertical leakage for
the NIST curve is 76, 23% and for the BP curve is 69%. To conclude, the success
rate to �nd one bit is 1× 0, 95 + 0, 76× 0, 05 = 98, 8% for the NIST curve, and
1× 0, 86 + 0, 69× 0, 14 = 95, 66% for the BP curve.

To increase the vertical information leakage the average of traces can be used.
When the scalar is randomized, we can not perform the attack with more than
one target traces. But we can still acquire more than one template traces. So, by
using only one target trace with an average of a few template traces, the success
rate increases as shown the Tab. 1 on the BP curve. To conclude, the success
rate for BP curve is 1× 0, 86 + 0, 99× 0, 14 = 99, 86%

4.6 Error-correcting bit from the template traces

The advantage of our method is the possibility of detection and correction of
errors. As we described in the previous section, the success rate to retrieve one bit

Number of average traces 1 10 50 100
Success Rate 69% 80,70% 91,60% 99,80%

Table 1. Di�erent success rates according to the number of average template traces
on BP curve.

using OTA is close to 99%, which means that there is a 1% probability of having
an unsuccessful attack due to a wrong key-guess. For a 256-bit scalar, if an error
is not detected, the success rate for the original OTA is 7, 6% (0.99255 ' 0.076),
since this error will propagate and a�ect all the bits after the wrong guess.
Therefore, it is very important to detect and correct errors before making new
templates. An error can be made when both template traces have the same
propagation of carry. If we want to be sure of the key-bit value, then we can
automatically compute the value of this bit and the following one. For instance,
if the two templates for 2P and 3P have the same propagation of carry, then we
create templates for 4P, 5P, 6P and 7P. We have the following four cases:

1. Let us assume that only one template has the same propagation as the target,
so we can conclude for both key-bits. For example, if the template of 7P gives
the highest correlation, then the second key-bit is 1, and the third bit is 1.

2. Let us assume that two templates have the same propagation as the target, so
we compute 4 templates, and start looking the next bit with the 4 template
traces.

3. Let us assume that three templates have the same propagation as the target,
so we compute 6 templates, and start looking the next bit with the 6 template
traces.

4. Let us assume that four templates have the same propagation as the target,
so we compute the 8 templates, and start looking the next bit with the 8
template traces.

For BP curve, the probability to have one template trace with the same
propagation of carry with the target trace is, 70%, two template traces is 14%, 3
template traces is 3,9% , 4 template traces is 1,2%, 5 template traces is 0,4%, 6
template traces is 0,1%, the probability for more template trace with the same
propagation of carry is very low. For NIST curve, the probability to have one
template trace with the same propagation of carry with the target trace is, 90%,
two template traces is 5,9%, 3 template traces is 0,7%, 4 template traces is 0,1%,
5 template traces is 0,01%. For both curves, this probability reduces signi�cantly
for more template traces. To conclude the number of template traces cannot
increase exponentially. At the end of the attack, in order to retrieve the 256-bit
scalar, we can have an uncertainty for the 2 or 3 last bits; we �nd the 22 or 23

scalar key by comparing with the output Q = [k]P and in this way we can �nd
those last bits.

5 Countermeasure

At this point, it is clear that both OTA and our adaptive template attack are
very e�cient methods to attack scalar the double-and-add always algorithm
during the execution of ECC protocols. These methods can be easily adapted
to other scalar multiplication algorithms as described in [17, 29]. For the binary
algorithm Montgomery Ladder [18], we can compare the doubling operation
and �nd the correct key bit. For the non-binary algorithm using windows, we
can obtain templates for all hypotheses and make the same attack with more
template traces. Since the most commonly used scalar multiplication algorithms
are vulnerable to our attack, it is interesting to see which countermeasure can
be applied against it. We hereby give a list of the possible countermeasures and
their e�ciency against our attack:

� Randomization of the scalar.

The di�erent ways of scalar randomization are :

1. [k]P = [k − r]P + [r]P, two scalar multiplications are computed Q =
[k − r]P and R = [r]P;

2. [k]P = [k×r−1]([r]P), two scalar multiplications are computed Q = [r]P
and R = [k × r−1]Q;

3. [k]P = [k mod r]P + [bkr c]([r]P), three scalar multiplications are com-

puted Q = [k mod r]P, R = [r]P and S = [bkr c]R.
For all these randomization techniques, our attack can be applied; the target
trace requires one acquisition on the second or third scalar multiplication.
This acquisition is possible using an oscilloscope with big memory depth. For
the template traces, we make assumptions for each part of the scalar mul-
tiplication. We retrieve a random scalar part for each scalar multiplication
part. And to retrieve the scalar, we compute the addition (randomization 1.)
or the multiplication (randomization 2.) of the scalar or the both addition
and multiplication (randomization 3.). So, using the scalar randomization is
no e�cient against this kind of attack.

� Randomization of the point.

The Jacobian representation of the point can be easily randomized as the
projective coordinate. For the Jacobian coordinate, the randomization con-
sists in selecting a random r in the �nite �eld Fp, and compute: (X,Y, Z) 7→
(r2 × X, r3 × Y, r × Z). In most cases, the input point is in a�ne coordi-
nates, so the randomization of the point is reduced to compute: (x, y) 7→
(r2 × x, r3 × y, r). The supplementary cost of this countermeasure is 5 �nite
�eld multiplications. For comparison, the cost of one scalar multiplication
using 256-bit scalar with a regular algorithm such as double-and-add-always
is 5100 multiplications. Applying randomization of the input point does not
allow to predict intermediate values of the calculation and prevents the con-
struction in a deterministic way for the template traces. This countermeasure
is implemented in PolarSSL, and must be activated to protect the embedding
device.

� Random �eld isomorphism.

This countermeasure prevents our attack, in the same way as described in [3].
Random �eld isomorphisms can be performed by changing the prime of the
�nite �eld that our computations take place. If we use random primes to
generate our curves, our attack will not work.

6 Conclusion

In this paper we presented a practical extension of OTA on Brainpool Br256r1
and NIST Sec256r1 curves implemented on an ARM Cortex M4 micro-controller.
A modi�ed version of OTA is applied with the Pearson correlation coe�cient
as distinguisher for the correct hypothesis on the key-bit. Error detection and
correction of a wrong key-bit guess is possible for our modi�ed version of the
attack, mainly due to the fact that we expect to have 99.8% success rate with
averaging 100 template traces.

Most of the countermeasures applicable to the original OTA attack should
also work against our attack. Blinding the coordinates for every execution of the
attacked algorithm is the most e�cient countermeasure against OTA, though in-
curring with some cost for the performance of the implementation. Point blinding
is also e�cient against our attack, since we need to know the input point and
to actually be able to choose input points for our templates. To use PolarSSL in
ARM embedding device, the countermeasure of point blinding must be activated.

References

1. ANSI-X9.62. Public Key Cryptography for the Financial Services Industry: The
Elliptic Curve Digital Signature Algorithm (ECDSA), 1998.

2. ANSI-X9.63. Public Key Cryptography for The Financial Services Industry: Key
Agreement and Key Transport Using Elliptic Curve Cryptography, 1998.

3. Lejla Batina, Lukasz Chmielewski, Louiza Papachristodoulou, Peter Schwabe, and
Michael Tunstall. Online template attacks. In Progress in Cryptology - IN-

DOCRYPT 2014 - 15th International Conference on Cryptology in India, New

Delhi, India, December 14-17, 2014, Proceedings, pages 21�36, 2014.
4. A. Bauer, E. Jaulmes, E. Prou�, and J. Wild. Horizontal collision correlation

attack on elliptic curves. In T. Lange, K. Lauter, and P. Lisonek, editors, Selected
Areas in Cryptography, volume 8282 of LNCS, pages 553�570. Springer, 2014.

5. Daniel J. Bernstein and Tanja Lange. Explicit formulas database.
http://www.hyperelliptic.org/EFD/.

6. Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis
with a leakage model. In Marc Joye and Jean-Jacques Quisquater, editors, CHES,
volume 3156 of Lecture Notes in Computer Science, pages 16�29. Springer, 2004.

7. BSI. RFC 5639 - Elliptic Curve Cryptography (ECC) Brainpool Standard Curves
and Curve Generation. Technical report, Bundesamt für Sicherheit in der Infor-
mationstechnik (BSI), 2010.

8. Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In Crypto-

graphic Hardware and Embedded Systems - CHES 2002, 4th International Work-

shop, Redwood Shores, CA, USA, August 13-15, 2002, Revised Papers, pages 13�28,
2002.

9. C. Clavier, B. Feix, G. Gagnerot, C. Giraud, M. Roussellet, and V. Verneuil.
ROSETTA for single trace analysis. In Steven Galbraith and Mridul Nandi, ed-
itors, Progress in Cryptology � INDOCRYPT 2012, volume 7668 of LNCS, pages
140�155. Springer, 2012.

10. C. Clavier, B. Feix, G. Gagnerot, M. Roussellet, and V. Verneuil. Horizontal
correlation analysis on exponentiation. In Miguel Soriano, Sihan Qing, and Javier
Lopez, editors, Information and Communications Security, volume 6476 of LNCS,
pages 46�61. Springer, 2010.

11. Henri Cohen, Atsuko Miyaji, and Takatoshi Ono. E�cient elliptic curve exponen-
tiation using mixed coordinates. In Kazuo Ohta and Dingyi Pei, editors, Advances
in Cryptology - ASIACRYPT '98, International Conference on the Theory and

Applications of Cryptology and Information Security, Beijing, China, October 18-

22, 1998, Proceedings, volume 1514 of Lecture Notes in Computer Science, pages
51�65. Springer, 1998.

12. Jean-Sébastien Coron. Resistance against di�erential power analysis for elliptic
curve cryptosystems. In Çetin Kaya Koç and Christof Paar, editors, Crypto-
graphic Hardware and Embedded Systems, First International Workshop, CHES'99,

Worcester, MA, USA, August 12-13, 1999, Proceedings, volume 1717 of Lecture
Notes in Computer Science, pages 292�302. Springer, 1999.

13. Pierre-Alain Fouque and Frédéric Valette. The doubling attack � Why upwards
is better than downwards. In Colin D. Walter, Çetin K. Koç, and C. Paar, editors,
Cryptographic Hardware and Embedded Systems � CHES 2003, volume 2779 of
LNCS, pages 269�280. Springer, 2003.

14. N. Homma, A. Miyamoto, T. Aoki, A. Satoh, and A. Shamir. Collision-based power
analysis of modular exponentiation using chosen-message pairs. In E. Oswald and
Pankaj Rohatgi, editors, Cryptographic Hardware and Embedded Systems � CHES

2008, volume 5154 of LNCS, pages 15�29. Springer, 2008.
15. Michael Hutter and Peter Schwabe. NaCl on 8-bit AVR microcontrollers.

In Amr Youssef and Abderrahmane Nitaj, editors, Progress in Cryptology �

AFRICACRYPT 2013, volume 7918 of LNCS, pages 156�172. Springer, 2013.
16. N. Smart I. Blake, G. Seroussi. Advances in Elliptic Curve Cryptography, volume

317. Cambridge University Press, 1999.
17. Marc Joye. Elliptic curve cryptosystems and Side Channel Analysis, volume 4,

pages 17�21. ST J. Syst. Res., 2003.
18. Marc Joye and Sung-Ming Yen. The montgomery powering ladder. In Burton

S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors, Cryptographic Hardware
and Embedded Systems - CHES 2002, 4th International Workshop, Redwood Shores,

CA, USA, August 13-15, 2002, Revised Papers, volume 2523 of Lecture Notes in

Computer Science, pages 291�302. Springer, 2002.
19. Neal Koblitz. Elliptic curve cryptosystems, volume 48, pages 203�209. Mathematics

of Computation, 1987.
20. Paul C. Kocher, Joshua Ja�e, and Benjamin Jun. Di�erential power analysis. In

Michael J. Wiener, editor, CRYPTO, volume 1666 of Lecture Notes in Computer

Science, pages 388�397. Springer, 1999.
21. ARM mbed. Polarssl version 1.3.7. https://tls.mbed.org/.
22. Alfred Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied

Cryptography. CRC Press, 1996.
23. ST Microelectronics. RM0090 Reference Manual. DocID018909 Rev 8, 2014.
24. Victor S. Miller. Use of elliptic curves in cryptography. In Hugh C. Williams, editor,

Advances in Cryptology - CRYPTO '85, Santa Barbara, California, USA, August

18-22, 1985, Proceedings, volume 218 of Lecture Notes in Computer Science, pages
417�426. Springer, 1985.

25. Elke De Mulder, Pieter Buysschaert, S�dd�ka Berna Örs, Peter Delmotte, Bart
Preneel, Guy Vandenbosch, and Ingrid Verbauwhede. Electromagnetic Analy-
sis Attack on an FPGA Implementation of an Elliptic Curve Cryptosystem. In
IEEE International Conference on Computer as a tool, pages 1879�1882, Novem-
ber 2005. Belgrade, Serbia & Montenegro. DOI: 10.1109/EURCON.2005.1630348,
http://www.sps.ele.tue.nl/members/m.j.bastiaans/spc/demulder.pdf.

26. NIST. FIPS publication 186-4 - Digital Signature standard (DSS). Technical
report, National Institute of Standards and Technology (NIST), July 2013.

27. Christian Rechberger and Maria Elisabeth Oswald. Practical template attacks. In
Chae Hoon Lim and Moti Yung, editors, Information Security Applications, volume
3325 of Lecture Notes in Computer Science, pages 440 � 456. Springer, 2004.

28. https://www.riscure.com/security-tools/inspector-sca/ Riscure Inspector.
29. Matthieu Rivain. Fast and regular algorithms for scalar multiplication over elliptic

curves. IACR Cryptology ePrint Archive, 2011:338, 2011.

A Description for Online Template Attack

A.1 Attack model for OTA

Online Template Attacks (OTA), introduced in [3], is an adaptive template at-
tack technique, which can be used to recover the secret scalar in a scalar multi-
plication algorithm. The main assumption in the OTA attacker model is in his
ability to choose an input point to the scalar multiplication algorithm, in order
to generate template traces. As it is demonstrated in the original paper, OTA
works with one target trace from the device under attack and one template trace

per key-bit obtained from the attacker's device that runs the same implementa-
tion. Performing OTA in practice requires the following assumptions to be made
regarding the attacker:

� The attacker knows the input P of the target device.
� He knows the implementation of the scalar multiplication algorithm and he
is able to compute the intermediate values.

� He can choose the input points on a device similar to the target device.

Furthermore, we work with the following assumptions related to the device:

� The scalar can be randomized.
� The intermediate values are deterministic.

The OTA is then performed as follows:

1. The attacker �rst obtains a target trace with input point P from the target
device.

2. He obtains template traces with input points [m]P, m ∈ Z for multiples of
the point P, e.g. 2P or 3P.

3. He compares the correlations between the target and each pair of template
traces. The correct guess is most likely to be the highest correlation.

The OTA technique is originally described for binary algorithms, but it can be
easily adapted to the windows method by creating one template for a hypothesis
made for each window.

The attacker model for OTA is more suitable for the Di�e-Hellman key-
exchange protocol, because the input point can be selected. Nevertheless, this
attack can be applied against the ECDSA algorithm, if the input point of the
target device is known.

A.2 Constructing template traces for OTA

At this point, it is important to explain precisely how the interesting points to
generate the template traces are chosen. With the term interesting points we
mean the multiples of the point P that are expected to be the outputs of every
iteration of the scalar multiplication algorithm, i.e. 2P and 3P for the �rst bit
of the scalar. This is demonstrated with a graphical example depicted in Fig. 12.

Let us assume that the initial input point to the double-and-add-always al-
gorithm is P and the most signi�cant bit (KMSB) of our secret scalar is 1. Then,
the output of the second iteration (operations for KMSB−1) is either 2P or 3P.
For example, if KMSB−1 = 0, then the output of the second iteration is 2P and
consequently the template trace for 2P gives higher correlation to the target
trace than the template for 3P. We compute the correlations between the tem-
plate traces 2P, 3P, and the target trace, in order to �nd the most likely key-bit.
The highest correlation value is considered to be the right key guess.

We continue the same procedure of calculating the two possible outcomes for
bit KMSB−2, which are the template traces for 4P or 5P, and then �nding the
highest correlation between the templates and the target trace. Fig. 13 shows
how the templates for the third bit KMSB−2 can be generated. In general, for

Fig. 12. How to �nd the second MSB KMSB−1 in the target trace with the template
trace of 2P

each iteration of the scalar multiplication algorithm, we compare the ith iteration

of the scalar multiplication execution in the template trace with the (i + 1)th

execution of the target trace.

Fig. 13. How to �nd the third MSB KMSB−2 in the target trace with the template
trace of 4P

A.3 Template Matching Phase

Template matching is performed at suitable parts of the traces, where key-bit
related assignments take place. Our pattern matching technique, in order to
distinguish the right hypothesis on the attacked bit of the scalar, is based on
the Pearson correlation coe�cient ρ(X,Y) between the target trace and the
template traces.

ρ(X,Y) =

∑
i(Xi − X̄)(Yi − Ȳ)√∑

(Xi − X̄)2
√∑

(Yi − Ȳ)2
=
〈X − X̄, Y − Ȳ 〉
||X − X̄|| ||Y − Ȳ ||

(4)

We chose this metric, since it is both scale and o�set-shift invariant.

B Probability of the propagation of carry

Computing the probability of having an inner carry is the same as computing
the probability of (X × Y + R × 232) ≥ 264 with X a random value between
[0,max{A7|A ∈ Fp}], with Y a random value between [0,max{Bi|B ∈ Fp, i ∈
{0, · · · , 7}}] and with R a random value between [0,max{Xi|X ∈ F(p−1)2 , i ∈
{7, · · · , 15}}]. For all curves, max{Bi|B ∈ Fp, i ∈ {0, · · · , 7}} and max{Xi|X ∈
F(p−1)2 , i ∈ {7, · · · , 14}} equal 232 − 1. The value max{A7|A ∈ Fp} depends
on the MSW of the characteristic of the �nite �eld. The probability can be
computed as follows:

P(X × Y +R× 232) ≥ 264) =
1

4

max{A7|A ∈ Fp}2

264
(5)

We hereby give a the complete computation of the probability of an inner-
carry propagation (Eq. 5)

P(XY + 232R ≥ 264) =

A7−1∑
x=0

232−1∑
y=0

232−1∑
r=0

P(XY + 232R ≥ 264 | X = x, Y = y,R = r)P(X = x)P(Y = y)P(R = r) =

A7−1∑
x=0

232−1∑
y=0

232−1∑
r=0

P(xy + 232r ≥ 264)
1

A7

1

232
1

232
=

1

A7

1

(232)2

A7−1∑
x=0

232−1∑
y=0

232−1∑
r=0

1xy+232r≥264 ,where 1 is the indicator, i.e.,1z =

{
0 if z is false,

1 otherwise

which can be approximated by:

1

A7

1

(232)2

∫ A7−1

x=0

∫ 232−1

y=0

∫ 232−1

r=0

δxy+232r≥264drdydx

' 1

A7

1

(232)2

∫ A7

x=0

∫ 232

y=0

∫ 232

r=0

δxy+232r≥264drdydx

=
232

A7

∫ a7

x=0

∫ 1

y=0

∫ 1

r=0

δxy+r≥1drdydx

with x← x/232, y ← y/232, r ← r/232 and a7 = A7/2
32.

It holds, δxy+r≥1 = δr≥1−xy. Besides, 1− xy ∈ [1− a7, 1] ⊂ [0, 1]. Indeed,

0 ≤ x ≤ a7, 0 ≤ y ≤ 1 =⇒ 0 ≤ xy ≤ a7, hence 1− a7 ≤ 1− xy ≤ 1 .

Therefore,

232

A7

∫ a7

x=0

∫ 1

y=0

∫ 1

r=0

δxy+r≥1drdydx =
232

A7

∫ a7

x=0

∫ 1

y=0

∫ 1

r=1−xy

drdydx =

232

A7

∫ a7

x=0

∫ 1

y=0

xydydx =
232

A7

∫ a7

x=0

xdx×
∫ 1

y=0

ydy =

232

A7

[
x2

2

]a7

0

×
[
y2

2

]1
0

=
232

A7

a27
2
× 1

2
=

232

A7

1

4
a27 =

1

4

A7

232
.

For A7 = 232−1, this yields ≈ 0.25. For A7 = 0xA9FB57DA, this yields ≈ 0.166.

