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Abstract. We report on the design and implementation of a system that uses mul-
tiparty computation to enable banks to benchmark their customers’ confidential
performance data against a large representative set of confidential performance
data from a consultancy house. The system ensures that both the banks’ and the
consultancy house’s data stays confidential, the banks as clients learn nothing but
the computed benchmarking score. In the concrete business application, the de-
veloped prototype help Danish banks to find the most efficient customers among
a large and challenging group of agricultural customers with too much debt. We
propose a model based on linear programming for doing the benchmarking and
implement it using the SPDZ protocol by Damgård et al., which we modify using
a new idea that allows clients to supply data and get output without having to
participate in the preprocessing phase and without keeping state during the com-
putation. We ran the system with two servers doing the secure computation using
a database with information on about 2500 users. Answers arrived in about 25
seconds.

1 Introduction

We report on the design and implementation of a system that uses secure multiparty
computation (MPC) for credit rating in Danish banks. The use of MPC allows us to
create a richer data foundation by merging confidential data from different sources and
securely compute relative performance scores (benchmarks) on the joint secret shared
data. In close collaboration with Danish banks and a consultancy house, we have devel-
oped this confidential benchmarking system that uses linear programming to compute
benchmark scores as a complement to traditional credit rating of the banks’ customers.

The business case focuses on farmers as a business segment that is particularly chal-
lenging for Danish banks. The basic problem is that a large number of farmers have had
too high debt ratios and too low earnings for years and the banks have been reluctant
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to realise the losses5. One would like to avoid a chain reaction that may affect the indi-
vidual bank’s own credit rating and hereby it’s ability to lend money on the interbank
market. So on the one hand, a number of banks have too many farmers with potential
losses as customers and on the other hand, status quo worsens the situation for this
group of customers that need to invest to stay competitive. To control the situation and
to avoid an escalation, the banks are forced to pick the right farmers among this group
of risk-prone customers. This requires more analysis than the traditional credit scores.
The banks need to look beyond the debt and find the better performing farmers that are
more likely to pay back the loans. To do this one needs accounting and production data
from a large range of peer farmers. Since farmers are not required to publish account-
ing data, a number of banks lack the basic data for sound in-house analysis of their own
customers.

However, there is a consultancy house in the market that possesses accounting data
from a large number of farmers. This creates an opportunity to score the bank’s cus-
tomers relative to the sector as a whole and not just the banks own portfolio which may
not be representative for the business segment.

Hereby, the business case has a characteristic property that it shares with many
similar cases: The inputs we need to solve the problem are held by different parties
and privacy issues prevent them from pooling the information. In our case, the con-
sultancy house that has the farmers accounting data is of course required to keeps its
database confidential. On the other hand, banks are not allowed to give away data on
their customers including the identity of its customers. In fact, even ignoring regula-
tions, it would be particularly problematic in our case if the bank were to send data on a
customerC in the clear to the consultancy house. IfC’s data are already in the database,
it is very like that the consultancy house could find out which customer the bank wants
to evaluate, and this is of course a breach of confidentiality.

Agreeing on a trusted third party who can perform the computation may be both
difficult and expensive, hence a different solution is desirable. Secure multiparty com-
putation (MPC) provides a solution – two or more parties can compute any function on
private inputs such that the only new information leaked is the intended output of the
function [Yao82,GMW87,BOGW88,CCD88]. However, though any function is com-
putable in theory, specialized protocols for concrete problems are typically proposed to
achieve acceptable efficiency. This is also the case here, where we implement a secure
Linear Program (LP)-solver and demonstrate its applicability.

Conceptually, MPC can be seen as an implementation of a Trusted Third Party
(TTP) that receives the input and confidentially computes the result (in this case the
result of the benchmarking), while not revealing anything else about the inputs. As
such, the MPC approach is analogous to paying a consultancy house to act as a TTP.
However, the economic argument for using MPC is that while a consultancy house is
likely to charge the parties substantial fees for every analysis, the cost of developing
software for MPC only has to paid once and can be amortised over many applications
of the system.

Linear programming (LP) is one of the basic and most useful optimization problems
known. The goal is to find an assignment to variables, x = (x1, . . . , xn), subject to m

5 The banks are typically the lenders with the utmost priority in case of default.



linear constraints
C · x ≤ b

maximizing (or minimizing) a linear function, f(x). LP is widely used in Operational
Research and applied Micro Economics to solve real life problems such as resource
allocation, supply chain management or benchmarking as in this paper.

The remainder of this paper is structured as follows. Section 2 describes the applica-
tion scenario and the linear program to be solved. Section 3 and 4 describe the applied
protocol and implementation respectively and concluding remarks are given in Section
5.

2 Application Scenario and Benchmarking Model

Credit rating of a firm is all about estimating the ability that the firm can fulfill its
financial commitments based on historical data. Traditional credit rating models such
as the original Altman’s Z-score aim at predicting the probability that a firm will go into
bankruptcy. Using various statistical methods the most relevant explanatory variables
are selected and the credit rating model is estimated, see e.g. [Mes97] for a general
introduction.

The traditional credit scoring divides customers into groups depending on their
overall credit worthiness. While new customers may simply be rejected based on a bad
credit score, existing customers that end up with a bad credit score, cannot be rejected
without a risk of losses. When larger groups of customers experience a drop in their
credit worthiness the banks it self may get exposed by a drop in credit rating. This was
indeed the case with the global financial crises that was created over a number of years
and ignited by Leman Brothers bankruptcy in 2008. The present problem where a large
group of Danish farmers have low credit worthiness, goes back to excessive lending
prior to 2008.

In general, farming requires large investments to generate profit. The Danish farmers
have historically been highly efficient and to a large extent adapted to the relative high
operational costs, not least the high wages (see e.g. [ANB12]). The otherwise successful
substitution away from increasing labor costs has resulted in high debt/equity ratios.
This challenge the Danish banks with many farmers as customers that on the one hand
require large investments to become competitive and on the other hand suffer from high
debt/equity ratios. According to BankResearch.dk that continuously evaluate the Danish
banks, 7 of the 8 worst scoring banks are among the 30 Danish banks that are most
exposed in the agricultural sector in 2014. These 30 banks are all small and medium
sized banks and have from 10 to 35% of total loans and guarantees in agriculture or
fishery. This development emphasises the fact that when selecting the right farmers for
future loans, one needs an analysis that is based on a larger number of comparable farms
than what is found in the individual banks’ own portfolios.

In close collaboration with the consultancy house that represents the majority of
the farmers and selected small and medium sized banks, a prototype software has been
developed. The consultancy house has detailed account and production data that are
not publicly available. The added security allows us to create a richer data foundation
by merging the confidential data from the accounting firm with additional confidential



data from the individual banks. The secure LP solver allows us to conduct state-of-
the-art relative performance analysis directly on the richer, though secret data set. The
resulting benchmarks is used to evaluate new individual customers as well as the banks’
portfolios - in either case the analysis reflects performance relative to the agricultural
sector as a whole.

In general terms, benchmarking is the process of comparing the performance/activities
of one unit against that of best practice. We apply Data Envelopment Analysis (DEA),
which is a so-called frontier-evaluation technique that supports best practice compar-
isons (or efficiency analysis) in a realistic multiple-inputs multiple-outputs framework.
Instead of benchmarking against engineering standards or statistical average perfor-
mances, DEA invokes a minimum of a priori assumptions and evaluates the perfor-
mance against that of specific peer units. For these reasons, DEA has become a popular
benchmarking approach.

DEA was originally proposed by [CcR78,CcR79], and has subsequently been re-
fined and applied in a large number of research papers and by consultants in a broad
sense. A 2008 bibliography lists more than 4000 DEA references, and more than 1600
of these are published in good quality scientific journals [EPT08].

Most often, DEA is used to get general insight, e.g. about the variation in perfor-
mance or the productive development in a given sector. However, DEA have also proven
useful in incentive provision, e.g. for regulation or as part of an auction market cf.
[ABT05,BN08,NT07]. Finally, DEA has also been applied as a direct alternative to tra-
ditional credit rating models in predicting the risk of failures see e.g. [CPV04,PAS04,PBS09].
DEA can be formulated as an LP-problem and therefore in general be solved by the Se-
cure LP-solver described in this paper.

To formally define the DEA methodology used for this analysis, consider the set of
n observed farms. All the farms are using k = 1, . . . , r inputs to produce l = 1, . . . , s
outputs, where the input-output vector for farm i is defined as: (xi, yi) ∈ Rr+s

+ . Let xki
denote farm i’s consumption of the k’th input and yli its production of the l’th output.

The DEA input efficiency score under variable returns to scale (c.f. [BCc84]) for
farm i is called θ∗i and is defined as:

θ∗i = max θi

s.t.
n∑

j=1

λjx
k
j ≤ xki , k = 1, . . . , r (1)

n∑
j=1

λjy
l
j ≥ θiyli, l = 1, . . . , s

n∑
j=1

λj = 1, λj ≥ 0, j = 1, . . . , n.

The interpretation is that the efficiency score of farm i is the largest possible factor
by which farm i can expand all outputs while still maintaining present input consump-
tion. We use the reverse output efficiency score 1/θ∗i to fix the score between 0 and 1.
As an example, the interpretation of a reverse output score of 80 % is that the farm uses



only 80 % of its potential as estimated by comparing to the other farms. (the estimated
best practice benchmark). Apart from evaluating individual farmers we use distribution
plots to evaluate the individual bank’s portfolio of farmers. For further details on the
use of DEA, the reader is referred to the textbooks by e.g. [BO11,CST07].

The software described below is in the process of being tested by the end-users i.e.
selected banks6. The system is able to do several different types of analysis and these
have been designed in collaboration with the consultancy house and tested by consul-
tants that are familiar with the evaluated farmers. Here we concentrate on one of the
benchmarking analyses that is used on all of the 4 major group of farmers (milk, pig,
plant and fur production). The initial data provided by the consultancy house consists
of approx. 7500 accounts across the four types of farms in total and provide a represen-
tative and sound foundation for the analysis.

The applied benchmarking model reported on in this paper focuses on the farms
abilities to transform the basic inputs labour, capital (divided into three sub-groups) and
variable inputs into gross output, i.e., profit. The model has been developed, discussed
and tested together with the involved consultancy house.

– x1i : Labour (wages for paid labor + 450000 DKK to the owner)
– x2i : Value of land
– x3i : Liquid capital
– x4i : Other capital assets
– x5i : All variable costs (excluding internal transfer)
– y1i : Gross output (including EU subsidies and other income)

The resulting benchmarking scores from the 7500 farmers, supports the basic ar-
gument, that additional analysis are required in selecting the best performing farmers
among the many with too much debt. Table 1 shows how the benchmarking scores are
distributed within segments of the farmers’ debt/equity ratios. The result shows that
the wast majority have a debt/equity ratio larger than 50% and that farmers with similar
debt/equity ratio have widely spread benchmarking scores. However, there is a tendency
to a higher benchmarking score for farmers with higher debt/equity scores i.e. among
the most risky customers seen from the banks’ perspective. Although traditional credit
ratings involves other elements than what is captured by the debt/equity ratio, the re-
sults do indicate that the suggested benchmarking analysis is able to identify the better
performing farmers among many risky customers with too much debt.

We have described how the confidential benchmarking system can be used by banks
to evaluate potential new customers, as well as particular all farmers in their existing
portfolios. In addition, the situation allows us to provide a different type of analysis,
namely a quick stress test of a bank’s portfolio: for all the banks that participate, it
holds that the 7500 accounts in the database include a significant share of the bank’s
agricultural customers. So we can give the bank an idea of how well its customers are
doing by comparing those that are in the database with the total population. We do this
by first having the database locally compute the benchmark score for all farmers in
the database. This does not require MPC and can be done quite efficiently. Now, only

6 An early stage demo version of the software has been tested and resulted in valuable feedback
for the development of the prototype.



Debt/equity ratio Number of farmers Average score Standard deviation (score)
50%-60% 632 41.6 % 20.6 %
60%-70% 1363 40.0 % 18.6 %
70%-80% 2014 43.0 % 17.2 %
80%-90% 1807 47.8 % 15.6 %
90%-100% 1234 48.3 % 15.1%

Table 1: Debt/equity ratio and distribution of benchmark scores

the bank knows the identity of its customers and this is considered to be confidential
information. Therefore the bank uploads a list of id numbers that are secret shared
across the two servers, and then, inside a secure computation, we can select the bank’s
portfolio of farmers and return a summary based on their precomputed scores. Hereby,
the initial stress test of the portfolios can be done without delays from the otherwise
time intensive LP solving. Note also that since this computation touches every entry in
the database, no information is released on which entries belong to customers of the
bank in question.

3 Using the SPDZ Protocol for Benchmarking

The scenario in which we want to implement Multiparty Computation (MPC) is com-
posed of the following players: clients, who supply input and get outputs and servers
who execute the actual computation. We assume that any number of clients and up to
n− 1 of the n servers may be maliciously corrupted.

In relation to the case outlined in the previous section, a client would typically
be a bank who wants to get the score for a certain customer. One special client (who
only supplies input) would be the consultancy house who has the database. The servers
would be run by different parties with an interest in the system. For the deployment of
the present prototype, the two organisations involved in the development of the system
(names left out for anonymity), each control one of the two servers involved in the se-
cure computations. Based on discussion with the involved business partners, we expect
that the consultancy house and the Danish Bankers Association will control the two
servers in a commercial setup.

We use the SPDZ protocol from [DPSZ12] to do the computation. This protocol
is indeed capable of general secure computation and can tolerate that all but one of
the servers doing the computation are corrupt. Tolerating a dishonest majority actually
requires the use of heavy public-key crypto machinery. However, one of the main ideas
in SPDZ is to push the use of this into a preprocessing phase that can be done ahead of
time (without knowing the inputs), and then use preprocessed material to do the actual
computation very efficiently.

However, it is not clear how to integrate the clients. In SPDZ, it is assumed that
each player plays both the role of a server and of a client who can supply input and get
output. To do this, SPDZ requires that all players take part in the preprocessing stage.
But in our scenario, we want to separate the client and server roles and we definitely do



not want to demand from our clients that they do the preprocessing: in our application,
it may not even be known who the clients are at preprocessing time. We would also
like that the clients do not need to keep state while the computation in running as this
simplifies the implementation of client software7. We explain our solution below after
we explain some more details of the SPDZ protocol:

SPDZ can securely evaluate any arithmetic circuit over a finite field F, and we will
assume F is the field with p elements for a prime p is the following. Each value a
that occurs in the computation (as input, output or intermediate result) is represented
in a certain format denoted by 〈a〉. The idea is that each server holds part of the data
that represents a. More specifically, each server Si holds a share ai of a, such that
a = a1+ · · ·+an and the ai’s are randomly chosen such that even given n−1 of them,
a remains unknown. The servers also hold data that can be used to authenticate the
value of a if we want to retrieve it in the clear, but the details of this are not important
here.

SPDZ includes protocols for operating securely on these representations of field
values, i.e., from 〈a〉, 〈b〉, the servers can compute 〈a + b〉 or 〈ab〉 without revealing
anything about a or b. Similarly we add or multiply by a publicly known constant. The
main role of the preprocessing is to supply shared randomness that facilitates secure
multiplication, but it can also easily be configured to supply any number of represen-
tations 〈r〉, where r ∈ F is a random value that is unknown to all players, this will be
very important in the following.

The overall idea of the computation phase in SPDZ is then to first construct repre-
sentations in the right form of the input values, do the required arithmetic operations to
come up with representations of the desired outputs, and then open these to reveal the
results to the players who are to receive output.

3.1 Allowing Clients to give Input and get Output

Let us first discuss how to give output to a client C, assuming that the servers have
managed to compute a representation of an output value 〈y〉. As mentioned, this means
that each server Si holds yi where y =

∑
i yi.

So this may seem easy: each Si sends yi privately toC, who adds all values received
to get y. However, this will of course not work, even a single malicious server could lie
about its value and make C obtain an incorrect result. In the original SPDZ protocol,
this type of problem is solved by having the servers collaborate to authenticate the sum
of the values supplied. But C cannot take part in and be convinced by such a procedure
unless he took part in the preprocessing stage, and we want to avoid this.

So instead we propose to encode the output value in such a way that any modifica-
tion by malicious servers can be detected by the client8. As a first attempt, suppose the

7 In [JNO14], a generic solution client solution was proposed that works for any MPC protocol,
but it requires the client to keep state. In principle, one can always store client state info on the
servers, but since our servers are malicious it needs to be authenticated and secret shared or
encrypted, and this adds further complications to the implementation.

8 This is actually the notion of a strong AMD code[CDF+08], the construction we give here is
slightly different from previous ones, though, and fits better into our protocol.



servers retrieve a random representation 〈r〉 from the preprocessing, then they compute
securely 〈w〉 = 〈yr〉 and finally send all shares to y, r andw privately to C. He can now
reconstruct and check that indeed yr = w and will reject the output if not. Recall that
if we want to tolerate a dishonest majority of servers, we cannot guarantee that players
will always terminate with correct output, as servers may for instance just stop playing.
So simply aborting if something is wrong is the best we can do.

One can think ofw as an authentication tag and r as a key, so this is an authentication
scheme similar to the one already used in SPDZ. As we show below, this will indeed
ensure that any attempt to change y will be detected except with probability 1/p, where
we assume that p is large enough that this is negligible. However, there is still a subtle
problem: y is supposed to be private, known only to the client. Now, a malicious server
could (for instance) change r and leave the other values alone. It is easy to see that then
the client will abort if y 6= 0 but will accept if y = 0. The adversary can observe this
and get information on y9. A way to solve this problem is to also authenticate the key
r in exactly the same way as we authenticated y. It may seem that we are just pushing
the problem in front of us, but note that r is guaranteed to be random (contrary to y). So
while the adversary can still make a guess at r and get to see if his guess was correct,
the probability of guessing correctly is negligible, so we can ignore this possibility.

The protocol is specified in detail in Fig. 1 and we have the following result on its
security:

Protocol Output Delivery.

Given 〈y〉 where we want to reveal y to C and only to C.

1. The servers do the following: Retrieve unused random 〈r〉, 〈v〉 from the preprocessed
material and compute 〈w〉 = 〈yr〉, 〈u〉 = 〈vr〉.
Each server Si sends its shares yi, ri, wi, vi, ui privately to C.

2. C does the following: compute y =
∑

i yi, r =
∑

i ri, w =
∑

i wi, u =
∑

i ui, v =∑
i vi. Check that w = yr and u = vr. If not, abort, else output y.

Fig. 1: Protocol for giving output to C

Lemma 1. The protocol in Fig. 1 satisfies the following. Privacy: if C is honest, the
adversary’s view of the protocol can be simulated with statistically close distribution
without knowing y. Correctness: an honest C will accept a value different from y with
probability at most 1/p.

Proof. As for correctness, assume for contradiction that that C accepts y′ 6= y. Let
w′, r′, v′, u′ be the other values reconstructed byC. SinceC accepts we havew′ = y′r′.
Also, by correctness of the original SPDZ protocol, we know thatw = yr. We can write
y′ = y+α,w′ = w+β, r′ = r+γ where α, β, γ are errors introduced by the adversary

9 This problem does not occur in the original SPDZ protocol, since there the values that are
opened are public.



sending incorrect shares. Inserting this into w′ = y′r′, we get w+β = (y+α)(r+ γ).
Using w = yr, this can be simplified to

β = yγ + αr + αγ

But since y 6= y′ implies α 6= 0, this equation determines r uniquely, so the adver-
sary must effectively guess r to make C accept an incorrect value. This happens with
probability at most 1/p since r is unknown a priori.

As for privacy, note that the adversary’s view includes the correct shares for corrupt
servers of y, r, w, u and v and the share they send to C. The only new information the
adversary learns is whether the protocol aborts. We show that from shares and mes-
sages sent by corrupt servers, one can predict whether the protocol aborts, except with
negligible probability, and hence the adversary’s view can be simulated without know-
ing y. To see this, we reuse the notation from the proof of correctness, and also define
u′ = u+ δ, v′ = v + ε. We can then see in the same way as above that C will find that
u′ = v′r′ if and only if

δ = vγ + εr + εγ.

Of course, the error terms α, β, γ, ε, δ can be computed from the adversaries view and
we claim that if they are not all 0, C will abort except with negligible probability. So
this gives the prediction we were after (note that, of course, if all error terms are 0, C
will accept).

Note first that r plays the role as the authenticated message in the equation u = vr,
and we already argued that C will abort almost always if the message is changed. It
follows that if α 6= 0 or γ 6= 0, C aborts almost always. So assume therefore that
α = γ = 0. Our equations simplify to β = 0 and δ = εr. Clearly, C aborts if β 6= 0.
Further, if ε 6= 0, we can only get C to accept if r = δ/ε which happens with negligible
probability since r is random. So we can assume that ε = 0 and then it follows that
δ = 0 as well, since otherwise C always aborts.

Before we consider supplying inputs, note that a client can easily broadcast a mes-
sage to the servers, by simply sending the same message to them all. Then the servers
can compare what they received and abort if there is a disagreement. Again, we cannot
avoid the possibility of aborting if the client and a majority of severs are malicious.

Now suppose C wants to contribute input value x. For this, we use a preprocessed
random 〈s〉. We now use the previous protocol to reveal s to (only) C, who can then
broadcast x−s. The severs can now use a SPDZ subprotocol to add the publicly known
value x− s into 〈s〉 to obtain 〈x〉. The protocol is specified in detail in Fig. 2.

For the security of the input protocol, note that if C is honest, then the adversary
learns nothing about x because s is uniformly random and hence x − s is uniform as
well. By the security of the SPDZ protocol the representation produced by the servers
will contain the value x intended by C. If C is corrupt, the representation produced
will contain a well defined value namely one that is determined by s and the value C
broadcasts.

3.2 Using SPDZ for Linear Programming
In order to use the SPDZ protocol for Linear Programming as required in the applica-
tion, we apply the well known Simplex algorithm. For this we need to do integer arith-



Protocol Input Supply.

C holds value x that he wants to supply as input top the servers.

1. The servers do the following: Retrieve an unused random 〈s〉 from the preprocessed
material and use the Output delivery protocol to give s to C.

2. C broadcasts x− s to the servers, and the servers compute (x− s) + 〈s〉 = 〈x〉.

Fig. 2: Protocol for C to supply input

metic and comparison on sufficiently large integers. To do this we choose the modulus p
large enough compared to the actual data, then we can do additions and multiplications
by doing them mod p but avoid overflow.

For divisions, two approaches have been proposed in the literature: Toft [Tof09]
suggests using a variant of the Simplex algorithm, where it is ensured that whenever we
need to compute a/b, it will always be the case that b divides a. This means we can do
the division by multiplying by b−1 mod pwhich is much easier than a standard division.
The downside of this idea is that the involved numbers (and hence the required modulus
size) grows with the size of the Linear Programming problem we solve. Catrina and
de Hoogh[Cd10] suggest to use instead fixed point rational numbers throughout. This
means we can make do with smaller integers and division is now relatively easy. The
catch is that we have to live with rounding errors in the result (where Toft’s approach is
exact), and that the other arithmetic operations become somewhat more complicated.

In our case we found that the problem size we were dealing with could be made
small enough to allow us to use Toft’s approach, which is simpler to implement. More
specifically, we exploit the fact that one of the parties (the consultancy house) possesses
the database with data on all the farmers we are comparing bank customers to. There-
fore, prior to the secure computation, we can do a computation locally on the data base,
that selects the most efficient farmers. More precisely, if we see the farmers as points
in a multidimensional space, we identify those farmers that define the convex hull of
all the points. Now, we only need to enter these farmers into the secure computation,
since the answer to the linear programming problem will be the same. As a result, we
had problems with 8 constraints and between 45 and 70 variables. To avoid overflow,
we had to use a modulus p with 512 bits.

We also note that there are several different flavours of Simplex to choose from. In
particular, Simplex works by initially setting up a Pivot table containing the input val-
ues. This table is then iteratively updated until it contains the solution. There are several
different rules for how this update can be done, in particular, we considered Bland’s rule
and Danzig’s rule. To explain the difference in geometric terms, the current state of the
computation defines a corner of a polytope in a multidimensional space. The update
corresponds to selecting an edge on the polytope, and walk along this edge to obtain a
better solution than the one defined by the current position. Bland’s rule selects the first
edge that will improve the current solution, while Danzig’s rule considers all edges and
selects the one that will give the largest improvement of the current solution. Clearly
Danzig’s rule requires more computation per iteration and is less “MPC-friendly” be-
cause we need several comparisons which are quite heavy. Nevertheless, in our expe-



rience, the number of iterations you get is so much smaller that Danzig’s rule gives us
better performance 10. More details on this can be found in Section 4.2.

Finally, the comparisons are done using ideas from [DFK+06].
Our implementation leaks the number of iterations done in Simplex. This can be

partially solved by doing dummy iterations, but this will of course slow down the sys-
tem. We chose to put priority on getting answers as fast as possible.

4 Prototype and Performance

To demonstrate the potential of doing secure benchmarking a demo application was
implemented which was tested by selected Danish banks. After initial positive feedback
on the demo from the banks an extended prototype has now been build and a second
round of testing at Danish banks is scheduled for the end of October 2015. In this section
we will give an overview of the prototype and report on the observed performance.

4.1 Prototype

In the prototype secure computation is done between two servers. For convenience, in
the prototype setup the two servers are controlled by the authors, however, in a real
world setup the servers are assumed to be controlled by two distinct non-colluding par-
ties. Namely, the consultancy house owning the database with the farmers’ accounting
information and a representative of the banks using the system (e.g., the Danish Bankers
Association). The individual banks using the system are regarded as clients, i.e., they
simply interact with the system to supply input and read output, but do not directly
control the server representing them in the secure computation11.

To initialise the system the consultancy house uploads its database to its secure
computation server, which computes the reduced version of the dataset including only
the relevant efficient accounts and adds this to the database. As discussed in Section 3
this corresponds to computing the convex hull of the points defined by the individual
farmers. The two servers then run a protocol to secret share the database in the SPDZ
internal format, and store the resulting secret shared database. Once the database is
uploaded the consultancy house no longer needs to interact with the system and can go
offline. This initialisation process is illustrated in Fig. 3.

Once the system is initialized, the banks can login and start submitting analyses
to be performed on the system, using a simple web-interface executed in the browser.
Since banks are simply clients, once they have submitted an analysis to be performed,
they no longer need to interact with the system and can go offline. The secure computa-
tion servers will then perform the requested analysis and store the resulting output in the
secret shared database. Later the bank can login and request the output of the analysis
that has been run. The interactions of a bank with the system are illustrated in Fig. 4.
10 In theory, Danzig’s rule can lead to a cycle, so that the algorithm will not terminate, but this is

is rare in practice, and never occurred in our testing.
11 Alternatively, one could let each bank control their own secure computation server communi-

cating directly with the consultancy house controlled server. This setup up was used for the
initial demo system, but the current setup was deemed more scalable as it only requires two
secure computation servers.
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Fig. 3: Initialising the secure benchmarking system

The web-interface used by the banks is connected directly to the two secure compu-
tation servers (over https) and runs the input/output protocols described above locally.
This means that each server only ever sees the input and output of an analysis in secret
shared form. In other words, as long as the bank can trust the two servers to not collude
and at least one server to be honest the privacy and correctness of his inputs and outputs
are guaranteed.

4.2 Performance

The MPC computation needed for the benchmarking analysis (i.e., the Simplex algo-
rithm as described above) was implemented using the FRESCO framework, a Java
framework for secure computation applications which contains an implementation of
the SPDZ protocol. Each server is deployed in the cloud on a separate Amazon EC2 in-
stance. Each instance is a standard general purpose m4.large instance, with 8GB RAM
and 2 cores, running on a 2.4 GHz Intel Xeon processor. The servers are deployed in the
same Amazon availability zone and region, essentially meaning they run in the same
datacenter. This is a benefit for performance as it means there is rather low network
latency between the servers. This is significant for protocols such as SPDZ with high
round-complexity.

It is not entirely clear whether such a set-up would be acceptable in a real business
application of the system: One can argue t‘hat having the server of each organization
hosted by at the same cloud provider (Amazon in this case) places too much trust in the
cloud provider. Namely, since the cloud provider has access to both servers including
the secret shared database, a malicious cloud provider could potentially reconstruct all
private data.

One can reduce these risks by using different clouds for different servers and an
organisation could even share its data across 2 servers to reduce the trust in the cloud
provider (by requiring the cloud provider collaborates with other cloud providers to
break security). The main effect on performance by going to such a solution comes from
increased latency of communication. We ran a small number of experiments to see how
increased latency affected our prototype, and found that a 10-fold increase in latency
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gave a 3 fold increase in overall run time. So we estimate that while using different
clouds would slow down the system significantly, it would not render it useless.

The prototype allows banks to benchmark a potential costumer’s financial data
against farmers in four different segments of agriculture: pigs, plants, milk and fur.
For these segments the database we benchmark against holds 1786, 2645, 2258 and 358
accounts respectively. After we crop the datasets to only include the relevant efficient
accounts, this is reduced to databases of 70, 63, 47 and 45 accounts respectively. In
Table 2 we give the average running time in seconds for the analysis on each of the
different segments. We see the running time in all segments is around 22-26 seconds
even when running on this rather modest hardware, which should be tolerable for a real
world system.

Segment Accounts (reduced) Av. time (sec) Std. dev. (sec)
Pigs 70 23 4
Plants 63 22 4
Milk 47 26 8
Fur 45 22 6

Table 2: Time to do analysis for different agricultural segments



Surprisingly we see that we get the longest running times when benchmarking
against the relatively small dataset of the milk segment. We also see a rather large stan-
dard deviation in the running time of 4-8 seconds (i.e., up to 30% in the milk segment).
This variation is not due to secure computation it self but rather a property of the Sim-
plex algorithm used to do the benchmarking analysis. Namely, the fact that the Simplex
algorithm depending on the data we analyse may use a varying number of iterations
to find a optimal value. Thus for evaluating the efficiency of the underlying Simplex
implementation the time pr. iteration is really more relevant. We show these times in
Table 3, which shows, as expected, that running times pr. iteration goes up the larger
the dataset and datasets of similar size have about the same running time.

Segment Accounts (reduced) Av. num of iterations Av. time pr. iteration (sec) Std. dev. (sec)
Pigs 70 13 1.80 0.02
Plants 63 12 1.78 0.02
Milk 47 18 1.47 0.03
Fur 45 15 1.46 0.01

Table 3: Time for the a single Simplex iteration on different agricultural segments

The numbers in Table 2 and Table 3 are for our implementation of Simplex using
Danzig’s rule. As mentioned above we also considered the variation of the Simplex
algorithm using Bland’s rule. In Table 4 we give times for this variation. As explained
above we see that using Bland’s results in considerably faster iteration times, roughly
around 20% faster than iterations using Danzig’s rule. However, for our analysis the
increased speed of iterations is cancelled out by having to do many more iterations to
finish the analysis. Specifically, using Bland’s instead of Danzig’s rule increases the
average amount of iterations by 33% in the milk segment and more than 150% in the
plant segment. While this discourages us from using Bland’s rule in our prototype,
it may still be worth considering in other applications were if it would cause a less
dramatic increase in the number of required iterations. Also, since there is a number of
alternative heuristics for the Simplex updating rule it may be interesting to investigate
their performance, to see if we could achieve both fast and few iterations.

Segment Accounts (reduced) Av. num of iterations Av. time pr. iteration (sec) Std dev. (sec)
Pigs 70 23 1.43 0.01
Plants 63 31 1.35 0.01
Milk 47 24 1.19 0.05
Fur 45 23 1.14 0.01

Table 4: Time for Simplex iterations using Blands rule



One may wonder how the performance scales as datasets grow beyond those natu-
rally occuring in the context of this prototype. We did not experiment with this.

However, recall that the dataset we compute on is reduced to only include the effi-
cient accounts. We conjecture that with the applied benchmarking approach (DEA) the
number of efficient accounts is, for all practical applications, significantly smaller than
the total number of accounts, as is the case in this paper. Thus, even for much larger
datasets the reduced dataset including only efficient accounts, will not be much larger
than those used in this prototype (given the same LP-problem, i.e., the benchmarking
model). The basic arguments for this conjecture are 1) that only the farmers that repre-
sent best practice is relevant in the LP-problem and 2) that the number of observations
that represent best practice is driven by the dimensionality of the LP-problem (number
of inputs and outputs in the analysis), the total number of observations (in this case
accounts) and the basic assumption about the technology (restrictions on the λ in the
LP-problem). The more dimensions the more efficient observations (the model simply
allows for more diversity) and the more observations the better representation of the
diversity of the observations.

4.3 Future Directions

Next step is to bring in multiple data-providers. i.e., make also the consultancy house
be a client among several clients contributing to the database against which we do
our benchmarks. The data providers may add rows (more observations e.g. farms) or
columns (more variables). More rows may come directly from the banks as well as other
consultancy houses and accounting firms. More columns may e.g. be details about the
debt (e.g. from the banks) or additional background information from Danish Statistics
to give a few examples.

A more representative dataset (more rows) will improve the quality of the bench-
marks and more importantly make the service more user friendly as less additional in-
formation is required. A more rich dataset (more columns) will allow for more analysis
that better describe best practice and the performance of the farmers in this case.

This general approach with data from multiple sources merged into a larger database
using MPC, is computationally more challenging. One challenge is to reduce the joint
dataset to only the efficient observations which can no longer be done in the clear, but
must be done in MPC.

More work on optimizing performance is also an obvious future direction. More
experiments are needed to find the right levels of, e.g., parallelisation and hardware to
be used.

5 Conclusion

We have presented a practical implementation of a system for confidentially bench-
marking farmers against a large representative population of other farmers, using MPC
and linear programming. The prototype has been developed and tested in collaboration
with Danish banks and a consultancy house specialised in the agricultural sector. The



system creates new information that helps Danish banks selecting the better performing
farmers among the many with bad credit rating.

We have presented some add-ons to the SPDZ protocol making it more useful in
a client-sever scenario. The results obtained demonstrate that MPC can be useful in
providing data that are useful and could not have been obtained in other ways without
violating requirements for confidentiality.
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