
PAGES+, PAGES-, and PAGES– - Three Families

of Block Ciphers

Dieter Schmidt1

October 4, 2015

1Dieter.Schmidt.37@t-online.de



Abstract

PAGES+ is a family of block ciphers based on block ciphers Speck [2]
and PAGES [9]. The block length was increased vom 128 bit to 512 bit
and additional rounds were introduced to make the cipher more resistent
against attacks. The number of rounds are 64, 96, and 128. The key size
are 1024 bit, 1536 bit, and 2048 bit, respectively. The size of variables, as
with PAGES, is 128 bit. Thus the variables can be stored in registers of the
microprocessors of two leading suppliers. As with Speck, PAGES+ utilizes
instructions with a low latency, such as addition modulo 2128, subtraction
modulo 2128, XOR, and circular shifts (rotation). All these instructions are
usually carried out within a few cycles. Hence despite the number of rounds
is considerable, PAGES+ has a high software throughput. For a processor
with a frequency of 2.5 GHz, the software throughput with the optimized
version of the reference implementation is 30 megabyte per second with a
key length of 2048 bit and a number of rounds of 128. In hardware or the
implementation on a FPGA a considerable performance is expected, yet
with a limited expense.

PAGES- is a family of block ciphers based on block ciphers Speck [2]
and PAGES [9]. The block length was increased vom 128 bit to 256 bit
and additional rounds were introduced to make the cipher more resistent
against attacks. The number of rounds are 32, 48, 64, 96, and 128. The key
size are 256 bit, 384 bit, 512 bit, 768 bit, and 1024 bit, respectively. The
size of variables, as with Speck, is 64 bit. As with Speck, PAGES- utilizes
instructions with a low latency, such as addition modulo 264, subtraction
modulo 264, XOR, and circular shifts (rotation). All these instructions are
usually carried out within one cycle. Hence despite the number of rounds
is considerable, PAGES- has a high software throughput. For a processor
with a frequency of 2.5 GHz, the software throughput with the optimized
version of the reference implementation is 80 megabyte per second with a
key length of 1024 bit and a number of rounds of 128.

PAGES– is a family of block ciphers based on block ciphers Speck [2]
and PAGES [9]. The block length was increased vom 128 bit to 512 bit and
additional rounds were introduced to make the cipher more resistent against
attacks. The number of rounds are 32, 48, 64, 96, and 128. The key size are
512 bit, 768 bit, 1024 bit, 1536 bit, and 2048 bit respectively. The size of
variables, as with Speck, is 64 bit. For a processor with a frequency of 2.5
GHz, the software throughput with the optimized version of the reference
implementation is 65 megabyte per second with a key length of 2048 bit and
a number of rounds of 128.



1 Introduction

Shannon [11] introduced diffusion into cryptography. Diffusion means that a
symbol of the ciphertext depends on as much symbols of the plaintext. This
is one of his experiences of cryptosystems in the Second World War, where
usually one letter of plaintext was mapped on one letter of ciphertext. The
first one open cryptosystem that used diffusion, was the block cipher Lu-
cifer from Horst Feistel [3]. Lucifer is an iterated substitution-permutation-
network (see e.g. [10]). In addition, there are Feistel-Networks, where the
so called F-function maps on part of the cipher to another (see e.g [10]).
The F-function can be a substitution-permutation-network, for example the
Data Encryption Standard (DES) (see e.g. [10]). The substitution is usu-
ally achieved with a so called s-box. The s-box is several bits wide und
maps usually one value to another. The s-box must be bijective. This is not
requirement for the F-function. The permutation maps the bits onto the
s-boxes of the next layer.

Virtually all block ciphers are iterated cryptosystems.You carry out a
weak cryptographic transformation (a so called round) several times to
achieve a strong cryptographic transformation. PAGES+, PAGES-, and
PAGES– are iterated cryptosystems, too, but not a substitution-permutation-
network and not a Feistel-cipher. Rather there are incompatible instruc-
tions, like addition, subtraction, XOR, and rotation. The necessary confu-
sion (this was minted, too, by Shannon, see [11]. Confusion means that the
ciphertext dependance on the plaintext and the key is rather complicated.)
is achieved through addition und subtraction, which are non-linear over F128

2

or F64
2 (see below). The carry propagation makes the two operation non-

linear. Addition and XOR are very similar. The consequence is that the
number of rounds must be increased to obtain a strong cryptographic trans-
formation. The increased cost of calculation is compensated by the fact that
addition, subtraction, XOR, and rotation are instructions that has a latency
of a few cycles. For microprocessor clocked with a frequency of 2.5 GHz the
throughput of PAGES+ is 30 megabyte per second with a key size of 1024
bit and 128 rounds. The respective values for PAGES- and PAGES– are
80 megabytes per second and 65 megabytes per second. This holds for the
general purpose register of the processor. For PAGES- and PAGES– there is
a possibility to execute the algorithms in the SSE unit (see [2]). This results
in increased performance, since several encryptions can be done in parallel.

The key is not introduced in the block cipher by XOR, but added modulo
2128 and modulo 264. This results in an increased resistence against linear
cryptanalysis (see [4, 5, 9, 12]).

The rest of the paper is organized as follows: Section 2 presents the
assembly of PAGES+, the key schedule, and the software performance. Sec-
tion 3 governs the assembly of PAGES- and Section 4 specifies the assembly
of PAGES–. We conclude in Section 5.

1



K

K
2i+1

2i

<<<7 <<<9

>>>21>>>19

(a) Encryption

K

K
2i

2i+1

<<<19 <<<21

>>>7 >>>9

(b) Decryption

Figure 1: A round of PAGES+

2 Assembly of PAGES+

2.1 Preliminaries

F128
2 denotes the 128 dimensional vector space over GF(2). The following

symbols will be used to construct the block cipher PAGES+: � denotes ad-
dition modulo 2128, � denotes subtraction modulo 2128, ⊕ denotes addition
modulo 2 in F128

2 (XOR),≪ m denotes the rotation to the left by m bits of
a 128 bit variable,≫ m denotes the rotation to the right by m bits of a 128
bit variable. PAGES+ has a block size of 512 bit and is divided into four
equal quarters of 128 bit. The key size und the rounds are as follows: 1024
bit and 64 rounds, 1536 bit and 96 rounds, and 2048 bit and 128 rounds. B
denotes a block of size 512 bit, and bi, 0 ≤ k ≤ 4 denotes a block of 128 bit.

2.2 Encryption

A block B of size 512 bit is divided into four equal subblocks of 128 bit, i.e.
B = b0‖b1‖b2‖b3, see also Figure 1 and the function encrypt in the reference

2



implementation in appendix A. The even subblocks are rotated to the right:

b0 = b0≫ 19 (1)

b2 = b2≫ 21 (2)

The subblocks b2 to b0 are XORed with the subblocks to the right:

b2 = b2 ⊕ b3 (3)

b1 = b1 ⊕ b2 (4)

b0 = b0 ⊕ b1 (5)

Now the odd subblocks are rotated to the left:

b1 = b1≪ 7 (6)

b3 = b3≪ 9 (7)

Now the following operations are carried out (i is value of rounds):

b0 = b0 �K2∗i (8)

b1 = b1 � b0 (9)

b2 = b2 ⊕ b1 (10)

b2 = b2 �K2∗i+1 (11)

b3 = b3 � b2 (12)

This ends one round of encryption. The instructions are iterated until
the number of rounds is reached.

2.3 Decryption

A block B of size 512 bit is divided into four equal subblocks of 128 bit, i.e.
B = b0‖b1‖b2‖b3. See als Figure 1 and the function decrypt of the reference
implementation of appendix A. Then the following operations are done (i is
the round value):

b3 = b3 � b2 (13)

b2 = b2 �K2∗i+1 (14)

b2 = b2 ⊕ b1 (15)

b1 = b1 � b0 (16)

b0 = b0 �K2∗i (17)

3



Now the odd subblocks are rotated to the right:

b3 = b3≫ 9 (18)

b1 = b1≫ 7 (19)

The subblocks b0 to b2 are XORed with the subblock to the right:

b0 = b0 ⊕ b1 (20)

b1 = b1 ⊕ b2 (21)

b2 = b2 ⊕ b3 (22)

Now the even subblocks are rotated to the left:

b2 = b2≪ 21 (23)

b0 = b0≪ 19 (24)

This ends one round of decryption. The instructions are iterated until
the number of rounds is reached.

2.4 Key Schedule

The key schedule of PAGES+ is complicated in comparison to other block
ciphers. The goals are

• that all the bits of a round key are depending on all the bits of the
userkey (completeness).

• that the round keys are statistically independant.

To achieve these aims, the block ciphers is employed in the deriva-
tions of the round keys, similar to the block ciphers 1024XKS, 2048XKS-F,
4096XKS-F and PAGES (see [7, 8, 9]). In the reference implementation the
constants KEYLENGTH and NUMROUNDS are defined. They denote the
length of the userkey in 64 bit blocks and the number of rounds, respectively.
There is KEYLENGTH=NUMROUNDS/8 and 2*NUMROUNDS is the size
of the round keys in blocks of 64 bits. In the arguments of the function ex-
pand key are two arrays: userkey[KEYLENGTH] and keys[2*NUMROUNDS].
The array userkey hands over to the function expand key the userkey. The
array keys is initially undefined. The function expand key copies the val-
ues of userkey to the least significant blocks of keys, i.e. keys[0]=userkey[0],
keys[1]=userkey[1],. . ., keys[KEYLENGTH-1]=userkey[KEYLENGTH-1]. Now
the least significant blocks of keys are in the whole rotated to the left by 121

4



(ROTROUNDKEY) bits and stored in keys[KEYLENGTH], keys[KEYLENGTH+1],
. . ., keys[2*KEYLENGTH-1]. The whole process of rotation is repeated 15
times until all the values of the array keys are defined from keys[0], keys[1],
. . ., to keys [2*NUMROUNDS-1].

Let B denote a block of 512 bit divided into four equal subblocks of 128
bit, i.e. B = b0‖b1‖b2‖b3. B is encrypted in output feedback mode exactly
NUMROUNDS/2 times. After each encryption, the start value is i = 0, the
bk, 0 ≤ k ≤ 3 are stored in the array keys. If the constant FORWARD is
defined (conditional compilation):

keys[4 ∗ i] = b3 (25)

keys[4 ∗ i + 1] = b2 (26)

keys[4 ∗ i + 2] = b1 (27)

keys[4 ∗ i + 3] = b0 (28)

If the constant FORWARD is not defined, then the array keys is adressed
the following way:

keys[2 ∗NUMROUNDS − 4 ∗ i− 4] = b3 (29)

keys[2 ∗NUMROUNDS − 4 ∗ i− 3] = b2 (30)

keys[2 ∗NUMROUNDS − 4 ∗ i− 2] = b1 (31)

keys[2 ∗NUMROUNDS − 4 ∗ i− 1] = b0 (32)

If all the values of keys are redefined the block cipher is ready for en-
cryption or decryption.

2.5 Software Performance

On an AMD A6 6310 (Quadcore) with 1.8 GHz the following results were
achieved. Operating system was Linux Mint 17 (64 bit) and the compiler
was gcc version 4.8.2. Abbreviations: TP throughput, EC encryption cost
in cycles/byte.

Compiler Options -O -O,-funroll-loops

Key Rounds TP EC TP EC
bit Mbit/s cyc/by Mbit/s cyc/by

1024 64 315 45.7 341 42.2
1536 96 216 67.0 234 61.5
2048 128 164 87.8 174 82.8

5



K

K
2i+1

2i

>>>9 >>>7

<<<5 <<<3

(a) Encryption

K

K
2i

2i+1

<<<9 <<<7

>>>5 >>>3

(b) Decryption

Figure 2: A round of PAGES-

3 Assembly of PAGES-

3.1 Preliminaries

F64
2 denotes the 64 dimensional vector space over GF(2). The following

symbols will be used to construct the block cipher PAGES-: � denotes
addition modulo 264, � denotes subtraction modulo 264, ⊕ denotes addition
modulo 2 in F64

2 (XOR), ≪ m denotes the rotation to the left by m bits
of a 64 bit variable, ≫ m denotes the rotation to the right by m bits of a
64 bit variable. PAGES- has a block size of 256 bit and is divided into four
equal quarters of 64 bit. The key size und the rounds are as follows: 256 bit
and 32 rounds, 384 bit and 48 rounds, 512 bit and 64 rounds, 784 bit and
96 rounds, and 1024 bit and 128 rounds. B denotes a block of size 256 bit,
and bi, 0 ≤ k ≤ 3 denotes a block of 64 bit.

6



3.2 Encryption

A block B of size 256 bit is divided into four equal subblocks of 64 bit, i.e.
B = b0‖b1‖b2‖b3, see also Figure 2 and the function encrypt in the reference
implementation in appendix B. The even subblocks are rotated to the right:

b0 = b0≫ 9 (33)

b2 = b2≫ 7 (34)

The subblocks b2 to b0 are XORed with the subblocks to the right:

b2 = b2 ⊕ b3 (35)

b1 = b1 ⊕ b2 (36)

b0 = b0 ⊕ b1 (37)

Now the odd subblocks are rotated to the left:

b1 = b1≪ 5 (38)

b3 = b3≪ 3 (39)

Now the following operations are carried out (i is value of rounds):

b0 = b0 �K2∗i (40)

b1 = b1 � b0 (41)

b2 = b2 ⊕ b1 (42)

b2 = b2 �K2∗i+1 (43)

b3 = b3 � b2 (44)

This ends one round of encryption. The instructions are iterated until
the number of rounds is reached.

3.3 Decryption

A block B of size 256 bit is divided into four subblocks of 64 bit, i.e. B =
b0‖b1‖b2‖b3. See als Figure 2 and the function decrypt in the reference
implementation in appendix B. Then the following operations are done (i is
the round value):

7



b3 = b3 � b2 (45)

b2 = b2 �K2∗i+1 (46)

b2 = b2 ⊕ b1 (47)

b1 = b1 � b0 (48)

b0 = b0 �K2∗i (49)

Now the odd subblocks are rotated to the right:

b3 = b3≫ 3 (50)

b1 = b1≫ 5 (51)

The subblocks b0 to b2 are XORed with the subblock to the right:

b0 = b0 ⊕ b1 (52)

b1 = b1 ⊕ b2 (53)

b2 = b2 ⊕ b3 (54)

Now the even subblocks are rotated to the left:

b2 = b2≪ 7 (55)

b0 = b0≪ 9 (56)

This ends one round of decryption. The instructions are iterated until
the number of rounds is reached.

3.4 Key Schedule

The key schedule of PAGES- is complicated in comparison to other block
ciphers. The goals are

• that all the bits of a round key are depending on all the bits of the
userkey (completeness).

• that the round keys are statistically independant.

To achieve these aims, the block ciphers is employed in the deriva-
tions of the round keys, similar to the block ciphers 1024XKS, 2048XKS-F,
4096XKS-F and PAGES (see [7, 8, 9]). In the reference implementation the
constants KEYLENGTH and NUMROUNDS are defined. They denote the
length of the userkey in 64 bit blocks and the number of rounds, respectively.

8



There is KEYLENGTH=NUMROUNDS/8 and 2*NUMROUNDS is the size
of the round keys in blocks of 64 bits. In the arguments of the function ex-
pand key are two arrays: userkey[KEYLENGTH] and keys[2*NUMROUNDS].
The array userkey hands over to the function expand key the userkey. The
array keys is initially undefined. The function expand key copies the val-
ues of userkey to the least significant blocks of keys, i.e. keys[0]=userkey[0],
keys[1]=userkey[1],. . ., keys[KEYLENGTH-1]=userkey[KEYLENGTH-1]. Now
the least significant blocks of keys are in the whole rotated to the left by 61
(ROTROUNDKEY) bits and stored in keys[KEYLENGTH], keys[KEYLENGTH+1],
. . ., keys[2*KEYLENGTH-1]. The whole process of rotation is repeated 15
times until all the values of the array keys are defined from keys[0], keys[1],
. . ., to keys [2*NUMROUNDS-1].

Let B denote a block of 256 bit divided into four equal subblocks of 64
bit, i.e. B = b0‖b1‖b2‖b3. B is encrypted in output feedback mode exactly
NUMROUNDS/2 times. After each encryption, the start value is i = 0, the
bk, 0 ≤ k ≤ 3 are stored in the array keys. If the constant FORWARD is
defined (conditional compilation):

keys[4 ∗ i] = b3 (57)

keys[4 ∗ i + 1] = b2 (58)

keys[4 ∗ i + 2] = b1 (59)

keys[4 ∗ i + 3] = b0 (60)

If the constant FORWARD is not defined, then the array keys is adressed
the following way:

keys[2 ∗NUMROUNDS − 4 ∗ i− 4] = b3 (61)

keys[2 ∗NUMROUNDS − 4 ∗ i− 3] = b2 (62)

keys[2 ∗NUMROUNDS − 4 ∗ i− 2] = b1 (63)

keys[2 ∗NUMROUNDS − 4 ∗ i− 1] = b0 (64)

If all the values of keys are redefined the block cipher is ready for en-
cryption or decryption.

3.5 Software Performance

On an AMD A6 6310 (Quadcore) with 1.8 GHz the following results were
achieved. Operating system was Linux Mint 17 (64 bit) and the compiler
was gcc version 4.8.2. Abbreviations: TP throughput, EC encryption cost
in cycles/byte.

9



Compiler Options -O -O,-funroll-loops

Key Rounds TP EC TP EC
bit Mbit/s cyc/by Mbit/s cyc/by

256 32 1724 8.4 1928 7.5
384 48 1170 12.3 1285 11.2
512 64 886 16.3 978 14.7
768 96 590 24.4 655 22.0
1024 128 449 32.1 489 29.4

The key sizes for 256 bit and 384 bit are there for the sake of complete-
ness. However, users are strictly warned to use these key lengths. Bam-
ford wrote in May 2005 in [1]: Another factor was the growing use
of encryption and the NSA’s inability, without spending excessive
amounts of computer time and human energy, to solve commercial
systems more complex than 256 bits.

4 Assembly of PAGES–

4.1 Preliminaries

F64
2 denotes the 64 dimensional vector space over GF(2). The following

symbols will be used to construct the block cipher PAGES–: � denotes
addition modulo 264, � denotes subtraction modulo 264, ⊕ denotes addition
modulo 2 in F64

2 (XOR), ≪ m denotes the rotation to the left by m bits of
a 64 bit variable, ≫ m denotes the rotation to the right by m bits of a 64
bit variable. PAGES– has a block size of 512 bit and is divided into eight
equal eighth of 64 bit. The key size und the rounds are as follows: 512 bit
and 32 rounds, 786 bit and 48 rounds, 1024 bit and 64 rounds, 1536 bit and
96 rounds, and 2048 bit and 128 rounds. B denotes a block of size 512 bit,
and bi, 0 ≤ k ≤ 7 denotes a block of 64 bit.

4.2 Encryption

A block B of size 512 bit is divided into eight equal subblocks of 64 bit, i.e.
B = b0‖b1‖b2‖b3‖b4‖b5‖b6‖b7, see also Figure 3 and the function encrypt in
the reference implementation in appendix C. The even subblocks are rotated
to the right:

b0 = b0≫ 9 (65)

b2 = b2≫ 7 (66)

b4 = b4≫ 11 (67)

b6 = b6≫ 13 (68)

The subblocks b6 to b0 are XORed with the subblocks to the right:

10



b6 = b6 ⊕ b7 (69)

b5 = b5 ⊕ b6 (70)

b4 = b4 ⊕ b5 (71)

b3 = b3 ⊕ b4 (72)

b2 = b2 ⊕ b3 (73)

b1 = b1 ⊕ b2 (74)

b0 = b0 ⊕ b1 (75)

Now the odd subblocks are rotated to the left:

b1 = b1≪ 5 (76)

b3 = b3≪ 3 (77)

b5 = b5≪ 7 (78)

b7 = b7≪ 9 (79)

Now the following operations are carried out (i is value of rounds):

b0 = b0 �K4∗i (80)

b1 = b1 � b0 (81)

b2 = b2 ⊕ b1 (82)

b2 = b2 �K4∗i+1 (83)

b3 = b3 � b2 (84)

b4 = b4 ⊕ b3 (85)

b4 = b4 �K4∗i+2 (86)

b5 = b5 � b4 (87)

b6 = b6 ⊕ b5 (88)

b6 = b6 �K4∗i+3 (89)

b7 = b7 � b6 (90)

This ends one round of encryption. The instructions are iterated until
the number of rounds is reached.

4.3 Decryption

A block B of size 512 bit is divided into eight subblocks of 64 bit, i.e.
B = b0‖b1‖b2‖b3‖b4‖b5‖b6‖b7. See als Figure 4 and the function decrypt of
the reference implementation in appendix C. Then the following operations
are done (i is the round value):

11



b7 = b7 � b6 (91)

b6 = b6 �K4∗i+3 (92)

b6 = b6 ⊕ b5 (93)

b5 = b5 � b4 (94)

b4 = b4 �K4∗i+2 (95)

b4 = b4 ⊕ b3 (96)

b3 = b3 � b2 (97)

b2 = b2 �K4∗i+1 (98)

b2 = b2 ⊕ b1 (99)

b1 = b1 � b0 (100)

b0 = b0 �K4∗i (101)

Now the odd subblocks are rotated to the right:

b7 = b7≫ 9 (102)

b5 = b5≫ 7 (103)

b3 = b3≫ 3 (104)

b1 = b1≫ 5 (105)

The subblocks b0 to b6 are XORed with the subblock to the right:

b0 = b0 ⊕ b1 (106)

b1 = b1 ⊕ b2 (107)

b2 = b2 ⊕ b3 (108)

b3 = b3 ⊕ b4 (109)

b4 = b4 ⊕ b5 (110)

b5 = b5 ⊕ b6 (111)

b6 = b6 ⊕ b7 (112)

Now the even subblocks are rotated to the left:

b6 = b6≪ 13 (113)

b4 = b4≪ 11 (114)

b2 = b2≪ 7 (115)

b0 = b0≪ 9 (116)

This ends one round of decryption. The instructions are iterated until
the number of rounds is reached.

12



4.4 Key Schedule

The key schedule of PAGES– is complicated in comparison to other block
ciphers. The goals are

• that all the bits of a round key are depending on all the bits of the
userkey (completeness).

• that the round keys are statistically independant.

To achieve these aims, the block ciphers is employed in the deriva-
tions of the round keys, similar to the block ciphers 1024XKS, 2048XKS-F,
4096XKS-F and PAGES (see [7, 8, 9]). In the reference implementation the
constants KEYLENGTH and NUMROUNDS are defined. They denote the
length of the userkey in 64 bit blocks and the number of rounds, respectively.
There is KEYLENGTH=NUMROUNDS/4 and 4*NUMROUNDS is the size
of the round keys in blocks of 64 bits. In the arguments of the function ex-
pand key are two arrays: userkey[KEYLENGTH] and keys[4*NUMROUNDS].
The array userkey hands over to the function expand key the userkey. The
array keys is initially undefined. The function expand key copies the val-
ues of userkey to the least significant blocks of keys, i.e. keys[0]=userkey[0],
keys[1]=userkey[1],. . ., keys[KEYLENGTH-1]=userkey[KEYLENGTH-1]. Now
the least significant blocks of keys are in the whole rotated to the left by 61
(ROTROUNDKEY) bits and stored in keys[KEYLENGTH], keys[KEYLENGTH+1],
. . ., keys[2*KEYLENGTH-1]. The whole process of rotation is repeated 15
times until all the values of the array keys are defined from keys[0], keys[1],
. . ., to keys [4*NUMROUNDS-1].

Let B denote a block of 512 bit divided into four equal subblocks of 64 bit,
i.e. B = b0‖b1‖b2‖b3‖b4‖b5‖b6‖b7. B is encrypted in output feedback mode
exactly NUMROUNDS/2 times. After each encryption, the start value is
i = 0, the bk, 0 ≤ k ≤ 7 are stored in the array keys. If the constant
FORWARD is defined (conditional compilation):

keys[8 ∗ i] = b7 (117)

keys[8 ∗ i + 1] = b6 (118)

keys[8 ∗ i + 2] = b5 (119)

keys[8 ∗ i + 3] = b4 (120)

keys[8 ∗ i + 4] = b3 (121)

keys[8 ∗ i + 5] = b2 (122)

keys[8 ∗ i + 6] = b1 (123)

keys[8 ∗ i + 7] = b0 (124)

If the constant FORWARD is not defined, then the array keys is adressed
the following way:

13



keys[4 ∗NUMROUNDS − 8 ∗ i− 8] = b7 (125)

keys[4 ∗NUMROUNDS − 8 ∗ i− 7] = b6 (126)

keys[4 ∗NUMROUNDS − 8 ∗ i− 6] = b5 (127)

keys[4 ∗NUMROUNDS − 8 ∗ i− 5] = b4 (128)

keys[4 ∗NUMROUNDS − 8 ∗ i− 4] = b3 (129)

keys[4 ∗NUMROUNDS − 8 ∗ i− 3] = b2 (130)

keys[4 ∗NUMROUNDS − 8 ∗ i− 2] = b1 (131)

keys[4 ∗NUMROUNDS − 8 ∗ i− 1] = b0 (132)

If all the values of keys are redefined the block cipher is ready for en-
cryption or decryption.

4.5 Software Performance

On an AMD A6 6310 (Quadcore) with 1.8 GHz the following results were
achieved. Operating system was Linux Mint 17 (64 bit) and the compiler
was gcc version 4.8.2. Abbreviations: TP throughput, EC encryption cost
in cycles/byte.

Compiler Options -O -O,-funroll-loops

Key Rounds TP EC TP EC
bit Mbit/s cyc/by Mbit/s cyc/by

512 32 1560 9.2 1598 9.0
768 48 1024 14.1 1092 13.2
1024 64 780 18.5 799 18.0
1536 96 524 27.5 529 27.2
2048 128 395 36.5 405 35.6

5 Conclusion

We have presented the block ciphers PAGES+, PAGES-, and PAGES–.
The block ciphers are free from any intellectual property restrictions. The
reference implementations are subject to the GNU General Public License.

References

[1] Bamford, James: A Pretext for War, Anchor Books, New York, 2005,
p. 389 10

[2] Beaulieu, Ray; Douglas Shors, Jason Smith, Stefan Treatman-Clark,
Bryan Weeks, Louis Wingers: The Simon and Speck Families of
Lightweight Block Ciphers, IACR ePrint Archives, Report 2013/404 1

14

http://eprint.iacr.org/2013/404.pdf


[3] Feistel, Horst: Cryptography and Computer Privacy, Scientific Ameri-
can, v. 228, n. 5, May 1973, pp. 15-23 1

[4] Matsui, Mitsuru: Linear Cryptanalysis Method for DES Cipher, in Tor
Helleseth(ed.): Advances in Cryptology - EUROCRYPT 93, LNCS,
Springer Verlag, Berlin, 1993 1

[5] Mukhopadhyay, Debdeep and Dipanwita RoyChowdhury: Key Mixing
in Block Cipher through Addition modulo 2n, IACR ePrint Archives,
Report 2005/383 1

[6] Schmidt, Dieter: 1024 - A High Security Software Oriented Block Ci-
pher, IACR ePrint Archives, Report 2009/104

[7] Schmidt, Dieter: 1024XKS - A High Security Software Oriented Block
Cipher Revisited, IACR ePrint Archives, Report 2010/162 4, 8, 13

[8] Schmidt, Dieter: 2048XKS-F & 4096XKS-F - Two Software Oriented
High Security Block Ciphers, IACR ePrint Archives, Report 2013/136
4, 8, 13

[9] Schmidt, Dieter: PAGES - A Family of Block Ciphers, IACR ePrint
Archives, Report 2015/329 1, 4, 8, 13

[10] Schneier, Bruce: Angewandte Kryptographie, Addison-Wesley, Bonn,
1999, German Translation of Applied Cryptography 1

[11] Shannon, Claude Elwood: Communication Theory of Secrecy Systems,
Bell Systems Technical Journal, v. 28, n. 4, 1949, pp. 656-715, Reprint
in Sloane, N.J.A., A. Wyner (eds.): Claude Elwood Shannon: Collected
Papers, IEEE Press, Piscataway, USA 1993 1

[12] Wallén, Johan: Linear Approximations of Addition modulo 2n, in
Thomas Johansson(ed.): Fast Software Encryption (FSE) 2003, LNCS,
Springer Verlag, Berlin, 2003 1

15

http://eprint.iacr.org/2005/383.pdf
http://eprint.iacr.org/2009/104.pdf
http://eprint.iacr.org/2010/162.pdf
http://eprint.iacr.org/2013/136.pdf
http://eprint.iacr.org/2015/329.pdf


A Reference Implementation of PAGES+

/*

The C reference implementation of the

block ciphers PAGES+ with 512 bit blocksize

for gcc compatible compilers.

Copyright 2015 by

Dieter Schmidt*/

#include<stdio.h>

#include<time.h>

#define INTLENGTH 128

#define NUMROUNDS 128 // 64,96, and 128 are possible

#define ROL(x,a) ((((x)<<(a))|((x)>>(INTLENGTH-(a)))))

#define ROR(x,a) ((((x)>>(a))|((x)<<(INTLENGTH-(a)))))

#define KEYLENGTH NUMROUNDS/8

#define ROTROUNDKEY 121

#define ROTROUNDDATA1 7

#define ROTROUNDDATA0 19

#define ROTROUNDDATA3 9

#define ROTROUNDDATA2 21

#define FORWARD

void encrypt(unsigned __int128 data[4],\

unsigned __int128 keys[2*NUMROUNDS]){

register unsigned long i;

register unsigned __int128 a,b,c,d;

a=data[0];b=data[1];c=data[2];d=data[3];

for(i=0;i<NUMROUNDS;i++){

a=ROR(a,ROTROUNDDATA0);

c=ROR(c,ROTROUNDDATA2);

c^=d;

b^=c;

a^=b;

b=ROL(b,ROTROUNDDATA1);

d=ROL(d,ROTROUNDDATA3);

a+=keys[2*i];

b+=a;

16



c^=b;

c+=keys[2*i+1];

d+=c;

}

data[0]=a;data[1]=b;data[2]=c;data[3]=d;

return;

}

void decrypt(unsigned __int128 data[4],\

unsigned __int128 keys[2*NUMROUNDS]){

register unsigned long i;

register unsigned __int128 a,b,c,d;

a=data[0];b=data[1];c=data[2];d=data[3];

for(i=0;i<NUMROUNDS;i++){

d-=c;

c-=keys[2*NUMROUNDS-2*i-1];

c^=b;

b-=a;

a-=keys[2*NUMROUNDS-2*i-2];

d=ROR(d,ROTROUNDDATA3);

b=ROR(b,ROTROUNDDATA1);

a^=b;

b^=c;

c^=d;

c=ROL(c,ROTROUNDDATA2);

a=ROL(a,ROTROUNDDATA0);

}

data[0]=a;data[1]=b;data[2]=c;data[3]=d;

return;

}

void expand_key(unsigned __int128 userkey[KEYLENGTH],\

unsigned __int128 keys[2*NUMROUNDS]){

unsigned long i,j;

unsigned __int128 data[4],a;

for(i=0;i<KEYLENGTH;i++) keys[i]=userkey[i];

for(i=1;i<16;i++){

a=keys[(i-1)*KEYLENGTH];

a>>=(INTLENGTH-ROTROUNDKEY);

for(j=0;j<(KEYLENGTH-1);j++){

17



keys[i*KEYLENGTH+j]=(keys[(i-1)*KEYLENGTH+j]\

<<ROTROUNDKEY)|(keys[(i-1)*KEYLENGTH+j+1]\

>>(INTLENGTH-ROTROUNDKEY));

}

keys[i*KEYLENGTH+KEYLENGTH-1]=\

(keys[(i-1)*KEYLENGTH+KEYLENGTH-1]\

<<ROTROUNDKEY)|a;

}

data[0]=0;data[1]=0;data[2]=0;data[3]=0;

for(i=0;i<(NUMROUNDS/2);i++){

encrypt(data,keys);

#ifdef FORWARD

keys[4*i]=data[3];

keys[4*i+1]=data[2];

keys[4*i+2]=data[1];

keys[4*i+3]=data[0];

#else

keys[2*NUMROUNDS-4-4*i]=data[3];

keys[2*NUMROUNDS-4*i-3]=data[2];

keys[2*NUMROUNDS-4*i-2]=data[1];

keys[2*NUMROUNDS-4*i-1]=data[0];

#endif

}

return;

}

int main(){

unsigned __int128 data[4],userkey[KEYLENGTH],keys[2*NUMROUNDS];

unsigned long i,j,k,l;

time_t start,stop;

double r;

data[0]=0;data[1]=1;data[2]=2;data[3]=3;

i=(long) data[0];

j=(long) data[1];

k=(long) data[2];

l=(long) data[3];

printf("Before encryption %20lx%20lx%20lx%20lx\n",i,j,k,l);

for(i=0;i<KEYLENGTH;i++) userkey[i]=i;

expand_key(userkey,keys);

encrypt(data,keys);

i=(long) data[0];

j=(long) data[1];

18



k=(long) data[2];

l=(long) data[3];

printf("After encryption %20lx%20lx%20lx%20lx\n",i,j,k,l);

decrypt(data,keys);

i=(long) data[0];

j=(long) data[1];

k=(long) data[2];

l=(long) data[3];

printf("After decryption %20lx%20lx%20lx%20lx\n",i,j,k,l);

time(&start);

for(i=0;i<1024*1024*16;i++) encrypt(data,keys);

time(&stop);

r=((double) 8192)/difftime(stop,start);

printf("%20.10lf\n",r);

return(0);

}

B Reference Implementation of PAGES-

/*

The C reference implementation of the

ciphers PAGES- with 256 bit blocksize

for gcc compatible compilers.

Copyright 2015 by

Dieter Schmidt*/

#include<stdio.h>

#include<time.h>

#include<x86intrin.h>

#define INTLENGTH 64

#define NUMROUNDS 128// 32,48,64,96,128 are possible

#define ROL _lrotl

#define ROR _lrotr

#define KEYLENGTH NUMROUNDS/8

#define ROTROUNDKEY 61

#define ROTROUNDDATA1 5

#define ROTROUNDDATA0 9

#define ROTROUNDDATA3 3

#define ROTROUNDDATA2 7

19



#define FORWARD

void encrypt(unsigned long data[4],\

unsigned long keys[2*NUMROUNDS]){

register unsigned long i;

register unsigned long a,b,c,d;

a=data[0];b=data[1];c=data[2];d=data[3];

for(i=0;i<NUMROUNDS;i++){

a=ROR(a,ROTROUNDDATA0);

c=ROR(c,ROTROUNDDATA2);

c^=d;

b^=c;

a^=b;

b=ROL(b,ROTROUNDDATA1);

d=ROL(d,ROTROUNDDATA3);

a+=keys[2*i];

b+=a;

c^=b;

c+=keys[2*i+1];

d+=c;

}

data[0]=a;data[1]=b;data[2]=c;data[3]=d;

return;

}

void decrypt(unsigned long data[4],\

unsigned long keys[2*NUMROUNDS]){

register unsigned long i;

register unsigned long a,b,c,d;

a=data[0];b=data[1];c=data[2];d=data[3];

for(i=0;i<NUMROUNDS;i++){

d-=c;

c-=keys[2*NUMROUNDS-2*i-1];

c^=b;

b-=a;

a-=keys[2*NUMROUNDS-2*i-2];

d=ROR(d,ROTROUNDDATA3);

b=ROR(b,ROTROUNDDATA1);

a^=b;

20



b^=c;

c^=d;

c=ROL(c,ROTROUNDDATA2);

a=ROL(a,ROTROUNDDATA0);

}

data[0]=a;data[1]=b;data[2]=c;data[3]=d;

return;

}

void expand_key(unsigned long userkey[KEYLENGTH],\

unsigned long keys[2*NUMROUNDS]){

unsigned long i,j;

unsigned long data[4],a;

for(i=0;i<KEYLENGTH;i++) keys[i]=userkey[i];

for(i=1;i<16;i++){

a=keys[(i-1)*KEYLENGTH];

a>>=(INTLENGTH-ROTROUNDKEY);

for(j=0;j<(KEYLENGTH-1);j++){

keys[i*KEYLENGTH+j]=(keys[(i-1)*KEYLENGTH+j]\

<<ROTROUNDKEY)|(keys[(i-1)*KEYLENGTH+j+1]\

>>(INTLENGTH-ROTROUNDKEY));

}

keys[i*KEYLENGTH+KEYLENGTH-1]=\

(keys[(i-1)*KEYLENGTH+KEYLENGTH-1]\

<<ROTROUNDKEY)|a;

}

data[0]=0;data[1]=0;data[2]=0;data[3]=0;

for(i=0;i<(NUMROUNDS/2);i++){

encrypt(data,keys);

#ifdef FORWARD

keys[4*i]=data[3];

keys[4*i+1]=data[2];

keys[4*i+2]=data[1];

keys[4*i+3]=data[0];

#else

keys[2*NUMROUNDS-4-4*i]=data[3];

keys[2*NUMROUNDS-4*i-3]=data[2];

keys[2*NUMROUNDS-4*i-2]=data[1];

keys[2*NUMROUNDS-4*i-1]=data[0];

#endif

}

return;

21



}

int main(){

unsigned long data[4],userkey[KEYLENGTH],keys[2*NUMROUNDS];

unsigned long i,j,k,l;

time_t start,stop;

double r;

data[0]=0;data[1]=1;data[2]=2;data[3]=3;

i=(long) data[0];

j=(long) data[1];

k=(long) data[2];

l=(long) data[3];

printf("Before encryption %20lx%20lx%20lx%20lx\n",i,j,k,l);

for(i=0;i<KEYLENGTH;i++) userkey[i]=i;

expand_key(userkey,keys);

encrypt(data,keys);

i=(long) data[0];

j=(long) data[1];

k=(long) data[2];

l=(long) data[3];

printf("After encryption %20lx%20lx%20lx%20lx\n",i,j,k,l);

decrypt(data,keys);

i=(long) data[0];

j=(long) data[1];

k=(long) data[2];

l=(long) data[3];

printf("After decryption %20lx%20lx%20lx%20lx\n",i,j,k,l);

time(&start);

for(i=0;i<1024*1024*256;i++) encrypt(data,keys);

time(&stop);

r=((double) 65536)/difftime(stop,start);

printf("%20.10lf\n",r);

return(0);

}

C Reference Implementation of PAGES–

/*

The C reference implementation of the

ciphers PAGES-- with 512 bit blocksize

22



for gcc compatible compilers.

Copyright 2015 by

Dieter Schmidt*/

#include<stdio.h>

#include<time.h>

#include<x86intrin.h>

#define INTLENGTH 64

#define NUMROUNDS 128// 32,48,64,96,128 are possible

#define ROL _lrotl

#define ROR _lrotr

#define KEYLENGTH NUMROUNDS/4

#define ROTROUNDKEY 61

#define ROTROUNDDATA1 5

#define ROTROUNDDATA0 9

#define ROTROUNDDATA3 3

#define ROTROUNDDATA2 7

#define ROTROUNDDATA5 7

#define ROTROUNDDATA4 11

#define ROTROUNDDATA7 9

#define ROTROUNDDATA6 13

#define FORWARD

void encrypt(unsigned long data[8],\

unsigned long keys[4*NUMROUNDS]){

register unsigned long i;

register unsigned long a,b,c,d,e,f,g,h;

a=data[0];b=data[1];c=data[2];d=data[3];

e=data[4];f=data[5];g=data[6];h=data[7];

for(i=0;i<NUMROUNDS;i++){

a=ROR(a,ROTROUNDDATA0);

c=ROR(c,ROTROUNDDATA2);

e=ROR(e,ROTROUNDDATA4);

g=ROR(g,ROTROUNDDATA6);

g^=h;

f^=g;

e^=f;

23



d^=e;

c^=d;

b^=c;

a^=b;

b=ROL(b,ROTROUNDDATA1);

d=ROL(d,ROTROUNDDATA3);

f=ROL(f,ROTROUNDDATA5);

h=ROL(h,ROTROUNDDATA7);

a+=keys[4*i];

b+=a;

c^=b;

c+=keys[4*i+1];

d+=c;

e^=d;

e+=keys[4*i+2];

f+=e;

g^=f;

g+=keys[4*i+3];

h+=g;

}

data[0]=a;data[1]=b;data[2]=c;data[3]=d;

data[4]=e;data[5]=f;data[6]=g;data[7]=h;

return;

}

void decrypt(unsigned long data[8],\

unsigned long keys[4*NUMROUNDS]){

register unsigned long i;

register unsigned long a,b,c,d,e,f,g,h;

a=data[0];b=data[1];c=data[2];d=data[3];

e=data[4];f=data[5];g=data[6];h=data[7];

for(i=0;i<NUMROUNDS;i++){

h-=g;

g-=keys[4*NUMROUNDS-4*i-1];

g^=f;

f-=e;

e-=keys[4*NUMROUNDS-4*i-2];

e^=d;

d-=c;

c-=keys[4*NUMROUNDS-4*i-3];

c^=b;

b-=a;

24



a-=keys[4*NUMROUNDS-4*i-4];

h=ROR(h,ROTROUNDDATA7);

f=ROR(f,ROTROUNDDATA5);

d=ROR(d,ROTROUNDDATA3);

b=ROR(b,ROTROUNDDATA1);

a^=b;

b^=c;

c^=d;

d^=e;

e^=f;

f^=g;

g^=h;

g=ROL(g,ROTROUNDDATA6);

e=ROL(e,ROTROUNDDATA4);

c=ROL(c,ROTROUNDDATA2);

a=ROL(a,ROTROUNDDATA0);

}

data[0]=a;data[1]=b;data[2]=c;data[3]=d;

data[4]=e;data[5]=f;data[6]=g;data[7]=h;

return;

}

void expand_key(unsigned long userkey[KEYLENGTH],\

unsigned long keys[4*NUMROUNDS]){

unsigned long i,j;

unsigned long data[8],a;

for(i=0;i<KEYLENGTH;i++) keys[i]=userkey[i];

for(i=1;i<16;i++){

a=keys[(i-1)*KEYLENGTH];

a>>=(INTLENGTH-ROTROUNDKEY);

for(j=0;j<(KEYLENGTH-1);j++){

keys[i*KEYLENGTH+j]=(keys[(i-1)*KEYLENGTH+j]\

<<ROTROUNDKEY)|(keys[(i-1)*KEYLENGTH+j+1]\

>>(INTLENGTH-ROTROUNDKEY));

}

keys[i*KEYLENGTH+KEYLENGTH-1]=\

(keys[(i-1)*KEYLENGTH+KEYLENGTH-1]\

<<ROTROUNDKEY)|a;

}

data[0]=0;data[1]=0;data[2]=0;data[3]=0;

data[4]=0;data[5]=0;data[6]=0;data[7]=0;

for(i=0;i<(NUMROUNDS/2);i++){

25



encrypt(data,keys);

#ifdef FORWARD

keys[8*i]=data[7];

keys[8*i+1]=data[6];

keys[8*i+2]=data[5];

keys[8*i+3]=data[4];

keys[8*i+4]=data[3];

keys[8*i+5]=data[2];

keys[8*i+6]=data[1];

keys[8*i+7]=data[0];

#else

keys[4*NUMROUNDS-8-8*i]=data[7];

keys[4*NUMROUNDS-8*i-7]=data[6];

keys[4*NUMROUNDS-8*i-6]=data[5];

keys[4*NUMROUNDS-8*i-5]=data[4];

keys[4*NUMROUNDS-4-8*i]=data[3];

keys[4*NUMROUNDS-8*i-3]=data[2];

keys[4*NUMROUNDS-8*i-2]=data[1];

keys[4*NUMROUNDS-8*i-1]=data[0];

#endif

}

return;

}

int main(){

unsigned long data[8],userkey[KEYLENGTH],keys[4*NUMROUNDS];

unsigned long i,j,k,l,m,n,o,p;

time_t start,stop;

double r;

data[0]=0;data[1]=1;data[2]=2;data[3]=3;

data[4]=4;data[5]=5;data[6]=6;data[7]=7;

i=(long) data[0];

j=(long) data[1];

k=(long) data[2];

l=(long) data[3];

m=(long) data[4];

n=(long) data[5];

o=(long) data[6];

p=(long) data[7];

printf("Before encryption %20lx%20lx%20lx%20lx%20lx%20lx%20lx%20lx\n"\

,i,j,k,l,m,n,o,p);

for(i=0;i<KEYLENGTH;i++) userkey[i]=i;

26



expand_key(userkey,keys);

encrypt(data,keys);

i=(long) data[0];

j=(long) data[1];

k=(long) data[2];

l=(long) data[3];

m=(long) data[4];

n=(long) data[5];

o=(long) data[6];

p=(long) data[7];

printf("After encryption %20lx%20lx%20lx%20lx%20lx%20lx%20lx%20lx\n"\

,i,j,k,l,m,n,o,p);

decrypt(data,keys);

i=(long) data[0];

j=(long) data[1];

k=(long) data[2];

l=(long) data[3];

m=(long) data[4];

n=(long) data[5];

o=(long) data[6];

p=(long) data[7];

printf("After decryption %20lx%20lx%20lx%20lx%20lx%20lx%20lx%20lx\n"\

,i,j,k,l,m,n,o,p);

time(&start);

for(i=0;i<1024*1024*128;i++) decrypt(data,keys);

time(&stop);

r=((double) 65536)/difftime(stop,start);

printf("%20.10lf\n",r);

return(0);

}

27



>>>9 >>>7 >>>11 >>>13

<<<5 <<<3 <<<7 <<<9

K

K

K

K

4i

4i+1

4i+2

4i+3

Figure 3: A encryption round of PAGES–

28



<<<9 <<<7 <<<11 <<<13

>>>5 >>>3 >>>7 >>>9

K

K

K

K
4i

4i+1

4i+2

4i+3

Figure 4: A decryption round of PAGES–

29


	Introduction
	Assembly of PAGES+
	Preliminaries
	Encryption
	Decryption
	Key Schedule
	Software Performance

	Assembly of PAGES-
	Preliminaries
	Encryption
	Decryption
	Key Schedule
	Software Performance

	Assembly of PAGES–
	Preliminaries
	Encryption
	Decryption
	Key Schedule
	Software Performance

	Conclusion
	Reference Implementation of PAGES+
	Reference Implementation of PAGES-
	Reference Implementation of PAGES–

