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Abstract. One of the crucial factors for enabling fast and secure computations in the Zettabyte era is
the use of incremental cryptographic primitives. For files ranging from several megabytes up to hundreds
of gigabytes, incremental cryptographic primitives offer speedup factors measured in multiple orders of
magnitude. In this paper we define two incremental hash functions iSHAKE128 and iSHAKE256 based
on the recent NIST proposal for SHA-3 Extendable-Output Functions SHAKE128 and SHAKE256. We
give two practical implementation aspects of a newly introduced hash functions and compare them with
already known tree based hash scheme. We show the trends of efficiency gains as the amount of data
increases in comparisons between our proposed hash functions and the standard tree based incremental
schemes. Our proposals have the security levels against collision attacks of 128 and 256 bits.
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1 Introduction

The idea of incremental hashing was introduced by Bellare, Goldreich and Goldwasser in [4] and
improved later in [5]. Incremental hashing can be achieved also by using Merkle trees [14] as it
is discussed for example in [7]. In a nutshell, the idea of incremental hashing is that if we have
already computed the hash value of some document, and this document is modified in one part,
then instead of re-computing the hash value of the whole document from scratch, we just need to
update the hash value, performing computations only on the changed part of the document. In
this way, incremental hashing of closely related documents offers speed gain up to several orders
of magnitude compared to classical hashing. Yet, so far, the concept has not been particularly well
accepted by the industry mainly due to the following two reasons: 1. The security level for the
incremental hash functions is detached from the size of the produced hash value, that is usually
several thousands of bits long. This is different from the ordinary cryptographic hash functions such
as SHA-1, SHA-2, SHA-3, where the size of the hash value correspond to the claimed bit-security
level of the hash function. 2. In order to achieve a certain level of security (for example 2128 or
2256), the known incremental hash functions [4, 5] need to perform expensive modular operations
over large prime integers. That makes them one or more orders of magnitude slower than the
ordinary cryptographic hash functions.

However, it seems that our modern world has entered an era where a low computational demands
for update operations of hash values finds applications in real situations. First of all, the data storage
cost is no longer an issue (see for ex. [3]). Second, according to recent reports, the global IP traffic
will pass the zettabyte threshold by the end of 2015, and will reach 1.4 zettabytes per year by
2017 [9], and by 2020, we can expect the size of the digital universe to reach 44 zettabytes [10].



Thus, the scale of data being processed every day by various cloud services, sensor networks,
distributed storage systems and digital media services, already calls for new solutions that will use
the paradigm of incrementality.

For example, let us consider the use case scenario of sensor networks where data arrives contin-
uously and it needs to be stored. The data comes from the nodes whose data rates rapidly increase
as sensor technology improves and as the number of sensors expands [11]. A typical representative
for this scenario are environmental sensor networks used for natural disaster prevention or weather
forecasting. In these cases, all data that is collected from different sensors should be publicly avail-
able for later analyses and computations. Nevertheless, integrity should be preserved, and usually,
such dataset should be singed by a trusted party. In any case, data hashing is unavoidable, and
as the dataset is being updated, so should the hash value be recomputed. Normally, the update
of such datasets is done by simply appending new data from the sensors to the existing, or by
changing a small part of the existing dataset. As the size of the dataset grows, (and can reach hun-
dreds of terabytes [17]), recalculating the hash value of the entire dataset can become notoriously
demanding in terms of both time and energy. Incremental update, on the other hand, can reduce
the recalculation of the hash value to the minimum, and only of the parts of the dataset that have
changed, or have been appended.

Another use case scenario where updates come in the form of insertions of new elements or
modifications of existing data are distributed storage systems for managing structured data, such
as Cloud Bigtable by Google [8]. It is designed to scale to a very large size, like petabytes of data
across thousands of commodity servers. Its data model is described as persistent multidimensional
sorted map, and it uses Google SSTable file format to internally store data [8]. Each SSTable
contains a sequence of blocks typically of 64KB in size and every block has its own unique index
that is used to locate the block. Using this kind of file formats where blocks have its unique numbers,
incremental hashing can be successfully implemented despite the variable-size setting: In addition
to the update operation, in order to perform incremental hash calculations, we introduce additional
insert and delete operations.

The rest of the paper is organized as follows. In the next section we give the necessary math-
ematical preliminaries and definitions about incremental hash functions. In Section 3 we give an
algorithmic descriptions of incremental operations for two practical settings. After that, in Section
4, we define two incremental hash functions with security levels of 128 and 256 bits. Comparison
analysis between our proposals and incremental tree based hash scheme is given in the subsequent
Section 5. Finally, we conclude our paper in Section 6 with recommendations on where and how to
use our incremental hash functions.

2 Mathematical preliminaries

2.1 Incremental hash functions

We will use the following definition for an incremental hash function adapted from [5, Sec. 3.1]:

Definition 1.

1. Let h : t0, 1ub Ñ t0, 1uk be a compression function that maps b bits into k bits.
2. Let the message M be represented as a concatenation of n blocks, where n ă N for some

predefined number N which is larger than the number of blocks in any message we plan to hash,
i.e., M “M1||M2|| . . . ||Mn.
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3. The size of each block Mi is determined by the following relation: |Mi| “ b´LengthpIDiq, where
IDi is a unique identifier for the block Mi.

4. For each block Mi, i “ 1, . . . , n, append IDi to get an augmented block Mi “Mi||IDi.
5. For each i “ 1, . . . , n, apply h to Mi to get a hash value yi “ hpMiq.
6. Let pG,

Ä

q be a commutative group with operation
Ä

where G Ď t0, 1uk.
7. Combine y1, . . . , yn via a combining group operation

Ä

to get the final hash value
y “ y1

Ä

y2
Ä

. . .
Ä

yn.

Denote the incremental hash function as:

ypMq “ HASHh
xGypM1||M2|| . . . ||Mnq “

n
ä

i“1

hpMi||IDiq (1)

Since the group pG,
Ä

q is commutative, the computation is parallelizable too. In such a case, the
combining group operation

Ä

is commutative and invertible, and increments are done as follows. If
block Mi changes to M 1

i , then the new hash value is computed as ypM 1q “ ypMq
Ä´1 hpMiq

Ä

hpM 1
iq

where
Ä´1 denotes the inverse operation in the group pG,

Ä

q and ypMq is the old hash value. The
cost of an increment operation is two hash computations and two operations in G.

The choice of good combining operation is important for both security and efficiency. The au-
thors of the paper [5] proposed four different families of hash functions depending on the combining
operation. In XHASH, the combining operation is set to bitwise XOR. The multiplicative hash,
MuHASH uses multiplication in a group where the discrete logarithm problem is hard. AdHASH
stands for hash function obtained by setting the combining operation to addition modulo a suffi-
ciently large integer, and LtHASH uses vector addition. They showed that the scheme XHASH is
not secure. In addition, they defined a computational problem in arbitrary groups that they called
balance problem. In a nutshell, the balance problem is the problem of finding two disjoint subsets
I, J “ 1, . . . , n, not both empty, for a given random sequence of elements a1, . . . , an of G, such
that

Ä

iPI ai “
Ä

jPJ aj . The authors of [5] concluded that in order to have a collision-free hash
function over G, the balance problem for the group pG,

Ä

q should be hard. They estimated that
a hash value of size « 1024 bits would suffice for security level of 280. However, later on, Wagner
in [18] showed that using a generalized birthday attack, these parameters are breakable, implying
that the size of the hash values should be much bigger (for standard security levels, even up to tens
of thousands of bits). Wagner also showed how to solve the k-sum problem for certain operations

(a special case of the balance problem), with time and space complexity of Opk ¨ 2
n

1`lgtku q using lists

of size 2
n

1`lgtku elements. More precisely, Wagner [18] showed the following:

Proposition 1. Let HASHh
xGy be an incremental hash function defined by Definition 1. For any

Y P t0, 1un the complexity of finding a preimage message M “ M1||M2|| . . . ||Mk of length k ď N
blocks such that Y “ HASHh

xGypMq is:

min
kďN

Opk ¨ 2
n

1`lgtku q (2)

If the length of the messages is not restricted, then the minimum in equation (2) is achieved for
messages of k “ 2

?
n´1 blocks.

So, 10-15 years ago, the lack of an urgent need to hash extremely big files, as well as the
difference between the hash sizes of classical hash functions (160 - 512 bits) versus the hash sizes
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in the incremental case (2500 - 16000 bits), killed the attractiveness of the concept of incremental
hashing. However, there are new trends and new reality. In particular, the latest SHA-3 standard
allows arbitrary hash sizes [16], the needs for incremental digesting of big files are increasing, and
the cost of storing longer hash values is decreasing. These are the main reasons why we revive the
idea of incremental hashing in this paper.

3 Incremental hashing scheme

We will instantiate the incremental hash function from Definition 1 in two practical settings: fixed-
size data and variable-sized data. In the fixed-size data setting, the data that needs to be hashed
has a predetermined fixed size, and thus the total number of data blocks is fixed. The real use case
scenarios can be found in cloud services (Images of Virtual Machines [1,2], cloud storage [12]), digital
movies distributions [15], collecting data from sensor networks and many more. In the fixed-size data
scenario, the incremental operations that need to be implemented are: block replacement (replace
operation) and block appending. The other setting is a variable-sized data, such as managing
structured data, where additionally the incremental operations for insertion (insert operation) and
deletion (delete operation) of a block should be supported. In order to implement these operations,
we will use dynamic data structures.

For both of the aforementioned scenarios, the basic algorithmic description is given in Algorithm
1. The underlying hash primitive and combining operation in the algorithm are the following:

Underlying hash function. The concrete hash function h has to map b bits into k bits (k is a
multiple of 64), h : t0, 1ub Ñ t0, 1uk. A typical cryptographic hash functions such as SHA-1 or
SHA-2 outputs a short hash value of 160 or 256 or 512 bits. However, for achieving security
levels of 128 or 256 bits we need the value of k to be more than 2000 bits. We use the recently
proposed Extendable-Output Functions SHAKE128 and SHAKE256 defined in the NIST Draft
FIPS-202 [16]. A concrete definition is given in Section 4.

Combining operation. For the compression function h : t0, 1ub Ñ t0, 1uk where k is a multiple
of 64 bits i.e. k “ 64 ¨L, we use word-wise addition in the commutative group ppZ264q

k{64,
Ð

64q,
since it is a very efficient operation on the modern 64-bit CPUs. The operation

Ð

64 represents
64-bit word-wise addition of k{64 words, and

Ñ

64 the inverse operation of word-wise subtraction
of k{64 words.

Algorithm 1 - Incremental hash function

Input. A sequence of blocks M1,M2, . . . ,Mn, where each Mi has a fixed size of b´ LengthpIDq bits.

Output. k bits of hash output.

1. For each block Mi, i “ 1, . . . , n, append IDi to get an augmented block Mi “Mi||IDi;

2. For each i “ 1, . . . , n, apply h to the blocks Mi to get a hash value yi “ hpMiq;

3. Combine y1, . . . , yn via a combining group operation
Ð

64 to get the final hash value

y “ y1
ð

64y2
ð

64 . . .
ð

64yn.

4. Output y and store it.

Fig. 1. An algorithm for incremental hash function. Note that when we deal with the fixed size data
IDi ” xiy and for variable size setting it is IDi ” pBNi, ptrBNiq
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Using appropriate parameter values for the formulations above, we have two practical settings:

1. Fixed-size data. Hashing data which has a predetermine fixed size. The total number of data
blocks is fixed, or can be changed by appending new blocks.
Block indexing. The data M is virtually divided into a fixed number of blocks M1,M2, . . . ,Mn.

In this case each block Mi has index i and its 64-bit binary encoding represents its unique
identifier IDi ” xiy. This virtual division of data is shown in Figure 2.

Incremental update operation. Once the hash function is applied on M , there is no need
to repeat the same procedure for the whole M , but we can apply an incremental update
operation. In this case the only update operation is the following one:
– Block Substitution. This kind of update operation is applied on blocks Mi and M 1

i , where
M 1

i is the changed version of the block Mi. In total two block hash operations are applied.
The hash update operation is given by Algorithm 2, and its graphical presentation in
Figure 5.

Data overhead. There is no data overhead in this case. The final hash value has a size of k
bits. This is the only data necessary to store if we want to recompute the hash.

M1 || <ID1> M2 || <ID2> . . . Mn || <IDn>

y1 y2 yn

Hash Value y

Fig. 2. Construction of incremental hash function for
fixed size data.

y1 y2 yn

M1
BN1 M2

BN2 Mn
BNn. . .

Hash Value y

Fig. 3. Construction of incremental hash function for
variable size data. The colored parts present the data
overhead.

2. Variable-size data. Hashing structured data which can have a variable size but where the
data blocks always have a unique block identifier that does not change.
Block indexing. Data is divided into an ordered sequence of blocks M1,M2, . . . ,Mn. In this

case the unique identifier consists of a nonce for that block, denoted as BN and a pointer
to the nonce of the next block i.e. IDi ” pBNi, ptrBNi`1q). Additionally we need a head
for this data structure i.e., a pointer for the first data block M1 and the pointer of the last
block Mn, that points to NULL i.e. ptrBNn`1 “ NULL. This hybrid data structure is in fact
a singly-linked list with direct access via unique nonces and it is shown in Figure 3.

Incremental update operations. In this case we have the following three update operations:
– Block Substitution. This kind of update operation is applied on block Mi and M 1

i (the
changed version of the block Mi). The hash update operation is the same as in the
case of fixed size data settings, just with a difference in the presentation of ID, i.e.
IDi “ pBNi, ptrBNi`1q. In total two block hash operations are applied. An algorithm is
given by Algorithm 2 and its graphical presentation is given in Figure 5.
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Algorithm 2 - Block Substitution

Input. The old block Mi and the new one M 1
i .

The old hash value y.

Output. k bits of updated hash output.

1. Calculate yi “ hpMiq;

2. Calculate y1i “ hpM 1
iq;

3. Combine y, yi and y1i via a combining group
operation

Ð

64 to get the new updated final hash
value y1 “ y

Ñ

64yi
Ð

64y
1
i;

4. Output y1 and store it.

Fig. 4. An algorithm for incremental hash update oper-
ation: Block Substitution.

Mi || <IDi>

yi y’i

Old Hash Value y

M’i || <IDi>

New Hash Value y’

Fig. 5. An update hash operation: Block substitution.
Note that when we deal with the fixed data size
IDi ” xiy and for variable data size it is IDi ”

pBNi, ptrBNi`1q.

– Block Insertion. An insertion of a new block Mj with nonce BNj after block Mi is
performed by changing the unique identifier IDi. The old value of IDi “ pBNi, ptrBNi`1q

is replaced by the new value IDi “ pBNi, ptrBNj q. In total three block hash operations
are applied. This operation is given by Algorithm 3, and its graphical presentation in
Figure 6.

– Block Deletion. To delete a block Mi we need to change the unique identifier of the
i´ 1-th block, IDi´1 “ pBNi´1, ptrBNiq into IDi´1 “ pBNi´1, ptrBNi`1q. In total three
block hash operations are applied. The hash update operation is given by Algorithm 4,
and its graphical presentation in Figure 7.

Data overhead. In this case we have two sub-cases. One is (1) when the data is tightly coupled
with the media where it is stored, and the other is (2) if it is flexible. In the sub-case (1)
there is no data overhead, and the output is just the k bits of the final hash value. For the
sub-case (2) the data overhead is the information about the hybrid singly-linked list with
direct access ID1, ID2, . . . , IDn that is outputed together with the final hash value of size
k bits.

3.1 Incremental tree based hash scheme

Merkle was the first one who proposed the tree hashing which can be used for incremental hashing
[14]. In his scheme the incrementality is implemented at the cost of storing all intermediate hash
values of all tree levels. But that can significantly increase the data overhead of this incremental
hash scheme.

Instead of working with full trees, if we want to focus on performance, then we need to limit
the tree depth on one or two [6,7]. More levels in the tree, means more hash stages and more data
overhead. Assume for simplicity that the hash tree has depth 1. The graphical representation of
the one level tree hashing mode is given in Figure 11. An algorithmic description of the one level
tree hashing is given by Algorithm 5.

For this scheme the data M is divided into blocks M1,M2, . . . ,Mn and we need the following
components:
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yi

Mi
BNi Mi+1

BNi+1

Old 

Hash 

Value

y

y’i

yj

Mi
BNi Mi+1

BNi+1

Mj
BNj

New Hash Value y’

New Inserted Block

Old state of the blocks

Fig. 6. An update hash operation: Block insertion. Here
the block Mj is inserted after the block Mi.

y'i-1 yi

Mi-1
BNi-1 Mi

BNi Mi+1
BNi+1

Mi-1
BNi-1 Mi

BNi

yi-1

Old 

Hash 

Value

y

New Hash Value y’

Old state of the blocks

Deleted Block

Fig. 7. An update hash operation: Block deletion. Here
the block Mi is deleted.

Algorithm 3 - Block Insertion

Input. The block Mi and IDi after which the inser-
tion will be done; The new block Mj ;

Output. k bits of hash output.

1. Calculate yi “ hpMiq;

2. Calculate yj “ hpMjq;

3. Transform IDi into ID1i i.e. ID1i ” pBNi, ptrBNj
q;

4. Calculate y1i “ hpM 1
iq, where M 1

i “Mi||ID
1
i;

5. Combine y, yi, yj and y1i via a combining group
operation

Ð

64 to get the new updated final hash value
y1 “ y

Ñ

64yi
Ð

64y
1
i

Ð

64yj ;

4. Output y and store it.

Fig. 8. An algorithm for incremental hash update oper-
ation in the variable size setting: Block Insertion. Here
the block Mj is inserted after the block Mi.

Algorithm 4 - Block Deletion

Input. The block Mi and IDi that should be deleted;
The previous block Mi´1 and IDi´1 from the sequence;

Output. k bits of hash output.

1. Calculate yi´1 “ hpMi´1q;

2. Calculate yi “ hpMiq;

3. Transform IDi´1 into ID1i´1 as ID1i´1 ”

pBNi´1, ptrBNi`1
q;

4. Calculate y1i´1 “ hpM 1
i´1q, where M 1

i´1 “

Mi´1||pBNi´1, ptrBNi`1
q;

5. Combine y, yi´1, yi and y1i´1 via a combining group
operation

Ð

64 to get the new updated final hash value
y1 “ y

Ñ

64yi´1
Ñ

64yi
Ð

64y
1
i´1;

4. Output y and store it.

Fig. 9. An algorithm for incremental hash update opera-
tion in the variable size setting: Block Deletion. Here the
block Mi is deleted.

One level tree hash function. Any cryptographic hash function h that maps data with arbi-
trary size into k bits can be used. It has two stages:
– Hashing tree leaves. The hash function h maps the leaves Mi of b bits into k bits i.e. yi “

hpMiq.
– Root hash. The final hash value y is computed by hashing the concatenation of the hashes

of the leaves, i.e. y “ hpy1||y2|| . . . ||ynq.
Incremental update operation. Once the root hash is computed, the update operation has the

following variants:
– Block Substitution. This kind of update operation is applied on blocks Mi and M 1

i , where
M 1

i is a changed version of the block Mi. In total one block hash operation and one root
hash computation are performed. This operation is given by Algorithm 6, and its graphical
presentation in Figure 13.
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Algorithm 5 - One level tree hashing

Input. A sequence of blocks M1,M2, . . . ,Mn with
fixed size of b bits.

Output. n ˚ k bits of leaves hashes and k bits of the
root hash.

2. For each block Mi, i “ 1, . . . , n, apply h to them to
get a hash value yi “ hpMiq;

3. Concatenate y1, . . . , yn and apply h to the concate-
nated string to get the root hash value

y “ hpy1||y2, . . . , ynq.

4. Output y and store it. Store all the intermediate
leaves hashes y1, y2, . . . , yn.

Fig. 10. An algorithm for incremental tree based hash
function with depth 1.

y1=h(M1)

M1 M2 Mn. . .

Hash Value

|| || . . . ||

h( y1 || … || yn )

y2=h(M2) yn=h(Mn)

Fig. 11. Incremental hashing using one level tree struc-
ture.

– Block Insertion. An insertion of a new block Mj after block Mi means insertion of the new
hash value hpMjq after the stored hash value hpMiq and computation of the root hash. This
operation is given by Algorithm 7, and its graphical presentation in Figure 15.

– Block Deletion. To delete a block Mi we need to delete the stored hash value of that block
and to compute the root hash. It is given by Algorithm 8, and its graphical presentation in
Figure 17.

Data overhead. The data overhead is pn`1qˆk bits which comes from n hashes yi and the final
root hash y.

Algorithm 6 - Block substitution in tree
hashing

Input. The position i of the old block and the new
one M 1

i .
The old hash value y and all intermediate leaves
hashes y1, y2, . . . , yn.

Output. n ˚ k bits of leaves hashes and k bits of the
root hash.

1. Calculate y1i “ hpM 1
iq;

2. Replace yi with y1i;

3. Concatenate y1, . . . , yn and apply h to the con-
catenated string to get the root hash value y “

hpy1||y2, . . . , ynq.

4. Output y and store it. Store all the intermediate
leaves hashes y1, y2, . . . , yn.

Fig. 12. An algorithm for incremental tree based hash
update operation: Block Substitution.

y1

M’i

Hash Value

|| || . . . ||

h ( y1 || … || yi || … || yn )

yi yn. . .

Substituted Block

Fig. 13. An update hash operation: Block substitution.
Here the block Mi is substituted with the block M 1

i .
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Algorithm 7 - Block insertion in tree hashing

Input. The position i where the insert should be
done.
The new block Mj and all intermediate leaves hashes
y1, y2, . . . , yn.

Output. n ˚ k bits of leaves hashes and k bits of the
root hash.

1. Calculate yj “ hpMjq;

3. Concatenate y1, . . . , yi, yj , yi`1, . . . yn and apply h
to the concatenated string to get the root hash value
y “ hpy1||y2, . . . , yn`1q.

4. Output y and store it. Store all the intermediate
leaves hashes y1, y2, . . . , yn`1.

Fig. 14. An algorithm for incremental tree based hash
update operation: Block Insertion, where the block Mj

is inserted after the block Mi.

y1

Hash Value

|||| . . .

h ( y1 || …  || yi || yj || yi+1 || . . .  || yn )

yi ynyi+1. . .

Mj

yj
|||| ||

New Inserted Block

Fig. 15. An update hash operation: Block insertion.
Here the block Mj is inserted.

Algorithm 8 - Block deletion in tree hashing

Input. The position i of the block that should be
deleted.
All intermediate leaves hashes y1, y2, . . . , yn.

Output. n ˚ k bits of leaves hashes and k bits of the
root hash.

1. Delete yi “ hpMiq;

3. Concatenate y1, . . . , yi´1, yi`1, . . . yn and apply h
to the concatenated string to get the root hash value
y “ hpy1||y2, . . . , yn´1q.

4. Output y and store it. Store all the intermediate
leaves hashes y1, y2, . . . , yn´1.

Fig. 16. An algorithm for incremental tree based hash
update operation: Block Deletion. Here the block with
index i is deleted.

y1

Hash Value

|| . . . ||

h ( y1 || … || yi-1 || yi+1 || … || yn )

y2 yn. . .

Deleted Block

Fig. 17. An update hash operation: Block deletion. Here
the block Mi is deleted.

4 Definition of iSHAKE

Recently, NIST proposed the DRAFT SHA-3 Standard: Permutation-Based Hash and Extendable-
Output Functions [16], containing definitions for two Extendable-Output Functions named SHAKE128
and SHAKE256. We just briefly mention their definitions:

SHAKE128pM,dq “ RawSHAKE128pM ||11, dq, where

RawSHAKE128pM,dq “ Keccakr256spM ||11, dq,

and
SHAKE256pM,dq “ RawSHAKE256pM ||11, dq, where

RawSHAKE256pM,dq “ Keccakr512spM ||11, dq.
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iSHAKE128 is the instantiation of the incremental hash function from Definition 1 where for
the hash function h we use SHAKE128 with the output size of 2688 up to 4160 bits. Similarly for
iSHAKE256 the output size is in the range of 6528 and 16512 bits.

Using appropriate values for the time complexity of Wagner’s generalized birthday attack
(Proposition 1), we have the following:

Proposition 2. Let for iSHAKE128 parameter k “ 2688 (for iSHAKE256, k “ 6528) and let the
maximal allowed number of blocks be N “ 225 (N “ 228 for iSHAKE256). Then

min
KďN

OpK ¨ 2
k

1`lgtKu q “ 2128.385 p2253.103q. (3)

By a simple multiplication bˆN we have the following:

Proposition 3. The lower bound of 2128 on the complexity of Wagner’s generalized birthday attack
on iSHAKE128 for block sizes of 1 KB, 2 KB and 4 KB for the data blocks Mi, can be achieved
by hashing files long 32 GB, 64 GB and 128 GB correspondingly. Also for the 2256 security bound
for iSHAKE256 for block sizes of 1 KB, 2 KB and 4 KB for the data blocks Mi, the hashing files
should be long 256 GB, 512 GB and 1 TB correspondingly.

It is normal to expect that iSHAKE128 would be used for hashing files of size less than 32 GB.
In this case there is a tradeoff between the security of finding second-preimage and the size of the
hashed files which is expresses by the equation (3). For example, for small size files such as 160 KB
the complexity of finding second-preimage is 2254 and for files of 1.25 TB, the complexity drops
down to 2112. Figure 18 shows that tradeoff for different file sizes.

A similar reasoning applies to iSHAKE256 for hashing files of size less than 256 GB. For example
for file sizes of 1 MB the complexity of finding second-preimage is 2479 and for files of as much as
8 TB the complexity of finding collisions drops down to 2212. Figure 19 shows that tradeoff for
different file sizes.

If the length of the messages is not restricted, then the low bound security of 2128 or 2256 in
equation (3) is achieved for messages with parameter values k “ 4160 bits for iSHAKE128 and
k “ 16512 bits for iSHAKE256.

Fig. 18. A tradeoff between finding collisions with the
Wagner’s generalized birthday attack and the size of the
hashed file with iSHAKE128

Fig. 19. A tradeoff between finding collisions with the
Wagner’s generalized birthday attack and the size of the
hashed file with iSHAKE256
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Incremental
Mode

Incremental
Operation

Update cost in operations Data overhead

Collision between
parallel and
sequential
hashes

Incremental hashing
in fixed size setting

Block
Substitution

2 data block hash op.
k-bits of hash output
p2600 ď k ď 16000q

No

Incremental hashing
in variable size setting
(without migration)

Block
Substitution

2 data block hash op.
k-bits of hash output
p2600 ď k ď 16000q

No
Block
Insertion

3 data block hash op.

Block
Deletion

3 data block hash op.

Incremental hashing
in variable size setting
(with migration)

Block
Substitution

2 data block hash op. k-bits of hash output
p2600 ď k ď 16000q

`

nˆ 64 bits for the
data structure

No
Block
Insertion

3 data block hash op.

Block
Deletion

3 data block hash op.

Incremental tree
hashing with a tree
depth of 1

Block
Substitution

1 data block hash operation
+ 1 hash operation on the
intermediate leaves hashes

nˆ k bits of intermediate
hash values

`

k bits of final hash output
“

pn` 1q ˆ k bits
p160 ď k ď 512q

Yes [13]

Block
Insertion

1 data block hash operation
+ 1 hash operation on the
intermediate leaves hashes

Block
Deletion

1 hash operation on the
intermediate leaves hashes

Table 1. Comparison analysis between our incremental hash function approach and tree based hashing.

5 Comparison Analysis

In order to show the advantages of our new incremental schemes, we thoroughly compared the
different performance aspects of our schemes to suitably chosen tree based hashing schemes. We
note that a comparison of our approach to a sequential hashing mode does not make sense both
because it is not parallel and because it is not incremental. The only fair comparison would be to
schemes with these properties, and currently, tree hashing is the best know method for achieving
incrementality.

We compared the update effort for different operations and data overhead that introduces
additional storage cost. The results in terms of the needed number of operations, are given in Table
1.

We also compared the performance in terms of speed of iSHAKE and one level tree hashing.
Table 2 and Table 3 show an evident speed advantage of iSHAKE over the corresponding incre-
mental tree hashing of as much as 5 to 6 orders of magnitude. The results in the two tables can be
interpreted as follows: For a fixed data overhead for both approaches, what amount of data should
be digested in one incremental operation. If we assume an equal digest time per data byte, this can
be directly translated into a speed comparison between the two. As an example, consider an input
file of size 1MB. If we use iSHAKE128 with blocks of 1KB, then the amount of bits that we need
to store is just the output of the hash function, or 2688 bits. If we bound the overhead to the same
(or approximate) amount of bits for tree hashing, then we can split the message to a maximum
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Fixed data overhead of 2688 bits (iSHAKE128) and 2816 bits (SHA-3 One Level Hash Tree)

1MB 10MB 100MB 1GB

Block size in KB 1 4 8 1 4 8 1 4 8 1 4 8

Speed advantage
(times) 102.4 25.6 12.8 1024 256 128 10240 2560 1280 104857.6 26214.4 13107.2

Table 2. Speed advantage of iSHAKE128 in comparison with SHA-3 One Level Hash Tree when one block is updated

Fixed data overhead of 6528 bits (iSHAKE256) and 6656 bits (SHA-3 One Level Hash Tree)

1MB 10MB 100MB 1GB

Block size in KB 1 4 8 1 4 8 1 4 8 1 4 8

Speed advantage
(times) 85.3 21.3 10.7 853.3 213.3 106.7 8533.3 2133.3 1066.7 87381.3 21845.3 10922.7

Table 3. Speed advantage of iSHAKE256 in comparison with SHA-3 One Level Hash Tree when one block is updated

of 10 blocks. In this case, each block will be of size 102.4KB. Thus, in case we have a change of
few (up to several hundreds of bytes) that fall in one block of 1KB, iSHAKE will rehash only that
small block of 1KB, while the tree version of SHA-3 will have to digest significantly bigger block
of 102.4KB. This translates to speed advantage of iSHAKE of 102.4 times.

6 Conclusion

The need for incremental hashing in the upcoming Zettabyte era is imminent. In this paper we
defined two incremental hash functions iSHAKE128 and iSHAKE256 with security level against
collision attacks of 128 and 256 bits respectively. Both are based on the recent NIST proposal for
SHA-3 Extendable-Output Functions SHAKE128 and SHAKE256. We presented constructions for
two practical settings: fixed size data and variable size data. In the first one, our proposed scheme
has obvious advantage in the small overhead that it caries out, compared with any other tree based
hash scheme. Moreover the speed-up is present even in the case where the same data overhead is
used. In the second practical setting, our proposed scheme behaves approximately the same as tree
based hashing when the dynamic data structure representing the unique identifier of the blocks
should be stored. In the case where the unique identifiers of the data blocks are tightly coupled
with the media where they are stored, the situation is the same as in the fixed size setting. That
is, again, our schemes offer show much better performance than tree hashing.
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