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Abstract

Nonlinearity is one of the most challenging combinatorial property in the domain of Boolean function research.
Obtaining nonlinearity greater than the bent concatenation bound for odd number of variables continues to be one of
the most sought after combinatorial research problems. The pioneering result in this direction has been discovered
by Patterson and Wiedemann in 1983 (IEEE-IT), which considered Boolean functions on 5 x 3 = 15 variables
that are invariant under the actions of the cyclic group GF(2°)" - GF(23)" as well as the group of Frobenius
authomorphisms. Some of these Boolean functions posses nonlinearity greater than the bent concatenation bound.
The next possible option for exploring such functions is on 7 x 3 = 21 variables. However, obtaining such functions
remained elusive for more than three decades even after substantial efforts as evident in the literature. In this paper,
we exploit combinatorial arguments together with heuristic search to demonstrate such functions for the first time.
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I. INTRODUCTION

ONSTRUCTING Boolean functions on odd number of variables n having nonlinearity greater than the bent

concatenation bound 2"~1—2"3" is one of the most difficult problems in the area of cryptography, coding
theory, and combinatorics. In 1983, Patterson and Wiedemann discovered [12] for the first time such Boolean
functions for n = 15 using some combinatorial techniques and search methods together. The search space could
be reduced substantially in [12] by considering several group actions as described later in Section I-A. The crux
of the observation was that 15 can be written as 5 x 3, product of two primes. The next attempt in this direction
should have been for 21 = 7 x 3, but that could not be achieved till date. In this paper, for the first time, we
demonstrate such functions for 21 variables that could not be achieved for more than 32 years. In this regard, one
can computationally check that for 9 = 3 x 3, there is no Patterson-Wiedemann type Boolean functions having
nonlinearity greater than the bent concatenation bound.

In cryptography, Boolean functions and S-boxes (multiple output Boolean functions) with high nonlinearity are
important to resist against linear cryptanalysis. Given that such functions have certain kinds of invariance (one can
group large number of inputs according to certain mathematical structures), they can be implemented efficiently in
application domain. From coding theory viewpoint, the maximum nonlinearity is actually the covering radius of
first order Reed-Muller codes and thus have immediate relevance in this area of research.

At this point, let us refer to the most important results in the field of maximum nonlinearity of Boolean functions
on odd number of variables with the time-line. The time-line is mentioned here to highlight that this problem is
indeed challenging as only a few results appeared in a substantially long duration even after a lot of attention to
these problems. The main challenge is to check whether it is possible to overcome the bent concatenation bound.
The bent functions are also combinatorially challenging and well studied class with application in coding theory
and cryptography. These functions exist for even number of variables m having the provably maximum possible
nonlinearity 2~ —2% ~!. Consider two m-variable bent functions fo, f and then construct an n = m+ 1 variable

n—1

Boolean function F as (1@ xp,11)fo @ Tm1f1. It can be easily checked that the nonlinearity of F is 2"~ 1 4272 .
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Since the 2" bit long truth table of F' is concatenation of the two 2" length truth tables of the bent functions fy, f1,
this nonlinearity of F' is called the bent concatenation nonlinearity.

e 1972: In [2], it has been shown that for n = 5, the maximum nonlinearity of n-variable Boolean functions is
the bent concatenation nonlinearity, which is 12.

e 1980: In [11], the question for n = 7 could be solved and it has been noted that here also the maximum
nonlinearity is the bent concatenation nonlinearity which is 56.

e 1983: In [12], the seminal positive result has been presented by Patterson and Wiedemann showing that
one can construct a 15-variable Boolean function f with nonlinearity 2'5-1 — 275~ 4 20 = 16276. It is
well known that using this function, one can construct any n-variable Boolean function F' with nonlinearity
on=1_ 9" +20.2"% forn > 15.In fact, F' can be written as f @ g, where g is an (n — 15)-variable bent
function.

e 2006-2010: The 9-variable Boolean functions having nonlinearity 241 were identified [7] in the rotation-
symmetric class and subsequently this result is improved [8] to 242 by considering the k-rotation-symmetric
class. Thus, for n = 9,11, 13, one can obtain Boolean functions having nonlinearity 2"~! — 2% +2.2%5.

OUR CONTRIBUTION: The kind of constraints considered for constructing the 15-variable functions in [12] finally
reduced to solving an integer programming problem on 11 binary variables, which was easy to solve using exhaustive
search. However, the authors [12] pointed out the following in their paper:

“We have not succeeded in understanding algebraically the choice of orbits made in (6) and thus have not
succeeded in generalizing our construction to other dimensions although we suspect there is a construction
for all R,, when m is not a prime power.”

In fact, the situation is significantly harder for the 21-variable case as in a similar manner of [12] it reduces to an
integer programming problem with 115 binary variables. An attempt has been made towards studying this class
almost a decade back in [5] without any success. In [5, Page 1551], it has been commented that:

“The search space corresponding to this case is very large and exhaustive search is infeasible. It will be
of interest to develop some heuristic methods to find solutions to this system of linear inequalities.”

In this paper we revisit the problem with more disciplined effort and indeed obtained Patterson-Wiedemann type
functions on 21 variables having nonlinearity strictly greater than the bent concatenation bound.
CAVEAT: The nonlinearity of the functions fo; that we achieve in this paper is 22'~1 — 2% 4 61. Note that this
nonlinearity is less than 2211 — 2°5~ 420275 as obtained by composing the Patterson-Wiedemann function
fi5 on 15 variables and a bent function gg on 6 variables, i.e., f5; = fi5 @ bg, where the functions fi5 and bg
are on distinct variables. However, such functions f}; are not of Patterson-Widemann type and it does not answer
the challenge of obtaining such functions on 21 variables beating the bent concatenation bound as posed in [12].
We solve this problem for the first time. Further, we could not make exhaustive search as the integer programming
problem in this case is on 115 binary variables. It may very well happen that with the dissemination of our results,
the problem may be solved with better efficiency in obtaining solutions with higher nonlinearity. In case such a
Patterson-Wiedemann type function on 21-variables with nonlinearity greater than 22!~1 — 275 + 160 could be
obtained, that will provide the highest known nonlinearity for all the odd variable Boolean functions for 21 variables
and more. That we leave as an open problem in this direction.

Next we provide necessary background in this area. For this, we mostly follow to the explanations in [12], [5].
One may also note that several modifications of Patterson-Wiedemann type functions have been studied in literature
as evident from [4], [10], [13] and the references therein.

A. Background

By F,. let us denote the set of Boolean functions from GF(2") to GF(2) and consider f € F,. The support
of f is defined as Supp(f) = {x € GF(2")|f(x) = 1}, and its weight is wt(f) = |Supp(f)|. Let a and b be
two distinct odd primes such that n = ab. Let M = GF(2%), L = GF(2%), J = GF(2°) and K = GF(2). Now
consider the tower of subfields K — L — M. The index of the multiplicative group L* in M* is m = 2;;:11.
One may note that M* can be written as M* = UL, L*z; where {x1,x2,..., 2y} (the complete set of coset
representatives of L* in M*). It is well known that one can characterize any function from M — K by specifying




its support. Let us consider functions in JF,, whose supports are of the form UﬁzlL*xi for some positive integer .
Such functions have been considered by Dillon [3] towards the construction of bent functions and formal proofs
could be devised using this idea to show that such functions provide the best known nonlinearity for even number
of variables. Naturally, this idea was later exploited by Patterson and Wiedemann [12] to explore high nonlinearity
for odd number of variables. Though there had been no clear proof of nonlinearity for odd number of variables as
accepted in [12], such ideas along with some additional techniques produced functions with nonlinearity greater
than bent concatenation bound.

We denote the set of all such functions by I, ;. Any linear function in F,;, can be expressed as I, () = Tr¢ (ax)
where a € M and Tr?(z) = z+ 22+ 2% +...+22" for all z € GF(2"). The support of I, is Supp(ly) = {x €
M|Tr$*(azx) = 1}, and the support of the affine function he(z) = lo(2) + 1 is Supp(ha) = {z € M|Tr{®(az) =
0}. Let H, = Supp(h,), which is a hyperplane in M when considered as a vector space over K.

Next we define the Hadamard transform of f € F,, as

fA(/\) _ Z (_l)f(z)—i-Tr()\x).
zeGF(2™)

The nonlinearity of a Boolean function f is defined as

1 R
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We can write the elements of GF'(2") in some order, say {ag, a1, ...,a._1}. For f, g € F,, we define the distance
d(f,g) between f,g as the Hamming distance between the 2"-dimensional vectors (f(c), f(a1),..., f(agn_1))

and (g(ap),g(aa),...,g(aan_1)). It is easy to see that if f,g € F,, then d(f,g) = |Supp(f)ASupp(g)| where
A is the symmetric difference between the sets Supp(f) and Supp(g). One may calculate that (see also [12]) if
Supp(f) = UézlL*xi then

a(f,0) = 1(2*-1),

d(f,1) = 2% —1(2% - 1),

d(f ha) = 2971 2% . t(a) +1,

d(f,la) = 29714 2% . t(a) -1, (1)

where 0 and 1 are constant functions with all 0 values and all 1 values respectively. Further, #(«) is the number
of cosets of the form L*x; that are totally contained in the hyperplane H,, equivalently ¢(«) is the number of x;
for which Tr2(x;a) = 0. Thus, the nonlinearity of f is given by

nl(f) = min{I(2* - 1), 2% (2% —1),29071 — 2% (a) + 1,277 4 2% . t(a) — 1}
ac

For an f € I, with nl(f) > 2901 — 2(9=1)/2_ considering (1), we obtain that [ and ¢(cr) must satisfy:

gab—1 _ 2(ab—1)/2 gab—1 + 2(ab—1)/2
2
20 — 1 <l< 2¢ —1 ’ @
1 gab—1 _ 2(ab—1)/2 1 gab—1 + 2(ab—1)/2
- _ 9lab—1)/2 - glab—1)/2
5 { T <tla) < 5a 50 1 + (3)

Consider the two subgroups L* and J* in M*. The intersection of L* and J* contains only the identity element and
the group M ™ is an abelian group. Hence the product L* - J* is direct. One can identify the group M™* to the group
O (M*) of left multiplications by the elements of M* in GLk (M) and this correspondence is an isomorphism.

Let ¢o € GLy (M) be the Frobenius automorphism of M. This is defined by ¢o(x) = 22 for all x € M. The
group (¢2) generated by ¢ is a cyclic group of order ab, which is contained in GLx (M ). To summarize, let us
present the following definition.

Definition 1: Consider n = ab, the product of two primes. Let L* = GF(2%)* and J* = GF(2)* and (¢2) as
above. Patterson and Wiedemann [12] considered the action of the group G = [®(L*) - ®(J*)](¢2)/P(L*), where
[D(L*) - ®(J*)](¢2) is the semidirect product of ®(L*) - ®(J*) by (¢2). Here, the functions f € F,,, which are
invariant under this group action are referred to as Patterson-Wiedemann type functions.



The result of [12] was for n = 15. Here L* = GF(2°)* and J* = GF(2%)*. The support of the function f
is invariant under the action of L* and J*. That is, the support of f is invariant under the action of the product
L* - J* which is also a cyclic subgroup of M* = GF(2'°)* of order (2° — 1)(23 — 1) = (31)(7) = 217. All the
elements of L*-J* should have the same value and it is also true for the elements in each of its cosets in M *. Note
that % = 151. In the form of interleaved sequence [6], [5], this can be seen as 217 rows of length 151 each.
The value in each column is the same. Thus one row of 151 elements will define the complete Boolean function
at 2' — 1 inputs. Generally we consider the output as zero for the all zero input point. Next comes the constraint
that the function f is invariant under Frobenius automorphism, i.e., f(z) = f(2?) for all z € M*. Due to this,
the 151 elements are divided into 10 groups of size 15 each and one group of size 1. One can initially assign the
output zero corresponding to the inputs of the group of size 1. Due to the weight conditions, it is evident that
inputs corresponding to the 5 groups should have the output 0 and rest should have the output 1. Thus, we need to
search (150) = 252 many different Boolean functions on 15 variables. As described in [12], two distinct functions
with nonlinearity 16276 could be obtained in this class up to affine equivalence. The problem could also be seen
as solutions to certain specific inequalities as explained in [5, Pages 1549-1550].

II. PATTERSON-WIEDEMANN TYPE CONSTRUCTION ON 21 VARIABLES

In this section, we consider the case for n = 21 = 7- 3. As explained in [5], we have L* = GF(2")* and J* =
GF(23)* here. Now L*-J* is a cyclic subgroup of M* = GF(2%')* of order (27 —1)(2% — 1) = (127)(7) = 889.
Note that % = 2359. That is, we can consider the interleaved sequence, where we have 889 similar rows and
each row has 2359 elements. Further, the function f is invariant under Frobenius automorphism, i.e., f(z) = f(2?)
for all x € M*. Thus, 2359 elements are divided as 112 groups of size 21, 2 of size 3 and 1 of size 1. Thus, we
have total 115 binary variables here. We consider the following preliminary things towards obtaining a solution.

o We consider that the outputs corresponding to the group of size 1 as zero.
o For satisfying the weight conditions, we need the following.

— The inputs corresponding to the 56 groups of size 21 should have the output 0 and the rest 56 should
have the output 1.

— The inputs corresponding to one group of size 3 should have the output O and the other one should have
the output 1.

With these constraints, we have 2 (15162) many options to search which is computationally infeasible. For each option
one may get back to the Boolean function of 21 variables and check the nonlinearity. However, this checking is
time consuming and following [5, Remark 3] a much better strategy is to consider the concept of inequalities as
explained in [5, Section 2.1] for n = 15. We implement the strategy for n = 21 and generate the inequalities as
completely described in Appendix A. We consider the degree 21 primitive polynomial 22! 4- 22 + 1 over GF(2) for
realization of the field. Following (3) and putting the values a = 7,b = 3, we obtain 57 < t(«) < 72. Thus, the
overall inequality is of the form 57 < Zzli% A; jx; < 72, where each 4, j varies from O to 114 (total 115 elements)
and there are 115 binary variables zg to x114. The coefficient matrix [Ai,j} is described in Appendix A. So, we
have the following technical result here.

Lemma 1: Let z; € {0,1} for ¢ € [0,114] and the coefficient matrix [A; ;] be as described in Appendix A. If
one obtains a solution to the set of inequalities 57 < Zgé A; jx; < 72, for 4,7 € [0,114], then that provides a
21-variable Patterson-Wiedemann type function having nonlinearity greater than the bent concatenation bound.

We like to present an observation here that if one leaves the rows and columns indexed by 0, 93 and 114, then
the resulting 112 x 112 matrix becomes symmetric.

A. The functions that we obtained

As described above, we consider binary strings of length 115 such that the O-th location is 0, one location (out
of two locations corresponding to the groups of size 3) is 0 and the other is 1 and finally 56 locations (out of 112
locations corresponding to the groups of size 21) are 0 and the rest 56 are 1. This is clearly an integer programming
problem, and seems to be a hard one given its dimension. Thus, we have attempted several heuristics and with one
such heuristic, described in Section II-B, we obtain 4 solutions with an effort of more than a month. The solutions

21—1

are as below. All the solutions have nonlinearity 22!~1 — 272 4 61 = 1047613 and the minimum absolute values




in the autocorrelation spectra (see [5], [9] for details of autocorrelation spectra) of these four functions are 2948,
3436, 3940, 5116. These different values show that the functions are not affine equivalent.

0111000110111110011111101010010010111001110100001001100010100100101110001000001000100110100101110111011001111100000
0110010100111001010110000100001100111110011100111000000100010100000111111001110000111111001001011111100101001111000
0111010010100001111110010011001010111111000111001101001011001100101100110010000111110111011010000000000000101111001
0011000111100101111000100011011010100001101010101011011111111010001000001010111010100101000101100110010101110010100
Thus, we have the following important theorem.
Theorem 1: For n = 21, one can construct Patterson-Wiedemann type functions (see Definition 1) having
. . . — n—1 . . .
nonlinearity greater than bent concatenation bounds 2"~! — 27z . In particular, we construct functions having

nonlinearity 2211 — 2%57 4 61 = 1047613,

B. Details of our heuristic

We utilize the steepest-descent-like iterative search algorithm [1] to attain the solutions. In this search algorithm,
the current solution is replaced by another solution from a predefined set of candidate solutions, called the
neighborhood. Using a cost function, the entire neighborhood is evaluated in each step of the search algorithm.
The best one, i.e., the one with the best cost value, is then delivered to the next step, even if it is worse than
the previously selected best solutions. To prevent the algorithm from looping, these best solutions are stored in
memory.

Here, we constitute the neighborhood by swapping two dissimilar bits (of the current solution) at the locations
corresponding to the groups of the same size. This is required to satisfy the necessary condition on the weight of
the Boolean function. Hence, the neighborhood consists of 6272 (= 2 x 562) candidate solutions and for each of
them we compute the cost function that we define as the sum of squared errors, which is a measure of the distance
of a solution from the inequality bounds. Let x = (2o, 1,...,2114) be a solution, A; = (A; 0,4 1,...,Ai114)
be the i-th row of the coefficient matrix, and (z, 4;) = Zjllz% A; jx; be the inner product of x and A;, where
1 =0,1,...,114. The cost function is then given by

114
Cost(z) = ZCZ»Q, where
i=0

[(x, A;) — 7212 if (2, 4;) > 72,
C; = R0 if 57 < (z, 4;) < 72,
(2, A;) — 5712 if (x, A;) < 57.

Thus, any solution x with zero cost value provides a 21-variable Patterson-Wiedemann type Boolean function
having nonlinearity greater than the bent concatenation nonlinearity. The search algorithm stops after a fixed number
of iterations, which we set to 40000 in our experiments. The search is performed on a workstation with Intel Xeon
CPU E5-1650v3 (15M Cache, 3.50 GHz, 6 cores) and 16 GB RAM under Windows 7 Professional 64-bit operating
system. Exploiting all the cores, it took more than a month to extract the aforementioned 4 solutions.

ITI. CONCLUSION

In this paper, for the first time, we could demonstrate Patterson-Wiedemann type Boolean functions on 21
variables that exceed the bent concatenation nonlinearity. This problem remained open for more than three decades
even after significant effort as evident from the literature. We deploy heuristics to obtain such functions that can be
seen as solutions to an integer programming problem with 115 binary variables. Indeed the problem is quite hard
and exhaustive search seems to be elusive given the present computational power. The functions we obtain are of
nonlinearity 22!=1 — 25~ + 61 = 1047613 and we believe that further search effort may discover solutions with
better nonlinearity. In this direction, we provide every details of the inequalities that need to be satisfied to obtain
the solutions.
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APPENDIX A: THE COEFFICIENT MATRIX A

We have the 115 x 115 coefficient matrix, where each location contains an integer. The single digit integers 0

to 9 are written as they are. For brevity, the two digit values 14 and 21 are written as u and v respectively.
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0011013011311101332011222120010210100001110150102304110121031122131021123102110141220001113210021010311000311110020
0141101110130211330002012200400211210411211101011011301120241020301240000101201202122022220100001121211121213201000
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