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Abstract

A Probabilistically Checkable Proof (PCP) allows a randomized verifier, with oracle access to
a purported proof, to probabilistically verify an input statement of the form “x ∈ L” by querying
only few bits of the proof. A zero-knowledge PCP (ZKPCP) is a PCP with the additional
guarantee that the view of any verifier querying a bounded number of proof bits can be efficiently
simulated given the input x alone, where the simulated and actual views are statistically close.

Originating from the first ZKPCP construction of Kilian et al. (STOC ’97), all previous
constructions relied on locking schemes, an unconditionally secure oracle-based commitment
primitive. The use of locking schemes makes the verifier inherently adaptive, namely, it needs
to make at least two rounds of queries to the proof.

Motivated by the goal of constructing non-adaptively verifiable ZKPCPs, we suggest a new
technique for compiling standard PCPs into ZKPCPs. Our approach is based on leakage-resilient
circuits, which are circuits that withstand certain “side-channel” attacks, in the sense that these
attacks reveal nothing about the (properly encoded) input, other than the output. We observe
that the verifier’s oracle queries constitute a side-channel attack on the wire-values of the circuit
verifying membership in L, so a PCP constructed from a circuit resilient against such attacks
would be ZK. However, a leakage-resilient circuit evaluates the desired function only if its input
is properly encoded, i.e., has a specific structure, whereas by generating a “proof” from the wire-
values of the circuit on an ill-formed “encoded” input, one can cause the verification to accept
inputs x /∈ L with probability 1. We overcome this obstacle by constructing leakage-resilient
circuits with the additional guarantee that ill-formed encoded inputs are detected. Using this
approach, we obtain the following results:

• We construct the first witness-indistinguishable PCPs (WIPCP) for NP with non-adaptive
verification. WIPCPs relax ZKPCPs by only requiring that different witnesses be indis-
tinguishable. Our construction combines strong leakage-resilient circuits as above with the
PCP of Arora and Safra (FOCS ’92), in which queries correspond to side-channel attacks
by shallow circuits, and with correlation bounds for shallow circuits due to Lovett and
Srivinasan (RANDOM ’11).

• Building on these WIPCPs, we construct non-adaptively verifiable computational ZKPCPs
for NP in the common random string model, assuming that one-way functions exist.

• As an application of the above results, we construct 3-round WI and ZK proofs for NP in
a distributed setting in which the prover and the verifier interact with multiple servers of
which t can be corrupted, and the total communication involving the verifier consists of
poly log (t) bits.
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1 Introduction

In this work we study probabilistically checkable proofs with zero-knowledge properties, and establish
a connection between such proofs and leakage-resilient circuits. Before describing our main results,
we first give a short overview of these objects.

Probabilistically Checkable Proof (PCP) systems [1, 2] are proof systems that allow an efficient
randomized verifier, with oracle access to a purported proof generated by an efficient prover (that is
also given the witness), to probabilistically verify claims of the form “x ∈ L” (for an NP-language L)
by probing only few bits of the proof. The verifier accepts the proof of a true claim with probability
1 (the completeness property), and rejects false claims with high probability (the probability that
the verifier accepts a false claim is called the soundness error). The celebrated PCP theorem [1, 2, 8]
asserts that any NP language admits a PCP system with soundness error 1/2 in which the verifier
reads only a constant number of proof bits (soundness can be amplified using repetition). Moreover,
the verifier is non-adaptive, namely its queries are determined solely by his randomness (a verifier
is adaptive if each of his queries may also depend on the oracle answers to previous queries).

A very different kind of proofs are zero-knowledge (ZK) proofs [15], namely proofs that carry no
extra knowledge other than being convincing. Combining the advantages of ZK proofs and PCPs,
a zero-knowledge PCP (ZKPCP) is defined similarly to a traditional PCP, except that the proof
is also randomized and there is the additional guarantee that the view of any (possibly malicious)
verifier who makes a bounded number of queries can be efficiently simulated up to a small statistical
distance.

Previous ZKPCP constructions [24, 19, 21] are obtained from standard (i.e., non-ZK) PCPs
in two steps. First, the standard PCP is transformed into a PCP with a weaker “honest-verifier”
ZK guarantee (which is much easier to achieve than full-fledged ZK). Then, this “honest-verifier”
ZKPCP is combined with an unconditionally secure oracle-based commitment primitive called a
“locking scheme” [24, 19]. This transformation yields ZKPCPs for NP with statistical ZK against
query-bounded malicious verifiers, namely ones who are only limited to asking at most p (|x|) queries,
for some fixed polynomial p that is much smaller than the proof length, but can be much bigger than
the (polylogarithmic) number of queries asked by the honest verifier.

A common limitation of all previous ZKPCP constructions is that they require adaptive verifi-
cation, even if the underlying non-ZK PCP can be non-adaptively verified. This raises the natural
question of constructing PCPs that can be non-adaptively verified, and guarantee ZK against mali-
cious verifiers. We note that the adaptivity of the verifier is inherent to any locking-scheme-based
ZKPCP, since the unconditional security of locking schemes makes their opening inherently adap-
tive. Therefore, constructing ZKPCPs that can be verified non-adaptively requires a new approach
towards ZKPCP construction. An additional advantage of eliminating the use of locking schemes is
the possibility of constructing ZKPCPs preserving the proof length (which is important when these
are used for cryptographic applications as described below), since locking schemes inherently incur
a polynomial blow-up in the PCP length.

Motivated by these goals, we suggest a new approach for the construction of ZKPCPs. We apply
leakage-resilient circuit compilers (LRCCs) to construct witness-indistinguishable PCPs (WIPCPs)
for NP, a weaker variant of ZKPCPs in which the simulation is not required to be efficient. We
then apply the so-called “FLS technique” [12] to convert these WIPCPs into computational ZKPCPs
(CZKPCPs) in the common random string (CRS) model, based on the existence of one-way functions
(OWFs). In such a CZKPCP, the view of any query-bounded probabilistic polynomial-time (PPT)
verifier can be efficiently simulated, in a way which is computationally indistinguishable from the
actual view.

Informally, an LRCC compiles any circuit into a new circuit that operates on encoded inputs, and
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withstands side-channel attacks in the sense that these reveal nothing about the (properly encoded)
input, other than what follows from the output. Works on LRCCs obtained information-theoretic
security for different classes of leakage functions [20, 11, 30, 10, 17, 28].

Works on LRCC compilers considered different restrictions on the class of leakage functions being
tolerated. One line of work, initiated by Ishai et al. [20], restricts the complexity class from which
leakage functions are chosen. In these constructions [20, 11, 28] the compiled circuit operates on
secret-shares, and its leakage-resilience is reduced to leakage functions being unable to distinguish
secret shares of different values. A different approach, initiated by Micali and Reyzin [27], considers
leakage that is “local” in the sense that the leakage functions operate on disjoint sets of wires of the
circuit (see, e.g., [27, 16, 22, 10, 17]).

Other than the theoretical interest in this question, our study of PCPs with ZK properties
is motivated by their usefulness for cryptographic applications. For instance, ZKPCPs are the
underlying combinatorial building blocks of succinct zero-knowledge arguments, which have been
the subject of a large body of recent work (see, e.g., [3, 4, 5] and references therein).

A more direct application of WIPCPs and ZKPCPs is for implementing efficiently verifiable
zero-knowledge proofs in a distributed setting involving a prover, verifier, and multiple (potentially
corrupted) servers. In this setting a prover can distribute a ZKPCP between the servers, allowing
the verifier to efficiently verify the claim by polling a small random subset of the servers.1 In
this and similar situations, ZKPCPs that only offer security against an honest verifier are not
sufficient for protecting against colluding servers. We use our non-adaptively verifiable WIPCPs
and CZKPCPs for NP to construct 3-round WI and CZK proofs for NP in this distributed setting,
in which the total communication with the verifier is sublinear in the input length. The WI proofs
are unconditional, whereas the CZK proofs are based on the existence of OWFs. This should be
contrasted with standard sublinear ZK arguments, that require at least 4 rounds of interaction,
and require the existence of collision resistant hash functions. We refer the reader to, e.g., [19] for
additional discussion of ZKPCPs and their applications.

1.1 Our Results and Techniques

We now give a more detailed account of our results, and the underlying techniques.
From LRCCs and PCPs to WIPCPs. Let L be an NP-language with a corresponding NP-
relation RL, and a boolean circuit C verifying RL. Recall that the prover P in a PCP system for
RL is given the input x and a witness y for the membership of x in L, and outputs a proof π that
is obtained by applying some function fP to x, y. For our purposes, it would be more convenient to
think of fP as a function of the entire wire values w of C, when evaluated on x, y. In a ZKPCP,
few bits in the output of fP should reveal essentially nothing about the wire values w, i.e., C should
withstand “leakage” from fP . In general, we cannot assume that C has this guarantee, but using an
LRCC, C can be compiled into a circuit Ĉ with this property. Informally, an LRCC is associated with
a function class L (the leakage class) and a (randomized) input encoding scheme E, and compiles a
deterministic circuit C into a deterministic circuit Ĉ, that emulates C, but operates on an encoded
input. It is leakage-resilient in the following sense: for any input z for C, and any ` ∈ L, the output
of ` on the wire values of Ĉ, when evaluated on E (z), reveals nothing other than C (z). This is
formalized in the simulation-based paradigm (i.e., the wire-values of Ĉ can be efficiently simulated
given only C (z)).

We establish a connection between ZKPCPs and LRCCs. Assume the existence of an LRCC
associated with a leakage class L, such that any restriction fIP of fP to a “small” subset I of its

1Unlike the ZKPCP model, the answers of malicious servers may depend on the identity of the verifier’s queries,
but this can be overcome using techniques of [21].
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outputs satisfies fIP ∈ L. Then the oracle answers to the queries of a query-bounded verifier V
correspond to functions in L, since for every possible set I of oracle queries, the answers are fIP (w).
Therefore, if w is the wire values of a leakage-resilient circuit then the system is ZK. This gives a
general method of transforming standard PCPs into ZKPCPs: P, V replace Cx = C (x, ·) (i.e., C
with x hard-wired into it) with Ĉx; and P proves that Ĉx is satisfiable by generating the PCP π
from the wire values of Ĉx.

This transformation crucially relies on the fact that Ĉx emulates Cx (e.g., if Ĉx always outputs
1 then the resultant PCP system is not sound). However, in current constructions of LRCCs (e.g.,
[20, 11, 28]), this holds only if the encoded input of Ĉx was honestly generated. Moreover, there
always exists a choice of an ill-formed “encoding” that satisfies Ĉx (i.e., causes it to output 1). In
our case the prover generates the encoded input of Ĉx (the verifier does not know this input), so
that a malicious prover is able to pick an ill-formed “encoding” that satisfies Ĉx, causing the verifier
to accept with probability 1. Therefore, soundness requires that if Cx is not satisfiable, then there
exists no satisfying input for Ĉx (either well- or ill-formed), a property which we call SAT-respecting.
The main tool we use are SAT-respecting LRCCs, which we construct based on the LRCC of Faust
et al. [11]. To describe our construction, we first need to delve deeper into their construction.

The LRCC of [11] transforms a circuit C into a circuit Ĉ that operates on encodings generated by
a linear encoding scheme, and emulates the operations of C on these encodings. Leakage-resilience
against functions in a restricted function class L is obtained by “refreshing” the encoded intermediate
values of the computation after every operation, using encodings of 0. (The LRCCs of [20, 28] operate
essentially in the same way.) The input of Ĉ includes sufficiently many encodings of 0 to be used for
the entire computation.2 However, by providing Ĉ also with 1-encodings (i.e., encodings of 1), one
can change the functionality emulated by Ĉ. (In particular, if the encoding “refreshing” the output
gate is a 1-encoding, the output is flipped.) This is not just an artifact of the construction, but
rather is essential for their leakage-resilience argument. Concretely, to simulate the wire values of
Ĉ without knowing its input, the simulator sometimes uses 1-encodings, which rules out the natural
solution of verifying that the encodings used for “refreshing” are 0-encodings. We observe that if
C were emulated twice, it would suffice to know that at least one copy used only 0-encodings, since
then Ĉ is satisfiable only if the honestly-evaluated copy is satisfiable (i.e., C is satisfiable). At first,
this may seem as no help at all, but it turns out that by emulating C twice, we can construct what
we call a relaxed LRCC, which is similar to an LRCC, except that the simulator is not required to
be efficient. Specifically, assume that before compiling C into Ĉ, we would replace it with a circuit
C ′ that computes C twice, and outputs the AND of both evaluations. Then Ĉ ′ (complied from C ′)
would be relaxed leakage-resilient, since an unbounded simulator could simulate the wire values of
Ĉ ′ by finding a satisfying input zS for C, and honestly evaluating Ĉ ′ on a pair of encodings of zS .
Using a hybrid argument, we prove that functions in L cannot distinguish the simulated wire values
WS from the actual wire values WR of Ĉ ′ when evaluated on a satisfying input zR. Indeed, we can
first replace the input in the first copy from zR to zS (using the leakage-resilience of the LRCC of
[11] to claim that functions in L cannot distinguish this hybrid distribution from WR), then do the
same in the second copy. By replacing the inputs one at a time, we only need to use 1-encodings in
a single copy.3 However, holding two copies of the original circuit still does not guarantee that the

2Actually, [11] consider a model of continuous leakage, in which the circuit is invoked multiple times on different
inputs, and maintains a secret state. Their construction uses tamper-proof hardware (called opaque gates) to generate
the encodings of 0 used for refreshing. We consider the simpler model of one-time leakage on circuits that operated
on encoded inputs [20, 28], and as a result we can incorporate the necessary encodings (used for refreshing) into the
encoded input.

3This technique is reminiscent of the “2-key trick” of [29], used to convert a CPA-secure encryption scheme into a
CCA-secure one.
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evaluation in at least one of them uses only 0-encodings.
The natural solution would again be to add a sub-circuit verifying that the encodings used are

0-encodings, but this sub-circuit should hide the identity of the “correctly evaluated” copy. This
is because the hybrid argument described above first uses 1-encodings in the first copy (and 0-
encodings in the second), and then uses 1-encodings in the second copy (and only 0-encodings in the
first). Therefore, if functions in L could determine which copy uses only 0-encodings, they could also
distinguish between the hybrids. Instead, we describe an “oblivious” checker T0, which at a high-level
operates as follows. To check that either the first or the second copy use only 0-encodings, it checks
that for every pair of encodings, one from the first copy, and one from the second, the product of
the encoded values is 0. To guarantee that leakage on T0 reveals no information regarding which
copy uses only 0-encodings, we use the LRCC of [11] to compile T0 into a leakage-resilient circuit
T̂0. This introduces the additional complication that now we must also verify the encodings used
to “refresh” the computation in T̂0 (otherwise 1-encodings may be used, potentially changing the
functionality of T̂0 and rendering it useless). However, since T̂0 does not operate directly on the
inputs to Ĉ ′ (it operates only on the encodings used for “refreshing”), we show that the “refreshing”
encodings used in T̂0 can be checked directly (by decoding the encoded values and verifying that
they are 0). Additional technicalities arise since introducing these additional components prevents
us from using the LRCC of [11] as a black box (see Section 3 for additional details on the analysis).
Finally, we note that our circuit-compiler is relaxed -leakage-resilient because in all hybrids, we need
the honestly-evaluated copy to be satisfied, so the simulator needs to find a satisfying input for
C. This is also the reason that we get WIPCPs instead of ZKPCPs. If we had a SAT-respecting
LRCC, the transformation described above would give a ZKPCP. However, we show in Section 6 that
known LRCCs withstanding global leakage [20, 11, 28] cannot be transformed into SAT-respecting
non-relaxed LRCCs (i.e., LRCCs with an efficient simulator), unless NP ⊆ BPP. Intuitively, this is
because these constructions admit a simulator which is universal in the sense that it simulates the
wire values of the compiled circuit without knowing the leakage function, and the simulated values
“fool” all functions in L. Combining such a SAT-respecting LRCC with PCPs for NP (through the
transformation described above) would give a BPP algorithm of deciding any NP-language.
Constructing WIPCPs for NP. Recall that our general transformation described above relied
on fP being in the function class L that is associated with the SAT-respecting relaxed-LRCC. We
observe that the PCP system of Arora and Safra [2] has the property that every “small” subset
of proof bits can be generated using a low-depth circuit of polynomial size over the operations
∧,∨,¬,⊕, with “few” ⊕ gates. We use recent correlation bounds of Lovett and Srivinasan [26],
which roughly state that such circuits have negligible correlation with the boolean function that
counts the number of 1’s modulo 3 in its input, to construct a SAT-respecting circuit compiler that
is relaxed leakage-resilient with respect to this function class. Combining this relaxed LRCC with
our general transformation, we prove the following, where NA-WIPCP denotes the class of all NP-
languages that have a PCP system with a negligible soundness error, polynomial-length proofs, a
non-adaptive honest verifier that queries poly-logarithmically many proof bits, and guarantee WI
against (adaptive) malicious verifiers querying a fixed polynomial number of proof bits.

Theorem 1.1 (NA-WIPCPs for NP). NP = NA−WIPCP.

Constructing CZKPCPs for NP. Using a general technique of Feige et al. [12], and assuming
the existence of OWFs, we transform our WIPCP into a CZKPCP in the CRS model, in which the
PCP prover and verifier both have access to a common random string. Concretely, we prove the
following result, where NA-CZKPCP corresponds exactly to the class NA-WIPCP, except that the
WI property is replaced with CZK in the CRS model.

Corollary 1.2 (NA-CZKPCPs for NP). Assume that OWFs exist. Then NP = NA− CZKPCP.
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At the end of Section 4 we describe a simple alternative approach for constructing CZKPCPs,
which applies a PCP on top of a standard non-interactive zero-knowledge (NIZK) proof. However,
this alternative relies on stronger assumptions (e.g. existence of trapdoor functions [12]) than our
main construction which only relies on a OWF.

2 Preliminaries

Let F be a finite field, and Σ be a finite alphabet (i.e., a set of symbols). In the following, function
composition is denoted as f ◦ g, where (f ◦ g) (x) := f (g (x)). If F,G are families of functions then
F ◦ G := {f ◦ g : f ∈ F, g ∈ G}. Vectors will be denoted by boldface letters (e.g., a). If D is a
distribution then X ← D, or X ∈R D, denotes sampling X according to the distribution D. Given
two distributions X,Y , SD (X,Y ) denotes the statistical distance between X and Y . For a natural
n, negl (n) denotes a function that is negligible in n. For a function family L, we sometimes use the
term “leakage family L”, or “leakage class L”. In the following, n usually denotes the input length,
m usually denotes the output length, d, s denote depth and size, respectively (e.g., of circuits, as
defined below), t is used to count ⊕ gates, and σ is a security parameter. We assume that standard
cryptographic primitives (e.g., OWFs) are secure against non-uniform adversaries.

Definition 2.1 (Leakage-indistinguishability of distributions). Let D,D′ be finite sets, L = {` :
D → D′} be a family of leakage functions, and ε > 0. We say that two distributions X,Y over D
are (L, ε)-leakage-indistinguishable, if for any function ` ∈ L, SD (` (X) , ` (Y )) ≤ ε.

Remark 2.2. In case L consists of functions over a union of domains, we say that X,Y over D are
(L, ε)-leakage-indistinguishable if SD (` (X) , ` (Y )) ≤ ε for every function ` ∈ L with domain D.

Encoding schemes. An encoding scheme E over alphabet Σ is a pair (Enc,Dec) of algorithms,
where the encoding algorithm Enc is a probabilistic polynomial-time (PPT) algorithm that given a
message x ∈ Σn outputs an encoding x̂ ∈ Σn̂ for some n̂ = n̂ (n); and the decoding algorithm Dec
is a deterministic algorithm, that given an x̂ of length n̂ in the image of Enc, outputs an x ∈ Σn.
Moreover, Pr [Dec (Enc (x)) = x] = 1 for every x ∈ Σn. We say that E is onto, if Dec is defined for
every x ∈ Σn̂(n).

An encoding scheme E = (Enc,Dec) over F is linear if for every n, n divides n̂ (n), and there exists
a decoding vector rn̂(n) ∈ Fn̂(n)/n such that the following holds for every x ∈ Fn. First, every encoding
y in the support of Enc (x) can be partitioned into n equal-length parts y =

(
y1, ...,yn

)
. Second,

Dec (y) =
(
〈rn̂(n),y1〉, ..., 〈rn̂(n),yn〉

)
(where “〈·, ·〉” denotes inner product). Given an encoding

scheme E = (Enc,Dec) over F, and n ∈ N, we say that a vector v ∈ Fn̂(n) is well-formed if v ∈
Enc (0n).
Parameterized encoding schemes. We consider encoding schemes in which the encoding and
decoding algorithms are given an additional input 1σ, which is used as a security parameter. Con-
cretely, the encoding length depends also on σ (and not only on n), i.e., n̂ = n̂ (n, σ), and for every
σ the resultant scheme is an encoding scheme (in particular, for every x ∈ Σn and every σ ∈ N,
Pr [Dec (Enc (x, 1σ) , 1σ) = x] = 1). We call such schemes parameterized. A parameterized encoding
scheme is onto if it is onto for every σ. It is linear if it is linear for every σ (in particular, there exist
decoding vectors {rn̂(n,σ)}). For n, σ ∈ N, a vector v ∈ Fn̂(n,σ) is well-formed if v ∈ Enc (0n, 1σ). We
will only consider parameterized encoding schemes, and therefore when we say “encoding scheme”
we mean a parameterized encoding scheme.

Definition 2.3 (Leakage-indistinguishability of functions and encodings). Let L be a family of
leakage functions, and ε > 0. A randomized function f : Σn → Σm is (L, ε)-leakage-indistinguishable
if for every x, y ∈ Σn, the distributions f (x) , f (y) are (L, ε)-leakage-indistinguishable.
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We say that an encoding scheme E is (L, ε)-leakage-indistinguishable if for every large enough
σ ∈ N, Enc (·, 1σ) is (L, ε)-leakage indistinguishable.

Circuits. We consider arithmetic circuits C over the field F and the set X = {x1, ..., xn} of vari-
ables. C is a directed acyclic graph whose vertices are called gates and whose edges are called wires.
The wires of C are labled with functions over X. Every gate in C of in-degree 0 has out-degree 1 and
is either labeled by a variable from X and referred to as an input gate; or is labeled by a constant
α ∈ F and referred to as a constα gate. Following [11], all other gates are labeled by one of the fol-
lowing functions +,−,×, copy or id, where +,−,× are the addition, subtraction, and multiplication
operations of the field (i.e., the outcoming wire is labeled with the addition, subtraction, or product
(respectively) of the labels of the incoming wires), and these vertices have fan-in 2 and fan-out 1; copy
vertices have fan-in 1 and fan-out 2, where the labels of the outcoming edges carry the same function
as the incoming edge; and id vertices that have fan-in and fan-out 1, and the label of the outcoming
edge is the same as the incoming edge. We write C : Fn → Fm to indicate that C is an arithmetic
circuit over F with n inputs and m outputs. The size of a circuit C, denoted |C|, is the number
of wires in C, together with input and output gates. Shallow (d, s) denotes the class of all depth-d,
size-s, arithmetic circuits over F. Similarly, ShallowB (d, s) denotes the class of all depth-d, size-s,
boolean circuits with ∧,∨ gates (replacing the +,−,× gates of arithmetic circuits), id, copy, const0,
and const1 gates (with fan-in and fan-out as specified above), and ¬ gates with fan-in and fan-out 1.
We will sometimes be interested in the input and output lengths of these circuit families. Therefore,
we denote circuits in Shallow (d, s) with input length n and output length m by Shallow (n,m, d, s).
Similarly, we use ShallowB (n,m, d, s) to denotes circuits in ShallowB (d, s) with input length n
and output length m. We also use the notations Shallow (n, d, s) = ∪m∈NShallow (n,m, d, s), and
ShallowB (n, d, s) = ∪m∈NShallowB (n,m, d, s). Somewhat abusing notation, we use the same nota-
tions to denote the families of functions computable by circuits in the respective class of circuits.
AC0 denotes all constant-depth and polynomial-sized boolean circuits over unbounded fan-in and fan
out ∧,∨,¬, const0 and const1 gates.

Definition 2.4. For F = F2, a circuit C : Fn → F over F2 is satisfiable if there exists an x ∈ Fn
such that C (x) = 1. For F 6= F2, C is satisfiable if there exists an x ∈ Fn such that C (x) = 0.

2.1 Circuit Compilers

We define the notion of a circuit compiler. Informally, it consists of an encoding scheme and a
compiler algorithm, that compiles a given circuit into a circuit operating on encodings, and emulating
the original circuit. Formally,

Definition 2.5 (Circuit compiler over F). A circuit compiler over F is a pair (Comp,E) of algorithms
with the following syntax.

• E = (Enc,Dec) is an encoding scheme, where Enc is a PPT encoding algorithm that given a
vector x ∈ Fn, and 1σ, outputs a vector x̂. We assume that x̂ ∈ Fn̂ for some n̂ = n̂ (n, σ).

• Comp is a polynomial-time algorithm that given an arithmetic circuit C over F outputs an
arithmetic circuit Ĉ.

We require that (Comp,E) satisfy the following correctness requirement. For any arithmetic cir-
cuit C, and any input x for C, we have Pr

[
Ĉ (x̂) = C (x)

]
= 1, where x̂ is the output of Enc

(
x, 1|C|

)
.

A boolean circuit compiler is a circuit compiler over F2.
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We consider circuit compilers that are also “sound”, meaning that satisfying (possibly ill formed)
inputs for the compiled circuit exist only if the original circuit is satisfiable.

Definition 2.6 (SAT-respecting circuit compiler). A circuit compiler (Comp,E) is SAT-respecting
if it satisfies the following soundness requirement for every circuit C : Fn → F. If Ĉ = Comp(C) is
satisfiable then C is satisfiable, i.e., if Ĉ (x̂∗) = 0 for some x̂∗ ∈ Fn̂, then there exists an x ∈ Fn such
that C (x) = 0. (For F = F2, we require that if Ĉ outputs 1 on some input, then so does C.)

2.2 Leakage-Resilient Circuit Compilers (LRCCs)

We consider circuit compilers whose outputs are leakage resilient for a class L of functions, in the
following sense. For every “not too large” circuit C, and every input x for C, the wire values of the
compiled circuit Ĉ, when evaluated on a random encoding x̂ of x, can be simulated given only the
output of C; and functions in L cannot distinguish between the actual and simulated wire values.

Notation 2.7. For a Circuit C, a leakage function ` : F|C| → Fm for some natural m, and an input
x for C, [C, x] denotes the wire values of C when evaluated on x, and ` [C, x] denotes the output of
` on [C, x].

Definition 2.8 (Relaxed LRCC). Let F be a finite field. For a function class L, ε (n) : N → R+,
and a size function S (n) : N→ N, we say that (Comp,E) is (L, ε (n) , S (n))-relaxed leakage-resilient
if there exists an algorithm Sim such that the following holds. For all sufficiently large n’s, every
arithmetic circuit C over F of input length n and size at most S (n), every ` ∈ L of input length

∣∣∣Ĉ∣∣∣,
and every x ∈ Fn, we have SD

(
` [Sim (C,C (x))] , `

[
Ĉ, x̂

])
≤ ε (|x|), where x̂← Enc

(
x, 1|C|

)
.

Definition 2.8 is relaxed in the sense that (unlike [20, 11, 28]) Sim is not required to be efficient.
The error in Definitions 2.6 and 2.8 is defined with relation to the input length n. Both definitions

can be naturally extended such that the compiler is also given a security parameter κ, and the error
depends on κ (and possibly also n).

3 SAT-Respecting Relaxed LRCC

In this section we construct a SAT-respecting relaxed LRCC. We first describe a relaxed LRCC
over any finite field F 6= F2, then use its instantiation over F3 to construct a boolean relaxed LRCC
(which we later use to construct WIPCPs and CZKPCPs). Our starting point is the circuit-compiler
of Faust et al. [11], which we denote by

(
CompFRRTV,EFRRTV

)
. They present a general circuit-

compiler that guarantees correctness, and a stronger notion of leakage-resilience (informally, that the
wire values of the compiled circuit can be efficiently simulated). However, the correctness of their
construction relies on the assumption that the inputs to the compiled circuit are honestly encoded.
Therefore, their construction is not SAT-respecting, since by using ill-formed encoded inputs one
can cause the compiled circuit to output arbitrary values, even if other than that the compiler was
honestly applied to the original circuit. We describe a method of generalizing their construction such
that the circuit-compiler is also SAT-respecting. We first give a high-level overview of the compiler
of [11]. (See Appendix A for a more detailed description of this LRCC.)
Gadgets. On input a circuit C, our compiler, and that of CompFRRTV, replace every wire of C
with a bundle of wires, and every gate in C with a gadget. More specifically, a bundle is a string
of field elements, encoding a field element according to some encoding scheme E; and a gadget is
a circuit which operates on bundles and emulates the operation of the corresponding gate in C. A
gadget has both standard inputs, that represent the wires in the original circuit, and masking inputs,

9



that are used to achieve privacy. More formally, a gadget emulates a specific boolean or arithmetic
operation on the standard inputs, and outputs a bundle encoding the correct output. Every gadget
G is associated with a setMG of “well-formed” masking input bundles (e.g., in the circuit compiler of
[11], MG consists of sets of 0-encodings). For every standard input x, on input a bundle x encoding
x, and any masking input bundles m ∈ MG, the output of the gadget G should be consistent with
the operation on x. For example, if G computes the operation ×, then for every standard input
x = (x1, x2), for every bundle encoding x = (x1,x2) of x according to E, and for every masking
input bundles m ∈MG, G (x,m) is a bundle encoding x1×x2 according to E. Since all the encoding
schemes that we consider are onto, we may think of the masking input bundles m as encoding some
set mask of values, in which case we say that G takes |mask| masking inputs. The privacy of the
internal computations in the gadget will be achieved when the masking input bundles of the gadget
are uniformly distributed over MG, regardless of the actual values encoded by the masking input
bundles.
Gadget-based circuit-compilers. Ĉ = CompFRRTV (C) is a circuit in which every gate is
replaced with the corresponding gadget, and output gates are followed by decoding sub-circuits
(computing the decoding function of E). Recall that the gadgets also have masking inputs. These
are provided as part of the encoded input of Ĉ, in the following way. EFRRTV uses an “inner” encoding
scheme Ein =

(
Encin,Decin

)
, where EncFRRTV uses Encin to encode the inputs of C, concatenated

with 0κ for a “sufficiently large” κ (these 0-encodings will be the masking inputs of the gadgets, that
are used to achieve privacy); and DecFRRTV uses Decin to decode its input, and discards the last κ
symbols.

3.1 The Construction

Let C : Fn → F be the circuit to be compiled. In the following, let r = r (σ) denote the number
of masking inputs used in a circuit compiled according to CompFRRTV. Recall that our compiler,
given a circuit C, generates two copies C1, C2 of C (that operate on two copies of the inputs);
compiles C1, C2 into circuits Ĉ1, Ĉ2 using CompFRRTV; generates the circuit Ĉ ′ that outputs the
AND of Ĉ1, Ĉ2; generates a circuit T0 verifying that at least one of the copies Ĉ1, Ĉ2 uses well-
formed masking inputs (i.e., its masking inputs are well-formed vectors); compiles T0 into T̂0 using
CompFRRTV; and finally verifies “in the clear” that T̂0 uses well-formed masking inputs. We now
describe these ingredients in more detail.

Our first ingredient checks the validity of the masking inputs used in the compiled circuit Ĉ ′. If
m1,m2 are masking inputs used in the first and second copies Ĉ1, Ĉ2 in Ĉ ′, respectively (i.e., these
copies are given encodings of m1,m2), then we compute vij = m1

i × m2
j for every i, j ∈ [r], and

check that all the vij ’s are zero. To make this check easier, we will use the following “binarization”
sub-circuit, which outputs 1 if its input is 0, and outputs 0 on all other input values.

Construction 3.1 (“Binarization” sub-circuit T ). T : F → F is defined as T (z) =
−
∏

06=a∈F (z − a), computed using O (|F|) many × and constant gates arranged in O (log |F|) layers.

Observation 3.2. T (0) = 1, and for every 0 6= z ∈ F, T (z) = 0.

The sub-circuit T0 described next checks the masking inputs m1,m2 used in the copies of Ĉ, and
outputs 1 if and only if at least one of m1,m2 is the all-zero string. It computes all products of the
form m1

i ×m2
j , then applies T to every product, and computes the products of all these outputs.

Construction 3.3 (Oblivious mask-checking sub-circuit T0). T0 : Fr×Fr → F is defined as follows.
T0 (y, z) =

∏
i,j∈[r] T (yi × zj), computed using a multiplication tree of size O (r) and depth O (log r)

(on top of the multiplication trees used to compute T ).

10



Observation 3.4. Since the outputs of T are in {0, 1}, T0 (y, z) = 1 if and only if for every i, j ∈ [r],
T (yi, zj) = 1 (which by Observation 3.2 happens if and only if yi × zj = 0), otherwise it outputs 0.

Our final ingredient is a sub-circuit TV checking the masking inputs used in the compiled sub-
circuit T̂0. At a high level, TV decodes every masking input; uses T to map the decoded values into
{0, 1} such that only 0 is mapped to 1; and multiplies all these values, to verify that all the masking
inputs are well-formed. In the following, r0 = r0 (σ) denotes the number of masking inputs used in
T̂0.

Construction 3.5 (Non-oblivious mask-checking sub-circuit TV ). Let n, σ, κ ∈ N, n̂ = n̂ (n+ κ, σ),
and

{
dn̂
}
be the decoding vectors of Ein. We define the decoding sub-circuit DV : Fn̂ → F corre-

sponding to dn̂ as follows: DV (v) = 〈dn̂,v〉, where 〈·, ·〉 denotes inner-product. DV is computed
using any correct decoding circuit with O (n̂) gates arranged in O (log n̂) layers.

We define TV :
(
Fn̂
)r0 → F as follows: for R = (r1, ..., rr0) where ri ∈ Fn̂ for every 1 ≤ i ≤ r0,

TV (R) =
∏
i∈[r0] T (DV (ri)). TV is computed using O (r0) many × gates, arranged in a tree of depth

O (log r0) (on top of the sub-circuits T ◦ DV ).

Observation 3.6. Let R = (r1, ..., rr0) ∈
(
Fn̂
)r0, then for every i ∈ [r0], DV (ri) = vi, where vi is

the value that ri encodes. Since the outputs of T are in {0, 1}, T (DV (ri)) = 1 if and only if vi = 0,
so TV = 1 if and only if all ri’s are well-formed, otherwise it outputs 0.

Our circuit-compiler (Construction 3.7) uses the ingredients described above. Comp first compiles
2 copies of C, i.e. C1, C2, and T0, into Ĉ1, Ĉ2, T̂0 (respectively), using CompFRRTV. Then, it generates
a flag bit indicating whether Ĉ1, Ĉ2 have the same output, and the masking inputs used in Ĉ1, Ĉ2, T̂0

are well-formed. If so, the output is that of Ĉ1, otherwise it is 1. (Recall that an arithmetic circuit is
satisfied iff its output is 0.) The encodings scheme generates encoded inputs for both copies Ĉ1, Ĉ2,
as well as sufficient masking inputs to be used in Ĉ1, Ĉ2, T̂0.

Construction 3.7 ((L, ε (n) , S (n))-LRCC over F). The circuit compiler (Comp,E = (Enc,Dec)) is
defined as follows. Let r = r (σ) , r0 = r0 (σ) : N→ N be parameters whose value will be set later.

Let Ein =
(
Encin,Decin

)
be a linear encoding scheme over F, with encodings of length

n̂in = n̂in (n, σ), and decoding vectors {dn̂in}. Then Enc (x, 1σ) = (x̂1, x̂2), where x̂i ←
Encin ((x, 0r+r0) , 1σ); and Dec ((x̂1, x̂2) , 1σ) computes Decin (x̂1, 1

σ), and discards the last r + r0
symbols. We use n̂ = n̂ (n, σ) to denote the length of encodings output by Enc, and n̂1 =
n̂1 (σ) := n̂ (1, σ). (Notice that n̂ (n, σ) = 2n̂in (n+ r + r0, σ).) For (x̂1, x̂2) ← Enc (x, 1σ), we
denote x̂i =

(
x̂in
i ,Ri,R0

i

)
, where x̂in

i is the encoding of x, and Ri,R0
i are encodings of 0r, 0r0 , respec-

tively. (R0
2 is not used in the construction, but it is part of x̂2 because the same internal encoding

scheme Encin is used to generate x̂1, x̂2.)
Let

(
CompFRRTV,EFRRTV

)
denote the circuit compiler of [11]. Comp on input a circuit C : Fn →

F, outputs the circuit Ĉ : Fn̂(n,|C|) → F defined as follows.

• Let C1, C2 be two copies of C, Ĉi = CompFRRTV (Ci) for i = 1, 2, and T̂0 = CompFRRTV (T0).

• Let f
((
x̂in

1 ,R1,R0
1

)
,
(
x̂in

2 ,R2,R0
2

))
:= T

(
Ĉ1

(
x̂in

1 ,R1

)
− Ĉ2

(
x̂in

2 ,R2

))
× T̂0

(
(R1,R2) ,R0

1

)
×

TV
(
R0

1

)
. (f = 1 if Ĉ1, Ĉ2 have the same output, and in addition the masking inputs used in

T̂0, and at least one of Ĉ1, Ĉ2, are well-formed. Otherwise, f = 0.) Then:

Ĉ
((
x̂in

1 ,R1,R0
1

)
,
(
x̂in

2 ,R2,R0
2

))
=
(
1− f

((
x̂in

1 ,R1,R0
1

)
,
(
x̂in

2 ,R2,R0
2

)))
+f
((
x̂in

1 ,R1,R0
1

)
,
(
x̂in

2 ,R2,R0
2

))
· Ĉ1

(
x̂in

1 ,R1,R0
1

)
(Notice that the output is Ĉ1

(
x̂in

1 ,R1,R0
1

)
if f = 1, otherwise it is 1.)
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Let rFRRTV = rFRRTV (σ) denote the maximal number of masking inputs used in a gadget of
CompFRRTV, and S0 (r) denote the size of T0. Then r (σ) = σ · rFRRTV and r0 (σ) = rFRRTV ·
S0

(
rFRRTV

)
.

We will show that if the underlying “inner” encoding scheme Ein is leakage-indistinguishable
against a leakage family LE, then Construction 3.7 is a SAT-respecting relaxed LRCC against a
slightly weaker leakage family L. Formally,

Proposition 3.8 (SAT-respecting relaxed LRCC over F). Let L,LE be families of functions, S (n) :
N→ N be a size function, and ε (n) : N→ R+. Let Ein =

(
Encin,Decin

)
be a linear, onto, (LE, ε (n))-

leakage-indistinguishable encoding scheme with parameters n = 1, σ and n̂ = n̂ (σ), such that LE =
L ◦ Shallow

(
7, O

(
n̂4 (S (n)) · S (n)

))
. Then there exists a SAT-respecting, (L, 8ε (n) · S (n) , S (n))-

relaxed-LRCC over F. Moreover, For every C : Fn → F, the compiled circuit Ĉ has size
∣∣∣Ĉ∣∣∣ =

O
(
|F| · n̂5 (S (n)) · |C|2

)
.

3.1.1 Roadmap Towards Proving Proposition 3.8

We will show that Construction 3.7 satisfies the requirements of Proposition 3.8. We first analyze
the SAT-respecting property, showing that if Ĉ is satisfiable, then so is C. At a high level, if C is not
satisfiable, then one could potentially satisfy Ĉ by providing ill-formed masking inputs to one of the
copies Ĉ1, Ĉ2, or to the oblivious masking-checking circuit T̂0. However, if the masking inputs of T̂0

are ill-formed, then TV resets the flag, so the output is 1 (i.e., Ĉ is not satisfied). Conditioned on T̂0

having well-formed masking inputs, the correctness of CompFRRTV (applied to T̂0), guarantees that
if the masking inputs of both Ĉ1, Ĉ2 are ill-formed then the flag is reset. Finally, if at least one of
Ĉ1, Ĉ2 has well-formed masking inputs, and Ĉ is satisfied (in particular, the flag is not reset), then
there exists an x ∈ Fn that satisfies the correctly evaluated copy, and therefore also satisfies C. We
note that the encoding scheme should be onto, otherwise computations in compiled circuits may not
correspond to computations in the original circuits (since the “encoded” input may not correspond
to a valid input for the original circuit). This intuition is formalized in the following lemma.

Lemma 3.9. If E is linear and onto, then Construction 3.7 is SAT-respecting. That is, if Ĉ (x̂) = 0
for some x̂ ∈ Fn̂, then C (x) = 0 for some x ∈ Fn.

Proof. Assume that Ĉ (x̂) = 0 for some x̂ ∈ Fn̂, and denote x̂ =
((
x̂∗1,R1,R0

1

)
,
(
x̂∗2,R2,R0

2

))
. Then

f (x̂) = 1 and Ĉ1

(
x̂in

1 ;R1

)
= 0 by the definition of Ĉ. Therefore, Ĉ1, Ĉ2 have the same output,

and TV , T0 output 1. Consequently, according to Observation 3.6, R0
1 is well-formed, so by the

correctness of CompFRRTV, T̂0 emulates T0. (Here, we also use the fact that TV is independent of all
other components of, and inputs to, Ĉ.) Moreover, since the encoding scheme is onto then R1,R2

define inputs to T0, on which T0 outputs 1 (because T̂0 outputs 1). By observation 3.4, at least
one of R1,R2 is well-formed. Assuming (without loss of generality) that R1 is well-formed, then
the correctness of CompFRRTV guarantees that Ĉ1 emulates C, so 0 = Ĉ1 (x̂∗1;R1) = C (x), where
x = (x1, ..., xn) ∈ Fn is x = Decin (x̂∗1) (x is well-defined because Ein is onto).

Next, we analyse the relaxed leakage-resilience property of Construction 3.7, describing a simu-
lator Sim that, given a circuit C, and its output on some input x, generates simulated wire values for
C, such that leakage functions cannot distinguish the simulated wires from the actual wire values of
C. At a high level, the simulator operates as follows. On input C : Fn → F, and C (x) for x ∈ Fn,
Sim finds a y ∈ Fn such that C (y) = C (x) (this is the reason that Sim is unbounded); generates
Ĉ = Comp (C) and ŷ ← Enc

(
y, 1|C|

)
; honestly evaluates Ĉ on ŷ; and outputs the wire values of
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Ĉ. We show that if Ein is leakage-indistinguishable for a leakage class which is “somewhat stronger”
than L, then for every ` ∈ L, SD

(
`
[
Ĉ, x̂

]
, `
[
Ĉ, ŷ

])
≤ ε (n), where x̂ ← Enc

(
x, 1|C|

)
. Informally,

this follows from a hybrid argument, where we first replace the input of Ĉ1 from x̂ to ŷ, and then do
the same for Ĉ2. (This is also the reason that we do not explicitly verify that Ĉ1, Ĉ2 are evaluated
on encodings of the same input.)

To show that each adjacent pair of hybrids is leakage-indistinguishable, we first use an argument
similar to that of [11], where we first replace the bundles of Ĉ1 or Ĉ2 (depending on the pair of hybrids
in question) that are external to the gadgets (i.e., bundles that correspond to wires of the original
circuit C) with random encoding of the “correct” values; and then replace the bundles internal to the
gadgets of Ĉ1 (or Ĉ2) with simulated values. However, our compiled circuit Ĉ consists also of T̂0, TV ,
so the analysis in our case is more complex, and in particular we cannot use the leakage-resilience
analysis of [11] as a black box. To explain the difficulty in generating these wires values, we need to
take a closer look at their leakage-resilience analysis.

Recall that the leakage-indistinguishability proof for every pair of adjacent hybrids contains in
itself two series of hybrid arguments, one replacing external bundles, and the other replacing internal
bundles. In the first case, leakage-indistinguishability is reduced to that of the underlying encoding
scheme Ein, whereas in the second it is reduced to the leakage-indistinguishability of the actual and
simulated wire values of a single gadget. Specifically, the leakage function `in in the reduction is
given either an encoding of a single field element, or the wire values of a single gadget; uses its input
to generate all the wire values of the compiled circuit ; and then evaluates ` on these wire values.
Thus, if originally we could withstand leakage from some function class Lin, and the additional wires
can be generated by a function class LR, then after the reduction we can withstand leakage from
any function class L such that L◦LR ⊆ Lin. In particular, if Lin consists of functions computable by
low-depth circuits, and computing the internal wires of T̂0, TV require deep circuits (consequently, LR
necessarily contains functions whose computation requires deep circuits), then we have no leakage-
resilience. To overcome this, we show how to simulate these additional wires using shallow circuits.
This is possible because (due to the way in which the hybrids are defined) the masking inputs in at
least one copy are well-formed. Specifically, the structure of T̂0, TV guarantees that conditioned on
the masking inputs of Ĉ2 being well-formed, these wire values can be computed by shallow circuits.
When the masking inputs of Ĉ2 are ill-formed, we are guaranteed that the masking inputs of Ĉ1 are
well-formed. Conditioned on this event, we show an alternative method of computing the internal
wires of T̂0, TV , which can be done by shallow circuits.

3.1.2 The Relaxed Leakage-Resilience Property of Construction 3.7

In this section we show that Construction 3.7 is relaxed leakage-resilient. Let S (n) : N → N
be a size function. Assume that E is (LE, εE (n))-leakage-indistinguishable for some family LE
of leakage functions, and some εE (n) : N → R+, and let L be a family of functions such that
LE = L ◦ Shallow

(
7, O

(
n̂4

1 (S (n)) · S (n)
))
. We will show that for an appropriate choice of ε′ > 0,

Construction 3.7 is (L.ε′, S (n))-relaxed leakage-resilient. Towards that end, let C : Fn → F be a
circuit of size |C| ≤ S (n), ` ∈ L be of input length

∣∣∣Ĉ∣∣∣, and x ∈ Fn. Recall that the simulator Sim is

given C and C (x), finds a y ∈ Fn such that C (x) = C (y), generates Ĉ = Comp (C), evaluates Ĉ on
an honestly-generated encoding of y, and outputs the wire values of Ĉ. Let x̂ ← Enc

(
x, 1|C|

)
,

ŷ ← Enc
(
y, 1|C|

)
such that C (x) = C (y) = 0, where x̂ =

((
x̂1,R1,R0

1

)
,
(
x̂2,R2,R0

2

))
and

ŷ =
((
ŷ1,R1,R0

1

)
,
(
ŷ2,R2,R0

2

))
, then we need to bound SD

(
`
[
Ĉ, x̂

]
, `
[
Ĉ, ŷ

])
. We do so by a

sequence of hybrids, in which we first replace the input of the first copy Ĉ1 from an encoding of x
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to an encoding of y, then do the same in the second copy Ĉ2. Thus, we use the following hybrids:

Hx :=
([
Ĉ1; (x̂1,R1)

]
,
[
Ĉ2, (x̂2;R2)

]
,
[
T̂0,
(
(R1,R2) ;R0

1

)]
,
[
TV
(
R0

1

)])
Hy,x :=

([
Ĉ1; (ŷ1,R1)

]
,
[
Ĉ2, (x̂2;R2)

]
,
[
T̂0,
(
(R1,R2) ;R0

1

)]
,
[
TV
(
R0

1

)])
Hy :=

([
Ĉ1; (ŷ1,R1)

]
,
[
Ĉ2, (ŷ2;R2)

]
,
[
T̂0,
(
(R1,R2) ;R0

1

)]
,
[
TV
(
R0

1

)])
Next, we show that both ` (Hx) , ` (Hy) are close to the intermediate distribution ` (Hy,x). As

noted above, to do so we use additional hybrids, in which we first replace the values of bundles
external to gadgets from their distribution according to either ` (Hx) or ` (Hy), to random encodings
of the “correct” values, and then replace the bundles internal to the gadgets with simulated bundles
values.
Bounding SD (` (Hx) , ` (Hy,x)). We use the intermediate distributions Hx

ext, H
x
mid in which the

external and internal bundles (respectively) are replaced with simulated bundles. More specifically,
Hx

ext is the hybrid distribution obtained by evaluating Ĉ honestly on x̂← Enc
(
x, 1|C|

)
; picking local

reconstructors for all gadgets of Ĉ1 (see Lemma A.4), and re-computing their internal wires using
the reconstructors; and re-evaluating T̂0 on the new masking inputs generated for the gadgets of
Ĉ1.4 Hx

mid represents the following mental experiment. Unlike the actual simulation, x is given as
input to Sim, but Sim uses it only in the second copy Ĉ2, i.e., it generates the wire values of Ĉ as
follows.

• Generating the wires of Ĉ2: Sim generates an encoding x̂ =
((
x̂1,R1,R0

1

)
,
(
x̂2,R2,R0

2

))
←

Enc
(
x, 1|C|

)
of x, and honestly evaluates Ĉ2 on x̂2 with masking inputs R2.

• Generating the wires of Ĉ1: Sim picks a random encoding O ← Encin
(
1, 1|C|

)
for the output

of Ĉ1, and honestly computes the wires of the output decoder. Then, Sim picks z ∈R Fn
and generates ẑ1 ← Encin

(
z, 1|C|

)
, and picks random encodings (according to Encin) for the

outputs of all gadgets (except the gadgets whose outputs “touch” the output decoder, since
the outputs of these gadgets have already been determined), which effectively determines the
standard inputs, and outputs, of all gadgets in Ĉ1. Next, Sim picks a local reconstructor for
every gadget of Ĉ1, and uses the reconstructors to compute the internal wires of the gadgets
in Ĉ1. The reconstructors determine the (possibly ill-formed) masking inputs of the gadgets,
which (together with R2) form the standard inputs of T̂0.

• Generating the wires of T̂0: Sim honestly evaluates T̂0 on R1,R2, with masking inputs R0
1.

• Generating the wires of TV : Sim honestly evaluates TV on R0
1.

• Finally, Sim uses the outputs of Ĉ1, Ĉ2, T̂0, TV to generate the flag f, and the output of Ĉ.

We need the following result [11, Lemma 8] regarding preservation of leakage-resilience under
computation.

Lemma 3.10 ([11]). Let n ∈ N, W0,W ′0 be distributions over Fn, L,L0 be families of func-
tions, and ε > 0. Let F be a distribution over n-input functions in L. For f ← F , let
W1 := f (W0) ,W ′1 := f (W ′0). If W0,W ′0 are (L0, ε)-leakage-indistinguishable, then W1,W ′1 are
(L1, ε)-leakage-indistinguishable for any family L1 of leakage functions such that L1 ◦ L ⊆ L0.

4Since re-evaluating T̂0 does not influence its masking inputs, this does not influence the computation in TV .
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The following notation is used to identify gadgets of T̂0 (resp. TV ) that are correlated to gadgets
of Ĉ1, Ĉ2 (resp. T̂0).

Notation 3.11. We say that a gadget Gi in Ĉi (for i = 1, 2) and an × gadget G0 in the first layer
of T̂0 (i.e., gadgets corresponding to × gates that are evaluated before T is called) are connected,
if a masking input (i.e., a vector encoding that masking input) of Gi is one of the inputs to G0.
Similarly, we say that a decoding sub-circuit DV (in TV ) and a gadget G0 of T̂0 are connected, if the
input to DV is a masking input of G0.

In Lemma 3.12 below, we bound the statistical distance between ` (Hx) and ` (Hx
ext). In

Lemma 3.14, we bound the statistical distance between ` (Hx
ext) and ` (Hx

mid). (The proofs of both of
these lemmas uses an additional sequence of hybrids.) Then, in Remark 3.15, we show that ` (Hx

mid)
and ` (Hy,x) are statistically close, so ` (Hx) is statistically close to ` (Hy,x). The proofs of these
lemmas rely on the fact that the inputs used in the second copy Ĉ2 are well formed.

Lemma 3.12. Let LG,L be families of functions, S (n) : N → N be a size function, and
ε (n) : N → R+. If every gadget G of Ĉ1 is (LG, ε (n))-reconstructible, and LG = L ◦
Shallow

(
|G| , 2, O

(
n̂4

1 (S (n)) · S (n)
))
, then SD (` (Hx) , ` (Hx

ext)) ≤ ε (n) · S (n) for every ` ∈ L.

Proof. Let M ≤ S (n) denote the number of gadgets in Ĉ1, then we define a fixed ordering on these
gadgets, and a sequenceH0, ...,HM of hybrids, where inHi, Ĉ is honestly evaluated with input x, and
then the internal wires of the first i gadgets of Ĉ1 are recomputed using the gadget reconstructors, and
the wires of Ĉ0 influenced by these computations are also recomputed. Then H0 = Hx, HM = Hx

ext.
If SD (` (Hx) , ` (Hx

ext)) > ε (n) · S (n) for some ` ∈ L then SD (` (Hm) , ` (Hm−1)) > ε (n) for some
m ∈ [M ]. Denote the m’th gadget by G, then G is necessarily a × gadget. (Indeed, conditioned on
their inputs and output, Lemma A.4 guarantees that the internal wires of the reconstructors of all
other gadgets are distributed identically to the internal wires in an honest evaluation of the gadget.)
Using an averaging argument, Lemma 3.13 (which we can use because Ĉ2, T̂0 are honestly evaluated),
and the fact that the masking inputs of G are used (as standard inputs) only in G0 gadgets (in T̂0)
connected to G, we can fix all the wires in Hm, Hm−1 except for the masking inputs, and internal
wires, of G; and the wires of B0, U0, and the internal wires in the computation of B0, U0,q0, in every
gadget G0 (in T̂0) connected to G (the subscript “0” here is used to denote wires internal to G0).
(Notice that the inputs to TV are the columns of the masking inputs of such G0. As these masking
inputs are fixed, then the entire computation in TV can also be fixed.)

Let WR
0 (WS

0 ) denote the real-world (reconstructed) wire assignment to the internals of G.
We construct a pair of distributions WR

1 ,WS
1 , computable from WR

0 ,WS
0 by a function f ∈

Shallow
(
|G| , 2, O

(
n̂4

1 (S (n)) · S (n)
))
. Given the (either real or reconstructed) internals of G (with

the inputs a,b, and the output c, that were hard-wired into Hm, Hm−1), f “fills in the holes” in
the wire assignment of Ĉ, i.e., uses its input to honestly evaluate the missing wires in Ĉ0. Then
f ∈ Shallow

(
|G| , 2, O

(
n̂4

1 (S (n)) · S (n)
))

because by Lemma 3.13, every gadget G0 in Ĉ0 connected
to G can be evaluated in Shallow

(
2, O

(
n̂2

1 (S (n))
))

(recall that f need only compute the missing
wires B0, U0, and the internal values in the computation of B0, U0 and the (fixed) q0); there are at
most O

(
n̂2

1 (S (n)) · S (n)
)
such gadgets G0; and we can evaluate them in parallel.

By the lemma’s assumptions, the × gadget is (LG, ε (n))-reconstructible, so WR
0 ,WS

0 are
(LG, ε (n))-leakage-indistinguishable. Using Lemma 3.10 (here, F is the distribution that always
returns the function f), WR

1 ,WS
1 are (L, ε (n))-leakage-indistinguishable for every family L of leak-

age functions such that L ◦ Shallow
(
|G| , 2, O

(
n̂4

1 (S (n)) · S (n)
))
⊆ LG. In particular,

SD (` (Hm) , ` (Hm−1)) = SD
(
`
(
WS

1

)
, `
(
WR

1

))
≤ ε (n) .
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The proof of Lemma 3.12 used the following fact: the internal wires of every × gadget G0 in
T̂0 that is connected to gadgets of Ĉ1, Ĉ2, are computable (from the inputs and output of G0) by a
shallow circuit, provided that its second input is well-formed. Formally,

Lemma 3.13. Let G0 be a gadget of T̂0 connected to gadgets of Ĉ1 and Ĉ2, with inputs a0, b0, and
let B0, S0, U0, q0, r0, c0 denote the internal wires of G0. If b0 and the masking inputs of G0 are well-
formed, then q0, c0 are well-formed, and independent of a0, b0. Moreover, if b0, S0 are fixed, then
given q0, c0,a0, r0, the internal and output wires of G0 are computable in Shallow

(
2, O

(
n̂2

1 (S (n))
))
.

Proof. Let c0 denote the output of G0, and let B0, U0, S0,q0, r0 := rn̂1+1 denote its internal wires.
Since b0 encodes 0, then q0 is independent of a0,b0.5 Since every column of S0 is well-formed and
independent of a0,b0 then q0 is also well-formed. Finally, since r0 is well-formed and independent
of a0,b0, then so is c0.

Next, we show that for fixed b0, S0, and given a0,q0, c0, the (remaining) internals of G0 are
computable in Shallow

(
2, O

(
n̂2

1 (S (n))
))
. Notice that we only need to reconstruct B0, U0 and the

internal wires in the computation of B0, U0,q0. B0 is computable in a single layer using n̂1 (S (n))
constant gates (for the coordinates of b0), n̂1 (S (n)) input gates (for the coordinates of a0), and
n̂2

1 (S (n)) × gates (computing the products a0,ib0,j). Once B0 is known, U0 is computable in a single
layer with n̂2

1 (S (n)) constant gates (for the coordinates of S0) and n̂2
1 (S (n)) + gates (computing

B0,i + S0,i). The internal values in the computation of every q0,i are ai
∑j

k=1 b0,kdk +
∑j

k=1 s0,i,kdk,
where j = 1, ..., n̂1 (S (n)), and d is the decoding vector of Ein, so for fixed b0, S0,d, these in-
ternal wires can be computed with O

(
n̂2

1 (S (n))
)
gates organized in two layers: the first with

n̂1 (S (n)) constant gates (for the values
∑j

k=1 b0,kdk, j = 1, ..., n̂1 (S (n))) and n̂1 (S (n)) × gates
(computing ai

∑j
k=1 b0,kdk, j = 1, ..., n̂1 (S (n))), and the second with n̂1 (S (n)) constant gates (for

the values
∑j

k=1 si,kdk, j = 1, ..., n̂1) and n̂1 + gates (computing ai
∑j

k=1 b0,kdt,k +
∑j

k=1 si,kdk, j =
1, ..., n̂1 (S (n))). Since the internal wires of q0 can be computed in parallel to B0, U0, the entire
computation is in Shallow

(
2, O

(
n̂2

1 (S (n))
))
.

Lemma 3.14. Let LE,L be families of functions, S (n) : N → N be a size function,
and ε (n) : N → R+. If Ein is (LE, ε (n))-leakage-indistinguishable, and LE = L ◦
Shallow

(
n̂1 (S (n)) , 4, O

(
n̂4

1 (S (n)) · S (n)
))
, then SD (` (Hx

mid) , ` (Hx
ext)) ≤ ε (n) · S (n) for every

` ∈ L.

Proof. Define a fixed ordering on the set of inputs bundles of Ĉ1, and bundles at the output of
gadgets in Ĉ1 that do not touch the decoder, and let M ≤ S (n) denote the number of such bundles.
We define hybrids H0, ...,HM , where Hi is generated by drawing an assignment to the outputs of
all gadgets in Ĉ1, according to the values of the corresponding wires in C (x); replacing the first
i bundles with random encodings of random values; computing the internal wires of the gadgets
of Ĉ1 using the gadget reconstructors (see Lemma A.4); and evaluating Ĉ2, T̂0, TV honestly (in
particular, the input to Ĉ2 is a random encoding of x). Notice that H0 = Hx

ext and HM = Hx
mid. If

SD (` (Hx
mid) , ` (Hx

ext)) > ε (n) · S (n) for some ` ∈ L, then SD (` (Hm) , ` (Hm−1)) > ε (n) for some
m ∈ [M ]. Let Go (Gi) denote the gadget whose output (input) is the m’th bundle. (If the m’th
bundle is an input bundle, then we consider only the gadget Gi.) Using an averaging argument, we
can fix all wires in Hm, Hm−1 (while preserving the statistical distance) except for the following: the
m’th bundle; the masking inputs, outputs, and internal wires of Go; the masking inputs, and internal
wires, of Gi; the input wire of Gi that corresponds to the m’th bundle; and the wires correspond to

5Indeed, For every 1 ≤ i ≤ n̂1, q0,i = U0,i · d = a0,i
∑n̂1
j=1 b0,jdj +

∑n̂1
j=0 S0,i,jdj =(1) a0,i · 0 +

∑n̂1
j=0 S0,i,jdj =∑n̂1

j=0 S0,i,jdj , where U0,i denotes the i’th row of U0, and d denotes the decoding vector of E (the equality denoted
(1) holds because b0 encodes 0).
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B0, U0 and to the computation of B0, U0,q0, inside every gadget G0 (in Ĉ0) connected to Go or Gi
(see Lemma 3.13).

Let b denote the value that the m’th bundle encodes in Hx
ext. Let WR

0 = Encin
(
b, 1S(n)

)
, and

WS
0 = Encin

(
r, 1S(n)

)
for r ∈R {0, 1} (i.e., WR

0 is the distribution of the m’th bundle in Hm−1, and
WS

0 is its distribution in Hm), then by the lemma’s assumption, WR
0 ,WS

0 are (LE, ε (n))-leakage-
indistinguishable. Let WR

1 := f
(
WR

0

)
,WS

0 := f
(
WS

1

)
where f is chosen according to the following

distribution F over Shallow
(
n̂1 (S (n)) , 4, O

(
n̂4

1 (S (n)) · S (n)
))
. F chooses functions reco, reci ac-

cording to the distribution over reconstructors for Go, Gi, respectively, and the obtained function f ,
on input e ∈ Fn̂1 : evaluates reco on the inputs ao,bo (that were hard-wired into Hm, Hm−1), and
output e (thus reconstructing the masking inputs, and internal wires, of Go); evaluates reci on e as
one of the inputs, and the other input, and output, according to the hard-wired values (thus gen-
erating the masking inputs, and internal wires, of Gi); and for every G0 gadget in Ĉ0 connected to
Go or Gi, honestly re-evaluates G0. Notice that WR

1 ≡ Hm−1, and WS
1 ≡ Hm, because the bundles

are re-randomizing (re-randomization guarantees that these equivalences hold although some of the
values were fixed in advance). Moreover, f ∈ Shallow

(
n̂1 (S (n)) , 4, O

(
n̂4

1 (S (n)) · S (n)
))
. Indeed,

by Lemma A.4, reco, reci are in Shallow
(
2, O

(
n̂2

1 (S (n))
))

(and given e they can be evaluated in
parallel), and given the internals of Go, Gi, the missing wires of every G0 connected to Go or Gi
are computable in Shallow

(
2, O

(
n̂2

1 (S (n))
))

(see the proof of Lemma 3.12 for a more detailed anal-
ysis). As there are at most O

(
n̂2

1 (S (n))
)
· S (n) such gadgets, which can be evaluated in parallel,

f ∈ Shallow
(
n̂1 (S (n)) , 4, O

(
n̂4

1 (S (n)) · S (n)
))
. By Lemma 3.10, WR

1 ,WS
1 are (L, ε (n))-leakage-

indistinguishable, and in particular, SD (` (Hm−1) , ` (Hm)) = SD
(
`
(
WR

1

)
, `
(
WS

1

))
≤ ε (n) .

Remark 3.15. Let Hy,x
ext denote the hybrid distribution obtained by evaluating Ĉ, when

Ĉ1, Ĉ2 are honestly evaluated on y, x, respectively (i.e., picking random encodings of(
y, 0r0(|C|)+r(|C|)) , (x, 0r0(|C|)+r(|C|)) according to Encin etc.); re-computing the internal wires of
all gadgets in Ĉ1 using their reconstructors; and re-evaluating T̂0. Then under the conditions of
Lemma 3.14, SD (` (Hx

mid) , ` (Hy,x
ext )) ≤ ε (n) · S (n). Indeed, as long as in both hybrids the input to

Ĉ2 encodes the same value, the proof was independent of the actual values whose encodings were
the inputs of Ĉ1, Ĉ2 (because in Ĉ2 the same value is used, and in Ĉ1 the value is compared to a
random value). The proof of Lemma 3.12 also relied only on the inputs to Ĉ1, Ĉ2 encoding the same
values in both distributions, and was independent of the actual encoded values, so the same proof
can be used to show that under the conditions of Lemma 3.12, SD (` (Hy,x

ext ) , ` (Hy,x)) ≤ ε (n) · S (n)
for every leakage function ` ∈ L. Consequently, SD (` (Hx) , ` (Hy,x)) ≤ 4ε (n) · S (n).

Bounding SD (` (Hy,x) , ` (Hy)). The argument in this case is somewhat more complex, because
here Ĉ2 may not have been honestly evaluated, whereas Lemmas 3.12 and 3.14 crucially relied on
the fact that the second input b0 of every × gadget G0 in T̂0 (connected to gadgets of Ĉ1, Ĉ2) is
well-formed. In particular, when only the masking inputs of Ĉ1 are guaranteed to be well-formed
then we cannot fix the internal wires of G0, and consequently generating the internal wires of T̂0, TV
may require deep circuits. Therefore, we present an alternative method of generating these wires
using shallow circuits. We call these alternative methods right-reconstructors, to emphasize that
they are used only when the simulator in the mental experiment simulates the internal wires of the
right copy Ĉ2. More specifically, we describe (Construction 3.16) a right-reconstructor for every ×
gadget in first layer of T̂0 (recall that these are the gadgets connected to gadgets of Ĉ1, Ĉ2), and a
right-reconstructor for every decoding sub-circuit DV of TV (Lemma 3.18). We note that unlike the
reconstructors of Lemma A.4, the right-reconstructors are only used when one of the inputs, and
the output, are well formed (in the case of T̂0); or if the inputs are well formed, and the output is
zero (in the case of TV ).
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Construction 3.16 (Right reconstructor, Ĉ0). We define a set of functions
{
recr

1,...,rn̂
0

}
for

r1, ..., rn̂1 ∈ Fn̂1 (recall that n̂1 = n̂1 (S (n))). Given standard inputs r1
0, r

2
0, and output c0, rec

r1,...,rn̂
0

operates as follows.

1. Computes B0 ← r1
0

(
r2

0

)T
=
(
r1

0,i × r2
0,j

)
i,j∈n̂1

(using n̂2
1 many × gates).

2. Sets the columns of U0 to r1, ..., rn̂1 .

3. Computes S0 ← U0 −B0 (using n̂2
1 many + gates and n̂2

1 many constant gates).

4. Computes a vector q0, where q0,i is the decoding of the i’th row of U0. (Notice that q0 depends
only on U0, which is independent of r1

0, r
2
0.)

5. Computes rn̂1+1 ← c0 − q0.

6. recr
1,...,rn̂

0 outputs r1
0, r

2
0, c0, r1, ..., rn̂+1, B0, S0, U0,q0.

The distribution REC is defined by picking a function recr
1,...,rn̂

0 where r1, ..., rn̂1 are chosen uniformly
at random from Encin

(
0, 1S(n)

)
.

Lemma 3.17. Let REC denote the distribution defined in Construction 3.16, then supp (REC) ⊆
Shallow

(
3n̂1 (S (n)) , 2, O

(
n̂2

1 (S (n))
))
. Moreover, for every plausible pair

((
r1

0, r
2
0

)
, c0

)
(according

to Definition A.3) for an × gadget in the first layer of T̂0 such that r1
0 ∈ Encin

(
0, 1|C|

)
, if rec← REC

then rec
(
r1

0, r
2
0, c0

)
is indistinguishable from the wire distribution in a real-world evaluation of the

× gadget in the first layer of T̂0, conditioned on the input-output pair
((

r1
0, r

2
0

)
, c0

)
.

Proof. First, supp (REC) ∈ Shallow
(
3n̂1 (S (n)) , 2, O

(
n̂2

1 (S (n))
))
, since every function recr

1,...,rn̂ ∈
supp (REC) uses O

(
n̂2

1

)
gates which can be arranged in two layers: the first layer contains the O

(
n̂2

1

)
× gates of step 1, the n̂2

1 constant gates of step 2 (since r1, ..., rn̂ are fixed), O
(
n̂2

1

)
constant gates

(for the internal wires in the computation of q0, which is also fixed), and O (n̂1) − gates (for the
computation of rn̂1+1); and the second contains the n̂2

1 many − gates of step 3.
Second, we claim that when r1

0 is well formed, and rec← REC, then the wire distribution gener-
ated by rec is indistinguishable from the real-world wire assignment, conditioned on

((
r1

0, r
2
0

)
, c0

)
.

The only difference between the × gadget and the output of rec is that in the real world, the columns
of S0 are uniform well-formed vectors, whereas in the output of rec this holds for U0. However, since
the columns of B0 are well-formed (because r1

0 is well-formed), Ein is linear, and S0 = U0 − B0,
then even in the reconstructed wire assignment, the columns of S0 are uniform well-formed vectors,
and U0 = B0 + S0, (i.e., S0, U0 are equally distributed in the real-world and the simulated wire
assignment). As all other computations in rec (conditioned on S0) imitate the computation in the
× gadget, we conclude that the distributions are identical.

Next, we describe a right-reconstructor for TV .

Lemma 3.18. Let r1
0, c0, r1, ..., rn̂1 ∈ Encin

(
0, 1|C|

)
, G0 be a × gadget in the first layer of T̂0,

and
((

r1
0, r

2
0

)
, c0

)
be a plausible pair for G0 (according to Definition A.3). Then there exists a

function recV ∈ Shallow (n̂1 (S (n)) , 2, O (n̂1 (S (n)))), such that recV
(
recr

1,...,rn̂
0

((
r1

0, r
2
0

)
, c0

))
is the

wire assignment to the decoding sub-circuits DV of TV that are given as input r1, ..., rn̂1+1 (where
rn̂1+1 is as defined by recr1,...,r

n̂1
((

r1
0, r

2
0

)
, c0

)
).
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Proof. The function recV decodes S0 = U0 − B0, and rn̂+1 = c0 − q0, where B0 = r1
0 ·
(
r2

0

)T for a
fixed well-formed r1

0; c0 is a fixed well-formed vector; U0 =
(
r1, ..., rn̂1

)
is fixed; and consequently q0,

obtained by decoding the rows of U0, is also fixed. Let d denote the decoding vector of Encin
(
·, 1S(n)

)
,

then the values of the wires of DV
(
rn̂1+1

)
are

∑k
j=1 dj ×

(
c0,j − q0,j

)
, k = 1, 2, ..., n̂1 (S (n)). These

values are all fixed, so they are computable by a circuit containing n̂1 (S (n)) constant gates, arranged
in a single layer. The values of the wires of DV (S0,i) (where S0,i denotes the i’th column of S0) are

k∑
j=1

dj × (U0,j,i −B0,j,i) =
k∑
j=1

dj ×
(
U0,j,i − r1

0,j × r2
0,i

)
=

=
k∑
j=1

dj × U0,j,i − r2
0,i ×

k∑
j=1

dj × r1
0,j

for k = 1, 2, ..., n̂1 (S (n)). Ui = ri, r, and r1
0 are fixed, so for every 1 ≤ k ≤ n̂1 (S (n)),∑k

j=1 dj × U0,j,i,
∑k

j=1 dj × r1
0,j are fixed, and so the internal wires of DV (S0,i) are computable by

a depth-2 circuit whose first layer contains n̂1 (S (n)) constant gates (for the values
∑k

j=1 dj × r1
0,j ,

k = 1, ..., n̂1 (S (n))) and n̂1 (S (n)) × gates (for the values r2
0,i ×

∑k
j=1 dj × r1

0,j); and the second
layer contains n̂1 (S (n)) constant gates (for the values

∑k
j=1 dj × U0,j,i, k = 1, ..., n̂1 (S (n))) and

n̂1 (S (n)) − gates (for the values
∑k

j=1 dj ×
(
U0,j,i − r1

0,j × r2
0,i

)
, k = 1, ..., n̂1 (S (n))). Since recV

performs the same computation as DV , its output is the wire assignment of DV , conditioned on the
values r1

0, c0, r0, ..., rn̂, and r2
0.

Using the right-reconstructors, we can now bound the statistical distance between ` (Hy) and
` (Hy,x

ext ). To that effect, we first define the distributions Hy
mid, H

y
ext, that are similar to Hx

mid, H
x
ext

except that y is the input used for the computation, and the wires of Ĉ1 remain unchanged.
More formally, let Hy

mid be the intermediate distribution defined by a mental experiment in which
Sim is given the input y, but uses it only in the first copy Ĉ1. Specifically, Sim generates
ŷ =

((
ŷ1,R1,R0

1

)
,
(
ŷ2,R2,R0

2

))
← Enc

(
y, 1|C|

)
, honestly evaluates Ĉ1 on ŷ1 with masking in-

puts R1, simulates the computation in Ĉ2 (by picking a random input, random values for the
outputs of the gadgets, and reconstructors for all gadgets, and generating the internal wires of the
gadgets using the reconstructors), and then uses the right-reconstructor of T̂0, and the function
recV of Lemma 3.18, to generate an assignment to the internal wires of these components. Hy

ext is
obtained by evaluating Ĉ honestly on ŷ ← Enc

(
y, 1|C|

)
, then picking reconstructors for all gadgets

of Ĉ2, and re-computing their internal wires using the reconstructors; re-evaluating all wires of T̂0

using its right-reconstructor; and re-computing the internal wires of TV using the function recV of
Lemma 3.18. In Lemma 3.19 below, we show that ` (Hy) , ` (Hy

ext) are statistically close. Then, in
Lemma 3.20, we show that ` (Hy

ext) , `
(
Hy

mid

)
are statistically close. In Remark 3.21 we show that

`
(
Hy

mid

)
, ` (Hy,x) are statistically close, so ` (Hy) , ` (Hy,x). We conclude that ` (Hy) , ` (Hx) are

statistically close.

Lemma 3.19. Let LG,L be families of functions, S (n) : N → N be a size function, and
ε (n) : N → R+. If every gadget G of Ĉ2 is (LG, ε (n))-reconstructible, and LG = L ◦
Shallow

(
|G| , 4, O

(
n̂4

1 (S (n)) · S (n)
))
, then SD (` (Hy) , ` (Hy

ext)) ≤ ε (n) S (n) for every ` ∈ L.

Proof. The proof is similar to that of Lemma 3.12, with the additional complication that we need to
reconstruct the internal wires of T̂0, TV (using their right-reconstructors). Assume towards negation
that the claim does not hold, and we define a fixed ordering on the M ≤ S (n) gadgets of Ĉ2, and
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the hybrids Hi, i = 0, ...,M are obtained by evaluating Ĉ honestly with input y; recomputing the
internal wires of the first i gadgets of Ĉ2, using their reconstructors; using the right-reconstructor,
re-computing the internals of T̂0 that are influenced by the internals of the first i gadgets of Ĉ2; and
(using the function recV of Lemma 3.18) recomputing the internal wires of TV that were influenced
by re-evaluating T̂0. Then H0 = Hy, HM = Hy

ext, so let Hm, Hm−1,m ∈ [M ] be the neighboring
hybrids such that SD (` (Hm) , ` (Hm−1)) > ε (n) for some ` ∈ L, and denote the m’th gadget by G.
Notice that we can fix all wire values in Hm, Hm−1, except for the following: the internal wires of
G; for every gadget G0 in T̂0 that is connected to G, the wires of B0, S0, and the wire corresponding
to the computation of B0, S0; and for every decoding sub-circuit DV in TV that is connected to
some G0, the internal wires corresponding to the computation of qV . Indeed, the computation in
Ĉ1 is the same in both hybrids, so we can fix the wire assignment of Ĉ1. Consequently, the right
input r0

1 of every G0 gadget of T̂0 that is connected to G is well-formed and fixed, so its output
c0 is well-formed. Since G0 is evaluated using the right-reconstructor then the columns of U0 can
also be fixed to well-formed vectors, so we can also fix the internal wires in the computation of q0

(since these depend only on U0), and c0 is therefore independent of the inputs r1
0, r

2
0 and can also

be fixed. Consequently, rn̂1+1 can also be fixed. Therefore, the only non-fixed internals in G0 are
B0, S0, and the wires corresponding to their computation. Recall that rn̂1+1, and the columns S0,i

of S0, constitute the inputs to a decoding sub-circuit DV of TV (that is connected to G0), and DV
outputs the decoding of rn̂1+1, S0,i (respectively), which is zero (for rn̂1+1

1 this is because q0, c0 are
well-formed, and for S0,i this is because r1

0, and all columns of U0, are well-formed). Therefore, the
outputs of these sub-circuits DV , and all values computed from them, can be fixed.

Let WR
0 (WS

0 ) denote the real-world (reconstructed) wire assignment to the internals of G after
we have fixed the values described above, and let WR

1 = f
(
WR

0

)
,WS

1 = f
(
WS

0

)
, where f is chosen

according to the following distribution F over Shallow
(
4, O

(
n̂4

1 (S (n)) · S (n)
))
. For every gadget G0

of T̂0 that is connected to G, F chooses a function recG0 chosen according to the distribution REC (see
Construction 3.16). The obtained function f , on input E ∈ F|G| evaluates recG0 (for evert G0 con-
nected to G) on the corresponding masking inputs of G, and the hard-wired values, thus generating
the masking inputs, and internal wires, of G0; and uses the function recV of Lemma 3.18 (with the
values that are hard-wired into the recG0 ’s) to reconstruct the internals of every decoding sub-circuit
DV connected to one such G0. Notice that f is well-defined, because once the masking inputs of ev-
ery G0 have been fixed, then we can apply the function recV . f ∈ Shallow

(
4, O

(
n̂4

1 (S (n)) · S (n)
))

because by Lemma 3.17 the right-reconstructor of every G0 in T̂0 that is connected to G is in
Shallow

(
2, O

(
n̂2

1 (S (n))
))

(there are at most O
(
n̂2

1 (S (n)) · S (n)
)
such gadgets G0, and their re-

constructors can be applied in parallel); and the function recV used to reconstruct the internals of
every decoding sub-circuit DV of TV that is connected to G0, is in Shallow (2, O (n̂1 (S (n)))) (there
are at most O

(
n̂3

1 (S (n)) · S (n)
)
such DV ’s, since every G0 is connected to n̂1 (S (n)) + 1 decoding

sub-circuits DV , and for all of them, recV can be applied in parallel). By the lemma’s assump-
tion,WR

0 ,WS
0 are (LG, ε (n))-leakage-indistinguishable, so Lemma 3.10 guarantees thatWR

1 ,WS
1 are

(L, ε (n))-leakage-indistinguishable for any L such that L◦Shallow
(
4, O

(
n̂4

1 (S (n)) · S (n)
))
⊆ LG. In

particular, SD (` (Hm) , ` (Hm−1)) = SD
(
`
(
WS

1

)
, `
(
WR

1

))
≤ ε (n). (In the left equality we also use

Lemmas 3.17 and 3.18 which guarantees that the wire values generated by the right-reconstructors
are leakage-indistinguishable from the actual wire values.)

Lemma 3.20. Let LE,L be families of functions, S (n) : N → N be a size function,
and ε (n) : N → R+. If Ein is (LE, ε (n))-leakage-indistinguishable, and LE = L ◦
Shallow

(
n̂1 (S (n)) , 6, O

(
n̂4

1 (S (n)) · S (n)
))
, then SD

(
`
(
Hy

mid

)
, ` (Hy

ext)
)
≤ ε (n) S (n) for every

` ∈ L.
Proof. The proof is similar to that of Lemma 3.14, with the additional complication that we need to

20



reconstruct the internal wires of T̂0, TV (using their right-reconstructors). Assume towards negation
that the claim does not hold, and define a fixed ordering on the the M ≤ S (n) bundles that are
either input bundles of Ĉ2, or output bundles of gadgets in Ĉ2 (that do not touch the decoder).
We define the hybrids H0, ...,HM , where Hi is generated from Hy

ext by replacing the first i bundles
with random encodings of random values; recomputing the internal wires of the first i gadgets of
Ĉ2 using the gadget reconstructors (see Lemma A.4); reconstructing the internal wires of the ×
gadgets G0 in the first layer of T̂0 (that touch the first i gadgets of Ĉ2) using the right reconstructor
of Lemma 3.17, and re-evaluating the decoding sub-circuits DV of TV that touch these gadgets G0

using the function recV of Lemma 3.18. Thus, H0 = Hy
ext, HM = Hy

mid, and let Hm, Hm−1 be the
neighboring hybrids such that SD (` (Hm) , ` (Hm−1)) > ε (n) for some ` ∈ L. We can fix all wire
values in Hm, Hm−1 (while preserving the statistical distance), except for the following: the m’th
bundle; the masking inputs, the output, and internal wires of the gadget Go whose output is the
m’th bundle; the masking inputs, and internal wires, of the gadget Gi such that one of its inputs
is the m’th bundle, and its input bundle that corresponds to the m’th bundle; for every gadget G0

in T̂0 that is connected to Go or Gi, the internal wires of G0 that correspond to B0, S0, and the
computation of these values; and for every decoding sub-circuit DV in TV that is connected to such
a G0, the internal wires of DV that correspond to the computation of qV . (This holds due to the
same arguments used in the proof of lemma 3.19.)

Let b denote the value encoded by the m’th bundle in Hy
ext. Let WR

0 = Encin
(
b, 1S(n)

)
,WS

0 =

Encin
(
r, 1S(n)

)
for r ∈R {0, 1}, then by the lemma’s assumption, WR

0 ,WS
0 are (LE, ε (n))-leakage-

indistinguishable. LetWR
1 := f

(
WR

0

)
,WS

0 := f
(
WS

1

)
, where f is chosen according to the following

distribution F over Shallow
(
6, O

(
n̂4

1 (S (n)) · S (n)
))
. F chooses a function reco according to the

distribution over reconstructors for Go; chooses a function reci from the set of reconstructors for Gi;
and for every gadget G0 of T̂0 that is connected to Go or Gi, a function recG0 chosen according to the
distribution REC (see Construction 3.16). The obtained function f , on input e ∈ Fn̂1(S(n)) evaluates
reco on the inputs ao,bo (that were hard-wired into Hm, Hm−1), and output e (thus reconstructing
the masking inputs, and internal wires, of Go); evaluates reci on e as one of the inputs, and the
other input, and output, according to the hard-wired values (thus generating the masking inputs,
and internal wires, of Gi); for every G0 gadget in T̂0 connected to Go or Gi, evaluates recG0 on the
corresponding masking inputs (as determined by reco, reci, respectively, and the hard-wired values),
thus generating the masking inputs, and internal wires, of G0; and uses recV (with the values that are
hard-wired into the recG0 ’s) to reconstruct the internals of every decoding sub-circuit DV connected
to one such G0. Then WR

1 ≡ Hm−1 and WS
1 ≡ Hm (because the bundles are re-randomizing), and

f ∈ Shallow
(
6, O

(
n̂4

1 (S (n)) · S
))

because reco, reci ∈ Shallow
(
2, O

(
n̂2

1 (S (n))
))

(see Lemma A.4),
the O

(
n̂2

1 (S (n)) · S (n)
)
right-reconstructors recG0 are in Shallow

(
2, O

(
n̂2

1 (S (n))
))

(and can be
evaluated in parallel), and the n̂3

1 (S (n)) · S (n) functions recV are in Shallow (2, O (n̂1 (S (n)))) and
can be evaluated in parallel (see the proof of Lemma 3.19 for a more detailed analysis). Therefore,
by Lemma 3.10, Hm−1, Hm are (L, ε (n))-leakage-indistinguishable for every family L of leakage
functions such that L ◦ Shallow

(
6, O

(
n̂4

1 (S (n)) · S (n)
))
⊆ LE.

Remark 3.21. Let Hy,x
ext,r denote the hybrid distribution obtained by evaluating Ĉ, when

Ĉ1, Ĉ2 are honestly evaluated on y, x, respectively (i.e., picking random encodings of(
y, 0r0(|C|)+r(|C|)) , (x, 0r0(|C|)+r(|C|)) according to Encin etc.); re-computing the internal wires of all
gadgets in Ĉ2 using their reconstructors; re-evaluating all × gadgets G0 (in the first layer of T̂0)
that touch gadgets of Ĉ2 using their right-reconstructors; and then re-computing TV . Then under
the conditions of Lemma 3.20, SD

(
`
(
Hy

mid

)
, `
(
Hy,x

ext,r

))
≤ ε (n) · S (n), since as long as the value

whose encoding was the input of Ĉ1 is the same in both hybrids, the proof was independent of the
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actual values whose encodings were the inputs of Ĉ1, Ĉ2. Moreover, the proof of Lemma 3.19 relied
only on the inputs to Ĉ1, Ĉ2 encoding the same values in both distributions, and was independent
of the actual encoded values, so the same proof can be used to show that under the conditions of
Lemma 3.19, SD

(
`
(
Hy,x

ext,r

)
, ` (Hy,x)

)
≤ ε (n) · S (n) for every leakage function ` ∈ L. Consequently,

SD (` (Hy) , ` (Hy,x)) ≤ 4ε (n) · S (n).

We are finally ready to prove Proposition 3.8.

Proof. Soundness follows from Lemma 3.9, because Ein is linear and onto. As for relaxed leakage-
resilience, by Lemma A.4, if Ein is (LE, ε (n))-reconstructible, then all the gadgets of Ĉ are
(LG, n̂ (S (n)) · ε (n))-reconstructible, for every family LG of leakage functions such that LE = LG ◦
Shallow (3, O (n̂ (S (n)))). Since Shallow (4, O (n̂ (S (n)) · S (n))) ◦ Shallow

(
3, O

(
n̂4 (S (n)) · S (n)

))
⊆

Shallow
(
7, O

(
n̂4 (S (n)) · S (n)

))
, then using the union bound, Lemmas 3.12 and 3.14, and Re-

mark 3.15, we know that for every L such that LE = L ◦ Shallow
(
7, O

(
n̂4 (S (n)) · S (n)

))
, and

for every ` ∈ L, SD (` (Hx) , ` (Hy,x)) ≤ 4ε (n) · S (n). Similarly, by Lemmas 3.19 and 3.20, and
Remark 3.21, SD (Hy,x, Hy) ≤ 4ε (n) · S (n). Therefore, SD (` (Hx) , ` (Hy)) ≤ 8ε (n) · S (n).

Regarding the size of the compiled circuit, Ĉ contains two copies of C, where in each copy
each gate (out of at most |C|) is replaced with a gadget whose size is at most O

(
n̂2 (S (n))

)
,

So
∣∣∣Ĉ1

∣∣∣ , ∣∣∣Ĉ2

∣∣∣ ≤ O
(
n̂2 (S (n)) |C|

)
. T̂0 contains O

(
n̂4 (S (n)) |C|2

)
“binarization” sub-circuits T ,

each of size at most O (|F|), so
∣∣∣T̂0

∣∣∣ ≤ O
(
|F| · n̂4 (S (n)) |C|2

)
. As for TV , it contains a de-

coding sub-circuit for each of the (at most O (n̂ (S (n)))) masking inputs used in the (at most
O
(
|F| n̂4 (S (n)) |C|2

)
) gadgets of T̂0. The decoding of each masking input requires n̂ (S (n)) ×

gates followed by n̂ (S (n)) + gates. In addition, we have O
(
n̂4 (S (n)) |C|2

)
constant-sized binariza-

tion circuits, followed by O
(
n̂4 (S (n)) |C|2

)
× gates, so |TV | ≤ O

(
|F| · n̂5 (S (n)) |C|2

)
. Therefore,∣∣∣Ĉ∣∣∣ ≤ O (|F| n̂5 (S (n)) |C|2

)
.

3.2 A SAT-Respecting Relaxed LRCC Over F2

In this section we describe a relaxed LRCC over F2. Our starting point is the circuit-compiler of
Construction 3.7 over the field F, which we apply to an “arithmetic version” of the boolean circuit.
At a high-level, we construct our circuit compiler over F2 as follows: we represent field elements
of F using bit-strings; and operations +,−,×, id, copy, constα, α ∈ F as functions over dlog |F|e-bit
strings. (For now, we assume that there exist gates operating on dlog |F|e-bit strings and computing
these operations.) We “translate” boolean circuits into arithmetic circuits with such operations, and
apply the circuit-compiler of Construction 3.7 (where the field operations are implemented using
the boolean operations described in Section 2) to the “translated” circuit. (We note that leakage-
resilience deteriorates when an arithmetic compiler is transformed to a boolean one, but only by a
constant factor in the depth and size of circuits computing the leakage functions.) Concretely, we
set F = F3.
From boolean circuits to arithmetic circuits. Our boolean circuit-compiler operates on
boolean circuits, but employs an arithmetic circuit-compiler operating on arithmetic circuits over F.
Therefore, we first transform the boolean circuit into an equivalent arithmetic circuit in the natural
manner (i.e., representing every bit operation as a polynomial over the arithmetic field):

Definition 3.22 (Boolean-to-arithmetic “translator” T ′). Given a boolean circuit C : {0, 1}n →
{0, 1}m, the algorithm T ′ transforms it into a functionally equivalent arithmetic circuit C ′ : Fn → Fm
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(where by “functionally-equivalent” we mean that for every x ∈ {0, 1}n, C ′ (x) = C (x)). This is
done by replacing the gates of C as follows.

• The negation operation ¬x is replaced with 1 − x (replacing a single boolean gate with 2
arithmetic gates, i.e. a const1 gate and a − gate).

• The operation x∧y is replaced with x·y (replacing a single boolean gate with a single arithmetic
gate).

• Using De-Morgan’s laws, the operation x∨ y is replaced with 1− ((1− x) · (1− y)) (replacing
a single boolean gate with 7 arithmetic gates).

• id, copy, const0, const1 remain unchanged.

Observation 3.23. For every x ∈ {0, 1}n, C ′ (x) = C (x).

Representing field elements as bit strings. We can use any transformation Eb : F3 →
{0, 1}2 such that every bit string is associated with a field element. This is required for the SAT-
respecting property, to guarantee that whatever values are carried on the wires of the boolean circuit,
they can be “translated” into wires of the arithmetic circuit over F3, and is achieved by defining a
“reverse” mapping E−1

b . Concretely, we use the following mapping.

Definition 3.24 (mod-3 mapping Eb). The mod-3 mapping Eb : F3 → {0, 1}2 is defined as fol-
lows: Eb (0) = 00, Eb (1) = 01, and Eb (2) = 11. The “reverse” mapping E−1

b : {0, 1}2 → F3 is
defined as follows: E−1

b (00) = 0, E−1
b (01) = E−1

b (10) = 1, and E−1
b (11) = 2. Eb, E−1

b naturally
extend to longer strings, where for v = (v1, ..., vm) ∈ Fm3 , Eb (v) = (Eb (v1) , ..., Eb (vm)), and for
(b1,1, b1,2, ..., bm,1, bm,2) ∈ {0, 1}2m, E−1

b (b1,1, ..., bm,2) =
(
E−1
b (b1,1, b1,2) , ..., E−1

b (bm,1, bm,2)
)
.

Note that the string “10” is never used as long as the compiler is honestly applied to the arithmetic
circuit then.
Implementing field operations. The compiled arithmetic circuit uses the field operations
+,−,×, and also copy, id and constα, α ∈ F3. These operations are represented using bit operations
over bit strings generated by Eb. Specifically, we think of every field operation as a boolean function
with 4 inputs (a pair of 2-bit strings representing the pair of input field elements) and 2 outputs (a
2-bit string representing the output field element). We stress that though an honest construction
over bits uses only 3 of the 4 possible 2-bit strings encoding field elements (i.e., only the strings in the
image of Eb as defined, for example, in Definition 3.24), the function representing a field operation in
F3 should be defined to output the correct values on all 2-bit strings. The truth table of each output
bit has constant size, and can be represented by a constant-size, depth-3 boolean circuit. copy, id
and constα gates are handled similarly. Therefore, the size (depth) of each gadget (and consequently,
of the entire compiled circuit) increases by a constant multiplicative factor (specifically, by a factor
of 3).

Notice that representing boolean circuits using arithmetic circuits introduces the following ob-
stacle. For a satisfiable circuit Ĉ, we are only guaranteed the existence of an x ∈ Fn satisfying the
original arithmetic circuit, whereas for boolean circuits we require that x ∈ {0, 1}n. Therefore, we
need an additional “input checker” sub-circuit to guarantee that the inputs to the compiled circuit
encode binary strings.

Definition 3.25 (Input-checker T in). T in : F→ F is defined as follows: T in (z) = T
(
z2 − z

)
.

Observation 3.26. For every z ∈ F3, T in (z) ∈ {0, 1}, and T in (z) = 1 if and only if z ∈ {0, 1}.
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We now use an arithmetic SAT-respecting relaxed LRCC (Construction 3.7) to construct a
boolean circuit compiler with similar properties.

Construction 3.27 (SAT-respecting relaxed LRCC). Let Eb, E−1
b be the mappings of Defini-

tion 3.24. Let T ′ be the algorithm of Definition 3.22 over F3, and (Comp,E = (Enc,Dec)) be the cir-
cuit compiler over F3 of Construction 3.7. The circuit compiler over F2 is (Compb,Eb = (Encb,Decb)),
where:

• Encb = Eb ◦ Enc and Decb = Dec ◦ E−1
b .

• Compb on input C : {0, 1}n → {0, 1}:

– Uses T ′ to transform C into an equivalent arithmetic circuit C ′ : Fn3 → F3.

– Constructs the circuit C ′′ : Fn3 → F3 such that C ′′ (x1, ..., xn) = 1 −(
C ′ (x1, ..., xn)×

(
×ni=1T in (xi)

))
. (Notice that C ′′ (x1, ..., xn) outputs 0 if and only if

C ′ (x1, ..., xn) = 1 and x1, ..., xn ∈ {0, 1}.)
– Computes Ĉ ′′ = Comp (C ′′).

– Replaces every gate in Ĉ ′′ with a constant-size, depth-3 boolean circuit computing the
truth table of the gate operation. Compb can use any correct circuit, as long as these
circuits are used consistently (i.e., for every gate the same circuit is used to replace all
appearances of such gate in Ĉ ′′).

– Denote the output of Ĉ ′′ by e ∈ F3, represented by the string (e1, e2) ∈ {0, 1}2. Then
Compb outputs the circuit Ĉb obtained from Ĉ ′′ by applying an ∨ gate, followed by a ¬
gate, to the output of Ĉ ′′. (This reduces the output string of Ĉ ′′ to a single bit, and flips
the output of Ĉ ′′, which is required due to the negation added in C ′′.)

We use Ĉ1,b, Ĉ2,b, T̂0,b, TV,b to denote the components of Ĉb corresponding to Ĉ1, Ĉ2, T̂0, TV ,
respectively.

Observation 3.28. Ĉb (x̂) ∈ {0, 1} for every x̂. Moreover, Ĉb (x̂) = 1 if and only if Ĉ ′′ (x̂) = 0. If
Comp is SAT-respecting, then this guarantees that C ′′ (x) = 0 for some x ∈ F3. The definition of
C ′′, and the correctness of T ′, guarantees that x ∈ {0, 1}n, and that C ′ (x) = C (x) = 1.

Next, we show that Construction 3.27 “inherits” the properties of the underlying arithmetic
circuit compiler. We first show that Construction 3.27 is SAT-respecting.

Lemma 3.29. If Construction 3.7 is SAT-respecting then Construction 3.27 is also SAT-respecting,
i.e. if Ĉb is satisfiable then so is C.

Proof. Assume that Ĉb (x̂b) = 1 for some x̂b ∈ {0, 1}2n̂, where Ĉb = Compb (C). Then because
Ĉb computes the negation of the OR of the (2-bit) output of Ĉ ′, then the output of Ĉ ′′ was 0.
Therefore, by the definition of Compb, the correctness of the implementation of field operations
using bit operations, and since E−1

b is on F3, Ĉ ′′
(
E−1
b (x̂b)

)
= 0 (where Ĉ ′′ = Comp (C ′′)). Since

Comp is SAT-respecting, there exists an x ∈ Fn3 such that C ′′ (x) = 0 which, by the definition of C ′′,
is possible if and only if x ∈ {0, 1}n and C ′ (x) = 1. By the correctness of the transformation T ′

(Definition 3.22), C (x) = C ′ (x) = 1.

Next, we show that Construction 3.27 is relaxed-leakage-resilient.
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Lemma 3.30. Let L,Lb be families of functions, S (n) : N → N be a size function, and
ε (n) : N → R+. If L = Lb ◦ ShallowB

(
12, O

((
n̂5 (1, S (n)) · S (n)2

)))
, and (Comp,E) of Con-

struction 3.7 is an (L, ε (n) , 49S (n))-relaxed-LRCC over F3, then (Compb,Eb) of Construction 3.27
is an (Lb, ε (n) , S (n))-relaxed-LRCC over F2. Moreover,

∣∣∣Ĉb∣∣∣ = O
(
n̂5 (1, S (n)) |C|2

)
.

Proof. Notice that the existence of a non-efficient simulator in Definition 2.8 is equivalent to re-
quiring that leakage functions cannot distinguish evaluations of Ĉb on encodings of two inputs on
which C has the same output. We will use this alternative definition to prove the lemma. As-
sume towards negation that (Compb,Eb) is not (Lb, ε (n))-leakage-resilient. Then there exist a pair
of inputs yb, zb ∈ {0, 1}n for C such that C (yb) = C (zb), and a leakage function `b ∈ Lb, such
that SD

(
`b

(
Ĉb (ŷb)

)
, `b

(
Ĉb (ẑb)

))
> ε (n), where ŷb, ẑb are random encodings of yb, zb, respec-

tively, according to Eb
(
·, 1|C|

)
. We show that SD

(
`
(
Ĉ (ŷ)

)
, `
(
Ĉ (ẑ)

))
> ε (n) for some leakage

function ` ∈ L, where ŷ, ẑ are random encodings of yb, zb, respectively, according to E
(
·, 1|C|

)
, and

Ĉ = Comp (C ′′) (recall that we assume that field elements are encoded using bit strings; and that we
have “gate sub-circuits”, operating on bit strings, that emulate the field operations). This contradicts
the witness-indistinguishability of (Comp,E), because C ′′ (y) = C ′′ (z) (because in both cases the
input-checker outputs 1), and |C ′′| ≤ 49 |C| ≤ 49S (n). (Indeed, the transformation from C to C ′

blows up the circuit by a factor of at most 7, and the transformation from C ′ to C ′′ adds at most 7
gates for every input gate, so it blows up the circuit by a factor of at most 7.)

We distinguish between two “kinds” of wires in Ĉb: external wires, that appear also in Ĉ (these
are the wires between the gates of Ĉ), and internal wires (these are the wires in the sub-circuits of
Ĉb that emulate the gates of Ĉ). The function ` is given as input a wire assignment for Ĉ, which is a
sequence of field elements, encoded into 2-bit strings using some correct encoding. ` first “translates”
every 2-bit string into the 2-bit string encoding the same field element under the mapping Eb of
Definition 3.24. This is computable by a constant-size, depth-3 circuit, and since these computations
can be done in parallel, this “translation” is computable in ShallowB

(
3, O

(∣∣∣Ĉ∣∣∣)). This defines the
wire values of all the external wires of Ĉb, encoded into bit-string using the same mapping that
Compb uses. Next, ` computes the internal wires of Ĉb. Recall that the internal wires are organized
in constant-sized, depth-3 “groups”, where every such “group” corresponds to the computation of a
single gate of Ĉ. Therefore, the wires in every “group” are computable in ShallowB (9, O (1)) (since
these wires can be computed sequentially given the input to the gate, where every wire is computable
from the previous by a depth-3, constant-size circuit). As all “groups” can be evaluated in parallel, the
internal wires are computable from the external wires in ShallowB

(
9, O

(∣∣∣Ĉ∣∣∣)). Then, ` evaluates

`b on the wire values that it generated. As
∣∣∣Ĉ∣∣∣ ≤ O (n̂5 (1, S (n)) |C ′′|2

)
≤ O

(
n̂5 (1,S (n)) · S (n)2

)
,

then ` ∈ Lb ◦ ShallowB
(

12, O
((
n̂5 (1, S (n)) · S (n)2

)))
= L. Moreover, `b

(
Ĉb (ŷb)

)
= `

(
Ĉ (ŷ)

)
and `b

(
Ĉb (ẑb)

)
= `

(
Ĉ (ẑ)

)
, so SD

(
`
(
Ĉ (ŷ)

)
, `
(
Ĉ (ẑ)

))
> ε (n).

Combining Lemmas 3.29 and 3.30 with Proposition 3.8, we have the following.

Proposition 3.31 (SAT-respecting relaxed LRCC over F2). Let L,LE be families of functions,
S (n) : N → N be a size function, and ε (n) : N → R+. Let Ein be a linear, onto encoding scheme
over F3 with parameters n = 1, σ and n̂ = n̂ (σ), that is (LE, ε (n))-leakage-indistinguishable, and
LE = L ◦ ShallowB

(
33, O

(
n̂5 (S (n)) · S (n)2

))
. Then there exists a constant c > 0, and a SAT-

respecting, (L, c · ε (n) · S (n) , S (n))-relaxed-LRCC over F2. Moreover,
∣∣∣Ĉb∣∣∣ = O

(
n̂5 (S (n)) |C|2

)
.
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Proof. We show that Construction 3.27 has the required properties, when E is the encoding scheme
of Construction 3.7 (using the inner encoding scheme Ein), and 49S (n) is its size parameter. Lem-
mas 3.29 and 3.9 guarantees that the compiled circuit is SAT-respecting. As noted in the proof
of Lemma 3.30, if the wires of the compiled arithmetic circuit are already encoded into bit-strings
using the same mapping that Compb uses, then every arithmetic gate can be implemented with
a depth-3 boolean circuit of constant size. Therefore, functions computable in Shallow (d, s) are
also computable in ShallowB (3d,O (s)) (since all sub-circuits corresponding to gates in a sin-
gle layer can be evaluated in parallel). (Recall that all field operations are implemented using
boolean operations over bit strings. Therefore, in essence this means that leakage functions over
F3 can be simulated using somewhat deeper boolean circuits.) In particular, if E is (LE, ε)-leakage-
indistinguishable and LE = L′ ◦ ShallowB

(
21, O

(
n̂4 (S (n)) · S (n)

))
, then by Proposition 3.8, Con-

struction 3.7 is an arithmetic SAT-respecting (L′, 8ε · 49S (n) , 49S (n))-relaxed LRCC. Therefore,
Lemma 3.30 guarantees that (Compb,Eb) is (L, 392ε (n) · S (n) , S (n))-leakage-resilient as long as
LE = L ◦ ShallowB

(
21, O

(
n̂4 (S (n)) · S (n)

))
◦ ShallowB

(
12, O

(
n̂5 (S (n)) · S (n)2

))
. Moreover,∣∣∣Ĉb∣∣∣ = O

(
n̂5 (S (n)) |C|2

)
because

∣∣∣Ĉ∣∣∣ = O
(
n̂5 (S (n)) |C ′′|2

)
, and since the blowup in the trans-

formations from C to C ′′, and from Ĉ to Ĉb, is constant.

Taking Ein to be the parity encoding in the previous proposition, and using a result of Håstad
[18], we obtain an LRCC secure against leakage from AC0 circuits (namely, constant-depth and
polynomial-sized boolean circuits with unbounded fan-in ∧,∨ and ¬ gates).

Corollary 3.32. There exists a SAT-respecting
(
AC0, negl (n) , poly (n)

)
-relaxed-LRCC over F2.

More specifically, we instatiate Ein with the parity encoding scheme:

Definition 3.33 (Parity encoding scheme Ep). The parity encoding scheme Ep = (Encp,Decp) is
defined as follows: for b ∈ {0, 1} and σ ∈ N, Encp (b, 1σ) outputs e ∈ {0, 1}σ which is uniform over
the set {v ∈ {0, 1}σ :

∑σ
i=1 vi = b mod 2}; and Decp (e, 1σ) outputs

∑σ
i=1 ei mod 2.

We use the following result of Håstad [18] (as cited in [25, Corollary 1]) that AC0 circuits cannot
distinguish parity encodings of 0 and 1:

Theorem 3.34 ([18]). Let d ∈ N be a constant, and σ ∈ N. The parity encoding scheme Ep of

Definition 3.33 is
(
ShallowB

(
σ, 1, d, 2σ

1
d

)
, 2−σ

1
d
+1

)
-leakage-indistinguishable.

Corollary 3.32 now follows from combining Proposition 3.31 with Theorem 3.34.

Proof of Corollary 3.32. We use the circuit compiler of Proposition 3.31, instantiating Ein with
the parity encoding Ep. Given a circuit |C| : {0, 1}n → {0, 1} of size s (notice that s ≥ n),
Ep is applied with security parameter σ = s, to obtain the compiled circuit Ĉ. Fix some AC0

circuit C leak (recall that this is actually a family of AC0 circuits, defined for every input length
n of the family C of circuits). Then C leak has constant depth d and polynomial size p (s)
for some constant d and polynomial p. Taking d′ = d + 33, Theorem 3.34, guarantees that

Encp (·, 1s) is
(
ShallowB

(
s, 1, d′, 2s

1
d′
)
, 2−s

1
d′ +1

)
-leakage-indistinguishable. For a large enough n,

2s
1
d′ ≥ p (s) + s7, which means that the composition of C leak with any boolean circuit of size s7 and

depth 33, obtains at most an advantage of 2−s
1
d′ +1

in distinguishing parity encodings of 0 and 1. By

proposition 3.31, the simulated and actual wire values of Ĉ are c · 2−s
1
d′ +1

· s = negl (s) = negl (n)
statistically close.
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Remark 3.35 (Withstanding leakage functions with long outputs). Using a result of Dubrov et
al. ([9, Theorem 3.3], cited as Theorem 3.36 below), the parity encoding of Definition 3.33 is
leakage-indistinguishable against a broader family of leakage-functions, that can output many bits
(as long as the output is asymptotically shorter than the encoding length). Repeating the proof
of Corollary 3.32, and replacing Theorem 3.34 with Theorem 3.36, we can prove the existence of a
boolean SAT-respecting

(
AC0

1/2, negl (n) , poly (n)
)
-relaxed LRCC, where AC0

1/2 denotes AC0 circuits

with n
1
2 output bits (n denotes the input length). We can replace 1/2 with any constant δ ∈ (0, 1),

as long as δ is fixed in advance (in particular, before the depth d is determined).

Theorem 3.36 ([9]). For a natural d > 1, and δ ∈ (0, 1), the parity encoding Ep of Def-

inition 3.33 with security parameter σ is

(
ShallowB

(
σ, σδ, d, 2

O

(
σ

1−δ
d

))
, 2
−Ω

(
σ

1−δ
d

))
-leakage-

indistinguishable.

3.3 Withstanding Leakage from AC0 Circuits with ⊕ Gates

In this section we extend the results of Section 3.2, and present a boolean SAT-respecting circuit
compiler that is relaxed leakage-resilient against AC0 circuits (namely, constant-depth, polynomial-
sized boolean circuits over unbounded fan-in and fan-out ∧,∨,¬ gates), augmented with a sublinear
number of ⊕ gates of unbounded fan-in and fan-out. This circuit compiler will be used in Section 4
to construct WIPCPs and CZKPCPs.

The high level idea is to use Construction 3.27, where the underlying arithmetic LRCC over F3 is
instantiated with the encoding scheme Ein that maps an element γ ∈ F3 into a vector v ∈ {0, 1}k (for
some natural k), which is random subject to the constraint that the number of 1’s in v is congruent
to γ modulo 3. We show, by reduction to correlation bounds of [26], that AC0 circuits, augmented
with a sublinear number of ⊕ gates, have a negligible advantage in distinguishing between random
encodings of 0 and 1 according to Ein. Using the leakage-indistinguishability of Ein, we construct
a SAT-respecting circuit compiler withstanding leakage from AC0 circuits that have several output
bits and are augmented with a sublinear number of ⊕ gates:

Theorem 3.37 (SAT-respecting relaxed LRCC for AC0 with ⊕ gates). For input length parameter
n, leakage length bound n̂ = n̂ (n), size bound s = s (n), output length bound m = m (n), parity gate
bound t = t (n), and depth bound d, let Lmn̂,d,s,⊕t =

⋃
n∈N L

m(n)
n̂(n),d,s(n),⊕t(n), where L

m0
n̂0,d0,s0,⊕t0 denotes

the class of boolean circuits of input length n̂0 over ¬ gates and unbounded fan-in ∧,∨,⊕ gates, whose
depth, size, output length, and number of parity gates are bounded by d0, s0,m0, t0, respectively. Then
for every positive constants d, c, polynomials m, t, and polynomial size bound s′ = s′ (n), there exists
a polynomial l (n), such that there exists a SAT-respecting

(
Lml,d,lc,⊕t, 2−n

c
, s′ (n)

)
-relaxed LRCC over

F2, which on input a circuit C : {0, 1}n → {0, 1} of size |C| ≤ s′ (n) outputs a circuit Ĉ of size
|Ĉ| ≤ l (n).

The remainder of the section is organized as follows. In Section 3.3.1 we exhibit an encoding
scheme that is leakage-indistinguishable against AC0 circuits augmented with a sublinear number of
⊕ gates. Then, in Section 3.3.2 we prove Theorem 3.37.

3.3.1 A Leakage-Indistinguishable Encoding Scheme

In this section we use correlation bounds of [26] to show that a certain encoding scheme is leakage-
indistinguishable against leakage computable by AC0 circuits, augmented with few ⊕ gates. This
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encoding scheme will be used in Section 3.3.2 to construct a SAT-respecting relaxed-LRCC with-
standing leakage computed by AC0 circuits with few ⊕ gates. We first define the encoding scheme
which we use.

Notation 3.38. For γ ∈ {0, 1, 2} and n ∈ N, Unγ denotes the uniform distribution over{
v ∈ {0, 1}3n : #1 (v) ≡ γ mod 3

}
; #1 (v) denotes the number of 1’s in v; and Un1,2 denotes the

uniform distribution over
{
v ∈ {0, 1}3n : #1 (v) 6≡ 0 mod 3

}
.

Definition 3.39. We define an encoding scheme E3 = (Enc3,Dec3) over F3 such that for every
e ∈ F3, Enc3 (e, 1n) is distributed according to Une ,6 and Dec3 (v) returns (#1 (v) mod 3). Notice
that E3 is linear, with decoding vectors

{
13n
}
, and consequently also onto.

We will be interested in withstanding leakage computed by AC0 circuits, augmented with few ⊕
gates”. This leakage class is formalized in the next Definition.

Definition 3.40 (Lmn,d,s,⊕t leakage family). Let n ∈ N be a length parameter, d ∈ N be a depth
parameter, s ∈ N be a size parameter, and t ∈ N be a parity gate bound. The family Ln,d,s,⊕t
consists of all functions computable by a boolean circuit C : {0, 1}n → {0, 1} of size at most s and
depth d, with unbounded fan-in and fan-out ∧,∨,¬,⊕ gates, out of which at most t are ⊕ gates.
The family Ld,s,⊕t of functions is defined as Ld,s,⊕t = ∪n∈NLn,d,s,⊕t.

For a length parameter m ∈ N, and a function f : {0, 1}n → {0, 1}m, let fi (x1, ..., xn) , i ∈
[m] denote the i’th output bit of f . We use the following notation: Lmn,d,s,⊕t =

{f : {0, 1}n → {0, 1}m : ∀1 ≤ i ≤ m, fi ∈ Ln,d,s,⊕t}, and Lmd,s,⊕t := ∪n∈N
(
Lmn,d,s,⊕t

)
.

We use a correlation bound of Lovett and Srinivasan [26, Theorem 6] which, informally, states
that AC0 circuits, augmented with “few” ⊕ gates, have negligible correlation with the boolean func-
tion MOD3 where MOD3 (v) = 0 if and only if #1 (v) ≡ 1 mod 3. (Their result is more general,
but we state a weaker and simpler version that suffices for our needs.) We first define the notion of
correlation.

Definition 3.41 (Correlation). Let n ∈ N, g, f : {0, 1}n → {0, 1}, and let D be a distribution over
{0, 1}n. The correlation of g and f in relation to D is CorrD (g, f) = 2

∣∣1
2 − Prx←D [g (x) = f (x)]

∣∣ .
For a class G of functions, CorrD (G, f) = maxg∈G CorrD (g, f) .

We are interested in correlations with the following function:

Notation 3.42 (MODs function). Let s ∈ N. The function MODn
s : {0, 1}3n → {0, 1} is defined as

MODn
s (x) = 0 if and only if

∑3n
i=1 xi ≡ 0 mod s. We use MODs to denote the family of functions

∪n∈NMODn
s .

Theorem 3.43 ([26], Theorem 6 (rephrased)). For every constant depth parameter d ∈ N there exist
constants c, ε ∈ (0, 1), such that for every constant l ∈ N there exists a minimal length parameter
n0 ∈ N such that for every n ≥ n0, CorrDn3

(
L3n,d,nl,⊕nε ,MODn

3

)
≤ 2−n

c, where Dn3 is the distribution
induced by the following process: first pick a random bit b ∈R {0, 1}; if b = 0 pick x ∈ {0, 1}3n
according to the distribution Un0 , otherwise pick x ∈ {0, 1}3n according to Un1,2.

Next, we use Theorem 3.43 to show that AC0 circuits, augmented with “few” ⊕ gates, have a
negligible advantage in distinguishing between random encodings of 0,1, and 2 according to the
encoding scheme of Definition 3.39. Formally:

6Enc3 can be computed efficiently by repeating the following procedure n2 times. Pick v ∈ {0, 1}3n uniformly at
random, compute t := #1 (v), and if t = e then return v. If all iterations fail, return a fixed ve ∈ {0, 1}n such that
#1 (v) = e. Then the output of Enc3 is statistically close to Une .
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Corollary 3.44. For every constant depth parameter d ∈ N there exist constants c, ε ∈ (0, 1),
such that for every constant l ∈ N there exists a minimal length parameter n0 ∈ N such that for
every n ≥ n0 the encoding scheme Enc3 (·, 1n) of Definition 3.39 is

(
L3n,d,nl,⊕nε , 2

−nc)-leakage-
indistinguishable.

We proceed to prove Corollary 3.44 in two steps. First, we show that Theorem 3.43 implies
that AC0 circuits, augmented with “few” ⊕ gates, cannot distinguish between random encodings of
0, and random encodings of either 1 or 2. Second, we show that this implies indistinguishability of
encodings of every pair of values in {0, 1, 2}. The first step follows from the next lemma.

Lemma 3.45. Let ε ∈ (0, 1), n ∈ N, and G be a class of functions from {0, 1}3n to {0, 1}. If
CorrDn3 (G,MODn

3 ) ≤ ε then Un0 , Un1,2 are (G, ε)-leakage-indistinguishable, where Dn3 is the distribution
defined in Theorem 3.43.

Proof. Let g ∈ G. We first establish the connection between the probability pg :=
Prx←Dn3 [g (x) = MODn

3 (x)] that g computes MODn
3 correctly, and the distinguishing advantage

of g:
pg = Pr

x←Dn3
[g (x) = MODn

3 (x) |MODn
3 (x) = 0] · Pr

x←Dn3
[MODn

3 (x) = 0] +

+ Pr
x←Dn3

[g (x) = MODn
3 (x) |MODn

3 (x) = 1] · Pr
x←Dn3

[MODn
3 (x) = 1]

observing that for x← Dn3 , MODn
3 (x) is 0 (or 1) with probability half, and that

Pr
x←Dn3

[g (x) = MODn
3 (x) |MODn

3 (x) = 0] = Pr
x←Un0

[g (x) = 0]

Pr
x←Dn3

[g (x) = MODn
3 (x) |MODn

3 (x) = 1] = Pr
x←Un1,2

[g (x) = 1]

we get:

pg =
1

2
+

1

2

(
Pr

x←Un1,2
[g (x) = 1]− Pr

x←Un0
[g (x) = 1]

)
.

By the assumption of the lemma,

2

∣∣∣∣12 − pg
∣∣∣∣ = CorrDn3 (g,MODn

3 ) ≤ ε.

Therefore, we get: ∣∣∣∣∣ Pr
x←Un1,2

[g (x) = 1]− Pr
x←Un0

[g (x) = 1]

∣∣∣∣∣ ≤ ε.

Next, we establish a connection between the distinguishing advantage of circuits between the
following pairs of distributions: U2n

0 , U2n
1,2 (over 6n-bit vectors); Un0 , Un1,2; and Un0 , U

n
1 (over 3n-bit

vectors).

Lemma 3.46. Let d, s, t ∈ N, and c ∈ (0, 1) be a constant. If there exists an n0 ∈ N such that
for every n ≥ n0, Un0 , U

n
1,2 are (L3n,d,s,⊕t, ε)-leakage-indistinguishable for ε = 2−n

c , and U2n
0 , U2n

1,2

are (L6n,d+1,2s+1,⊕2t, ε)-leakage-indistinguishable, then there exists an n′0 such that for every n ≥ n′0,
Un0 , U

n
1 are

(
L3n,d,s,⊕t,

√
7ε
)
-leakage-indistinguishable.
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We will need the following notation and observation regarding the connection between Un1 , Un2
and Un1,2.

Notation 3.47. Let n ∈ N. For γ ∈ {0, 1, 2}, we use Snγ to denote supp
(
Unγ
)
, Sn1,2 to denote

supp
(
Un1,2

)
, and knγ to denote

∣∣Snγ ∣∣.
Observation 3.48. For every n ∈ N, and every function g : {0, 1}3n → {0, 1}, by the law of total
probability, and since Prx←Un1,2 [x ∈ Sn1 ] = Prx←Un1,2 [x ∈ Sn2 ] = 1

2 ,

Pr
x←Un1,2

[g (x) = 1] =
1

2

(
Pr

x←Un1
[g (x) = 1] + Pr

x←Un2
[g (x) = 1]

)
.

Proof of Lemma 3.46. If the lemma does not hold, then there exist infinitely many n’s, for each
of which Un0 , U

n
1 are not

(
L3n,d,s,⊕t,

√
7ε
)
-leakage-indistinguishable. Let ε′ = ε′ (n) >

√
7ε denote

the maximal distinguishing advantage between Un0 , Un1 , let D̂ =
{
D̂n

}
be a family of distinguishers

obtaining this advantage, and let N be the infinite set of n’s for which D̂ obtains this advantage.
For γ ∈ {0, 1, 2}, let pnγ := Prx←Unγ

[
D̂n (x) = 1

]
. Assume first that pn0 > pn1 for infinitely many

n’s in N . There are two possible cases: either for infinitely many n’s in N , pn0 ≥ pn2 ; or pn0 < pn2
for infinitely many n’s in N . In the first case, D̂ has advantage at least ε′

2 >
√

7ε
2 >

√
4ε
2 ≥ε≤1 ε

in distinguishing between Un0 , Un1,2, for every n such that pn0 ≥ pn2 and pn0 ≥ pn1 + ε′. Indeed, using
Observation 3.48, ∣∣∣∣∣ Pr

x←Un0

[
D̂n (x) = 1

]
− Pr
x←Un1,2

[
D̂n (x) = 1

]∣∣∣∣∣ =

∣∣∣∣pn0 − 1

2
(pn1 + pn2 )

∣∣∣∣
using the case assumption that pn0 ≥ pn1 , pn2 , this advantage is equal to:

1

2
(pn0 − pn1 ) +

1

2
(pn0 − pn2 ) ≥ 1

2
(pn0 − pn1 ) ≥ ε′

2
.

Therefore, only the second case pn0 < pn2 remains, and Lemma 3.49 below shows that there exists
an n̂0 ∈ N such that for every such n which is greater than n̂0, U2n

0 , U2n
1,2 are distinguishable by

L6n,d+1,2s+1,⊕2t circuits, with advantage at least (ε′)2

6 +E (n) >
(
√

7ε)
2

6 +E (n) = ε+ ε+E(n)
6 , where

E (n) = O
(
2−3n

)
. Recall that ε = 2−n

c , so E (n) = o (ε), and let n′ ∈ N such that for every n ≥ n′,
|E (n)| ≤ ε (notice that E (n) may be negative). Then for every n ≥ max {n′, n̂0} in N such that
pn2 > pn0 ≥ pn1 +ε′ (there are infinitely many such n’s by the case assumption), ε+ ε+E(n)

6 ≥ ε, meaning
that U2n

0 , U2n
1,2 can be distinguished in L6n,d+1,2s+1,⊕2t with advantage more than ε, a contradiction

to the assumption of the lemma. Therefore, it cannot be the case that pn0 ≥ pn1 + ε′ for infinitely
many n’s in N .

Assume now that pn0 ≥ pn1 only for finitely many n’s in N , i.e., pn1 ≥ pn0 for infinitely many n’s in
N . If for infinitely many n’s in N , pn2 ≥ pn0 and pn1 > pn0 , then the advantage of D̂n in distinguishing
between Un0 , Un1,2 is at least∣∣∣∣pn0 − pn1 + pn2

2

∣∣∣∣ =
pn1 − pn0

2
+
pn2 − pn0

2
≥ pn1 − pn0

2
≥ ε′

2
.

The second case, where pn2 < pn0 < pn1 for infinitely many n’s, follows from Lemma 3.49 in the same
manner as before.
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We now prove the lemma used in the proof of Lemma 3.46, for the case pn2 > pn0 > pn1 (or
pn1 > pn0 > pn2 ) for infinitely many n’s. Notice that Lemma 3.49 uses the distributions U2n

0 , U2n
1,2 over

6n-bit vectors, and distinguishers over 3n-bit vectors.

Lemma 3.49. Let n, d, s, t ∈ N, ε > 0, and {Dn ∈ L3n,d,s,⊕t}n∈N. For γ ∈ {0, 1, 2}, denote pnγ :=

Prx←Unγ [Dn (x) = 1]. Then there exist error terms E+ (n) , E− (n) = O
(
2−3n

)
, and an n0 ∈ N, such

that the following holds for every n0 ≤ n ∈ N. If pn2 > pn0 > pn1 and pn0 − pn1 ≥ ε, then U2n
0 , U2n

1,2 are(
L6n,d+1,2s+1,⊕2t,

ε2

6 + E+ (n)
)
-distinguishable; and if pn2 < pn0 < pn1 and pn1 − pn0 ≥ ε, then U2n

0 , U2n
1,2

are
(
L6n,d+1,2s+1,⊕2t,

ε2

6 + E− (n)
)
-distinguishable.

Proof. Let D′n be the distinguisher that interprets its input as a pair (x, y) of 3n-bit vectors,
and outputs Dn (x) ∧ Dn (y). Notice that if Dn ∈ L3n,d,s,⊕t, then D′n ∈ L6n,d+1,2s+1,⊕2t.
We now analyze the advantage of D′n in distinguishing between U2n

0 , U2n
1,2. Using Lemma 3.51,

Pr(x,y)←U2n
0

[D′n (x, y) = 1] =
(pn0 )

2
+2pn1 p

n
2

3 + E0 (n) + E′0 (n) · pn2 , where E0 (n) , E′0 (n) are er-
ror terms, and |E0 (n)| , |E′0 (n)| = O

(
2−3n

)
. Using Lemma 3.52, Pr(x,y)←U2n

1,2
[D′n (x, y) = 1] =

2pn0 p
n
1 +(pn1 )

2
+2pn0 p

n
2 +(pn2 )

2

6 +E1,2 (n) +E′1,2 (n) · pn2 +E′′1,2 (n) · (pn2 )2, where E1,2 (n) , E′1,2 (n) , E′′1,2 (n)

are error terms, and |E1,2 (n)| ,
∣∣E′1,2 (n)

∣∣ , ∣∣E′′1,2 (n)
∣∣ = O

(
2−3n

)
. Therefore,

ED′n := Pr
x←U2n

1,2

[
D′n (x, y) = 1

]
− Pr
x←U2n

0

[
D′n (x, y) = 1

]
=

=
2pn0p

n
1 + (pn1 )2 + 2pn0p

n
2 + (pn2 )2 − 2 (pn0 )2 − 4pn1p

n
2

6
+

+E (n) + E′ (n) · pn2 + E′′ (n) · (pn2 )2

where E (n) , E′ (n) , E′′ (n) are error terms, and |E (n)| , |E′ (n)| , |E′′ (n)| = O
(
2−3n

)
. Thinking of

ED′n as a function of pn2 , there exists an n0 such that for every n ≥ n0, the minimal value of ED′n (pn2 )

is obtained when pn2 =
2pn1−pn0−3E′(n)

1+6E′′(n) ≈ 2pn1 − pn0 . Let n ≥ n0, and assume first pn2 > pn0 > pn1 and

pn0 − pn1 ≥ ε. Then 2pn1−pn0−3E′(n)
1+6E′′(n) ≈ 2pn1 − pn0 < p0, and in the domain z ≥ 2pn1−pn0−3E′(n)

1+6E′′(n) , ED′ is
monotonically increasing, so the minimal value of ED′ in this section is obtained when pn2 = pn0 (since

by the case assumption, pn2 ≥ pn0 ), in which case ED′n |pn2 =pn0
=

(pn0−pn1 )
2

6 +E (n)+E′ (n) ·pn0 +E′′ (n) ·
(pn0 )2 ≥ ε2

6 + E (n) + E′ (n) · pn0 + E′′ (n) · (pn0 )2 =pn0∈(0,1) ε2

6 + E+ (n), where E+ (n) = O
(
2−3n

)
,

so D′n obtaining advantage δ+ := ε2

6 + E+ (n) in distinguishing between U2n
0 , U2n

1,2, where E+ (n) =

O
(
2−3n

)
.

Second, assume that pn2 < pn0 < pn1 and pn1 − pn0 ≥ ε. Then
2pn1−pn0−3E′(n)

1+3E′′(n) ≈ 2pn1 − pn0 > p0. Since

by the case assumption pn2 < pn0 then in the domain z ≤ 2pn1−pn0−3E′(n)
1+3E′′(n) the function is monotonically

decreasing, so the minimal advantage is obtained when pn0 = pn2 , and the rest of the analysis follows
as in the previous case.

We now state and prove the lemmas that were used in the proof of Lemma 3.49. We will need
the following result about the values of kn0 , kn1 , kn2 .

Lemma 3.50. Let n ∈ N. Then kn1 = kn2 = 23n+(−1)n−1

3 , and kn0 = 23n+2·(−1)n

3 .
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Proof. First notice that kn1 = |Sn1 | = |Sn2 | = kn2 , because the transformation that flips all the
bits in the vector is a bijection between Sn1 and Sn2 . Second, notice that kn0 = 23n − 2kn1 , and
23n+2·(−1)n

3 = 23n− 2 · 23n+(−1)n−1

3 , so it suffices to prove the claim for kn1 , which we do by induction
on n. The base case, for n = 1, holds because k1 = 3 (since Sn1 = {(0, 0, 1) , (0, 1, 0) , (1, 0, 0)}). For
the step, assume that the claim holds for i ≤ n and we prove the claim for i = n+1. Notice that the
vectors in Sn+1

1 can be divided into 3 subsets: vectors of the form “a vector in Sn0 , concatenated with
a vector in S1

1 ” (there are kn−1
0 · 3 such vectors); vectors of the form “a vector in Sn1 , concatenated

with a vector in S1
0 ” (there are kn−1

1 · 2 such vectors, because S1
0 = {(0, 0, 0) , (1, 1, 1)}); and vectors

of the form “a vector in Sn2 , concatenated with a vector in S1
2 ” (there are kn−1

2 · 3 such vectors).
Using the observations that kn1 = kn2 and kn0 = 23n − 2kn1 , we get:

kn+1
1 = 3kn0 + 2kn1 + 3kn2 = 3 ·

(
23n − 2kn1

)
+ 5kn1 = 3 · 23n − kn1 .

Using the induction hypothesis, kn1 = 23n+(−1)n−1

3 , so:

kn+1
1 = 3 · 23n − kn1 = 3 · 23n − 23n + (−1)n−1

3
=

1

3
·
(

8 · 23n − (−1)n−1
)

=
23(n+1) + (−1)(n+1)−1

3
.

Lemma 3.51. Let D′n, p
n
0 , p

n
1 , p

n
2 be as defined in the proof of Lemma 3.49. Then

Pr(x,y)←U2n
0

[D′n (x, y) = 1] =
(pn0 )

2
+2pn1 p

n
2

3 +E0 (n)+E′0 (n) ·pn2 , where E0 (n) , E′0 (n) are error terms,
and |E0 (n)| , |E′0 (n)| = O

(
2−3n

)
.

Proof. Since

S2n
0 =

{
(x, y) : x, y ∈ {0, 1}3n ∧ (x, y ∈ Sn0 ∨ x ∈ Sn1 , y ∈ Sn2 ∨ x ∈ Sn2 , y ∈ Sn1 )

}
then by the law of total probability, Pr(x,y)←U2n

0
[D′n (x, y) = 1] is equal to:

Pr
(x,y)←U2n

0

[
D′n (x, y) = 1|x, y ∈ Sn0

]
· Pr

(x,y)←U2n
0

[x, y ∈ Sn0 ] +

+ Pr
(x,y)←U2n

0

[
D′n (x, y) = 1|x ∈ Sn1 , y ∈ Sn2

]
· Pr

(x,y)←U2n
0

[x ∈ Sn1 , y ∈ Sn2 ] +

+ Pr
(x,y)←U2n

0

[
D′n (x, y) = 1|x ∈ Sn2 , y ∈ Sn1

]
· Pr

(x,y)←U2n
0

[x ∈ Sn2 , y ∈ Sn1 ] =

=

(
Pr

x←Un0
[D (x) = 1]

)2

· |S
n
0 |

2∣∣S2n
0

∣∣ + 2 Pr
x←Un1

[D (x) = 1] · Pr
x←Un2

[D (x) = 1] · |S
n
1 | · |Sn2 |∣∣S2n

0

∣∣
If n is even, then by Lemma 3.50: kn0 = |Sn0 | = 23n+2

3 ; k2n
0 =

∣∣S2n
0

∣∣ = 26n+2
3 ; and kn1 = |Sn1 | = 23n−1

3 .
Therefore,

|Sn0 |
2∣∣S2n

0

∣∣ =

(
23n+2

3

)2

26n+2
3

=
1

3
· 26n + 23n+2 + 4

26n + 2
=

1

3
·
(

1 +
23n+2 + 2

26n + 2

)
=

1

3
+O

(
2−3n

)

|Sn1 | · |Sn2 |∣∣S2n
0

∣∣ =
|Sn1 |

2∣∣S2n
0

∣∣ =

(
23n−1

3

)2

26n+2
3

=
1

3
· 26n − 23n+1 + 1

26n + 2
=

1

3
−O

(
2−3n

)
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Otherwise, n is odd, and by Lemma 3.50: kn0 = |Sn0 | = 23n−2
3 ; k2n

0 =
∣∣S2n

0

∣∣ = 26n+2
3 ; and

kn1 = |Sn1 | = 23n+1
3 . Similar calculations give:

|Sn0 |
2∣∣S2n

0

∣∣ =
1

3
−O

(
2−3n

)
,
|Sn1 | · |Sn2 |∣∣S2n

0

∣∣ =
1

3
+O

(
2−3n

)
Consequently,

Pr
(x,y)←U2n

0

[
D′n (x, y) = 1

]
=

(pn0 )2 + 2pn1p
n
2

3
+ E0 (n) + E′0 (n) · pn2

where E0, E
′
0 are error terms, and |E0 (n)| , |E′0 (n)| = O

(
2−3n

)
.

Lemma 3.52. Let D′n, p
n
0 , p

n
1 , p

n
2 be as defined in the proof of Lemma 3.49. Then

Pr(x,y)←U2n
1,2

[D′n (x, y) = 1] =
2pn0 p

n
1 +(pn1 )

2
+2pn0 p

n
2 +(pn2 )

2

6 + E1,2 (n) + E′1,2 (n) · pn2 + E′′1,2 (n) · (pn2 )2,
where E1,2, E

′
1,2, E

′′
1,2 are error terms, and |E1,2 (n)| ,

∣∣E′1,2 (n)
∣∣ , ∣∣E′′1,2 (n)

∣∣ = O
(
2−3n

)
.

Proof. The proof is similar to the proof of Lemma 3.51: S2n
1,2 is the disjoint union of the sets

S2n
1 =

{
(x, y) ∈ {0, 1}6n : x, y ∈ {0, 1}3n ∧ (x ∈ Sn0 , y ∈ Sn1 ∨ x ∈ Sn1 , y ∈ Sn0 ∨ x, y ∈ Sn2 )

}
and

S2n
2 =

{
(x, y) ∈ {0, 1}6n : x, y ∈ {0, 1}3n ∧ (x ∈ Sn0 , y ∈ Sn2 ∨ x ∈ Sn2 , y ∈ Sn0 ∨ x, y ∈ Sn1 )

}
,

and a random element in S2n
1,2 belongs to each of these sets with probability 1

2 . Therefore, by the
law of total probability, Pr(x,y)←U2n

1,2
[D′n (x, y) = 1] is equal to:

1

2

(
2 Pr
x←Un0

[D (x) = 1] · Pr
x←Un1

[D (x) = 1] · |S
n
0 | · |Sn1 |∣∣S2n

1

∣∣ +

(
Pr

x←Un2
[D (x) = 1]

)2

· |S
n
2 |

2∣∣S2n
1

∣∣
)

+

+
1

2

(
2 Pr
x←Un0

[D (x) = 1] · Pr
x←Un2

[D (x) = 1] · |S
n
0 | · |Sn2 |∣∣S2n

2

∣∣ +

(
Pr

x←Un1
[D (x) = 1]

)2

·
∣∣S1

2

∣∣2∣∣S2n
2

∣∣
)

If n is even, then by Lemma 3.50: kn0 = |Sn0 | = 23n+2
3 ; kn1 = |Sn1 | = 23n−1

3 ; and k2n
1 =

∣∣S2n
1

∣∣ =

k2n
2 =

∣∣S2n
2

∣∣ = 26n−1
3 . Therefore,

|Sn0 | · |Sn2 |∣∣S2n
1

∣∣ =
|Sn0 | · |Sn1 |∣∣S2n

1

∣∣ =
23n+2

3 · 23n−1
3

26n−1
3

=
1

3
· 26n + 23n − 2

26n − 1
=

1

3
·
(

1 +
23n − 1

26n − 1

)
=

1

3
+O

(
2−3n

)
and

|Sn2 |
2∣∣S2n

2

∣∣ =
|Sn1 |

2∣∣S2n
2

∣∣ =

(
23n−1

3

)2

26n−1
3

=
1

3
· 26n − 23n+1 + 1

26n − 1
=

1

3
·
(

1− 23n+1 − 2

26n − 1

)
=

1

3
−O

(
2−3n

)
Otherwise, n is odd, and by Lemma 3.50: kn0 = |Sn0 | = 23n−2

3 ; kn1 = |Sn1 | = 23n+1
3 ; and k2n

1 =∣∣S2n
1

∣∣ = k2n
2 =

∣∣S2n
2

∣∣ = 26n−1
3 . Therefore,

|Sn0 | · |Sn1 |∣∣S2n
1

∣∣ =
|Sn0 | · |Sn2 |∣∣S2n

1

∣∣ =
23n−2

3 · 23n+1
3

26n−1
3

=
1

3
· 26n − 23n − 2

26n − 1
=

1

3
·
(

1− 23n + 1

26n − 1

)
=

1

3
−O

(
2−3n

)
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and

|Sn1 |
2∣∣S2n

2

∣∣ =
|Sn2 |

2∣∣S2n
2

∣∣ =

(
23n+1

3

)2

26n−1
3

=
1

3
· 26n + 23n+1 + 1

26n − 1
=

1

3
·
(

1 +
23n+1 + 2

26n − 1

)
=

1

3
+O

(
2−3n

)
Consequently,

Pr
(x,y)←U2n

1,2

[
D′n (x, y) = 1

]
=

2pn0p
n
1 + (pn1 )2 + 2pn0p

n
2 + (pn2 )2

6
+E1,2 (n) +E′1,2 (n) · pn2 +E′′1,2 (n) · (pn2 )2

where E1,2 (n) , E′1,2 (n) , E′′1,2 (n) are error terms, and |E1,2 (n)| ,
∣∣E′1,2 (n)

∣∣ , ∣∣E′′1,2 (n)
∣∣ = O

(
2−3n

)
.

According to Lemma 3.46, indistinguishability of Un0 , Un1,2 and U2n
0 , U2n

1,2 implies indistinguisha-
bility of Un0 , Un1 . We now show that this implies that E3 is leakage indistinguishable (against a
slightly weaker family of leakage functions).

Lemma 3.53. Let n, d, s, t ∈ N, and ε = ε (n) > 0. If there exists an n0 ∈ N such that for
every n ≥ n0, Un0 , U

n
1 are (L3n,d,s,⊕t, ε)-leakage-indistinguishable, then for every n ≥ n0, E3 (·, 1n) is

(L3n,d−1,s−3n,⊕t, 2ε)-leakage-indistinguishable.

Proof. We show first that Enc3 (0, 1n) ,Enc3 (2, 1n) are (L3n,d−1,s−3n,⊕t, ε)-leakage-indistinguishable
for every n ≥ n0. Otherwise, there exists an n > n0, and a distinguisher Dn ∈
L3n,d−1,s−3n,⊕t that achieves advantage ε′ > ε in distinguishing between the distributions
Enc3 (0, 1n), Enc3 (2, 1n). We define D′n to apply negation gates on its inputs, and run Dn.
Then D′n ∈ L3n,d,s,⊕t, and notice that since the encoding length is divisible by 3, and the
transformation v → v̄ is 1:1 and onto (where v̄ denotes the vector obtained by coordinate-
wise negating v) then: if v ← Enc3 (0, 1n) then v̄ ← Enc3 (0, 1n); and if v ← Enc3 (1, 1n)
then v̄ ← Enc3 (2, 1n). Therefore, |Pr [D′n (Enc (0, 1n)) = 1]− Pr [D′n (Enc (1, 1n)) = 1]| =
|Pr [Dn (Enc (0, 1n)) = 1]− Pr [Dn (Enc (2, 1n)) = 1]| = ε′ > ε, contradicting the assumption of
the lemma. Second, since for every n ≥ n0, Enc3 (0, 1n), Enc3 (2, 1n) are (L3n,d−1,s−3n,⊕t, ε)-
leakage-indistinguishable, and Enc3 (0, 1n) ,Enc3 (1, 1n) are (L3n,d,s,⊕t, ε)-leakage-indistinguishable,
then using the triangle inequality Enc3 (1, 1n) ,Enc3 (2, 1n) are (L3n,d−1,s−3n,⊕t, 2ε)-leakage-
indistinguishable.

We are finally ready to prove Corollary 3.44.

Proof of Corollary 3.44. Let d′ = d + 2, let ε, c be the constants for which Theorem 3.43 holds
for depth parameter d′, and we set c′ = c

2 , and ε′ = ε
2 . Given l, let l′ = l + 1, and let n0 be

the minimal length parameter for which Theorem 3.43 holds with parameters d′, l′. Let n′0 be
such that for every n ≥ n′0, 2

(
nl + 3n

)
+ 1 ≤ nl

′ , 2nε
′ ≤ nε, and 2

√
7 · 2−

nc

2 ≤ 2−n
c′ . Let

n′′0 be the minimal length parameter whose existence is guaranteed in Lemma 3.46 for the length
parameter max{n0, n

′
0}, constant c, depth parameter d+ 2, size parameter s = nl + 3n, and parity

gate bound t = nε
′ . Let ñ0 = max{n0, n

′
0, n
′′
0}. We show that the corollary holds for minimal

length parameter ñ0 and constants c′, ε′. Indeed, for every n ≥ ñ0 Theorem 3.43 guarantees that
CorrDn3

(
L3n,d+2,2(nl+3n)+1,⊕2nε′ ,MODn

3

)
≤ 2−n

c (since n ≥ n0 and n ≥ n′0). By Lemma 3.45,

this implies that for every n ≥ ñ0, Un0 , Un1,2 are
(
L3n,d+1,nl+3n,⊕nε′ , 2

−nc
)
-leakage-indistinguishable,

and U2n
0 , U2n

1,2 are
(
L6n,d+2,2(nl+3n)+1,⊕2nε′ , 2

−nc
)
-leakage-indistinguishable. By Lemma 3.46, for
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every n ≥ ñ0, Un0 , Un1 are
(
L3n,d+1,nl+3n,⊕nε′ ,

√
7 · 2−

nc

2

)
-leakage-indistinguishable (because n ≥ n′′0).

By Lemma 3.53, E3 (·, 1n) is
(
L3n,d,nl,⊕nε′ , 2

√
7 · 2−

nc

2

)
-leakage-indistinguishable. Since ñ0 ≥ n′0,

E3 (·, 1n) is
(
L3n,d,nl,⊕nε′ , 2

−nc′
)
-leakage-indistinguishable

3.3.2 A Proof of Theorem 3.37

In this section we prove Theorem 3.37. The proof combines Proposition 3.31 and Corollary 3.44.
More specifically, we instantiate the encoding scheme E of Proposition 3.31 with an “appropriate”
encoding scheme. Recall that Proposition 3.31 uses the compiler of Construction 3.27, which is
based on the arithmetic circuit compiler of Construction 3.7, and is obtained by mapping an encoding
according to a linear encoding scheme over F3 to an encoding over {0, 1} in which every field element
is represented by a 2-bit string (e.g., using the mapping Eb of Definition 3.24). The next lemma
states that the leakage-indistinguishability of an encoding is preserved under this mapping (up to
a constant additive loss in the depth, and a constant multiplicative loss in the size, of the circuits
computing the leakage functions).

Lemma 3.54. Let n,m, d, s ∈ N, ε > 0, and E = (Enc,Dec) be an
(
Lmn,d+1,s+4n,⊕t, ε

)
-leakage-

indistinguishable encoding scheme. Then the encoding scheme Eb =
(
Eb ◦ Enc,Dec ◦ E−1

b

)
is(

Lm2n,d,s,⊕t, ε
)
-leakage-indistinguishable.7

Proof. Denote Encb = Eb ◦ Enc. If Eb =
(
Eb ◦ Enc,Dec ◦ E−1

b

)
is not

(
Lm2n,d,s,⊕t, ε

)
-leakage-

indistinguishable, then there exists a pair w1, w2 ∈ F3, and a leakage function `b ∈ Lm2n,d,s,⊕t, such
that SD (`b (w1) , `b (w2)) > ε, where wi ← Encb (wi, 1

n) for i = 1, 2 (notice that the output length of
Encb (·, 1n) is 2n). We show a leakage function ` ∈ Lmn,d+1,s+4n,⊕t that achieves advantage more that
ε in distinguishing between v1 ← Enc (w1, 1

n) and v2 ← Enc (w2, 1
n). On input z = (z1, ..., zn) ∈

{0, 1}n ⊆ Fn3 , ` first computes the string z′ = (0, z1, 0, z2, ..., 0, zn) (this can be done in Ln,1,4n,0 by
adding n constant gates and 2n output gates), and outputs `b (z′). Then ` ∈ Lmn,d+1,s+4n,⊕t, and no-
tice that if z is distributed according to Enc (γ, 1n) for some γ ∈ F3, then z′ is distributed according
to Encb (γ, 1n). Therefore, SD (` (v1) , ` (v2)) = SD (`b (v′1) , `b (v′2)) = SD (`b (w1) , `b (w2)) > ε.

The proof of Theorem 3.37 now follows from Corollary 3.44, Proposition 3.31, and Lemma 3.55
by an appropriate choice of the parameters.

Proof of Theorem 3.37. Let C, |C| ≤ s′ be the circuit to be compiled. Let d′ = d+33, and denote by
c̃, ε̃ the constants whose existence is guaranteed by Corollary 3.44 for the depth parameter d′+1. Let
Encb (·, 1σ) = Eb◦Enc3 (·, 1σ) ,Decb = Dec3◦E−1

b (here, Eb, E−1
b are the mapping and reverse mapping

of Definition 3.24, and Enc3,Dec3 are the encoding and decoding algorithms of the encoding scheme
of Definition 3.39). Since E3 = (Enc3,Dec3) is linear and onto, then Proposition 3.31 guarantees
that there exist constants z, c′ ∈ N such that when Construction 3.27 is instantiated with Eb :=
(Encb,Decb) as the underlying encoding scheme, σ is the security parameter used in Encb, and s′ is
the size parameter, then the following holds for every ε (n) > 0, and every families L3,L of leakage

7Eb is used to encode field elements in F3 through bit strings. Formally, an encoding scheme is based on a single
alphabet over which both the messages, and the encodings, are defined. For Eb to be consistent with the syntactic
definition, and with our applications (for boolean SAT-respecting relaxed LRCCs), the input to its encoding algorithm
Encb is a 2-bit string representing a field element.
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functions such that L◦ShallowB
(

33, zσ5 · (s′)2
)
⊆ L3.8 If E3 is (L3, ε (n))-leakage-indistinguishable

then (Compb,Eb) is (L, c′ · ε (n) · s′, s′)-relaxed leakage-resilient. Moreover, there exists a constant z′

such that for every circuit C of size at most s′, the compiled circuit Ĉ has size at most z′ |C|2 · σ5.9

Let p := 2c + 10c
ε̃c̃ + 2 and p′ = p + 5c + 10, then Corollary 3.44 guarantees that there exists

a minimal length parameter σ̃0 such that for every σ ≥ σ̃0, Enc3 (·, 1σ) is
(
L3σ,d′+1,σp′ ,⊕σε̃ , 2

−σc̃
)
-

leakage-indistinguishable. Let σ′0 be such that for every σ ≥ σ′0, z + (z′)c ≤ σ, and σ′′0 be such that
for every σ ≥ σ′′0 , c′σ2−σ

c̃ ≤ 1.
We take l (n) := l′ (n,m, s′, t) := z′ · (max{σ̃0, σ

′
0, σ
′′
0})

5 (4ncms′t)2+ 10
ε̃c̃ = poly (n,m, s′, t) =

poly (n) (the last equality holds because s, t,m = poly (n)), and σ = (4ncms′t)
2
ε̃c̃ ·max{σ̃0, σ

′
0, σ
′′
0},

and instantiate the SAT-respecting circuit-compiler (Compb,Eb = (Encb,Decb)) of Construction 3.27,
with size parameter s′, and leakage class L = Lmd,lc(n),⊕t (ε will be set later), where the security pa-
rameter of the encoding scheme Eb is taken to be σ (instead of |C|). Then for every C such that
|C| ≤ s′, the compiled circuit Ĉ satisfies

∣∣∣Ĉ∣∣∣ ≤ z′ |C|2·σ5 ≤ z′ (s′)2·(max{σ̃0, σ
′
0, σ
′′
0})

5 (4ncms′t)
10
ε̃c̃ ≤

z′ · (max{σ̃0, σ
′
0, σ
′′
0})

5 (4ncms′t)2+ 10
ε̃c̃ = l′ (n,m, s′, t) = l (n). Moreover, since the length of encod-

ings generated by the encoding scheme was taken to be σ ≥ max{σ̃0, σ
′
0, σ
′′
0} ≥ σ̃0, Enc3 (·, 1σ) is(

L3σ,d′+1,σp′ ,⊕σε̃ , 2
−σc̃
)
-leakage-indistinguishable. Notice that

lc (n) + z
(
s′
)2

=
(
z′
)c · (max{σ̃0, σ

′
0, σ
′′
0}
)5c (

4ncms′t
)2c+ 10c

ε̃c̃ + z
(
s′
)2

which is upper bounded by((
z′
)c

+ z
)
·
(
max{σ̃0, σ

′
0, σ
′′
0}
)5c (

4ncms′t
)2c+ 10c

ε̃c̃
+2

which (by the choice of σ) is at most σ · σ5cσpc̃ε̃+2 ≤c̃,ε̃<1 σ3+5c+p, so

m ·
(
lc (n) + z

(
s′
)2
σ5
)

+ 1 ≤m≤σ
(
lc (n) + z

(
s′
)2) · σ7 ≤ σp+5c+10 = σp

′
.

Moreover, mt + 1 ≤ σε̃ (because c̃ < 1 and s′ ≥ 2). Using Lemma 3.55, this implies that
Enc3 (·, 1σ) is

(
Lm

3σ,d′,lc(n)+z(s′)2σ5,⊕t, 2
m
2
−σc̃
)
-leakage-indistinguishable. Therefore, the compiled cir-

cuit is
(
Lmd,lc(n),⊕t, c

′ · 2
m
2
−σc̃ · σ

)
-relaxed-leakage-resilient (here, we also use the fact that s′ ≤ σ,

which holds because n,m, t ≥ 1 and ε̃, c̃ < 1). We conclude the proof by noticing that since ε̃, c̃ < 1

then c′ · 2
m
2
−σc̃ · σ ≤ 2

m
2
−2ncms′t · c′σ2−

σc̃

2 . Since s′, t ≥ 1, and σ ≥ σ′′0 , we can upper bound this
expression by 2−n

c .

The next lemma was used in the proof of Theorem 3.37.

Lemma 3.55. Let n, n′,m, d, s, t ∈ N, let ε > 0, and let f : {0, 1}n′ → {0, 1}n be a random-
ized function. If f is (Ln,d+1,ms+1,⊕mt+1, ε)-leakage-indistinguishable, then f is

(
Lmn,d,s,⊕t, ε · 2

m
2

)
-

leakage-indistinguishable.

8We note that Proposition 3.31 requires that L ◦ ShallowB
(
33, zn̂5 (s′) · (s′)2

)
⊆ L3, where s′ bounds the size of

the circuit that is being compiled, but the dependency on n̂ (s′) is because in the proof of the proposition, the second
input to the encoding scheme was taken to be 1|C|, where |C| ≤ s. Here, the second input to Eb is σ, not |C|. In
addition, in Eb, n̂ (m) = O (m) for every m, so we can replace n̂ (σ) with O (σ).

9We note that according to Proposition 3.31,
∣∣∣Ĉ∣∣∣ ≤ z′′ |C|2 · n̂ (s′)5 for some constant z′′, but as the second input

to the encoding scheme in our construction is 1σ, not 1|C|, and since n̂ (m) = O (m) for every m, then we can use the
bound

∣∣∣Ĉ∣∣∣ ≤ z′ |C|2 · σ5.
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The proof uses the following lemma, which generalized Vazirani’s XOR Lemma [31, 14] and can
be proved similarly. Intuitively, the lemma states that statistical distance is “somewhat preserved”
under linear transformations.

Lemma 3.56 (XOR Lemma). Let X,Y be distributions over {0, 1}m such that SD (X,Y ) = ε. Then
there exists an α ∈ {0, 1}m such that SD

(
αTX,αTY

)
≥ ε

2
m
2
.

Proof of Lemma 3.55. If f is not
(
Lmn,d,s,⊕t, ε · 2

m
2

)
-leakage-indistinguishable, then there exist y, z ∈

{0, 1}n, and a function ` ∈ Lmn,d,s,⊕t, such that SD (` (f (y)) , ` (f (z))) > ε · 2
m
2 . Since ` ∈ Lmn,d,s,⊕t,

then there exist m circuits C1, ..., Cm : {0, 1}n → {0, 1} of depth at most d and size at most s,
with unbounded fan-in and fan-out ∧,∨,¬,⊕ gates, out of which at most t are ⊕ gates, where Ci
computes `i, the i’th output bit of `. Let Xy, Xz be random variables over {0, 1}m distributed
according to ` (f (y)) , ` (f (z)), then SD (Xy, Xz) > ε · 2

m
2 . Therefore, by Lemma 3.56 there exists

an α ∈ {0, 1}m such that SD
(
αTXy, α

TXz

)
> ε. Let ˆ̀ : {0, 1}n → {0, 1} be the function computed

by the following circuit C. The first (at most) d layers contain the circuits C1, ..., Cm in parallel.
Layer d + 1 contains a single ⊕ gate, whose inputs are the outputs of the circuits {Ci : αi = 1}.
Then ˆ̀ ∈ Ln,d+1,ms+1,⊕mt+1, and notice that ˆ̀(f (y)) is distributed according to αTXy, while
ˆ̀(f (z)) is distributed according to αTXz. Therefore, SD

(
ˆ̀(f (y)) , ˆ̀(f (z))

)
> ε, contradicting the

(Ln,d+1,ms+1,⊕mt+1, ε)-leakage-indistinguishability of f .

4 WIPCPs and CZKPCPs

In this section, we use SAT-respecting relaxed LRCCs to transform standard PCPs into WIPCPs
and CZKPCPs in the CRS model, with a non-adaptive honest verifier. We first give an overview of
probabilistic proof systems, and then discuss WIPCPs (Section 4.1) and CZKPCPs (Section 4.2).

Given a relation R = R (x,w), we let LR := {x : ∃w, (x,w) ∈ R}. A probabilistic proof system
(P, V ) for an NP-relation R = R (x,w) consists of a PPT prover P that on input (x,w) outputs
a proof π (in standard probabilistically checkable proofs the prover is deterministic, but our con-
structions will crucially rely on the prover being probabilistic), and a probabilistic verifier V that
given input x and oracle access to a proof π outputs either accept or reject. We say that V is
q-query-bounded if V makes at most q queries to π.

4.1 WIPCPs

In this section we define WIPCPs, describe a general transformation from SAT-respecting relaxed
LRCCs to WIPCPs, and then use the compiler of Theorem 3.37, together with the PCP of [1], to
construct a WIPCP system.

Intuitively, a probabilistic proof system is a WIPCP for an NP-relationR = R (x,w) if it satisfies
the following. First, given oracle access to an honestly generated proof for x ∈ LR, the verifier always
accepts. Second, given x /∈ LR, the verifier rejects except with some probability εS , regardless of its
“proof” oracle. Thirdly, for every (possibly malicious, possibly adaptive) q∗-query bounded verifier
V ∗, every x ∈ LR, and every pair w1, w2 of witnesses for x, the view of V ∗ when verifying an honestly
generated proof for (x,w1) is εZK-statistically close to its view when verifying an honestly generated
proof for (x,w2). Formally,

Definition 4.1 (WIPCP). We say that a probabilistic proof system (P, V ) is a witness-
indistinguishable probabilistically checkable proof (WIPCP) system for an NP-relation R = R (x,w),
if the following holds.
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• Syntax. The prover P has input εS , εZK, 1
q∗ , x, w, and outputs a proof π for (x,w) (i.e.,

P
(
εS , εZK, 1

q∗ , x, w
)
defines a distribution over proofs for (x,w)). The verifier V has input

εS , εZK, q
∗, x, and oracle access to π, and outputs either acc or rej.

We associate with P, V as above the following efficiency measures. The alphabet Σ =
Σ (εS , εZK, q

∗, |x|) over which π is defined; The length ` = ` (εS , εZK, q
∗, |x|) of the proof π;

the query complexity q = q (εS , εZK, q
∗, |x|) of V (i.e., the number of queries V makes to his

oracle); and the randomness complexity r = r (εS , εZK, q
∗, |x|) of V (namely, the number of

random bits it uses).

• Semantics. (P, V ) should have the following properties.

– Completeness. For every (x,w) ∈ R and every proof π ∈ P
(
εS , εZK, 1

q∗ , x, w
)
,

Pr [V π (εS , εZK, q
∗, x) = acc] = 1, where the probability is over the randomness of V .

– Soundness. For every x /∈ LR and every π∗, Pr
[
V π∗ (εS , εZK, q

∗, x) = acc
]
≤ εS .

– (εZK, q
∗)-witness-indistinguishability (WI). For every (possibly adaptive) q∗-query-

bounded verifier V ∗, every x ∈ LR, and every pair w1, w2 of witnesses for x
(i.e., (x,w1) , (x,w2) ∈ R), SD (RealV ∗,P (x,w1) ,RealV ∗,P (x,w2)) ≤ εZK, where
RealV ∗,P (x,w) denote the view of V ∗ on input εS , εZK, q

∗, x, and given oracle access
to π ← P

(
εS , εZK, 1

q∗ , x, w
)
.

We say that a WIPCP is a non-adaptive WIPCP (NA-WIPCP) system for a relation R =
R (x,w), if the honest verifier is non-adaptive. That is,

Definition 4.2 (Non-adaptive WIPCP). We say that a probabilistic proof system (P, V ) is a non-
adaptive WIPCP (NA-WIPCP) system for an NP-relation R = R (x,w), if it is a WIPCP system
in which the honest verifier is non adaptive, i.e., his queries are determined by his inputs and
randomness.

Notation 4.3. We use NA−WIPCP [r, q, q∗, εS , εZK, `] to denote the class of NP-languages that
admit an NP-relation R with a non-adaptive (εZK, q

∗)-WIPCP, in which the prover outputs
proofs of length `, the honest verifier tosses O (r) coins, queries O (q) proof bits, and rejects
false claims except with probability at most εS . We use PCP [r, q, ε, `] to denote the class of
NP-languages admitting a standard (i.e., non-WI) PCP system with the same properties, and
write R ∈ PCP [r, q, ε, `] to denote that LR ∈ PCP [r, q, ε, `]. We denote NA−WIPCP :=
NA−WIPCP[poly log n, poly log n, poly (n) , negl (n) , negl (n) , poly (n)].

We describe a transformation from PCPs for 3SAT to NA-WIPCPs for arbitrary NP-relations
R = R (x,w), which can be applied to any PCP system for 3SAT in which the proof is obtained
from the witness through an “easy” function f3SAT (we formalize this notion below). If (x,w) ∈ R
then w satisfies CR (x, ·) (i.e., CR with x hard-wired into it). If every “small” subset of bits in
the output of f3SAT is constitutes a function in a function class L, then the system can be made
WI as follows. The prover and verifier both compile CR (x, ·) into a SAT-respecting circuit ĈR
that is relaxed leakage-resilient against L, and then generate a 3CNF ϕ that represents ĈR (see
Definition 4.5 below). Notice that by the SAT-respecting property, ĈR (and consequently, also ϕ)
is satisfiable if and only if x ∈ LR. The prover then samples a random encoding ŵ of w (notice that[
ĈR, ŵ

]
is a satisfying assignment for ϕ), and generates the PCP π = f3SAT

[
ĈR, ŵ

]
. The verifier

probabilistically verifies that ϕ is satisfiable by reading few symbols of π, which (if the verifier is
non-adaptive) correspond to applying a leakage function from L to the wire values of

[
ĈR, ŵ

]
. This

gives the following result.
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Proposition 4.4. Let n be a length parameter, εS , εZK ∈ [0, 1], S = S (n) be a size function,
q∗ = q∗ (n) be a query function, and g(·) be a polynomial. Let L be a family of leakage functions,
such that:

• there is a SAT-respecting (L, εZK, S)-relaxed LRCC (Comp,E) satisfying |Comp(C)| ≤ g (|C|)
for every circuit C;

• there is a PCP [r (n) , q (n) , εS , ` (n)] system for 3SAT, such that for every (ϕ,W ) ∈ 3SAT,
every subset Q of q∗ bits of an honestly-generated proof π = π (ϕ,W ) is computable from W
by a function fϕ,Q ∈ L.

Then for every NP-relation R = R (x,w) with verification circuit CR of size at most S, we have
that R ∈ NA−WIPCP [r (t) , q (t) , q∗, εS , 2εZK, ` (t)], where t = O

(
g
(∣∣CR∣∣)), and WI holds against

non-adaptive verifiers.

Before proving Proposition 4.4, we first explicitly define the WIPCP system, starting with the
3CNF-representation of circuits.
Representing computations as 3CNFs. We will use boolean formulas to represent computa-
tions of boolean circuits.

Definition 4.5 (Canonical 3CNFs representing boolean circuits). A 3CNF is a conjunction of
clauses, where each clause contains exactly 3 literals (a literal is a variable or its negation). Given
a circuit C, we define the canonical 3CNF representing C, denoted ϕC , as follows.

• For every input gate gi of C we introduce a variable xi.

• For every gate g of C, with input wires a, b and output wire c:

– We introduce a variable xc. (Notice that if the gates are traversed from the input gates to
the output gate, then the variables xa, xb corresponding to a, b have already been defined.)

– We define a 3CNF ϕg as follows:
∗ g is an ∧ gate, c = a ∧ b: ϕ (xa, xb, xc) = (xc ∨ ¬xa ∨ ¬xb) ∧ (¬xc ∨ xa ∨ ¬xc) ∧

(¬xc ∨ xb ∨ ¬xc).10

∗ g is an ∨ gate, c = a ∨ b: ϕ (xa, xb, xc) = (¬xc ∨ xa ∨ xb) ∧ (xc ∨ ¬xa ∨ xc) ∧
(xc ∨ ¬xb ∨ xc).
∗ g is a ¬ gate, c = ¬a: ϕ (xa, xc) = (¬xc ∨ ¬xa ∨ ¬xc) ∧ (xc ∨ xa ∨ xc).

• For the output gate go of C, with output wire o, we concatenate the clause (xo ∨ xo ∨ xo) to
ϕgo , i.e., we obtain a new 3CNF ϕgo ∧ (xo ∨ xo ∨ xo).

• ϕC = ∧gϕg, where the conjunction is over all gates except input gates.

Example 4.6. Let C : {0, 1}2 → {0, 1}, C (y, z) = (y ∧ z) ∨ (¬y). Let g∧, g∨, g¬ denote the ∧,∨,¬
gates of C, and notice that g∨ is also the output gate. Then:

• The variables of ϕC are xy, xz (corresponding to the input gates of C), and x∧, x∨, x¬ (corre-
sponding to the output wires of g∧, g∨, g¬, respectively).

10Notice that some variables appear twice in the same clause. This is not needed for the functionality of the
formula, but is required for ϕ to be a 3CNF. Instead, we could have introduced new variables, where a clause of
the form a ∨ b would have been replaced with the 3CNF (a ∨ b ∨ z) ∧ (a ∨ b ∨ ¬z), where z is a new variable. The
alternative transformation has the advantage that each variable appears at most once in every clause, but increases
the number of variables. As we will not require that every variable appears at most once in each clause, we have
chosen the first transformation, which has the advantage that a wire assignment to C is also an assignment to ϕC .
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• ϕg∧ (xy, xz, x∧) = (x∧ ∨ ¬xy ∨ ¬xz) ∧ (¬x∧ ∨ xy ∨ ¬x∧) ∧ (¬x∧ ∨ xz ∨ ¬x∧).

• ϕg¬ (xy, x¬) = (¬x¬ ∨ ¬xy ∨ ¬x¬) ∧ (x¬ ∨ xy ∨ x¬).

• ϕg∨ (x∧, x¬, x∨) = (¬x∨ ∨ x∧ ∨ x¬)∧ (x∨ ∨ ¬x∧ ∨ x∨)∧ (x∨ ∨ ¬x¬ ∨ x∨)∧ (x∨ ∨ x∨ ∨ x∨) (the
last clause of ϕg∨ was inserted because g∨ is also the output gate).

• ϕC (xy, xz, x∧, x¬, x∨) = ϕg∧ ∧ ϕg¬ ∧ ϕg∨ .

Notice that the variables of ϕC correspond to the wires of C. ϕC represents C in the sense that
a wire assignment to C (which is also an assignment to the variables of ϕC) satisfies ϕC only if it
corresponds to the evaluation of C on a satisfying input, as stated in the next fact.

Fact 4.7. Let C be a boolean circuit, and let ϕC be the canonical 3CNF representing C (as in
Definition 4.5). Then a wire assignment W to C, which is also an assignment to the variables of
ϕC , satisfies ϕC if and only if W is the assignment to the wires of C when evaluated on a satisfying
input x. Moreover, ϕC can be constructed from C in linear time, so |ϕC | = O (|C|), where |ϕ|
denotes the number of clauses in ϕ.

Using the canonical 3CNF representation of boolean circuits, we can now formally describe the
NA-WIPCP system.

Construction 4.8 (NA-WIPCP). Let (P3SAT, V3SAT) be a PCP system for 3SAT, and let
(Comp,E = (Enc,Dec)) be a SAT-respecting (L, ε (n) ,S (n))-relaxed LRCC. Let R = R (x,w) be
an NP-relation with verification circuit CR. (More precisely, CR is a family

{
CRn
}
of circuits, where

CRn is applied to inputs x of length n. To simplify notations, we denote all circuits in the family by
CR.) The NA-WIPCP system consists of the prover P and the verifier V .
Prover algorithm. On input (x,w) ∈ R:

• Let CR (x, ·) denote the circuit CR with x hard-wired into it, then P computes Ĉx (·) =
Comp

(
CR (x, ·)

)
.

• Samples a random encoding ŵ ← Enc
(
w, 1|CR|

)
, and computes the internal wires of Ĉx (ŵ).

Let W denote this wire assignment.

• Construct the canonical 3CNF ϕx representing Ĉx.

• Outputs a proof π ∈R P3SAT (ϕx,W) for the claim “ϕx ∈ 3SAT”.

Verifier algorithm. On input x, and given oracle access to π, V computes Ĉx (·) =
Comp

(
CR (x, ·)

)
, and constructs the 3CNF formula ϕx. Then, V runs V π

3SAT (ϕx) (and accepts
or rejects according to the output of V3SAT).

Remark 4.9. The prover and verifier of the PCP system for 3SAT may expect additional parameters
as part of their input. In such cases, these parameters would also be given as input to the prover and
verifier of the NA-WIPCP, who will provide them as part of the input to P3SAT, V3SAT. However, to
make the construction clearer, we have chosen not to explicitly include these additional parameters
in Construction 4.8.

Next, we prove Proposition 4.4, that determines the relation between the queries of the verifier,
and the family of leakage functions, for which Construction 4.8 would be witness-indistinguishable.
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Proof of Proposition 4.4. We show that the system of Construction 4.8, when using (P3SAT, V3SAT)
and (Comp,E) as the underlying components, has the required properties.
Parameters. The wire assignment W to Ĉx has size |W| =

∣∣∣Ĉx∣∣∣ ≤ g
(∣∣CR (x, ·)

∣∣) ≤ g
(∣∣CR∣∣). V

emulates the verification procedure of the inner verifier V3SAT, on input ϕx of size |ϕx| = O
(∣∣∣Ĉx∣∣∣) ≤

O
(
g
(∣∣CR∣∣)). Therefore, the query complexity of V is O

(
q
(
O
(
g
(∣∣CR∣∣)))), and the randomness

complexity is O
(
r
(
O
(
g
(∣∣CR∣∣)))).11 The proof is generated from the witness W, that has size at

most O
(
g
(∣∣CR∣∣)), so the proof has size `

(
O
(
g
(∣∣CR∣∣))).

Perfect completeness follows directly from the perfect completeness of the underlying systems.
Soundness. Let x /∈ LR, then for every “witness” w, C (x,w) = 0, i.e., Cx is not satisfiable. Since
(Comp,E) is SAT-respecting, Ĉx is not satisfiable, i.e., ϕx /∈ 3SAT. (Notice that here perfect SAT-
respecting is crucial, otherwise there may exist a satisfying input ŵ∗ for Ĉx, even though C (x, ·) is not
satisfiable, and a malicious prover would use ŵ∗ to convince the verifier.) Therefore, the soundness
of (P3SAT, V3SAT) guarantees that for every π∗, Pr

[
V π∗ (x) = acc

]
= Pr

[
V π∗

3SAT (ϕx) = acc
]
≤ εS .

Witness-indistinguishability. Let x ∈ LR, ϕx be the canonical 3CNF representing Ĉx, and
w1, w2 be two witnesses for x. Let V ∗ be a non-adaptive q∗-query-bounded verifier, and let π1, π2 be
proofs that were randomly generated by the honest prover P for w1, w2, respectively. The entire view
of V ∗ can be reconstructed from the oracle answers to his queries, and since applying a function
to a pair of random variables does not increase the statistical distance between them, it suffices
to show that for every set Q of q∗ symbols of π1, π2, SD (π1|Q, π2|Q) ≤ 2εZK, where πi|Q denotes
the restriction of πi to the coordinates indexed by Q. Since P evaluates Ĉx on random encodings
ŵi ← Enc

(
wi, 1

|C(x,·)|) of wi, i = 1, 2, and
∣∣CR∣∣ ≤ S, then the relaxed leakage-resilience of (Comp,E)

guarantees that for every f ∈ L, SD
(
f
[
Ĉx, ŵ1

]
, f
[
Ĉx, ŵ2

])
≤ 2εZK. (Using the union bound, this

holds because both π1|Q, π2|Q are εZK-statistically close to the output of the leakage function on
the simulated wire values generated by the simulator of the relaxed LRCC.) Moreover, fϕx,Q ∈ L,
and πi|Q = fϕx,Q

[
Ĉx, ŵi

]
(recall that f [C, x] denotes the output of f , when given as input the wire

assignment of the circuit C when evaluated on input x), so by the (εZK,L)-relaxed leakage-resilience
of Comp, SD (π1|Q, π2|Q) ≤ 2εZK.

Proposition 4.4 shows that Construction 4.8 is WI against non-adaptive (possibly malicious)
query-bounded verifiers. Using techniques of [7] (see Theorem 4.11 below), we can generalize the
WI property of Proposition 4.4 to adaptive verifiers, while increasing the statistical distance of the
WI property by a multiplicative factor of roughly `q

∗ (all other parameters remain unchanged).
Formally,

Corollary 4.10. Let n be a length parameter, εS , εZK ∈ [0, 1], S = S (n) be a size function, q∗ =
q∗ (n) be a query function, and g(·) be a polynomial. Let L be a family of leakage functions, such
that:

• there is a SAT-respecting (L, εZK, S)-relaxed LRCC (Comp,E) satisfying |Comp(C)| ≤ g (|C|)
for every circuit C;

• there is a PCP [r (n) , q (n) , εS , ` (n)] system for 3SAT, such that for every (ϕ,W ) ∈ 3SAT,
every subset Q of q∗ bits of an honestly-generated proof π = π (ϕ,W ) is computable from W
by a function fϕ,Q ∈ L.

11Since g
(∣∣CR∣∣) is an upper-bound on the size of the formula, we assume here that q, r, ` are non-decreasing, which

is without loss of generality.
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Then for every NP-relation R = R (x,w) with verification circuit CR of size at most S, we

have that R ∈ NA−WIPCP

[
r (t) , q (t) , q∗, εS , O

(
εZK · q∗ · (` (t))2q∗

)
+ e
−Ω

(
q∗·(`(t))q

∗)
, ` (t)

]
, where

t = O
(
g
(∣∣CR∣∣)).

Proof. The proof follows by applying Theorem 4.11 to the NA-WIPCP system of Proposition 4.4,
and by noting that the proofs in the NA-WIPCP system of Proposition 4.4 have length ` (t).

The proof of Corollary 4.10 used the following result of [7].

Theorem 4.11 (Implicit in [7]). Let (P, V ) be a PCP system which is (ε, q∗)-WI against non-
adaptive verifiers, and in which the prover generates proofs of length `. Then (P, V ) is also(
O
(
ε · q∗ · `2q∗

)
+ e
−Ω

(
q∗·`q∗

)
, q∗
)
-WI against adaptive verifiers.

Using the circuit compiler of Theorem 3.37, we can now state a specific restriction on the function
transforming a satisfying assignment for a 3CND into a corresponding PCP, such that a relation R
whose verification circuit is “not too large” would have an NA-WIPCP system.

Corollary 4.12. Let n be a length parameter, εS , εZK ∈ [0, 1], and q∗ = q∗ (n) = poly (n) be a query
function. Assume that 3SAT ∈ PCP [r (n) , q (n) , εS , ` (n)] with the system (P3SAT, V3SAT), where
` (n) = poly (n), and for every (ϕ,W ) ∈ 3SAT, every bit of an honestly-generated proof π = π (ϕ,W )
is computable by LO(1),poly(n),⊕1 (i.e., by a constant-depth, poly-sized, boolean circuit with unbounded
fan-in and fan-out ∧,∨,¬,⊕ gates, out of which only one is an ⊕ gate, see Definition 3.40). Then
NP ⊆ NA−WIPCP [r (poly (n)) , q (poly (n)) , q∗, εS , negl (n) , ` (poly (n))].

Proof. The corollary follows from applying Corollary 4.10 to the circuit compiler of Theorem 3.37.
More specifically, let d, c ∈ N be constants such that every proof bit generated by the honest P3SAT is
computable from the NP-witness in Ld,nc,⊕1, where n denotes the witness length. Moreover, proofs
generated by the prover have length at most nc′′ , for some constant c′′.

Let R be an NP-relation with verification circuit C = CR, then |C| = nc
′ for some constant

c′ (because R is polynomially bounded and efficiently computable). We use Theorem 3.37 with
parameters dComp = d, s′Comp = |C| , nComp = n, tComp = 1, mComp = nq∗, and take cComp ≥ c to
be a large enough constant whose value will be set later (the subscript Comp is used to denote
the parameters in the statement of Theorem 3.37, and to differentiate them from the constants
mentioned in the proof). Notice that s′Comp, tComp,mComp are all polynomial in n. We apply the
circuit compiler (Comp,E) obtained from Theorem 3.37 with these parameters, to C, and obtain a
circuit Ĉ of size

∣∣∣Ĉ∣∣∣ ≤ l (n) which, because |C| ≤ s′Comp, is
(
Lq
∗

d,lc(n),⊕1, 2
−ncComp

)
-relaxed leakage-

resilient (where l (n) is the polynomial whose existence is guaranteed by Theorem 3.37). Let k ∈ N
be the constant such that l (n) = nk.

Let ϕ denote the canonical 3CNF representing Ĉ (see Definition 4.5). Then a wire assign-
ment W for Ĉ, which is also an assignment to the variables of ϕ, has size |W| =

∣∣∣Ĉ∣∣∣ ≤ l (n).
Moreover, every proof bit of a proof generated by P3SAT for ϕ can be generated from W in
Ld,lc(n),⊕1. Therefore, every q∗ proof bits are computable from W in Lq

∗

d,lc(n),⊕1, and Corollary 4.10
guarantees that the system (P, V ) of Construction 4.8 is an NA-WIPCP system for R, with(
q∗, O

(
q∗ · `2q∗ · 2−n

cComp
)

+ e
−Ω

(
q∗·`q∗

))
-WI (where ` denotes the proof length), perfect complete-

ness, and soundness error εS . Since g (|C|) = l (n) = nk, then the proof length is ` = `
(
nk
)

= nkc
′′ .
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We set cComp to be large enough, such that the statistical error in the relaxed leakage-resilience
property is

O

(
q∗ ·

(
nkc

′′
)2q∗

· 2−n
cComp

)
+ e
−Ω

(
q∗·`q∗

)
= negl (n) .

(Such a choice of cComp exists since

O

(
q∗ ·

(
nkc

′′
)2q∗

· 2−n
cComp

)
+ e
−Ω

(
q∗·`q∗

)
≤ O

(
(q∗n)2q∗kc′′ · 2−n

cComp
)

+ e
−Ω

(
q∗·`q∗

)

where the left had side is equal to 2c
′·2q∗kc′′ log(nq∗)−ncComp

+2−c
′q∗·nq∗kc′′ for some constant c′, because

q∗ = poly (n), and k, c′′, cComp are constants.) Finally, we note that the honest verifier is non adaptive,
tosses O (r (poly (nq∗))) = O (r (poly (n))) coins and reads O (q (poly (nq∗))) = O (q (poly (n))) bits
of the proof.

In Appendix B we show that the PCP system of Arora and Safra [2] for 3SAT has the property
that every proof bit is computable from the witness by an AC0 circuit, augmented with a single
⊕ gate of unbounded fan-in and fan-out. Combining this PCP system with Corollary 4.12 yields
Theorem 1.1.

Proof of Theorem 1.1. We show that NP ⊆ NA−WIPCP. Let
(
PAS, V AS

)
denote the PCP system of

Arora and Safra [2, Theorem 1] (used to prove that 3SAT ∈ PCP
[
log n, log2 n, 1

2 , poly (n)
]
). In their

system, there exists a constant c > 0 such that every proof bit is computable given the witness by a
depth-3 boolean circuit, where the first layer contains nc constant gates, the second layer contains nc′

unbounded fan-in ∧ gates, and the third layer consists of a single unbounded fan-in ⊕ gate. (See Ap-
pendix B for a more detailed description of

(
PAS, V AS

)
.) In particular, every proof bit is computable,

given the witness, by an AC0 circuit, augmented with a single⊕ gate of unbounded fan-in and fan-out.
Applying Corollary 4.12 to

(
PAS, V AS

)
with q∗ = poly (n), and amplifying soundness via repetition,

we get that NP ⊆WIPCP [poly log (n) , poly log (n) , poly (n) , negl (n) , negl (n) , poly (n)].

4.2 CZKPCPs in the CRS Model

In this section we construct NA-CZKPCPs in the CRS model from NA-WIPCPs. Roughly speaking,
a probabilistic proof system is a CZKPCP in the CRS model for an NP-relation R = R (x,w) if the
prover and verifier have access to a common random string s; correctness holds for any s; soundness
holds for a uniformly random s; and there exists a PPT simulator Sim such that for every q∗-query
bounded verifier V ∗, and every x ∈ LR, Sim (x) is computationally indistinguishable from the joint
distribution of a uniformly random s, and the view of V ∗ given s and oracle access to an honestly
generated proof for x. Formally,

Definition 4.13 (Computational ZKPCP in the CRS model). We say that a probabilistic proof
system (P, V ) is a computational zero-knowledge probabilistically checkable proof (CZKPCP) system
for an NP-relation R = R (x,w) in the CRS model, if the following holds.

• Syntax. The prover P has input εS , 1q
∗
, 1σ, x, w, and access to a common random string (CRS)

s ∈ {0, 1}σ, and outputs a proof π for (x,w) (i.e., P
(
εS , 1

q∗ , 1σ, x, w, s
)
defines a distribution

over proofs for (x,w)). The verifier V has input εS , q∗, 1σ, x, access to s, and oracle access to
π, and outputs either acc or rej.

We associate with P, V as above the following efficiency measures. The alphabet Σ =
Σ (εS , q

∗, |x| , σ) over which π is defined; The length ` = ` (εS , q
∗, |x| , σ) of the proof π; the
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query complexity q = q (εS , q
∗, |x| , σ) of V (i.e., the number of queries that V makes to his ora-

cle); and the randomness complexity r = r (εS , q
∗, |x| , σ) of V (namely, the number of random

bits that he uses).

• Semantics. (P, V ) should have the following properties.

– Completeness. For every (x,w) ∈ R, every CRS s ∈ {0, 1}σ, and every proof π ∈
P
(
εS , 1

q∗ , 1σ, x, w, s
)
, Pr [V π (εS , q

∗, 1σ, x, s) = acc] = 1, where the probability is over
the randomness of V .

– Soundness. For every x /∈ LR and every π∗, if s ∈R {0, 1}σ then
Pr
[
V π∗ (εS , q

∗, 1σ, x, s) = acc
]
≤ εS , where the probability is over the choice of s, and

the random coins used by V .

– q∗-computational zero-knowledge (CZK). There exists a PPT simulator Sim such that
the following holds for every q∗-query-bounded (possibly malicious) PPT verifier V ∗,
and every (x,w) ∈ R. The simulator Sim on input x, 1σ generates a simulated CRS
sSim, and gives sSim to V ∗. Then, V ∗ (adaptively) queries the proof, and Sim generates
simulated answers to these queries. At the end of this interaction, Sim outputs a simulated
view of V ∗. Then (x, s,RealV ∗,P (x,w, s)) ≈ Sim (x, 1σ), where RealV ∗,P (x,w, s) denotes
the view of V ∗ on input εS , q∗, x, 1σ, given access to s ∈R {0, 1}σ and oracle access to
π ∈R P

(
εS , 1

q∗ , 1σ, x, w, s
)
; Sim (x, 1σ) denotes the output of Sim on input x, 1σ; and ≈

denotes computational indistinguishability.

Remark 4.14. It would sometimes be useful to bound the computational distance between
(x, s,RealV ∗,P (x,w, s)) and Sim (x, 1σ) precisely. Therefore, we say that a CZKPCP system has
(εZK, q

∗)-CZK if the computational distance between (x, s,RealV ∗,P (x,w, s)) and Sim (x, 1σ) is at
most εZK. In this case, εZK is given to both P and V , and the parameters of the system (i.e.,
Σ, `, q, r) may depend on εZK.

Similar to WIPCPs, we consider non-adaptive CZKPCPs:

Definition 4.15 (Non-adaptive CZKPCP). We say that a probabilistic proof system (P, V ) is a
non-adaptive CZKPCP (NA-CZKPCP) system for an NP-relationR = R (x,w), if it has the syntax,
completeness, soundness, and CZK of a CZKPCP system (Definition 4.13); and the honest verifier
is non-adaptive, i.e., his queries are determined by his inputs and randomness.

We use a technique of Fiege et al. [12] to construct CZKPCPs in the CRS model from WIPCPs.
Though [12] use this technique to construct non-interactive zero-knowledge proofs (NIZKs) from
non-interactive WI proofs, the same transformation can also be applied to WIPCPs. The high-
level idea is as follows. To construct a CZKPCP for an NP-relation RL, we use a WIPCP system
for a “related” NP-relation, which admits a trapdoor used by the simulator in the simulation (this
trapdoor is the reason that a CRS is needed). Formally,

Construction 4.16 (From WIPCP to CZKPCP in the CRS model). Let G : {0, 1}σ → {0, 1}p(σ)

be a PRG, with some stretch function p : N → N. Let L be an NP-language with the cor-
responding NP-relation R = R (x,w), then we define an NP-language LG as follows: LG =
{(x, y) : x ∈ L ∨ y ∈ Im (G)}. Let RG denote the corresponding NP-relation, and let

(
P in, V in

)
be a WIPCP system for LG.12

12It suffices for
(
P in, V in

)
to be a WIPCP system for any NP-complete language Lin, since the prover and verifier

of Construction 4.16 can reduce instances in LG to instances in Lin using a witness-preserving transformation. We
choose to use a WIPCP system for LG because it makes the presentation clearer.
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Prover algorithm. The prover P , on input (x,w) ∈ R, and given access to a CRS s ∈ {0, 1}p(σ),
runs P in on (x, s) , w and outputs the proof π that P in outputs.
Verifier algorithm. The verifier V , on input x, given access to the CRS s, and oracle access to
a proof π, runs V in on input (x, s), with oracle π, and outputs whatever V in outputs.

The next proposition summarizes the properties of Construction 4.16. We say that a PRG G has
ε (n)-pseudorandom output against non-uniform distinguishers, if for every n, and every (possibly
non-uniform) polynomial distinguisher D,

∣∣∣Pru←Up(n) [D (u) = 1]− Prs←Un [D (G (s)) = 1]
∣∣∣ ≤ ε (n),

where Un denotes the uniform distribution over {0, 1}n.

Proposition 4.17. Let G : {0, 1}σ → {0, 1}p(σ) be a PRG, whose output is εG (σ)-pseudorandom
against non-uniform distinguishers, where p : N → N is a stretch function. Let LG be as defined
in Construction 4.16. If LG ∈ NA−WIPCP [r (n) , q (n) , q∗ (n) , εS (n) , εZK (n) , ` (n)] with the sys-
tem

(
P in, V in

)
, then R ∈ NA− CZKPCP[r (n+ p (σ)) , q (n+ p (σ)) , q∗ (n+ p (σ)) , εS (n+ p (σ)) +

2σ−p(σ), εZK (n+ p (σ)) + εG (σ) , ` (n+ p (σ))] with the system of Construction 4.16.

Proof. We analyze the properties of Construction 4.16.
Parameters. Follows from the fact that the underlying WIPCP is run on instances of length
n+ p (σ).
Perfect completeness. Follows from the perfect completeness of the underlying WIPCP system,
and the definition of LG.
Soundness. Let x /∈ L, π∗ be the “proof” provided for V , and s ∈R {0, 1}p(σ). If s /∈ Im (G) then
(x, s) /∈ LG (because x /∈ L), so the soundness of

(
P in, V in

)
guarantees that V in (and consequently,

V ) accepts with probability at most εS (n+ p (σ)). Since s ∈R {0, 1}p(σ) and |Im (G)| ≤ 2σ then
s /∈ IM (G) except with probability at most 2σ−p(σ). Therefore, V accepts with probability at most
εS (n+ p (σ)) + 2σ−p(σ).
CZK. Let V ∗ be a q∗-query bounded PPT verifier, and we describe the simulator Sim. On input
x, Sim picks z ∈R {0, 1}σ and computes s = G (z). Then, it runs P in to generate a proof π for
(x, s), providing z as the witness to P in. Sim then emulates V ∗ with input x, CRS s, and proof
oracle π, and outputs the view of V ∗ in this interaction (which includes the CRS s). We prove that
(x, s,RealV ∗,P (x,w, s)) ≈εZK(n+p(σ))+εG(σ) Sim (x, 1σ), where ≈ε denotes computational distance of
ε. We define a hybrid distribution H, describing a mental experiment in which the simulator is given
the witness w, and uses it to generate the proof π, but generates the CRS as the PRG image of
a random value. Concretely, the hybrid H is defined as follows. Sim generates z ∈R {0, 1}σ and
s = G (z), runs P in with input ((x, s) , w) to obtain a proof π, and emulates V ∗ on input x, CRS
s and proof π. Then (x, s,RealV ∗,P (x,w, s)) ≈εG(σ) H. Indeed, if a PPT distinguisher D could
distinguish between the two with advantage more than εG (σ), then we would obtain a non-uniform
PPT distinguisher DG between a random string and the PRG output, achieving distinguishing
advantage at least εG (σ): DG on input s ∈ {0, 1}p(σ) would run P in on input ((x, s) , w) to generate
a proof π, then run V ∗ on x, s, π, and feed D with x,w, and the view of V ∗. (We note that DG is
non-uniform since x,w are hard-wired into it.) Second, the (εZK, q

∗)-WI of the underlying WIPCP
guarantees that Sim (x, 1σ) ≈εZK(n+p(σ)) H, since in both cases the verifier is run on an honestly-
generated proof for the same instance, only using different witnesses. (We note that the instance is
(x, s) and therefore it is not fixed, but if the hybrids are not εZK (n+ p (σ))-computationally close
then using an averaging argument we can fix s.)

The proof of Corollary 1.2 now follows from Proposition 4.17 by instantiating Construction 4.16
with the NA-WIPCP system of Theorem 1.1. Recall that by OWF we mean a function which is
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one-way against non-uniform adversaries. The existence of such functions implies (by standard
reductions) the existence of PRGs that are pseudorandom against non-uniform distinguishers.

Proof of Corollary 1.2. Assuming OWFs exist, there exists a PRG G : {0, 1}σ → {0, 1}2σ
whose output is negl (σ)-pseudorandom against non-uniform distinguishers (G can be
constructed using standard reductions). We take σ = n, and L = 3SAT, then by
Theorem 1.1 LG ∈ NA−WIPCP[poly log n, poly log n, poly (n) , negl (n) , negl (n) , poly (n)]
(because LG ∈ NP). Therefore, by Proposition 4.17, SAT ∈
NA− CZKPCP[poly log n, poly log n, poly (n) , negl (n) , negl (n) , poly (n)].

Alternative CZKPCP constructions in the CRS model. We note that a simple alternative
construction of CZKPCP for NP can be obtained by applying a standard PCP on top of a standard
NIZK proof [6, 13]. Concretely, the CZKPCP prover generates a PCP for the NP-claim “there exists
a NIZK for the claim x ∈ LR, relative to the CRS s, that would cause the NIZK-verifier to accept”,
where the witness is the NIZK proof string. Since the NIZK itself is CZK, the resultant PCP is
also CZK. However, NIZK proofs for NP are not known to follow from the existence of one-way
functions, and can currently be based only on much stronger assumptions such as the existence of
trapdoor permutations [12].

5 Distributed Zero-Knowledge and Witness-Indistinguishable
Proofs

We use our WIPCPs and CZKPCPs to construct 3-round distributed WI and CZK proofs (respec-
tively) for NP in a distributed setting, in which the PPT prover P and verifier V are aided by m
polynomial-time servers S1, ..., Sm. We call such systems m-distributed proof systems. Our construc-
tions crucially rely on the non-adaptivity of the honest WIPCP (respectively, CZKPCP) verifier,
and on the fact that WI (respectively, CZK) holds against malicious verifiers.

Our motivation for studying proofs in a distributed setting is to minimize the round complexity,
and underlying assumptions, of sublinear ZK proofs. Concretely, it is known that assuming the
existence of collision resistant hash functions, there exist 2-party 4-round sublinear ZK arguments
for NP [23, 19]. (Arguments guarantee soundness only against bounded malicious provers.) We show
that in the distributed setting, there exist 3-round sublinear CZK (respectively, WI) proofs for NP,
assuming the existence of OWFs (respectively, unconditional). Thus, the distributed setting allows
us to improve previous results in terms of round complexity, underlying assumptions, and soundness
type.
The setting. At a high level, an m-distributed proof system allows a prover to convince a verifier
of the validity of an NP statement, where the parties are aided by several servers. The proof system
should have the standard completeness property (guaranteeing that when all parties are honest, the
verifier accepts true claims); and a strong soundness property, guaranteeing that a corrupted prover
cooperating with a small subset of servers cannot convince the verifier of false claims (except with
small probability). We are interested in systems with an additional ZK or WI property, which should
hold against a corrupted receiver that cooperates with a small subset of the servers.

Definition 5.1 (m-distributed proof system). An m-distributed proof system (P, S1, ..., Sm, V ) for
an NP-relation R = R (x,w) is a protocol executed between a PPT prover P that has input (x,w),
m polynomial-time servers S1, ..., Sm that have no input, and a PPT verifier V that has input x and
outputs either accept or reject. The protocol is executed in rounds, where in each round every party
may send a message to every other party (over a secure, authenticated, point-to-point channel), and
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may also send a message over a broadcast channel. We denote an execution of the protocol, in which
P has input (x,w) and V has input x, by (P (x,w) , S1, ..., Sm, V (x)). We say that an m-distributed
proof system is sublinear if the total communication involving V is poly log (n).

For t ∈ N, a t-adversary A non-adaptively corrupts 0 ≤ t′ ≤ t servers, and possibly also P
or V . The execution of a protocol in the presence of a t adversary A is carried out as follows.
The honest parties follow the protocol, but the corrupted parties may arbitrarily deviate from the
protocol (by sending arbitrary messages). The corrupted parties are also rushing (namely, in each
round they first receive the messages sent to them, before sending their own messages). We consider
both unbounded adversaries (in which case the corrupted parties are computationally unbounded),
and bounded adversaries (in which case even corrupted parties run in polynomial time). We denote
an execution of the protocol in the presence of a t-adversary A, by (P (y) , S1, ..., Sm, V (x))A, where
y is either (x,w) ∈ R (if P is honest) or x /∈ LR (if P is corrupted).

In Sections 5.1 and 5.2, we use WIPCPs (respectively, CZKPCPs) to construct a 3-round
distributed-WI proof system (respectively, CZK proof system in the CRS model) which, at a
high level, operates as follows. In the first round the prover distributes a WIPCP (respectively,
a CZKPCP) between the servers, and in the second and third rounds the verifier and servers emu-
late the WIPCP (respectively, CZKPCP) verification procedure (the verifier sends the proof queries
of the WIPCP or CZKPCP verifier, and the servers provide the corresponding proof bits). This
overview is an over-simplification of the construction: the verification procedure of the WIPCP (re-
spectively, CZKPCP) cannot be used as-is since it only guarantees soundness when the verification
is performed with a proof oracle, whereas corrupted servers can determine their answers after seeing
the queries of the verifier. We overcome this by using techniques of [21].

Our distributed proof systems use the following WIPCP system.

Remark 5.2. For n ∈ N, and a polynomial t = t (n), let (PPCP, VPCP) be the proof system of
Corollary 4.12, applied to the PCP for 3SAT of [2, Theorem 1] (more specifically, applied to the
proof system used to prove that 3SAT ∈ PCP

[
log n, log2 n, 1

2 , poly (n)
]
), with length parameter n and

zero-knowledge parameter q∗ (see the proof of Theorem 1.1 for details). We amplify the soundness
error of the PCP from 1

2 to 1
4 by repeating the verification procedure twice. Then by Corollary 4.12,

there exist constants cq, c` such that the honest verifier VPCP makes logcq (nq∗) queries, and the
proof has length (nq∗)c` . Moreover, this system is WI against adaptive verifiers.

5.1 Distributed Witness-Indistinguishable Proof Systems

In this section we construct a witness-indistinguishable distributed proof system for NP. We first
formally define such systems.

Definition 5.3 ((t,m)-distributed WI proof system). Let t = t (n) ,m = m (n). An m-distributed
proof system as in Definition 5.1 is a (t,m)-distributed WI proof system for R if it has the following
properties.

• Completeness. For every (x,w) ∈ R, V (x) outputs accept (with probability 1) in the execution
(P (x,w) , S1, ..., Sm, V (x)).

• Soundness. For every x /∈ LR, and every (possibly malicious, possibly unbounded) t-adversary
A corrupting the prover P , and a subset of 0 ≤ t′ ≤ t servers, V (x), in an execution
(P (x) , S1, ..., Sm, V (x))A outputs reject except with negl (n) probability.

• Witness indistinguishability (WI). Let A be a (possibly unbounded) t-adversary corrupting V
and a subset I ⊆ [m] of t′ ≤ t servers. Then for every x ∈ LR, and every pair w1, w2 of
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witnesses for x, SD
(
ViewA,P,{Si:i∈[m]\I} (x,w1) ,ViewA,P,{Si:i∈[m]\I} (x,w2)

)
= negl (n), where

ViewA,P,{Si:i∈[m]\I} (x,w) denotes the view of A (consisting of the views of the verifier and the
servers {Si : i ∈ I}), in the execution (P (x,w) , S1, ..., Sm, V (x))A.

Using WIPCPs with a non-adaptive honest verifier, we obtain the following result.

Theorem 5.4 (Sublinear distributed WI proofs). For every NP-relation R, and polynomial t (n),
there exists a polynomial m (n) > t (n) such that R has a 3-round sublinear (t,m)-distributed WI
proof system, where n is the input length.

We first give a high-level idea of the construction used to prove Theorem 5.4. On input (x,w),
the prover generates a WIPCP for (x,w), and distributes the proof bits between the servers. Then,
the verifier emulates the PCP verifier VPCP (x), broadcasting the proof bits queried by VPCP.13 The
servers holding these bits send them to the verifier, who verifies that VPCP accepts. Notice that the
verification procedure of the WIPCP cannot be used as-is since in the context of a distributed proof
system, the adversary can determine the answers of corrupted servers after seeing the queries of the
verifier, while the soundness of the WIPCP is only guaranteed when the verification is performed
with oracles (in particular, the oracle answers are independent of the queries). Therefore, we need
to restrict the influence that the adversary has on the verification procedure. To that effect, we have
the prover distribute several copies of the proof, where the value of a proof bit queried by VPCP is
determined using the majority vote over the corresponding bits in several randomly selected copies.
Thus, symbols held by corrupted servers are queried with low probability. This procedure can be
thought of as applying a sort of “error correction” to the proof bits, where the “errors” we need to
correct occur due to the answers of corrupted servers. We note that the witness-indistinguishability
requirement prevents us from using any arbitrary error correction method, since every “encoded”
proof bit should have low locality (namely, depend on few bits of the original proof).

Protocol 5.5 (Distributed-WI for NP-relation R). The distributed WI system consists of the prover
P , m servers S1, ..., Sm, and the verifier V , and uses a WIPCP system (PPCP, VPCP) parameterized
by the ZK parameter q∗, and where the honest verifier VPCP is non-adaptive and makes q (n, q∗)
queries to its proof oracle (where n denotes the input length). The system is parameterized by l,
which determines the number of proof copies that P generates; and z, which determines how many
copies V will use to answer a single query of VPCP. The protocol is executed as follows.

• Round 1. P , on input x,w, generates a proof π ← PPCP

(
1q
∗
, x, w

)
for q∗ = O (t+ |x|) (see

the proof of Lemma 5.7 for the exact constants). P duplicates the proof l times: π1, ..., πl,
and distributes π1, ..., πl between the servers (each server is given a single bit, so every bit of
π is now held by l servers).14

• Round 2. V on input x emulates VPCP (q∗, x), and obtains the queries i1, ..., iq, q ≤ q (|x| , q∗)
that VPCP makes to its oracle. Then, for every 1 ≤ j ≤ q, V picks z random indices sj1, ..., s

j
z ∈

[l]. V broadcasts i1, ..., iq and the sets
{
s1

1, ..., s
1
z

}
,...,{sq1, ..., s

q
z}. If q ≥ q (|x| , q∗), or one of

the sets
{
s1

1, ..., s
1
z

}
,...,{sq1, ..., s

q
z} has size larger than z, all servers abort the execution.

• Round 3. For every 1 ≤ j ≤ q and 1 ≤ s ≤ z, the server holding the bit πsij sends it to V .
V then reconstructs the bits πi1 , ..., πiq as follows. For every 1 ≤ j ≤ q, if there exists a bit

13Broadcast is used to ensure that the verifier does not contact more servers than allowed by the WI guarantee.
Other alternatives are to extract the verification queries from an unpredictable source of public randomness; or have
each server which is contacted by the verifier poll a small number of other servers in order to get an estimate of the
number of servers that have been contacted by the verifier.

14As each server receives a single bit, m = ` · l, where ` denotes the length of the WIPCP π.
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b such that at least tz
8 of the bits πs

j
1
ij
, ..., πs

j
z
ij

are equal to b, then V sets πij = b. Otherwise,
V rejects. At the end of this process, if V has not rejected then the bits πi1 , ..., πiq have been
determined, and they are given to VPCP as the oracle answers. V then either accepts or rejects
x, according to the output of VPCP.

Next, we analyze the properties of Protocol 5.5. For an odd l, and every set s1, ..., sl of strings
(of equal length m), we define the length-m string s∗ that is consistent with s1, .., sl, to be the
string such that every bit s∗i is the majority vote over s1

i , ..., s
l
i. The following lemma states that (for

an appropriate choice of parameters) an execution of Protocol 5.5 with (possibly corrupted) proofs
π1, ..., πl is essentially the same as an execution of the verification procedure of the underlying
WIPCP system, with (possibly corrupted) proof π∗.

Lemma 5.6. Let l, t, z ∈ N such that l ≥ 26 · t and z ≥ 16, and let s = s1 ◦ ... ◦ sl over {0, 1} be
a string such that |s1| = ... = |sl| = m. Define the string s∗ as follows. |s∗| = m, and every bit s∗i
is equal to the majority vote over s1

i , ..., s
l
i. Let A be an adversary who chooses in advance a subset

B of at most t bits of s which he can adaptively control. Then for every bit 1 ≤ j ≤ m, A wins the
following game with probability at most 21− z

8 .

• z indices i1, ..., iz are picked at random, and si1j , ..., s
iz
j are queried. For every bit b ∈

{si1j , ..., s
iz
j } such that b ∈ B, A determines the answer to the query (for every bit b /∈ B,

the answer to the query is the corresponding bit in s).

• If there exists a bit b such that at least 7z
8 of the answers are equal to b, then the output of the

game is b. Otherwise, the output is ⊥.

• The adversary wins if the output of the game is b ∈ {0, 1} such that b 6= s∗j .

The lemma guarantees that if P is honest, then (except with probability at most 21− z
8 ) every

single bit that V reconstructs in Protocol 5.5 is consistent with the corresponding bit of π. This
holds even if t′ ≤ t servers are corrupted. Moreover, even if a corrupted P colludes with a subset of
t′ ≤ t corrupted servers, then except with probability at most 21− z

8 the bit that V reconstructs is
consistent with π∗, where π∗ is the (possibly corrupted) “majority vote” proof defined by the proof
copies that P distributed between the servers.

Proof. Let s∗j be the bit that should be reconstructed in the game (determined according to the
majority vote over s). The bit b = s̄∗j is reconstructed when z random and independent indices

i1, ..., iz are picked, only if at least 7z
8 of the bits in

{
si1j , ..., s

iz
j

}
were equal to b. Let Emaj denote

the event that at most 3z
4 of the bits in

{
si1j , ..., s

is
j

}
were equal to b. Conditioned on Emaj, A wins

only if he was able to flip (by flipping bits in B) at least 7z
8 −

3z
4 = z

8 of the bits in
{
si1j , ..., s

iz
j

}
.

Let I :=
{
i ∈ [l] : sij ∈ B

}
, then |I| ≤ |B| ≤ t. Consequently, conditioned on Emaj, A wins with

probability at most 2−
z
8 , since

Pr
i1,...,iz∈R[l]

[
{i1, ..., iz} ∩ I ≥

z

8

]
≤
(
z
z
8

)
·
(
t

l

) z
8

≤
(
z · e
z
8

) z
8
(
t

l

) z
8

=

(
8et

l

) z
8

≤ 2−
z
8 .

By the definition of s∗, less than half the bits
{
s1
j , ..., s

l
j

}
are equal to b. As i1, ..., iz are random

and independent, then (using Hoeffding’s bound) Pr
[
Ēmaj

]
≤ 2−

z
8 . Consequently, A wins the game

with probability at most 2 · 2−
z
8 = 21− z

8 .
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Lemma 5.7. Let R = R (x,w) be an NP-relation, and t (n) be a polynomial. Then there exists a
polynomial m (n) > t (n) such that Protocol 5.5 is a (t,m)-distributed WI proof system for R with
soundness error 1

4 + negl (n), where n is the input length.

Proof. Let t = t (n) by a polynomial, and let (PPCP, VPCP) be the proof system described in Re-
mark 5.2. We set the parameters of Protocol 5.5 as follows: z = logcq n, l = 26 (t+ z)+1 (we choose l
to be odd so that the majority vote over the l copies would be uniquely defined), and q∗ = 2c0 (t+ n),
where c0 ∈ N is a constant such that for every natural c ≥ c0, logcq+2

(
c2
)
≤ c

2 .
15 (Notice that for

this choice of q∗, q∗ ≥ c0 so logcq (nq∗) + t ≤ logcq
(

(q∗)2
)

+ q∗

2 ≤ q∗. Therefore, the combined
number of proof bits seen by the verifier V , and at most t servers, is at most q∗.) Notice that in this
case the combined lengths of all copies is l ·poly (nq∗) = (poly log n+O (t)) ·poly (nt) = poly (n), and
we take the number of servers, m, to be the corresponding polynomial. We analyze the properties
of the protocol.
Complexity. The communication during the first round is m = poly (n), and during the second
and third rounds the communication is poly log (n).
Completeness. Follows directly from the protocol definition, and the completeness of the under-
lying WIPCP.
Soundness. Let π1, ..., πl be the proofs that P distributed between the servers, and let π∗ be the
(possibly ill-formed) proof that is consistent with π1, ..., πl. Lemma 5.6 guarantees that the recon-
structed answer to any single proof query is consistent with π∗, except with at most 21− z

8 probability.
Using the union bound, the emulation of VPCP is executed with π∗, except with probability at most
q (n, q∗) · 21− logcq (n)

8 = logcq (nq∗) · 21− logcq (n)
8 = negl (n). Conditioned on the event that all recon-

structed bits are consistent with π∗, the soundness of the underlying WIPCP system guarantees that
VPCP (and consequently also V ) accepts with probability at most 1

4 , so the total soundness error is
1
4 + negl (n).
Witness-indistinguishability. Let A be a t-adversary corrupting V and a subset I of t′ ≤ t
servers. Let x ∈ LR with witnesses w1, w2. Then ViewA,P,{Si:i∈[m]\I} (x,wi) consists of the proof
bits held by the servers {Si : i ∈ I}, and the proof bits sent to V in the third round. In to-
tal, the view of A consists of at most t′ + logcq (nq∗) ≤ q∗ bits (this is because if V sends
more queries, then the honest servers would not answer in the third round). Therefore, the WI
of the underlying WIPCP system against adaptive, possibly malicious verifiers guarantees that
SD
(
ViewA,P,{Si:i∈[m]\I} (x,w1) ,ViewA,P,{Si:i∈[m]\I} (x,w2)

)
is negl (nq∗) = negl (n). (We note that

WI against adaptive verifiers is required because A receives the proof bits held by the corrupted
servers before determining the queries of V . WI against malicious verifiers is required because the
adversary sees the proof bits held by corrupted servers, and these correspond to (possibly malicious)
proof queries. Notice that due to this reason, WI against malicious verifiers is needed even if the
protocol enforces that the queries made by V correspond to the queries of an execution of VPCP,
e.g., by having V broadcast the randomness used to emulated VPCP.)

The proof system of Protocol 5.5 satisfies all the properties required in Theorem 5.4, except for
the soundness error, which can be amplified in a standard way, as we now show.

Proof of Theorem 5.4. We amplify the soundness error of Protocol 5.5, and prove that the amplified
system satisfies the requirements of Theorem 5.4. The amplification is performed as follows: the sec-
ond round is repeated k = log2 n independent times in parallel, and so is the third round. V accepts
if and only if VPCP accepted in all the iterations. The amplification increases the communication

15For the proof of this lemma, it would suffice that the power of the log would be cq, but we will need the power to
be cq + 2 when we amplify the system to have the properties guaranteed in Theorem 5.4.
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complexity in the second and third rounds by a multiplicative factor of poly log (n), so the protocol
is still sublinear. Completeness holds just as in the proof of Lemma 5.7. As for soundness, x /∈ LR is
accepted if and only if VPCP accepted x in log2 n random and independent executions (and for each
execution this happens with probability 1

4 + negl (n)), which happens only with negl (n) probability.
Finally, notice that the view of a t adversary A now consists of at most log2 n · logcq (nq∗) + t proof
bits, which (by the choice of parameters in Lemma 5.7) is at most q∗, so the same argument used in
the proof of Lemma 5.7 shows that the system is WI.

Remark 5.8. The distributed WI proof system crucially rely on the non-adaptivity of the honest
WIPCP verifier. Indeed, if the honest verifier were adaptive then the protocol would have at least 4
rounds, since rounds cannot be compressed. Moreover, since the verifier may collude with a subset
of servers, we needed a PCP system with WI against malicious verifiers.

5.2 Distributed Computational Zero-Knowledge Proof Systems

The Techniques of Section 5.1 can be used to construct a distributed proof system for NP that guar-
antees zero-knowledge against computationally bounded t-adversaries, when all parties have access
to a shared random string. We first formally define the model.

Definition 5.9 (m-distributed proof system with a CRS). An m-distributed proof system with a
common random string (CRS) is anm-distributed proof system as in Definition 5.9, where all parties
have access to a shared random string s.

Definition 5.10 ((t,m)-distributed CZK proof system in the CRS model). Let R = R (x,w) be
an NP-relation, and t = t (n) ,m = m (n). An m-distributed proof system as in Definition 5.9 is a
(t,m)-distributed CZK proof system for R in the CRS model if all parties have access to a shared
random string s ∈ {0, 1}σ for some σ = poly (|x|), and the following holds:

• Completeness. For every (x,w) ∈ R, and every CRS s ∈ {0, 1}σ, V (x) outputs accept (with
probability 1) in the execution (P (x,w, s) , S1 (s) , ..., Sm (s) , V (x, s)) with the CRS s.

• Soundness. For every x /∈ LR, a uniformly random s ∈R {0, 1}σ, and every (possibly malicious,
possibly unbounded) t-adversary A corrupting the prover P , and a subset of t′ ≤ t servers,
V (x), in an execution (P (x, s) , S1 (s) , ..., Sm (s) , V (x, s))A with the CRS s outputs reject
except with negl (n) probability.

• Computational zero-knowledge (CZK). Let A be a PPT t-adversary corrupting V and a
subset I ⊆ [m] of t′ ≤ t servers. Then there exists a PPT simulator Sim such that for
every (x,w) ∈ R, Sim (x) ≈

(
s,ViewA,P,{Si:i∈[m]\I} (x,w, s)

)
, where ≈ denotes computa-

tional indistinguishability; s ∈R {0, 1}σ; and ViewA,P,{Si:i∈[m]\I} (x,w, s) denotes the view
of A (consisting of the views of the verifier and the servers {Si : i ∈ I}), in the execution
(P (x,w, s) , S1 (s) , ..., Sm (s) , V (x, s))A.

We construct distributed CZK proof systems with similar properties to our distributed WI proof
systems:

Theorem 5.11 (Sublinear distributed CZK proofs in the CRS model). Assume that OWFs exist.
Then for every NP-relation R, and polynomial t (n), there exists a polynomial m (n) > t (n) such
that R has a 3-round sublinear (t,m)-distributed CZK proof system in the CRS model, where n is
the input length.
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The construction is similar to Protocol 5.5, except that it uses a CZKPCP system (instead of a
WIPCP system). (Also, we include the soundness amplification in the protocol description, whereas
Protocol 5.5 did not amplify soundness.)

Protocol 5.12 (Distributed-CZK for relationR). The distributed CZK system consists of the prover
P , m servers S1, ..., Sm, and the verifier V , and uses a CZKPCP system (PPCP, VPCP) parameterized
by the ZK parameter q∗; and the length σ of the common reference string s; where the honest verifier
VPCP is non-adaptive and makes q (n, q∗) queries to its proof oracle (n denotes the input length).
The system is parameterized by l, which determines the number of proof copies that P generates;
and z, which determines how many copies V will use to answer a single query of VPCP. The protocol
is executed as follows.

• Round 1. P , on input x,w, and given the CRS s, generates a proof π ← PPCP

(
1q
∗
, x, w, s

)
for

q∗ = O (t+ |x|) (see the proof of Theorem 5.11 below for the exact constant). P duplicates
the proof l times: π1, ..., πl, and distributes π1, ..., πl between the servers (each server is given
a single bit).

• Rounds 2 and 3. V on input x, and the CRS s, emulates VPCP (q∗, x, s) k = poly log (n)
independent times (see the proof of Theorem 5.11 below for the exact constant). In each
emulation, the answers to the oracle queries of V are determined according to the majority
vote as described in Protocol 5.5.

We now use Protocol 5.12 to prove Theorem 5.11 (the proof is similar to the proof of Theorem 5.4,
which uses Lemma 5.6).

Proof of Theorem 5.11. Let t = t (n) by a polynomial, and let (PWIPCP, VWIPCP) be the WIPCP sys-
tem described in Remark 5.2. Let (PPCP, VPCP) be the CZKPCP of Proposition 4.17, obtained from
(PWIPCP, VWIPCP) using a PRG G : {0, 1}σ → {0, 1}2σ, whose outputs are εG (σ)-pseudorandom
against non-uniform distinguishers, where εG (σ) = negl (σ) (assuming OWFs exist, such a PRG
exists by a standard reduction). We take σ = n, then Proposition 4.17 guarantees that there exist
constants dq, d` such that the honest verifier VPCP makes logdq (nq∗) queries, and the proof has
length (nq∗)d` .

We set the parameters of Protocol 5.12 as follows: k = log2 n, z = logdq n, l = 26 (t+ z) + 1
(we choose l to be odd so that the majority vote over the l copies would be uniquely defined), and
q∗ = 2c0 (t+ 2n), where c0 ∈ N is a constant such that for every natural c ≥ c0, logdq+2

(
c2
)
≤ c

2 .

(Notice that for this choice of q∗, q∗ ≥ c0 so log2 (n) · logdq (nq∗) + t ≤ logdq+2
(

(q∗)2
)

+ q∗

2 ≤ q∗.
Therefore, the combined number of proof bits seen by the verifier V , and at most t servers, is at most
q∗.) Notice that in this case the combined lengths of all copies is l ·poly (2nq∗) = O (poly log (n) + t) ·
poly (nt) = poly (n), and we take the number of servers, m, to be the corresponding polynomial.
Complexity. In the first round, P sends a single bit to each of the m = poly (n) servers. In the
second and third rounds, VPCP is emulated log2 (n) times, each emulation requires V to broadcast,
and receive, poly log (n) bits (there are poly log (n) queries, each reconstructed using z = poly log n
bits).
Completeness. Follows directly from the protocol definition, and the completeness of the under-
lying WIPCP.
Soundness. Let π1, ..., πl be the proofs that P distributed between the servers, and let π∗ be the
(possibly ill-formed) proof that is consistent with π1, ..., πl. Lemma 5.6 guarantees that the recon-
structed answer to any single proof query is consistent with π∗, except with at most 21− z

8 probability.
Using the union bound, the emulation of VPCP is executed with π∗, except with probability at most
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q (n, q∗) · 21− logdq (n)
8 = logdq (nq∗) · 21− logdq (n)

8 = negl (n). Conditioned on the event that all recon-
structed bits are consistent with π∗, the soundness of the underlying CZKPCP system guarantees
that VPCP accepts in a single iteration with probability at most 1

4 + negl (n). Since V accepts only
if VPCP accepted in all log2 (n) emulations, V accepts x only with negl (n) probability.
CZK. By Proposition 4.17, there exists a simulator SimPCP for (PPCP, VPCP), that can adaptively
answer the queries of any (possibly malicious) q∗-bounded PPT verifier. Let A be a PPT t-adversary
corrupting V and a subset I of t′ ≤ t servers. We construct a simulator Sim that simulates the view
of A. Let x ∈ LR with witness w, then Sim on input x runs SimPCP to obtain the simulated CRS
sSim, emulates A (with input x, sSim) to obtain the set I of t′ ≤ t servers that A corrupts, and
uses SimPCP to simulate the proof bits held by these servers. Sim provides A with these bits, and
receives from A the queries that V makes in the second phase. Sim then uses SimPCP to generate
these proof bits as well. (Notice that the set I of bits held by the corrupted servers, and the set Q
of bits queried by the corrupted verifier, are bits in a proof π1 ◦ ... ◦ πl which consists of l copies
of an honestly-generated proof π for x. For every bit in I ∪ Q, Sim determines the corresponding
bit of π, and uses SimPCP to simulate that bit. Bits in I ∪ Q that correspond to the same bit of π
are answered consistently, and incur only a single query to SimPCP.) When the emulation ends, Sim
outputs sSim, concatenated with the simulated proof bits seen by A.

Let V ∗ denote the PPT verifier (in the underlying CZKPCP system) that first queries the proof
oracle about the bits corresponding to those held by the servers in I, and then queries its oracle
about the proof bits in Q. Then

(
s,ViewA,P,{Si:i∈[m]\I} (x,w)

)
=
(
s, R̃ealV ∗,PPCP

(x,w, s)
)
, where

R̃ealV ∗,PPCP
(x,w, s) is obtained from RealV ∗,PPCP

(x,w, s) by duplicating the bits of π that appear
several times in I ∪ Q. Notice that |I ∪ Q| ≤ t + log2 n · q (n, q) ≤ t + logdq+2 (nq∗) which by our
choice of parameters is at most q∗. Therefore, the computational distance between
SimPCP (x) and (x, s,RealV ∗,PPCP

(x,w, s)) is at most negl (n) + εG (n) = negl (n). Since the output
of Sim is obtained from the output of SimPCP by (possibly) duplicating the bits that appear several
times in I ∪ Q, we conclude that Sim (x) ≈

(
x, s,ViewA,P,{Si:i∈[m]\I} (x,w)

)
.

6 LRCC-Based ZKPCPs Imply NP ⊆ BPP

In this section we give evidence that the techniques we use to construct WIPCPs cannot be used to
construct ZKPCPs, unless NP ⊆ BPP. At a high level, this is because the leakage-resilience guar-
antee of (non-relaxed) LRCCs withstanding global leakage is (in some sense) universal. Concretely,
the LRCC simulator generates, in polynomial time, wire values for the entire computation of the
circuit; and these wire values simultaneously fool every leakage function in the family of leakage
functions. When the LRCC is used to construct PCPs with ZK guarantees, this gives a ZKPCP
simulator that generates a “fake witness” that can be used to construct a “fake PCP”. This “fake
PCP” is simultaneously “good” for every set of verifier queries, in the sense that with high probability,
the verifier is convinced. In effect, the simulator “commits” to a fake proof in advance, and this can
be used to probabilistically decide the language, thus proving that the language is in BPP. We em-
phasize that the simulator constructed here is stronger than the simulator required by ZK, since in
the definition of ZK, the simulator is first given the queries, and is then required to generate a partial
fake proof, which should convince the verifier conditioned on the event that it queries the particular
pre-determined set of queries. (This is the case when the verifier is non-adaptive. For adaptive
verifiers, for every set of queries of the verifier, the simulator adaptively constructs the simulated
proof symbols queried by this set.) We first formally define this stronger simulation notion, which
we call oblivious zero-knowledge.
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Definition 6.1 (Oblivious zero-knowledge). We say that a probabilistic proof system (P, V ) is
an oblivious ZKPCP system for a relation R = R (x,w), if it has the syntax, completeness and
soundness properties of a WIPCP system (as defined in Definition 4.1), and the following (ε, q∗)-
oblivious zero-knowledge property: for every q∗-query-bounded verifier V ∗ there exists a PPT sim-
ulator Sim such that the following holds for every (x,w) ∈ R. Sim is given input x, 1σ, and out-
puts a (possibly ill-formed) proof π∗, such that SD (RealV ∗,P (x,w) , SimulatedV ∗,π∗ (x)) ≤ ε, where
RealV ∗,P (x,w) (SimulatedV ∗,π∗ (x)) denotes the view of V ∗ on input εS , q∗, x, 1|w|, and given oracle
access to π ∈R P

(
εS , 1

q∗ , x, w
)
(to π∗).

Definition 6.2. We say that a circuit compiler is a (non-relaxed) LRCC if Definition 2.8 holds with
a PPT simulator Sim.

The next remark states that our transformation from relaxed-LRCC to WIPCP used a (non-
relaxed) LRCC, then the resultant probabilistic proof system would be oblivious ZK.

Remark 6.3. We note that if the relaxed-LRCC of Proposition 4.4 (and Corollary 4.10) was replaced
with a (non-relaxed) LRCC, then the resultant PCP system would be oblivious-ZK. Indeed, the
PPT simulator of the LRCC would give a PPT simulator for the PCP system. Moreover, the LRCC
simulator generates simulated wire values for the entire circuit, and these wire values constitute a
complete “fake” witness, so the PCP simulator could generate an entire “fake” proof π∗ (the simulator
would first run the LRCC-simulator to obtain the fake witness, then run the honest PCP prover to
obtain a fake proof from this fake witness). Moreover, every possible set of verifier queries to the
proof correspond to applying a leakage function (from the family of leakage functions against which
the LRCC is leakage-resilient) on the wire values of the compiled circuit, so π∗ is simultaneously
convincing (with high probability) for every possible set of verifier queries.

Definition 6.4 (BPP). The complexity class BPP (bounded-error probabilistic polynomial time)
consists of all languages L for which there exists a PPT algorithm AL with the following properties
(the probability is over the randomness of AL):

• x ∈ L⇒ Pr [AL (x) = accept] ≥ 2
3 .

• x /∈ L⇒ Pr [AL (x) = accept] ≤ 1
3 .

The next theorem states that oblivious ZKPCP systems exist only for languages in BPP. As
we show below (Corollary 6.7), the PCP systems obtained from Construction 4.8, when it uses an
LRCC with a PPT simulator, are oblivious-ZKPCPs. Therefore, it seems implausible that we could
use this transformation to obtain the stronger notion of a ZKPCP for NP.

Theorem 6.5. Let R = R (x,w) be a polynomially-bounded relation. If LR has an
[r, q, q∗, εS , εZK, `]-ZKPCP system with oblivious ZK, constants εS , εZK ≤ 1

6 , and r, q, ` = poly (n)
such that q ≤ q∗, then L ∈ BPP.

Remark 6.6. We have defined probabilistic proofs systems as having perfect completeness. For
Theorem 6.5 to hold, the probabilistic proof system should only have a noticeable gap between the
probability of accepting x ∈ L and x /∈ L. Specifically, is suffices that every x ∈ L is accepted with
probability at least 5

6 (when the verifier is given an honestly-generated proof), and that every x /∈ L
is accepted with probability at most 1

6 (for any “proof” given to the verifier). Moreover, we only
need honest-verifier ZK, i.e., that an efficient simulator exists for the honest verifier, and it suffices
to have a computational distance of at most 1

6 between RealV ∗,P (x,w) , SimulatedV ∗,π∗ (x).
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Proof. Let (P, V ) be the oblivious ZKPCP system for L = LR, and let Sim denote the corre-
sponding simulator. We assume that every x ∈ L is accepted with probability at least 5

6 (when
the verifier is given an honestly-generated proof), that every x /∈ L is accepted with probability
at most 1

6 (for any “proof” given to the verifier), and that the computational distance between
RealV,P (x,w) , SimulatedV,π∗ (x) is at most 1

6 . (Notice that we only assume that the system has
honest-verifier ZK, which follows from the ZK guarantee of the system because q ≤ q∗.) Then the
following probabilistic algorithm decides L:

• On input x, run Sim on x to obtain a simulated proof π∗.

• Run V on input x, with oracle access to π∗.

• If V accepts x in this run, output x ∈ L, otherwise output x /∈ L.

We first show that if x ∈ L then the algorithm outputs x ∈ L with probability at least 2
3 . Other-

wise, we consider the case that the output of V in the simulated view SimulatedV ∗,π∗ (x) is accept
with probability less than 2

3 . Note that, his output in RealV ∗,P (x,w) (i.e., his output on x given
oracle access to an honestly-generated proof) is accept with probability at least 5

6 by the complete-
ness property. Therefore, the computational (and consequently, also statistical) distance between
SimulatedV ∗,π∗ (x) ,RealV ∗,P (x,w) is more than 1

6 (the corresponding distinguisher outputs 1 if V
accepts), thus contradicting the

(
1
6 , q
∗)-oblivious ZK.

Next, we show that if x /∈ L then the algorithm outputs “x ∈ L” with probability at most 1
3 .

Otherwise, using an averaging argument there exists a “proof” π∗ for x, on which V accepts x with
probability more than 1

3 . But this contradicts the soundness of the system.

The combination of Theorem 6.5 with Remark 6.3 shows that if there exists a SAT-respecting
LRCC withstanding leakage from a leakage class L, and in addition, there exists a PCP system
(P, V ) for 3SAT such that the queries of V to the PCP π constitute a leakage function ` ∈ L of the
NP-witness, then NP ⊆ BPP. This is formalized in the next corollary.

Corollary 6.7. Let n be a length parameter, and LO(1),poly(n),⊕1 be the class of functions com-
putable by constant depth, poly-sized boolean circuits with unbounded fan-in ∧,∨,¬ gates, and a
single ⊕ gate of unbounded fan-in and fan-out. If for every constant c there exists a SAT-respecting(
LO(1),poly(n),⊕1, negl (n) , cn

)
-LRCC, then NP ⊆ BPP.

Proof. Notice that a 3CNF of size n can be verified by a boolean circuit CSAT of size cn, for
some constant c. We take the constant in the theorem statement to be this c. Let (Comp,E)
denote the SAT-respecting

(
LO(1),poly(n),⊕1, ε, cn

)
-LRCC whose existence is guaranteed by the the-

orem statement, where ε = negl (n). Then for every circuit C : {0, 1}n → {0, 1} of size at most
cn, and every z1, z2 ∈ {0, 1}n that satisfy C, the wire values [Comp (C) , ẑ1] , [Comp (C) , ẑ2] are(
LO(1),poly(n),⊕1, ε

)
-leakage-indistinguishable, where ẑi is a random encoding of zi according to E.

Using Lemma 3.55, [Comp (C) , ẑ1] , [Comp (C) , ẑ2] are also
(
Lpoly logn
O(1),poly(n),⊕1, ε · 2

poly logn
)
-leakage-

indistinguishable, so (Comp,E) is also an
(
Lpoly logn
O(1),poly(n),⊕1, ε · 2

poly logn, cn
)
-LRCC.

Let (P3SAT, V3SAT) denote the PCP system of [2, Theorem 1] (used to prove that 3SAT ∈
PCP

[
log n, log2 n, 1

2 , poly (n)
]
), amplified to have soundness error εS < 1

6 . We apply Construction 4.8
to (Comp,E) and (P3SAT, V3SAT), and show that the resultant PCP system for 3SAT has oblivious
honest-verifier ZK, and the view of the verifier, given oracle access to a simulated proof, is ε·2poly logn

statistically-close to his view when given oracle access to an honestly-generated proof. To that effect,
we repeat the proof of Proposition 4.4, using the fact that

∣∣C3SAT
∣∣ = cn. The only difference from
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the proof of Proposition 4.4, is that we now need to prove ZK. We define a simulator Sim as follows:
on input x, Sim runs the LRCC simulator Simin (whose existence is guaranteed by the leakage-
resilience of the LRCC) to generate an assignmentWS to ϕx (which is also a wire assignment to the
circuit Ĉx, which is the output of Comp on the circuit “CSAT with x hard-wired into it”); runs P3SAT

on ϕx,WS to generate a PCP πS for the claim “ϕx ∈ 3SAT”; and outputs πS . Notice that every
subset I of at most poly log (n) proof symbols constitutes a leakage function `I on the proof oracle.
If for every such set I, `I ∈ Lpoly log(n)

O(1),poly(n),⊕1, and the honest verifier makes at most poly log (n) oracle
queries, then the leakage-resilience of the LRCC guarantees that SimulatedV,πS (x) and RealV,P (x,w)
are statistically close (where P, V are the prover and verifier of Construction 4.8). For our choice
of the underlying PCP system (P3SAT, V3SAT), this condition on the subsets I of proof symbols is
satisfied (due to the prover algorithm, and since the honest verifier makes only poly log (n) oracle
queries, tosses only r = poly log (n) coins, and the proof has size poly (n)), and so the resultant
system is an oblivious-ZKPCP system for 3SAT with soundness error 1

6 . Since ε = negl (n) then for
a large enough n, ε · 2poly log(n) ≤ 1

6 , so Theorem 6.5 implies that 3SAT ∈ BPP, so NP ⊆ BPP.
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A The Circuit Compiler of Faust Et Al. [11]

In this section we present the circuit compiler of Faust et al. [11]. Their construction uses the
gadgets described in Construction A.2.16

Construction A.1 (Circuit compiler, [11]). The circuit compiler
(
CompFRRTV,EFRRTV

)
is de-

fined as follows. Let Ein =
(
Encin,Decin

)
be a linear encoding scheme which outputs encodings of

length n̂ (n, σ), with decoding vectors dn̂(n,σ). We denote n̂1 = n̂ (1, σ), and n′ (n, σ) = σ
(
n̂2

1 + 1
)
.

Then EFRRTV =
(
EncFRRTV,DecFRRTV

)
, where EncFRRTV (x, 1σ) = Encin

((
x, 0n

′
)
, 1σ
)
, and

DecFRRTV ((x,m) , 1σ) = Decin (x, 1σ), where x ∈ Fn̂(n,σ).
CompFRRTV on input a circuit C : Fn → Fs containing +,−,×, id, copy and constα gates, outputs

a circuit CFRRTV, in which every gate is replaced with the corresponding gadget, as described in
Construction A.2. The input (x,m) ∈ EncFRRTV

(
x, 1|C|

)
of CFRRTV is interpreted as an encoding

x of some input x for C, and a collection m of masking inputs for the gadgets of CFRRTV. The
masking inputs used in the gadgets are taken from m (every masking input in m is used at most
once).

In the compiled circuit all gates (including the output gate) are replaced with gadgets that
operate on encodings. To allow compiled circuits to have decoded outputs, [11] add a decoding
sub-circuit following its output gate. For notational convenience, they assume that the original
(i.e., un-compiled) circuit contains a special “decoder” gate following its output gate, which appears
nowhere else in the circuit, and computes the identity function. We will make the same assumption.

Construction A.2. Let Ein =
(
Encin,Decin

)
be a linear encoding scheme which outputs encodings

of length n̂ (n, σ), with decoding vectors dn̂(n,σ). We denote n̂1 = n̂ (1, σ).
× gadget: inputs a ∈ Encin (a, 1σ) ,b ∈ Encin (b, 1σ) for a, b ∈ F, and masking inputs

r1, ..., rn̂1+1 ∈ Encin (0, 1σ); output c ∈ Encin (a× b, 1σ).

1. Computes an n̂1 × n̂1 matrix B = abT = (ai × bj)i,j∈[m] (using n̂
2
1 × gates).

2. Computes an n̂1 × n̂1 matrix S as the matrix whose columns are r1, ..., rn̂1 .
16We note that in [11], the field operations were denoted ⊕,	,�, while we use the notation +,−,×. Moreover, they

consider circuits that contain also fan-out 1 random gates (denoted by $) that take no input and output a random
field element. We do not explicitly use such gates in our constructions, because our applications use deterministic
circuits (with no random gates), but our constructions naturally generalize to circuits containing random gates.
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3. Computes an n̂1 × n̂1 matrix U = B + S (using n̂2 + gates).

4. Computes a vector q = Udn̂1 , i.e., qi is the value that the i’th row of U encodes. This is
computed using n̂1 ×, constα, and + gates

5. Computes c = q + rn̂1+1.

+,− gadgets: inputs a ∈ Encin (a, 1σ) ,b ∈ Encin (b, 1σ) for a, b ∈ F, and masking input r ∈
Encin (0, 1σ); output c ∈ Encin (a+ b, 1σ) (or c ∈ Encin (a− b, 1σ) for the − gadget).

1. Computes q = a + b (using n̂1 + gates). (The − gadget computes q = a− b.)

2. Computes c = q + r (using n̂1 + gates).

constf gadget for f ∈ F: masking input r ∈ Encin (0, 1σ); output c ∈ Encin (f, 1σ).

1. Computes some fixed encoding f ∈ Encin (f) (using n̂1 constα gates).

2. Computes c = f + r (using n̂1 + gates).

copy gadget: input a ∈ Encin (a, 1σ) for a ∈ F, masking inputs r1, r2 ∈ Encin (0, 1σ); outputs
b, c ∈ Encin (a, 1σ).

1. Computes b = a + r1 (using n̂1 + gates).

2. Computes c = a + r2 (using n̂1 + gates).

id gadget: input a ∈ Encin (a, 1σ) for a ∈ F, masking input r ∈ Encin (0, 1σ); outputs c ∈
Encin (a, 1σ).

1. Computes c = a + r (using n̂1 + gates).

The leakage resilience proof of [11] used two gadget properties. First, their gadgets are locally
reconstructible, meaning that for every encoding of a “legal” input-output pair, the internal wires
of the gadget (as determined by the encoding of the inputs and outputs, and the masking inputs)
could be simulated in a low complexity class. Formally,

Definition A.3 (Local reconstructibility). Let G be a gadget. A pair (x,y) of encodings is plausible
for G if for some well-formed masking input m, G on input (x,m) outputs y. Given a gadget G,
ε > 0, and families L,LG of functions, G is (L, ε)-reconstructible by LG if the following holds. There
exists a distribution REC over functions rec that take as input the standard inputs of G, and its
output, and output simulated values for the masking inputs, and internal wires of G, such that for
every plausible pair (x,y): supp (REC) ⊆ LG; and if rec is chosen according to REC then rec (x,y)
is (L, ε)-leakage-indistinguishable from the actual distribution of the wires of G (as determined by
the distribution of the masking inputs), conditioned on x,y.

Faust et al. [11] prove that their gadgets (Construction A.2) are locally reconstructible in a low
complexity class. Specifically:

Lemma A.4 (Gadgets are locally reconstructible, [11]). Let n ∈ N, L,LE be families of functions,
and ε (n) : N→ R+. Then the following holds for the gadgets described in Construction A.2.

• + and − gadgets are (L, 0)-reconstructible by Shallow (3n̂1, 2, O (n̂1)).

• copy gadgets are (L, 0)-reconstructible by Shallow (3n̂1, 1, O (n̂1)).
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• id gadgets are (L, 0)-reconstructible by Shallow (2n̂1, 1, O (n̂1)).

• constα gadgets are (L, 0)-reconstructible by Shallow (n̂1, 1, O (n̂1)).

• If Ein is (LE, ε (n))-leakage-indistinguishable, and LE = L◦Shallow (3n̂1, 3, O (n̂1)), then the ×
gadget is (L, n̂1ε (n))-reconstructible by Shallow

(
3n̂1, 2, O

(
n̂2

1

))
.

The second property is that gadgets are re-randomizing in the sense that the encodings at the
output of each gadget are uniform subject to encoding the “correct” value. Formally,

Definition A.5 (Re-randomization). A gadget G is re-randomizing if for every standard input
x = E (x), and every masking input m chosen according to the distribution of masking inputs to G,
G (x,m) is random subject to encoding the correct output (as determined by x, and the operation
which G emulates).

Faust et al. [11] also prove that the gadgets are re-randomizing, which follows directly from the
fact that the outputs of the gadgets are masked with random and independent well-formed vectors.
Thus, they obtain the following result.

Proposition A.6 (LRCC, [11]). Let σ ∈ N be a security parameter, ε (n) : N → R+, S (n)
be a size function, L,LE be families of functions, and Ein be an encoding scheme with en-
codings of length n̂ (n, σ). If Ein is linear and (LE, ε (n))-leakage-indistinguishable, and LE =
L ◦ Shallow (3, O (n̂ (1,S (n)))), then Construction A.1 is (L, ε (n) · n̂ (1,S (n)) · S (n) ,S (n))-strong-
leakage-resilient.

B The Complexity of the Arora-Safra PCP [2]

The NA-WIPCP system of Section 4 used the PCP system of Arora and Safra [2, Theo-
rem 1] as a building block (more specifically, on the system used to prove that 3SAT ∈
PCP

[
log n, log2 n, 1

2 , poly (n)
]
), and relied on the property that every proof bit in that system is com-

putable by a low-depth, polynomial-sized circuit with “few” ⊕ gates (specifically, in LO(1),poly(n),⊕O(1),
see Definition 3.40). In this section we analyze the construction of [2] and show that it has the re-
quired property. The PCP system of [2] is constructed for the NP-complete language 3SAT, where
the prover, on input a 3CNF ϕ with n clauses and n variables,17 and a satisfying assignment A for
ϕ, transforms A into a PCP π for the claim “ϕ ∈ 3SAT”. Arora and Safra show a construction over
large fields, which we described in Section B.1, and we show (Section B.2) that it can be extended to
extension fields of GF (2). The analysis in this section is very succinct, and is focused on the proper-
ties needed for the proof of Theorem 1.1. We refer the reader to [2] for a more detailed description
of the PCP generation and verification.

B.1 The Construction over Large Fields

At a high level, the PCP system of [2] operates as follows. The prover P , given a 3CNF ϕ, and a
satisfying assignment A for ϕ, generates a low-degree polynomial Â : Fm → F, where m ∈ N, and
F is a large finite field, such that Â “represents” A (specifically, Â is the Reed-Muller encoding of
A). P then uses Â, and the structure of ϕ, to construct another low-degree polynomial gA over F.
This representation is useful because [2] show that there exist an H ⊆ F, and a (not too large) set
P of low-degree polynomials P1, P2, .., such that if Pi is chosen uniformly at random from P, then:

17The assumption that there are n clauses and variables is without loss of generality, since the number of clauses
and variables can be made equal by introducing new clauses or variables, if necessary.
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if A satisfies ϕ then Pi · gA sums to 0 on Hm with probability 1; and otherwise this happens with
probability at most 1

8 . Moreover, the set P is independent of A and can be efficiently constructed in
polynomial time. Consequently, to verify that ϕ ∈ 3SAT, the verifier V can pick a random Pi ∈ P
and check that gA · Pi vanishes on Hm. Arora and Safra show that if gA is guaranteed to be a
low-degree polynomial, then given access to the truth-table of gA, and to an auxiliary proof, one
can verify that gA · Pi sums to 0 on Hm (this is called the sum-check test). (Notice that V can
compute Pi on its own, so V does not need access to the truth-table of Pi, or gA · Pi.) Moreover,
they show that the value of gA at any random point can be computed given only ϕ and the value
of Â at 3 (related) random points, so it suffices to give V the truth-table of Â. Moreover, they
show how to efficiently verify, given the truth-table of any function f , and an auxiliary proof, that
f is a low-degree polynomial (this is called the low-degree test). Thus, the PCP prover P outputs a
proof consisting of the truth-table of Â, a proof for the low-degree test for Â, and for every Pi ∈ P,
a proof for the sum-check test of gA · Pi. The verifier V first verifies that Â has low degree, then
picks a random Pi ∈ P and performs the sum-check test on gA · Pi (using the truth table of Â to
generate values of gA, when needed). We now describe the ingredients of the proof, and how they
are constructed, in more detail.

Let ϕ be a 3CNF, and assume without loss of generality that ϕ has n variables and n clauses.
Let h = O (log n) and m = O

(
logn

log logn

)
such that n = (h+ 1)m. Denote H = {0, 1, ..., h}, and let

F = GF
(
2t
)
for t = O (log h) (the constant in the definition of O (·) is taken to be large enough,

such that H ⊆ F). Identify every variable xi and every clause ci of ϕ with a vector v ∈ Hm (e.g.,
the representation of i in basis h). Interpret the assignment A to ϕ as a function A : Hm → F where
A (xi) ∈ {0, 1} is the value that A assigns to xi.
Constructing an extension-polynomial for the assignment A. Let Fh [x1, ..., xm] denote
the class of m-variate polynomials of individual degree at most h over variables x1, ..., xm with
coefficients in F. (A polynomial p has individual degree at most h if for every xi, and every monomial
M of p, the degree of xi in M is at most h.) Let Â ∈ Fh [x1, ..., xm] be a polynomial such that
A (y) = Â (y) for every y ∈ Hm. Â is called the polynomial extension of A over F (because the
degree is h, it is also unique), and can be constructed using the Lagrange polynomials Ly as follows:

Â (x1, ..., xm) = Σy=(y1,...,ym)∈HmA (y) ·Πm
i=1Lyi (xi)

where for every yi ∈ H, Lyi (xi) :=
Πyi 6=z∈H (xi−z)
Πyi 6=z∈H (yi−z)

. Notice that for every yi ∈ H, Lyi depends only

on H, and is independent of both A and ϕ.
Representing the formula ϕ as a polynomial. Arora and Safra show that there exists a
family P of l := O (mh) polynomials P1, ..., Pl ∈ F7h [x1, ..., x4m] (that depend both on Â and on ϕ),
constructible in polynomial time, possessing the following 3 properties.

• If A satisfies ϕ then Σx1,...,x4m∈HPi (x1, ..., x4m) = 0 for every 1 ≤ i ≤ l.

• If A does not satisfy ϕ then PrP∈R{P1,...,Pl} [Σx1,...,x4m∈HP (x1, ..., x4m) = 0] ≤ 1
8 .

• For every 1 ≤ i ≤ l and every point α ∈ F4m, the value of Pi at α is determined by the value
of Â at 3 points a1, a2, a3 ∈ Fm. Moreover, if α is uniformly distributed in F4m then each of
a1, a2, a3 is uniformly distributed in Fm.

Concretely, P1, P2, ... are obtained through the following procedure:

• (Arithmetization of ϕ.) For j = 1, 2, 3, define χj : H2m → {0, 1} such that χj (c, v) = 1 if
and only if v is the j’th variable in clause c, and define sj : Hm → {0, 1} such that sj (c) = 1
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if and only if the j’th variable in clause c is not negated (both polynomials can be defined
using the Lagrange polynomials as explained above). Let χ̂j , ŝj be the polynomial extensions
of χj , sj over F, respectively. Notice that χ̂j ŝj can be computed locally given ϕ, i.e., they are
independent of A.

• (Arithmetzation of A.) Define gA : F4m → F as follows: gA (z, w1, w2, w3) =

Π3
j=1χ̂j (z, wj)

(
ŝj (z)− Â (wj)

)
. Then gA has individual degree at most 6h, and its evaluation

at any point in F4m can be locally computed given ϕ and the value of Â at 3 corresponding
points in Fm. Notice that A satisfies ϕ if and only if gA vanishes on H4m.

• Let R1, ..., Rl ∈ Fh [x1, ..., x4m] be such that for every f : H4m → F that is not identically 0,

Pr
R∈R{R1,...,Rl}

[Σx1,...,x4m∈HR (x1, ..., x4m) · f (x1, ..., x4m) = 0] ≤ 1

8
.

Such a family exists and can be constructed in polynomial time (see [2, Lemma 10] for details).
As will become evident later, the manner in which this family is constructed is of no interest
to us, because every Ri has poly (n) monomials, and is independent of ϕ,A (and can therefore
be locally constructed by the verifier).

For every 1 ≤ i ≤ l, set Pi (x1, ..., x4m) := Ri (x1, ..., x4m) gA (x1, ..., x4m). Notice that given
the evaluations of Â on Fm, the verifier can locally compute the values of Pi (a1, ..., a4m), for
every (a1, ..., a4m) ∈ F4m, which requires the value of Â at 3 points.

The proof. The proof consists of a low-degree proof for the low-degree test, and a sum-check proof
for the sum-check test, and is generated as follows:

• For both tests, the proof contains the evaluation of Â on all points in Fm.

• For the low-degree test, for every j ∈ [m] and every a−j := (a1, ..., aj−1, aj+1, ..., am) ∈ Fm−1,
let

Âj,a−j (x) := Â (a1, ..., aj−1, x, aj+1, ..., am) ,

then the proof contains the evaluation of Âj,a−j on every point in F (i.e., the proof contains
the evaluations of restrictions of Â to all lines in Fm−1).

• For the sum-check test, for every polynomial Pi, every j ∈ [4m] and every a1, ..., aj−1 ∈ F, let

Pi,a1,...,aj−1 (x) := Σzj+1,...,z4m∈HPi (a1, ..., aj−1, x, zj+1, ..., z4m) ,

then the proof contains evaluations of Pi,a1,...,aj−1 on all points in F.

Verification. To verify that ϕ ∈ 3SAT, the verifier performs the following checks.

• Checks that Â has individual degree at most h, by running the low degree test on Â.

• Picks a random i ∈ [l], and checks that Pi sums to 0 on Hm by running the sum-check test.
Whenever the sum-check test requires the value of Pi at some (random) point, the verifier
reads the value of Â at (the) 3 (corresponding) points, and locally computes the value of Pi at
that point.
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B.2 The Construction over GF (2)

In this section we show how to transform the PCP of [2] (which consists of field elements) into a
proof over bits. (We are interested in representing the PCP over bits, because our NA-WIPCP
construction needs the function generating the PCP from the NP witness to be in the leakage class
that the SAT-respecting relaxed LRCC withstands. In our case, this class consists of functions
computable by low-depth boolean circuits.)

We note first that since [F : GF (2)] = t, then it is isomorphic to the field GF (2) [X] /Pt (X), where
Pt (X) is an irreducible polynomial of degree t, so we can assume that F is the field GF (2) [X] /Pt (X).
Therefore, there exists a bijection B between F and (GF (2))t, which maps a polynomial

∑t−1
i=0 aiX

i

to the vector (a0, ..., at−1) of its coefficients. (B,B−1 are computable in time O (t).) We will need
the following fact connecting polynomials over extension fields to polynomials over the base field.

Fact B.1. Let F = GF
(
2t
)
, and d,m ∈ N. Then every polynomial p ∈ Fd [x1, ..., xm] corre-

sponds to a collection of t multi-linear polynomials p0, ..., pt−1 ∈ GF (2) [y1, ..., ym·t] of total de-
gree at most min{md,mt}, each with at most 2mt monomials, such that for every α1, ..., αm ∈ F,
B (p (α1, ..., αm)) = (p0 (B (α1) , ...,B (αm)) , ..., pt−1 (B (α1) , ...,B (αm))). Moreover, given the truth-
table of p, the value of every pi at any point in β ∈ GF (2)mt is computable in time O (tm), and
requires the value of p at a single point α ∈ Fm; and given the truth-tables of p0, ..., pt−1, the value
of p at any point in α ∈ Fm is computable in time O (tm), and requires the values of p0, ..., pt−1 at
a single point β ∈ GF (2)mt.

The PCP described in the previous section consists of the evaluations of a collection of polyno-
mials over F. The general idea of the bit-PCP is to replace the evaluations of these polynomials
with the evaluations of the corresponding t polynomials over GF (2) whose existence is guaranteed
by Fact B.1.
The proof. Let Â,

{
Âj,a−j

}
j,a−j

,
{
Pi,a1,...,aj−1

}
i,a1,...,aj−1

be the polynomials whose evaluations

appear in the PCP of Section B.1. Let {pÂ,0, ..., pÂ,t−1}, {pÂj,a−j ,0, ..., pÂj,a−j ,t−1}j,a−j , and

{pPi,a1,...,aj−1
,0, ..., pPi,a1,...,aj−1

,t−1}i,a1,...,aj−1 be the corresponding collections of t multivariate poly-
nomials over GF (2), whose existence is guaranteed by Fact B.1. Then the proof consists of the
evaluations of all these polynomials.
The verification procedure. The verification procedure is carried out essentially in the same
way, except that the values of every polynomial Â and Âj,a−j , Pi,a1,...,aj−1 at points (α1, ..., αm) ∈
Fm and α ∈ F, respectively, are reconstructed using the values of the corresponding multilinear
polynomials over GF (2) at (B (α1) , ...,B (αm)) and B (α), respectively.

B.3 Setting the Parameters

We set the parameters of the construction to be h = O (log n), m = logn
log h = O

(
logn

log logn

)
and

log |F| = t := ch log h = c log log n (for large enough constants c, ch). For this choice of parameters,
the construction (used in [2, Theorem 1] to prove that 3SAT ∈ PCP

[
log n, log2 n, 1

2 , poly (n)
]
) yields

a PCP system with the following properties:

• Query complexity. The verifier makes O (m) queries to symbols of size h log h, reading a total
of q := m · h · log h = O

(
logn

log logn log n · log log n
)

= O
(
log2 n

)
bits of the proof.

• Soundness. The system has constant soundness error 1
2 .
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• Proof length. The proof has length poly (n). Indeed, it consists of the evaluations of the
following polynomials.

– Â ∈ Fh [x1, ..., xm], which requires the evaluations on Fm (the evaluation at every

point is a field element). This requires |F|m field elements, i.e., (2c log n)
O
(

logn
log logn

)
=

2
O
(

log logn· logn
log logn

)
= poly (n) bits.

– Âj,a−j ∈ Fh[x], for j ∈ [m] and a−j ∈ Fm−1. There are m · |F|m−1 such polynomials, and
the evaluation of each requires the value (in F) at F points. Therefore, these evaluations
require m |F|m−1 · |F| = m |F|m field elements, i.e., |F|m log |F| = poly (n) bits.

– Pi,j,a1,...,aj−1 ∈ Fh [x], for every i ∈ [l] , j ∈ [m], and (a1, ..., aj−1) ∈ Fj−1. There are at
most l ·m · |F|m−1 such polynomials, where their value at each point of F is a field element
in F. Therefore, these evaluations require l · m · |F|m−1 · |F| = O (hm) · m · |F|m field
elements, and log3 n

log2 logn
· poly (n) = poly (n) bits.

• Proof structure. Every proof symbol (in the construction over large fields, Section B.1) is
computable by a multivariate polynomial over F with at most 4m variables, of individual degree
at most O (h) = O (log n), with at most poly (n) monomials. Therefore, by Fact B.1 every proof
bit in the bit-implementation of the PCP of [2] is computable by a multilinear polynomial over
GF (2) with at most 4mt = O

(
logn

log logn · log logn
)

= O (log n) variables, of total degree at most

min{4m · O (h) , 4m · c log logn} = O
(

log2 n
log logn

)
, with at most 24m·t = 2

O
(

logn
log logn

)
·c log logn

=

2O(logn) = poly (n) monomials. In particular, every proof bit can be computed by an AC0

circuit of depth 2 with a single ⊕ gate of unbounded fan-in. (The first layer will compute all
the monomials, using (for every monomial) a single AND gate of unbounded fan-in; and the
second would sum all monomials, using a single ⊕ gate of unbounded fan-in.)

• Computation time. The proof over F can be constructed and verified in poly-
nomial time. Generating the proof over GF (2) requires the prover to generate
the truth tables of the polynomials {pÂ,0, ..., pÂ,t−1}, {pÂj,a−j ,0, ..., pÂj,a−j ,t−1}j,a−j , and

{pPi,a1,...,aj−1
,0, ..., pPi,a1,...,aj−1

,t−1}i,a1,...,aj−1 . The generation of every such point from the

truth-tables of Â, Âj,a−j and Pi,a1,...,aj−1 requires time O (4mt) = O (log n), and so the proof
generation time increases by a multiplicative O (log n) factor. The verification of the proof re-
quires the verifier to generate, given the queries to the proof over F, the corresponding queries
over GF (2) (for every query, this requires at most O (mt) = O (log n) time), and then map the
query answers in GF (2)t back to field elements in F, which takes time O (mt) for every query.
Therefore, the verification time also increases by a multiplicative factor of O (log n).
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