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Abstract. Since the seminal work of Garg et al. (FOCS’13) in which
they proposed the first candidate construction for indistinguishability ob-
fuscation (iO for short), iO has become a central cryptographic primitive
with numerous applications. The security of the proposed construction of
Garg et al. and its variants are proved based on multi-linear maps (Garg
et al. Eurocrypt’13) and their idealized model called the graded encoding
model (Brakerski and Rothblum TCC’14 and Barak et al. Eurocrypt’14).
Whether or not iO could be based on standard and well-studied hard-
ness assumptions has remain an elusive open question. In this work we
prove lower bounds on the assumptions that imply iO in a black-box
way, based on computational assumptions. Note that any lower bound
for iO needs to somehow rely on computational assumptions, because if
P = NP then statistically secure iO does exist. Our results are twofold:

1. There is no fully black-box construction of iO from (exponentially
secure) collision-resistant hash functions unless the polynomial hier-
archy collapses. Our lower bound extends to (separate iO from) any
primitive implied by a random oracle in a black-box way.

2. Let P be any primitive that exists relative to random trapdoor per-
mutations, the generic group model for any finite abelian group, or
degree-O(1) graded encoding model for any finite ring. We show that
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achieving a black-box construction of iO from P is as hard as basing
public-key cryptography on one-way functions.
In particular, for any such primitive P we present a constructive
procedure that takes any black-box construction of iO from P and
turns it into a a construction of semantically secure public-key en-
cryption form any one-way functions. Our separations hold even if
the construction of iO from P is semi-black-box (Reingold, Trevisan,
and Vadhan, TCC’04) and the security reduction could access the
adversary in a non-black-box way.

Keywords: Indistinguishability Obfuscation, Black-Box Separations.

1 Introduction

The celebrated work of Barak et al. [3] initiated a formal study of the notion
of program obfuscation which is the process of making programs unintelligible
while preserving their functionalities. The main result of [3] was indeed a neg-
ative one showing that a strong form of obfuscation, called virtual black-box
obfuscation, is indeed impossible for general circuits. The same work [3] also
defined a weaker notion of obfuscation, called indistinguishability obfuscation
(iO). The security of iO only requires that the obfuscation of two equivalent and
same-size circuits C1, C2 should be computationally indistinguishable in the eyes
of efficient adversaries.

The first candidate construction for iO was presented in the breakthrough
work of Gentry et al. [12]. [12] showed how to construct iO for NC1 circuits based
on multi-linear assumptions [11], and also showed how to boost iO for NC1 to
iO for general circuits based on the learning with error (LWE) assumption [33].
The work of [12] led to an active area with a long list of results using iO as
a “central hub” [36] for cryptographic tasks/primitives and basing them on iO
together with one-way functions or other (relatively weak) standard assumptions.
Interestingly, as shown by [23] the one-way function itself could be based on iO
and the worst-case assumption that NP 6= BPP, leading to tens of applications
solely based on iO and NP 6= BPP.3

Assumptions behind iO. Since the first candidate construction of iO was pre-
sented by [12] a few other variants of this constructions with different assump-
tions have been presented. Brakerski and Rothblum [8] showed that in an ide-
alized model based on multilinear maps, known as the graded encoding model
one can achieve iO (or even VBB obfuscation) assuming the bounded speedup
hypothesis. Barak et al. [2] improved the result of [8] by making the construc-
tion unconditionally secure in the graded encoding model. Miles et al. [27] took
another step in this direction by making the construction even more secure by al-
lowing unlimited additions across different encoding “levels”. Pass et al. [32] con-

3 Note that we cannot hope to get OWFs from iO alone without any hardness for
class NP since iO exist unconditionally if NP = P.



structed iO for NC1 circuits based on (subexponentially secure) semantically-
secure multilinear encodings. Their work was the first result basing iO on falsi-
fiable assumptions [29], however they relied on super-polynomial assumptions.
Gentry et al. [15] construct iO based on subgroup elimination assumptions.

Despite all the efforts mentioned above to base iO on hardness assumptions,
the assumptions behind the constructions of iO seem to be qualitatively differ-
ent compared to other cryptographic primitives, even in comparison with very
powerful primitives such as fully homomorphic encryption [35, 14] which could
be constructed from LWE [9]. The recent beautiful work of [1] proved the first
limitation on the power of iO by ruling out constructions of collision-resistant
hash functions from iO and OWF (even if iO uses OWF in a non-black-box way).

To the best of our knowledge, no lower-bounds on the complexity of the
assumptions behind iO are proved yet. The same work of [1] ruled out fully
black-box constructions of iO from private-key functional encryption schemes
(PFE), but this result requires the iO to also handle circuits with PFE gates. We
note, however, that obfuscating circuits in plain model with no oracle gates is in
fact sufficient for all applications of iO. Moreover, since iO exists if NP = P, any
lower bound on the complexity of (standard definition of) iO in which we only
aim at obfuscating circuits in the plain model needs to rely on computational
assumptions (unless we first prove NP 6= P).

In this work we initiate a formal study on the assumption complexity of iO
from a lower-bound perspective.4 We prove our results in the black-box frame-
work of Impagliazzo and Rudich [21] and its refinements by Reingold et al. [34].
Lower bounds against black-box constructions/reductions are considered funda-
mental due to the abundance of black-box techniques as well as their (typical)
efficiency advantage over their non-black-box counterparts.

Since applications of iO almost always lead to non-black-box constructions,
it could be argued that a black-box separation for iO is not meaningful. Note,
however, that in this work we are not studying which primitives could be con-
structed from iO in a black-box way. We are instead looking at the complexity
of assumptions behind iO. An instructive analogy is zero knowledge proofs for
NP (ZKP). Using ZKPs for general NP statements also makes constructions
non-black-box (since some piece of code is used as witness used by the prover)
yet, we can indeed construct ZKPs for NP from one-way functions in a fully
black-box way [17, 28, 18].5 Therefore, even though iO leads to non-back-box
constructions, the construction of iO itself could very much be black-box, and
so separating it from classical primitives is also meaningful.

4 As mentioned above, we do not allow oracle gates for the circuits that are going to
be obfuscated.

5 It is also instructive to note that even though ZKP for NP could be constructed
from OWFs in a fully black-box way, it is conceivable that a separation would hold
if we require a proof system for satisfiability of circuits with oracle gates.



1.1 Our Results

Our first lower bound holds for any primitive implied by a random oracle (e.g.,
exponentially secure one-way functions or collision-resistant hash functions) and
it is proved for fully black-box constructions that treat the primitive and the
adversary in a black-box way (see Definition 5).

Theorem 1 (Fully black-box separation from primitives implied by
random oracle). Unless the polynomial hierarchy collapses, there is no fully
black-box construction of iO from collision-resistant hash functions or more gen-
erally any primitive implied by a random oracle in a black-box way.

Intuition behind the proof. To prove theorem 1 we will first prove a useful lemma
(see Lemma 17) which, roughly speaking, asserts that for any pair of circuits
C1, C2, either (1) a (computationally unbounded) polynomial-query attacker can
guess which one is obfuscated in the random oracle model with a probability
close to one, or that (2) there is a way to obfuscate them into the same output
circuit B. The latter could be used as a witness that C1 and C2 compute the
same function, assuming that the obfuscation is an iO. Now consider the set
of equivalent and same-size circuit C = {(C0, C1) | C0 ≡ C1 ∧ |C0| = |C1|}.
If Case (1) happens for an infinite subset of C, we get a poly-query attacker
against iO in the random oracle model which is sufficient for deriving the black-
box separations of Theorem 1. On the other hand, if Case (1) happens only for
a finite subset of C, we get an efficient procedure to certify the equivalence of
two given circuits, implying NP 6= P. We prove Lemma 17 by reducing it to a
result by Mahmoody and Pass [25] who ruled out the existence of non-interactive
commitments from one-way functions. Roughly speaking, we construct a non-
interactive commitment scheme based on common input (C1, C2) in the random
oracle model, and we show that: the cheating receiver strategy of [25] implies
our Case (1), and the cheating sender strategy of [25] implies our Case (2). The
result of [25] shows that either of these strategies always exist. See Section 3 for
the formal and detailed proof.

Our second lower bound does not rule out black-box construction of iO based on
believable assumptions, but shows that achieving such constructions for a large
variety of primitives is as hard has solving another long standing open question
in cryptography; namely, basing public-key encryption on one-way functions.
It also captures a larger class of security reductions known as semi-black-box
reductions [34] that allow the security reduction to access the adversary in a
non-black-box way (see Definition 6).

Theorem 2 (Hardness of semi-black-box construction). Let P be a prim-
itive that provably exists relative to random trapdoor permutation oracle, the
generic group model (for any finite abelian group) or the degree-O(1) graded en-
coding model (for any finite ring). Any semi-black-box construction of iO from
P (constructively) implies a construction of semantically secure public-key en-
cryption from one-way functions.



Primitives captured by Theorem 2. Theorem 2 captures a large set of power-
ful cryptographic primitives that could be constructed in idealized models. For
example trapdoor permutations (and any primitive implied by TDPs in a black-
box way) trivially exist relative to the idealized model of random TDPs. Even
primitives that we do not know how to construct from TDPs in a black-box
way (e.g., CCA secure public key encryption) are known to exist in the random
TDP model [5]. The generic group model defined by Shoup [37] (see Definition
12) is an idealized model in which (a black-box form of) the DDH assumption
holds unconditionally. Therefore, our separation of Theorem 2 covers any prim-
itive that could be constructed from DDH assumption in a black-box way. The
same holds for bilinear assumptions in the graded encoding model (see Definition
13) of degree 2. Namely, primitives that could be constructed from bilinear as-
sumptions (in a black-box way) exist in the degree O(1) graded encoding model
unconditionally. This includes one-round 3-party key-agreement [22], identity
based encryption [7], etc.

Intuition behind the proof. Our main tool in proving Theorem 2 is the following
theorem which is implicit in the recent work of the authors [31, 24]. Even though
the focus of [31, 24] is on virtual black-box obfuscation, the same construction
presented in [31, 24] for the case of VBB implies the following theorem for iO.

Theorem 3 (Implicit in [31, 24]). The existence of iO in any of the idealized
models of: random trapdoor permutation oracle, generic group model for finite
abelian groups, or the degree-O(1) graded encoding model for finite rings, implies
1/p(n)-approximate iO in the plain model for any polynomial p(n).

We then show that the existence of (1/6)-approximate iO and any one-way
functions imply the existence of “approximately correct” and “approximately
secure” public-key encryption schemes. In order to prove this we employ a con-
struction of Sahai and Waters [36] using which which they showed that iO and
OWF imply PKE. Here we show that the very same construction, when instan-
tiated using approximate iO, leads to “approximately correct” and “approxi-
mately secure” public-key encryption. Finally we use a result of Holenstein [19]
who showed how to amplify any approximately-correct and approximately-secure
PKE into a full fledged (semantically secure) PKE for sufficiently good approx-
imation! See Section 4 for the formal and detailed proof.

Remark 4. Our proof of Theorem 1 relies on perfect completeness of iO. The-
orem 2 above holds even if with negligible probability over the obfuscator’s
randomness the obfuscated circuit does not compute the same function. Extend-
ing Theorem 1 to allow negligible error over the randomness of the obfuscator
remains an interesting open questions.

Previous work on hardness of black-box constructions. Theorem 2 has the same
spirit as the result by Impagliazzo and Rudich [21] who showed any semi-black-
box construction of key agreement from one-way functions would implies P 6=
NP. Therefore, the fact that we are far from proving P 6= NP implies that we



as far from basing key agreements on one-way functions in a black-box way.6

Similarly, our Theorem 2 shows that as long as we are not able to base public-
key encryption on one-way functions, we cannot base iO on a variety of strong
primitives in a semi-black-box way. Other results of the same flavor exist in
connection with program checkers [6] for NP. Mahmoody and Xiao [26] showed
that any construction of one-way functions based on worst-case hardness of NP
implies program checkers for NP whose existence is one of the long standing
open questions in complexity theory.

Falsifiability of iO. An intriguing open question regarding assumption complex-
ity of iO is whether iO could be based on any “falsifiable” assumption [29]. A
falsifiable assumption is one with an efficient challenger security game. The ques-
tion is raised since an adversary attacking an iO scheme starts with proposing
two equivalent circuits and and efficient challenger has no direct way to verify
this. Since our primitives used in the theorems above are falsifiable, a separation
of iO from falsifiable assumptions would imply our results for the case of poly-
nomially secure primitives. However, constructions of iO based on exponentially
secure falsifiable assumptions are indeed known [32]. Therefore, our results are
interesting even if one can prove that iO cannot be based on falsifiable assump-
tions. Moreover, the known lower bounds against falsifiable assumptions [30, 16]
are proved only for black-box proofs of security in which the adversary is used in
a black-box way. Our Theorem 2 holds even for semi-black-box constructions in
which the security reduction could use the adversary in a non-black-box manner.

2 Preliminaries

For circuits C,D, we denote by C ≡ D that they compute the same function.
By |C| we denote the size of the bit representation of C. By a partial oracle f we
denote an oracle that is only defined for a subset of possible queries. For random
variables X,Y , by X ≈ Y we denote the fact that X and Y are distributed
identically. We call a function ε(n) negligible if ε(n) < 1/p(n) for all polynomial
p(·) and sufficiently large n. We call ρ(n) overwhelming, if 1− ρ(n) is negligible.

2.1 Black-Box Constructions

Definition 5 (Fully black-box constructions [34]). A fully black-box con-
struction of a primitive Q from a primitive P consists of two PPT algorithms
(Q,S) as follows:

1. Implementation: For any oracle P that implements P, QP implements Q.
2. Security reduction: for any oracle P implementing P and for any (computa-

tionally unbounded) oracle adversary A successfully breaking the security of
QP , it holds that SP,A breaks the security of P .

6 Formalizing semi-black-box constructions interpreting the result of [21] in this con-
text is due to [34].



Primitives with stronger hardness. The above definition is for polynomially se-
cure primitives. When the used primitive P is s-secure for a more quantitative
bound s(n)� poly(n), the security reduction S could potentially run in longer
running time as well so long as it holds that: when P,A are polynomial time,
the total running time of the composed algorithm SP,A is also small enough to
be considered a legal attack against the implementation P of P.

In the following more relaxed form of constructions, the security reduction
can depend arbitrarily on the adversary but it still treats the implementation of
the used primitive in a black-box way.

Definition 6 (Semi-black-box constructions [34]). A semi-black-box con-
struction of a primitive Q from a primitive P is defined similarly to the fully
black-box Definition of 5 with the following difference in the security reduction:

– For any oracle P implementing P and any efficient oracle-aided adversary
AP who breaks the security of QP it holds that SP (A) breaks the security of
P . Note that since A’s description is efficient it could indeed be given to S
in a non-black-box way.

Remark 7. The work of Reingold et al. [34] also defines a “∀∃” variant of the
semi-black-box constructions in which SP can arbitrarily depend on AP (rather
than depending on it in a unified way). In this work we work with the basic
default variant that we also find more natural.

Efficiency of adversary. We used the term efficient in an unspecified way so that
it could be applied to complexity classes beyond polynomial time. For example,
using a quasi-polynomially secure primitive P to construct a polynomially secure
primitive Q would require a security primitive that is more relaxed and could
lead to a quasi-polynomial (as opposed to polynomial) time attack against P
using any polynomial-time attacker against QP .

2.2 Indistinguishability Obfuscation

Definition 8 ([3]). A PPT algorithm O is an indistinguishability obfuscator
(iO) if the following two hold:

– Correctness: For every circuit C, it holds that Prr[Or(C) ≡ C] = 1.
– Soundness: For every PPT adversary A there exists a negligible function α(·)

such that for every pair of equivalent circuits C1 ≡ C2 with the same size
|C1| = |C2| = n it holds that:

Pr
r,s,b

[As(C1, C2, B) = b : b
$←{0, 1}, B = Or(Cb)] ≤ 1/2 + α(n)

where the probability is over the random seeds of the obfuscator O, adversary
A and the random bit b.

Definition 9 (Approximate iO). A PPT O is called an ε-approximate iO if
it satisfies the same soundness condition and the following modified correctness
condition.



– Approximate correctness: Prr,x[Or(C)(x) 6= C(x)] = ε(|C|) where the prob-
ability is over the randomness of the obfuscator as well as the randomly
selected input.

Definition 10 (Fully and semi-black-box constructions of iO). A fully
black-box construction of iO from primitive P consists of two oracle algorithms
(O,S) such that

– Implementation (correctness): For every oracle P implementing P, every
circuit C, and every randomness r for O it holds that B = OPr (C) is an
oracle-aided circuit B such that BP ≡ C.

– Soundness: For any oracle P implementing P, any ε ≥ 1/ poly(n) and any
oracle adversary A who ε-breaks OP , it holds that SP,A(11/ε(n)) breaks the
security of P .
We say that A ε-breaks OP if for an infinite number of pairs of equivalent
circuits C0 ≡ C1 of equal lengths n it holds that

Pr
r,s

[As(C1, C2, B) : b
$←{0, 1}, B = OPr (Cb)] ≥ 1/2 + ε(n)

where the probability is over the random seeds of the obfuscator O, adversary
A and the random bit b.

A semi-black-box construction of iO from P is defined similarly, with its
soundness defined along the line of Definition 6. Namely, we require that for
any efficient adversary A who ε-breaks OP , there is also an efficient adversary
breaking the security of P .

2.3 Generic/Idealized Models

Definition 11 (Random Oracle Model). In the random oracle model, all
parties have access to a randomized oracle f such that for each input x, the
answer f(x) is uniformly (and independently of the rest of the oracle) distributed
over {0, 1}|x|.

Definition 12 (Generic Group Model [37]). Let (G,�) be any group of size
N and let S be any set of size at least N . The generic group oracle I[G 7→ S]
(or simply I) is as follows. At first an injective random function σ : G 7→ S is
chosen, and two type of queries are answered as follows.

– Labeling Queries. Given g ∈ G oracle returns σ(g).
– Addition Queries. Given y1, y2, if there exists x1, x2 such that σ(x1) = y1

and σ(x2) = y2, it returns σ(x1 � x2). Otherwise it returns ⊥.

Definition 13 (Degree-d Ideal Graded Encoding Model). The oracleMd
R =

(enc, zero) is stateful and is parameterized by a ring R and a degree d and works
in two phases. For each l the oracle enc(·, l) is a random injective function from
the ring R to the set of labels S.



1. Initialization phase: In this phase the oracle answers enc(v, l) queries and
for each query it stores (v, l, h) in a list LO.

2. Zero testing phase: Suppose p(·) is a polynomial whose coefficients are explic-
itly represented in R and its monomials are represented with labels h1, . . . , hm
obtained through enc(·, ·) oracle in phase 1. Given any such query p(·) the
oracle answers as follows:
(a) If any hi is not in LO (i.e., it is not obtained in phase 1) return false.
(b) If the degree of p(·) is more than d then return false.
(c) Let (vi, li, hi) ∈ LO. If p(v1, . . . , vm) = 0 return true, otherwise false.

Generic Algorithms. A generic algorithm in the generic group model (resp.
graded encoding model) is an algorithm in which no label s is used in an ad-
dition (resp. zero testing) query unless it is previously obtained through the
oracle itself. In this work we only use sparse encodings in which |S|/|G| = nω(1)

(resp. |S|/|R| = nω(1) in the graded encoding model) where n is the security
parameter. Therefore, the execution of poly-time algorithms in this model will
be statistically close to being generic.

Definition 14 (Primitives in Idealized Models). We say a primitive P
exists relative to the randomized oracle (or idealized model) I if there is an
oracle-aided algorithm P such that:

1. Completeness: For every instantiation I of I, it holds that P I implements
P correctly.

2. Security: Let A be an oracle-aided adversary AI where the complexity of
A is bounded by the specified complexity of the attacks for primitive P. For
example if P is polynomially secure (resp., quasi-polynomially secure), then
A runs in in polynomial time (resp., quasi-polynomial time). For every such
oracle aided A, with measure one over the sampling of the idealized oracle

I
$←I, it holds that A does not break the security of P I .

We call P a black-box construction of P relative to I if the security property
holds also in a “black-box” way defined as follows:

– Let A be an oracle-aided adversary AI where the query complexity of A
is bounded by the specified complexity of the attacks for primitive P. For
example if P is polynomially secure (resp., quasi-polynomially secure), then
A only asks a polynomial (resp., quasi-polynomial) number of queries.
For every such oracle aided A, with measure one over the sampling of the

idealized oracle I
$←I, it holds that A does not break the security of P I .

In the definition above, we only require the scheme to be secure after the
adversary is fixed. This is along the line of the way the random oracle model is
used in cryptography [5], and lets us easily derive certain primitives in idealized
models. For example it is easy to see that a random trapdoor permutation, with
measure one, is a secure TDP against any fixed adversary of polynomial query
complexity. Therefore, TDPs exist in the idealized model of random TDP in



a black-box way. In fact stronger results are proved in the literature for other
primitives. Impagliazzo and Rudich [21] and Gennaro and Trevisan [13] showed
that one-way functions exist relative to the idealized model of random oracle,
even if we sample the oracle first and then go over enumerating possible attacks.
Chung et al. [10] proved a similar result for collision resistant hash functions.

The following lemma could be verified by inspection.

Lemma 15. If there is a semi-black-box construction of Q from P then:

1. If P exists relative to idealized model I, Q exists relative to I as well.
2. If in addition the construction of P from I is black-box, then a black-box

construction of Q relative to I exists as well.

Proof. Let Q be the semi-black-box construction of Q from P. Let P be the
implementation of P relative to I. It is easy to see that QP is an implementation
of Q relative to I. Now we prove the security properties of Lemma 15.

1. Let A be any successful attacker against the implementation of QP in the

idealized model I. Then by non-zero measure over the choice of I
$←I it holds

that A breaks the security of QP
I

. For any such I, the security reduction
SI(A) also breaks the security of P I . This means that the attacker S(A) = B
breaks the security of P I with non-zero measure over the sampled oracle

I
$←I. This contradicts the assumption that P is securely realized in I.

2. A similar proof holds for the black-box constructions in idealized models.
The only modification is that now we use B = SA (rather than S(A)).

3 Separating iO from Random Oracle Based Primitives

In this section we prove the following formalization of Theorem 1.

Theorem 16 (Theorem 1 formalized). If NP 6= co-NP then there is no
fully black-box construction of iO from any primitive P that exists relative to a
random oracle in a black-box way. This includes exponentially secure one-way
functions and collision-resistant hash functions.

To prove Theorem 16 we will first prove a useful lemma (see Lemma 17)
which, roughly speaking, asserts that for any pair of circuits C1, C2, either an
attacker can guess which one is obfuscated in the random oracle model with a
probability close to one, or that there is a way to obfuscate them into the same
output circuit B. The latter could be used as a witness that C1 and C2 compute
the same function, assuming that the obfuscation is an iO.

Lemma 17 (Distinguish or Witness). Let O be an oracle aided randomized
polynomial-time algorithm taking circuits as input such that for every length-
preserving oracle f and every randomness r it holds that Ofr (C) ≡ C (ı.e., O
always outputs circuits with the same input/output functionality as the input
circuit C). Then, at least one of the following holds:



1. There is an infinite sequence of circuits (C1
0 , C

1
1 ), . . . , (Ci0, C

i
1), . . . such that

|Ci0| = |Ci1| for all i, and there exists a (computationally unbounded) poly(n)-
query A such that the following holds for all i:

Pr
r,s,f,b

[Afs (B) = b : b
$←{0, 1}, B = Ofr (Cib)] ≥ 1− 1/n2

where n is the bit size of the circuits: |Ci0| = |Ci1| = n.
2. NP = co-NP.

We will first prove Theorem 16 using Lemma 17, and then we will prove
Lemma 17.

Proof (of Theorem 16). In what follows we will always assume NP 6= co-NP.
We will describe the proof for one-way functions, but it can be verified that the
very same proof holds for any primitive that holds relative to random oracles in
a black-box way (see Definition 14).

Suppose (O,S) is a fully black-box construction of iO from one-way functions.
We use a random oracle f to implement the one-way function required by O.
By Lemma 17 and the assumption that NP 6= co-NP we know that there is
a computationally unbounded attacker A and an infinite sequence of equivalent
and same-size circuits (C1

0 , C
1
1 ), . . . , (Ci0, C

i
1), . . . such that A breaks the security

of iO over the challenge circuits (Ci0, C
i
1) of length |Ci0| = n = |Ci1| by guessing

which one of them is being obfuscated with probability ≥ 1− 1/n2. Let ε = 1/4.
By an averaging argument, with probability at least 1−O(1/n2) over the choice
of oracle f , it holds that the probability that A correctly guesses which one of
(Ci0, C

i
1) is being obfuscated is at least 1/2 + ε. Since the summation

∑
i 1/i2 =

O(1) converges, by Borel-Cantelli lemma, for measure one of the random oracles
f it holds that A ε-breaks the implemented iO Of .

Now that A is a “legal” adversary, by definition of fully black-box iO, the
security reduction Sf,A shall break the one-way property of f . Algorithms A
and S are both poly(n)-query attackers, and so the combination B = SA also
asks only a polynomial number of queries to f and succeeds in breaking the
one-wayness of f for nonzero measure of samples for f .

The existence of such B, however, is impossible since a random oracle f , with
measure one, is secure against attackers who ask only a polynomial number of
queries [21, 13].7

Now we prove Lemma 17. To prove Lemma 17 we will use the following
lemma from [25].

Lemma 18 ([25]). Suppose S is an oracle-aided PPT algorithm that calls
oracle f and takes private input b ∈ {0, 1}, randomness r, and common input

7 The works of [21, 13] work with polynomial time Turing machines or circuits, however
their goal is to fix the random oracle f before enumerating the attackers. However,
if the attacker is fixed before the sampling of f , the proofs of [21, 13] imply the
one-wayness of f with measure one even if the fixed attacker is computationally
unbounded.



z ∈ {0, 1}n (where n is the security parameter) and outputs c = Sfr (z, b). For any
δ = δ(n) ≤ 1/100, there is a (computationally unbounded) oracle-aided algorithm
R such that for all z ∈ {0, 1}n at least one of the following holds.

1. If f is the random oracle, Rf (z, c) asks poly(n/δ) queries and correctly
guesses the random bit b that Sfr (z, b) used to generate c with probability
≥ 1− δ(n). Namely:

Pr
f,r,b

[Rf (z, c) = b : b
$←{0, 1}, c = Sfr (z, b)] ≥ 1− δ(n).

2. There is a partial oracle f ′ of size poly(n) and two random seeds r0, r1 and
a message c such that Sf

′

r0 (z, 0) = c = Sf
′

r1 (z, 1). In other words, there is a
message c that could be opened into both b = 0 and b = 1 using random seeds
r0, r1, and the queries asked by S during these two possible executions are
all described by the partial function f ′.

Remark 19. Mahmoody and Pass [25] proved a more general lemma ruling out
(even “somewhere binding”) non-interactive commitment schemes in the random
oracle model. Lemma 18 is a special case of their result which is still sufficient
for us. In the setting of [25] the security parameter is given to the parties in
the form of 1n, but their proof handles parties who in addition receive some
z ∈ {0, 1} and the parties’ behavior could also depend on the given z. For the
sake of completeness, we have provided a self contained sketch of the proof of
Lemma 18 in Appendix A.

Proof (of Lemma 17).
Consider the set of circuit pairs that are equivalent and of the same size:

C = {(C0, C1) | C0 ≡ C1 ∧ |C0| = |C1|}. We apply Lemma 18 for δ = 1/n2 as
follows. Use (C0, C1) = z ∈ C as the common input given to both parties. Let
S be a sender strategy that, given input bit b, obfuscates Cb and sends out the
obfuscated circuit B.

By Lemma 18 for each (C0, C1) = z ∈ C either of the following holds:

1. Af ((C0, C1), B) can guess the random b in the random oracle model correctly
with probability at least 1− 1/n2.

2. There is a partial oracle f ′ of polynomial size and two random strings r0, r1
such that Of

′

rb
(Cb) = B for both b ∈ {0, 1}.

Note that if C0 6≡ C1 then Case (2) cannot happen as no such (f ′, r0, r1) can
exist by perfect completeness of iO. Therefore, if Case (2) happens, the existence
of (f ′, r0, r1) serves as an efficiently verifiable proof that C0 ≡ C1.

Now let Ca be the subset of C for which Case (1) holds. There are two cases:

1. Ca is not finite, in which case we have shown that Case 1 of the lemma holds.
2. If Ca is finite, then for all (except a finite number) of (C0, C1) ∈ C we can

efficiently prove that C0, C1 are equivalent circuits. This would give a proof
system for proving the equivalency of two given circuits, but this problem is
co-NP-complete. Thus, co-NP = NP.



4 Hardness of Semi-Black-Box Constructions of iO

In this section, we prove Theorem 2. We will first show that approximate iO is
still powerful enough to base public-key cryptography on private-key cryptogra-
phy. We will use this result and results of [31, 24] to derive Theorem 2.

Theorem 20. The existence of (1/6)-approximate iO and any one-way func-
tions imply the existence of semantically secure public-key encryption schemes.

We first prove Theorem 2 using Theorems 3 and 20.

Proof (of Theorem 2 using Theorems 3 and 20 ). Let P be any such primitive
with implementation P relative to the idealized model I, and suppose O is any
such semi-black-box construction of iO from P. By Lemma 15, we conclude that
O′ = OP is a construction of iO in the idealized model I. This, together with
Theorem 3 imply that there is a (1/6)-approximate iO in the plain model. Finally,
by Theorem 20 and the existence of (1/6)-approximate iO implies that we can
construct semantically secure public-key encryption from one-way functions.

4.1 Proving Theorem 20

In this section we prove that (1/6)-approximate iO and one-way functions imply
semantically secure public-key encryption. Therefore, any provably secure con-
struction of (1/6)-approximate iO would enable us to take any one-way functions
and construct a secure public-key encryption scheme from it. In the terminology
of [20] it means that Cryptomania collapses to Minicrypt if (1/6)-approximate
iO exists.

Intuition. Sahai and Waters [36] showed that iO and OWF imply PKE. Here
we show that the very same construction, when instantiated using approximate
iO, leads to “approximately correct” and “approximately secure” public-key en-
cryption. Then, using a result of [19] we amplify the soundness and correctness
to get a full fledged semantically secure public key encryption scheme.

Definition 21 (Approximate correctness and security for PKE). We
call a public-key bit-encryption scheme (Gen,Enc,Dec) for message space {0, 1}
ε(n)-correct if

Pr[Decdk(Encek(b)) = b : (ek, dk)← Gen(1n), b
$←{0, 1}] ≥ 1− ε(n)

where the probability is over the randomness of the key generation, encryption,
decryption, and the bit b. We call (Gen,Enc,Dec) δ(n)-secure if for any PPT
adversary A, it holds that

Pr[A(pk,Encpk(b)) = b] ≤ 1/2 + δ(n)

where the probability is over the randomness of generation, encryption, the ad-
versary, and bit b.



Holenstein [19] showed how to amplify any ε-correct and ε-secure PKE into
a full fledged (semantically secure) PKE for sufficiently small ε.

Theorem 22 (Implied by Corollary 7.8 in [19]). Suppose (Gen,Enc,Dec)
is ε-correct and δ-secure for constants ε, δ such that (1− 2ε)2 > 2δ. Then there
exists a semantically secure PKE.

Theorem 23 below asserts that approximate iO and one-way functions imply
approximately correct and approximately secure PKE.

Theorem 23 (Approximate iO + OWF ⇒ Approximate PKE). If ε-
approximate iO and one-way functions exist, then there is an ε-correct and (ε+
negl(n))-secure public-key bit encryption scheme.

We first prove Theorem 20 using Theorem 23 and then will prove 23.

Proof (of Theorem 20). Because (1 − 2 · 1/6)2 > 2 · 1/6, Theorem 20 follows
immediately from Theorem 22 and the following Theorem 23 using ε = 1/6.

In the rest of this section we prove Theorem 23.

Proof (of Theorem 23). We show that the very same construction of PKE from
iO and OWF presented by Sahai and Waters [36], when instantiated with an
ε-approximate iO, has the demanded properties of Theorem 23.

Properties of the construction of [36]. We first describe the abstract properties
of the construction of [36] (for PKE using iO and OWFs) and its security proof
that we need to know.

– Construction/correctness:
1. The key generation process generates a circuit C and publishes O(C) =
B as public key where O is an iO scheme.

2. The encryption simply runs B on (r, b) where r is the encryption ran-
domness and b is the bit to be encrypted.

3. The scheme has completeness 1.
– Security: [36] proves the security of the construction above by showing that

no PPT algorithm can distinguish between the following two random vari-
ables X0, X1 defined as:
• Xb ≈ (Os(C), C(r, b)) ≈ (B,C(r, b)) where s is the randomness for O.

When clear from the context we drop the randomness s and simply write
O(C) denoting it as a random variable over the randomness of O.

It can be verified by inspection that the proof of [36] for indistinguishability
of X0 and X1 does not rely on completeness of the obfuscation O and only
relies on its indistinguishability (when applied to circuits with the same
functions). We will rely on this feature of the proof of [36] in our analysis.

Below we analyze the correctness and security of the construction of [36]
when O is an ε-approximate iO.



Correctness. By the definition of ε-approximate iO and ε-correct bit encryption,
and the fact that the [36] construction has perfect completeness when O is iO,
it follows that the completeness of the new scheme (when b is also chosen at
random) is at least 1− ε. Thus the scheme is ε-correct.

Security. First recall that for the basic construction of [36] using (perfect) iO,
no PPT attacker A can guess b with probability better than 1/2 + negl(n) when
b is chosen at random and A is given a sample from the random variable Xb (for
random b). As we mentioned above, the proof of this statement does not rely on
the correctness of the used iO and only relies on its indistinguishability.

Now we want to bound the distinguishing advantage of PPT adversaries
between the following random variables Y0, Y1:

– Yb ≈ (B,B(r, b)) ≈ (Os(C), Os(C)(r, b)) where s is the randomness of the
obfuscator O.

The difference between Yb’s and Xb’s stems from the fact that the public-key
B = O(C) no longer computes the same exact function as the circuit C as the
obfuscation only guarantees approximate correctness. We reduce the analysis of
the new scheme to the original analysis of [36].

By the analysis of [36] we already know that if any PPT A is given a sample
from Xb for a random b it has at most 1/2+negl(n) chance of correctly guessing
b. Also note that the distributions Xb and Yb for a random b are ε-close due to the
ε-correctness of the obfuscation. More formally, the distributions Xb and Yb could
be defined over the same sampling space using: random seeds of key generation,
obfuscation, encryption, and bit b. This way with probability ≥ 1 − ε (and by
the ε-approximate correctness of the obfuscation) the actual sampled values of
Xb and Yb will be equal, and this implies that they are ε-close. As a result, when
we switch the distribution of the challenge given to the adversary and give a
sample of Yb (for random b) instead of a sample from Xb, the adversary’s chance
of guessing b correctly can increase at most by ε and reach at most 1/2+negl +ε.
Therefore, the new scheme is (ε+ negl)-secure according to Definition 21.
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A Omitted Proofs

For sake of completeness we sketch the proof of Lemma 18.



Proof (Sketch of Lemma 18). Let ε be a parameter to be chosen later. Let R
be an attacker who maintains a list of “learned” oracle queries L and, given c

sent by the sender for b
$← {0, 1} and common input z, it adaptively asks the

lexicographically first oracle query x 6∈ L that has at least ε chance of being
asked by sender S conditioned on the knowledge of (L, z). After asking such x
from f , A adds (x, f(x)) to L. As long as such query x exists, R asks them.
It was shown in [4] that this learning algorithm asks, on average, at most m/ε
number of queries where m = poly(|z|) is the number of queries asked by the
sender. So as long as ε = poly(n/δ) this learning algorithm is efficient.

Now, let L be the final learned set by R. If conditioned on L it holds that
both of b = 0 and b = 1 have at least ρ probability of being used by S, then by
conditioning on the distribution of the sender’s view on b = 0 or b = 1 all the
unlearned queries remain at most ε/ρ = σ-heavy. Now it is easy to see that if we
sample a random view for S conditioned on L, b = 0 and L, b = 1 and call them
V0 and V1, the probability that queries of V0 and V1 collide out of L is at most
m · σ ≤ m · ε/ρ. For ρ > m · ε this probability is less than one, which means that
if ρ > m · ε, then there exists a consistent pair of views for S that he can use to
output c for both cases of b = 0 and b = 1. This means that Case 2 happens.

Now let us assume that Case 2 does not happen. It means that for all execu-
tions of the algorithm A, when A is done with learning the ε heavy queries, the
probability of either b = 1 or b = 0 conditioned on L is at most ε. This means
that A can guess b correctly with probability 1− ε.

If we can choose ρ = O(m/ε) and ε = δ in the argument above (assuming
that Case 2 does not happen) we get an attacker A that asks O(m · ε/ε) = O(m)
queries. We can alternatively choose smaller ρ and cut A’s execution after it asks
O(m/δ) number of queries and use ε = δ/10. By an application of the Markov
inequality A will ask more than 100(m/δ) number of queries with probability at
most ε, and so A will ask at most O(m/δ) number of queries and will guess b
correctly with probability at least 2ε < δ.


