
De Bruijn Sequences from Symmetric Shift Registers

Ming Li, Mingxing Wang and Dongdai Lin

State Key Laboratory of Information Security,

Institute of Information Engineering,

Chinese Academy of Sciences, Beijing 100093, China

E-mail: {liming,wangmingxing,ddlin}@iie.ac.cn

November 6, 2015

Abstract

We consider the symmetric Feedback Shift Registers (FSRs), especially a special class of

symmetric FSRs (we call them scattered symmetric FSRs), and construct a large class of De

Bruijn sequences from them. It is shown that, at least O(2
n−6
2 logn) De Bruijn sequences of order

n can be constructed from just one n-stage scattered symmetric FSR. To generate the next bit

in the De Bruijn sequence from the current state, it requires no more than 2n comparisons and

n+ 1 FSR shifts. By further analyse the cycle structure of the scattered symmetric FSRs, other

methods for constructing De Bruijn sequences are suggested.

Keywords: symmetric boolean function, feedback shift register, De Bruijn sequence, cycle joining

method.

1 Introduction

De Bruijn sequences, i.e., periodic sequences in which each n-tuple appears exactly once in one

period, have been studied for many years, see, for example, [1, 4]. These sequences have many

applications in cryptography and modern communication systems. Numerous algorithms for gen-

erating these sequences are known, and a useful survey has been given by Fredricksen [4].

A classical method to construct De Bruijn sequences is to consider a feedback shift register

(FSR) producing several short cycles which are then joined together to form a full cycle. Linear

feedback shift registers (LFSRs) with simple cycle structures are often used for this purpose, for

example, the maximum length LFSRs, pure circulating registers and pure summing registers [2–4].

Recently, the LFSRs with characteristic polynomials (1+x)mp(x) and (1+xm)p(x) were also used,

where p(x) is a primitive polynomial and m is a positive integer [7, 10–12, 15]. However, these De

Bruijn sequences are obtained by a very little change of the base LFSRs, and stream ciphers based

on these maximum-length FSRs may susceptible to algebraic attacks and correlation attacks.

1

Constructing De Bruijn sequences by joining the cycles of a nonlinear feedback shift register

(NFSR) is a challenging work, because many fundamental problems related to NFSRs are essentially

unsolved until now. Jansen et al. [8] proposed an algorithm for joining cycles of an arbitrary FSR.

The efficiency of their algorithm depends on the length of the longest cycle in the base FSR. To

find FSRs that contain only very short cycles, they turned to the LFSRs and constructed a class of

such LFSRs. Their algorithm was improved recently in [13] where an improved version of the cycle

joining algorithm was given and a large class of NFSRs that contain only very short cycles were

proposed. Besides these universal algorithms, some special class of NFSRs were also analysed in

order to constructing De Bruijn sequences. For example, the NFSRs with characteristic function

f ∗ l were analysed in [20], where f is the characteristic function of a maximum length FSR and l

is the characteristic function of a maximum length LFSR. Based on these NFSRs, approximately

O(22
k−1+n) maximum length FSRs can be constructed, where k and n are the orders of f and l

respectively. It was shown that, the time complexity to generate such a maximum length FSR is

O(k · 22k + n(k + 1)2k + (2k + 3) · n3).
In this paper, we consider the symmetric FSRs and construct a large class of De Bruijn sequences

from them. Symmetric FSRs which is a special class of nonlinear FSRs were first studied in [9] where

the cycle structure of some symmetric FSRs were determined. Then the research was continued

in [16–19] where the general case was studied. It was proved that, the cycles in a symmetric FSR

can be divided into layers according to the weights of states in cycles [16]. The cycles in a symmetric

FSR can be joined together by using the general algorithms proposed in [8] and [13]. However,

these algorithms provide us only one full cycle from a given FSR. In order to construct more full

cycles, we select a special state from each layer of the base symmetric FSR, then the special states

are used as bridging states in the process of cycle joining. Since different choices of the special

states corresponding to different full cycles, by using this method, we can construct a large class

of full cycles from just one symmetric FSR. In order to improve the efficiency of the algorithm,

a special class of symmetric FSRs (we call them scattered symmetric FSRs) are used as the base

FSR. It is shown that, at least O(2
n−6
2

logn) De Bruijn sequences of order n can be constructed from

just one n-stage scattered symmetric FSR, and it requires no more than 2n comparisons and n+ 1

FSR shifts to generate the next state in the full cycle from the current state. By further analyse

the cycle structure of the scattered symmetric FSRs, other methods for constructing De Bruijn

sequences are suggested.

The paper is organized as follows. In Section 2, we introduce some necessary preliminaries. In

Section 3, an algorithm for joining the cycles in a symmetric FSR is proposed. In Section 4, a

special class of symmetric FSRs are analysed and other methods to join the cycles in these FSRs

are suggested. In Section 5, we make a conclusion about our work.

2

2 Preliminaries

2.1 Symmetric Boolean functions

Let F2 = {0, 1} be the finite field of two elements, and Fn
2 be the vector space of dimension n over F2.

For a vector S = (s0, s1, . . . , sn−1), its weight is defined as the number of ones among the si’s, i.e.,

W (S) =
∑n−1

i=0 si. Sometimes, we regard S as an integer S =
∑n−1

i=0 si2
n−1−i. A Boolean function

f(x0, x1, . . . , xn−1) in n variables is a mapping from Fn
2 to F2. It is well known that it can be uniquely

represented by its algebraic normal form (ANF), which is a multivariate polynomial. A symmetric

Boolean function is a Boolean function whose value does not depend on the permutation of its

input bits, i.e., it depends only on the number of ones in the input. Define the symmetric Boolean

functions Ek(x1, x2, . . . , xn−1) for k ∈ {0, 1, . . . , n− 1} by the equivalence: Ek(s1, s2, . . . , sn−1) = 1

if and only if W (s1, s2, . . . , sn−1) = k. Then it is easy to see, {Ek : k = 0, 1, . . . , n − 1} is a basis

for the vector space of all the symmetric Boolean functions in the variables x1, x2, . . . , xn−1 [16].

Lemma 1. Let h(x1, x2, . . . , xn−1) be a symmetric Boolean function, then there exists an unique

subset M ⊂ {0, 1, . . . , n− 1} such that h(x1, x2, . . . , xn−1) =
∑

k∈M Ek.

The subset M can be determined easily from the symmetric Boolean function h. To determine

if k ∈ M or not, we just need to test whether h(0, . . . , 0,

k︷ ︸︸ ︷
1 . . . , 1) = 1 or not. Therefore, by n + 1

times test, the subset M is determined. For convenience, the subset M that determined by h is

denoted by Ind(h).

2.2 Feedback shift registers

An n-stage feedback shift register (FSR) consists of n binary storage cells and a characteristic

function f regulated by a single clock. In what follows, the characteristic function f is supposed to

be nonsingular, i.e., of the form f = x0 + f0(x1, . . . , xn−1) +xn. The feedback function of this FSR

is defined as F (x0, x1, . . . , xn−1) = x0 + f0(x1, . . . , xn−1). The FSR with characteristic function

f is denoted by FSR(f). At every clock pulse, the current state (s0, s1, . . . , sn−1) is updated by

(s1, s2, . . . , sn−1, F (s0, s1, . . . , sn−1)). From an initial state S0 = (s0, s1, . . . , sn−1), after consecutive

clock pulses, FSR(f) will generate a cycle C = [S0,S1, . . . ,Sl−1], where Si+1 is the next state of

Si for i = 0, 1, . . . , l − 2 and S0 is the next state of Sl−1. The cycle C can also be denoted by

C = [s0, s1, . . . , sl−1]n or simply C = [s0, s1, . . . , sl−1], where si is the first component of Si for

i = 0, 1, . . . , l− 1. In this way, the set Fn
2 is divided into cycles C1, C2, . . . , Ck by FSR(f), and vice

versa, it is easy to see, a partition of Fn
2 into cycles determines an n-stage FSR. So we can treat

FSR(f) as a set of cycles and use the notation FSR(f) = {C1, C2, . . . , Ck}. The output sequences of

FSR(f), denoted byG(f), are the 2n sequences s = s0s1 . . ., such that st+n = F (st, st+1, . . . , st+n−1)

for t ≥ 0. Since f is nonsingular, G(f) contains only periodic sequences [5]. An FSR is called a

linear feedback shift register (LFSR) if its characteristic function f is linear, i.e., f is of the form

f(x0, x1, . . . , xn) = a0x0+a1x1+· · ·+anxn, and nonlinear feedback shift register (NFSR) otherwise.

For an n-stage FSR, the period of its output sequence is no more than 2n. If this value is attained,

3

we call the sequence De Bruijn sequence, and the FSR maximum-length FSR. There is only one

cycle in a maximum-length FSR, and this cycle is usually called a full cycle or a De Bruijn cycle. We

call FSR(f) a symmetric FSR if f is of the form f = x0+h(x1, x2, . . . , xn−1)+xn for some symmetric

Boolean function h. The cycle structure of symmetric FSRs has been studied in [9, 16–19]. We

recall some of the results in [16]. For simplicity, we use [a, b], where a and b are two integers such

that a ≤ b, to denote the integers lie between a and b, that is, [a, b] = {i is an integer |a ≤ i ≤ b}.

Lemma 2. [16] Let h(x1, x2, . . . , xn−1) be a symmetric Boolean function, and Ind(h) = ∪ui=1[ai, bi],

where ai and bi are integers such that bi + 1 < ai+1. Define Rem(h) = {r|0 ≤ r ≤ n, a /∈
∪ui=1[ai, bi + 1]}. Let C be a cycle in FSR(x0 + h+ xn), then there are two cases may happen:

1. There exists some integer 1 ≤ i ≤ u such that the weights of the states on C are lie between

ai and bi + 1, that is, ai ≤W (S) ≤ bi + 1 for any S ∈ C.

2. There exists some integer r ∈ Rem(h) such that the weights of the states on C are equal to r,

that is, W (S) = r for any S ∈ C.

With the notations in Lemma 2, we define the layer of weight [ai, bi + 1] in FSR(x0 +h+xn) to

be A[ai, bi + 1]h = {C|C ∈ FSR(x0 +h+xn), ai ≤W (S) ≤ bi + 1 for any S ∈ C} for i = 1, 2, . . . , u,

and the layer of weight [r] in FSR(x0 + h+ xn) to be A[r]h = {C|C ∈ FSR(x0 + h+ xn),W (S) =

r for any S ∈ C} for r ∈ Rem(h). The subscript h is usually dropped if it is clear from the context

which h is intended. Let Rem(h) = {r1, r2, . . . , rv} where v is the number of elements in Rem(h).

Then according to Lemma 2, the cycles in FSR(x0 + h + xn) can be divided into u + v layers:

FSR(x0 + h+ xn) = (∪ui=1A[ai, bi + 1])
⋃

(∪vj=1A[rj]).

2.3 The cycle joining method

For a state S = (s0, s1, . . . , sn−1), its companion is defined as S̃ = (s0, s1, . . . , sn−1), where sn−1 is

the binary complement of sn−1. Two cycles C1 and C2 are said to be adjacent if they are disjoint

and there exists a state S on C1 whose companion S̃ is on C2. By interchanging the predecessors

of S and S̃, the two cycles C1 and C2 are joined together. This is the basic idea of the cycle joining

method introduced in [5]. Maximum length FSR can be obtained by joining the cycles in an FSR

that producing several short cycles. For a given FSR, different ways to select the bridging states

result in different full cycles. To count the number of full cycles obtained from a given FSR by the

cycle joining method, we need the following definition.

Definition 1. [6, 14] For an FSR, its adjacency graph is an undirected graph where the vertexes

correspond to the cycles in it, and there exist m edges between two vertexes if and only if the two

vertexes share m conjugate pairs. For simplicity, the m edges are usually replaced by an edge labeled

with m.

In graph theory, a spanning tree T of an undirected graph G is a connected subgraph that

includes every vertex of G and contains no cycles. It is easy to see, there is an one-to-one correspon-

dence between the spanning trees of the adjacency graph of FSR(f) and the full cycles generated

4

from FSR(f) by the cycle joining menthod, because this represents a choice of adjacencies that

repeatedly join two cycles into one ending with exactly one cycle, i.e., full cycle.

3 Joining the Cycles in a Symmetric FSR

Let h(x1, x2, . . . , xn−1) be a symmetric Boolean function. According to Lemma 2, the cycles in

FSR(x0+h+xn) can be divided into u+v layers: FSR(x0+h+xn) = (∪ui=1A[ai, bi+1])
⋃

(∪vj=1A[rj]).

For two layers A1 and A2 in FSR(x0 + h+ xn), we say A1 is lighter than A2 if the weights of the

states in A1 is less than those in A2. For a cycle C in FSR(x0 + h + xn) that does not contain

the zero state 0, the cycle representative of C is defined as the numerically largest state S on C

such that: S contains the longest run of ZEROS and is of the form (∗, . . . , ∗,
t︷ ︸︸ ︷

0, . . . , 0, 1), where t

is the length of the longest run of ZEROS [13]. For the cycle that contains the zero state, there

is no cycle representative. The cycles in FSR(x0 + h + xn) can be joined together with the help

of cycle representatives as shown in [13]. However, this method generate only one full cycle from

a given FSR. In this section, we present an algorithm which provide us more full cycles from just

one symmetric FSR.

At first, a special state is chosen from each layer. For each 1 ≤ i ≤ u, we choose a state S[ai]

from the layer A[ai, bi + 1] such that: (1) W (S[ai]) = ai, (2) S[ai] is an odd state (regard states as

integers), and (3) S[ai] is not the representative of the cycle it belongs to. For each 1 ≤ j ≤ v, we

choose a state S[rj] from the layer A[rj] such that: (1) S[rj] is an odd state, and (2) S[rj] is not

the representative of the cycle it belongs to. Define V be the set of these special states, that is,

V = {S[a1], . . . ,S[au],S[r1], . . . ,S[rv]}. We should note that, for some layers such a special state

may not exists (in this case, no special state is chosen from this layer). Thus, the number of states

in V is no more than u + v. However, in the case 2 ≤ ai ≤ n − 1 (or 2 ≤ rj ≤ n − 1) the special

state in the layer A[ai, bi + 1] (or A[rj]) always exists.

Theorem 1. In the case 2 ≤ ai ≤ n− 1, the number of choices for S[ai] in the layer A[ai, bi + 1]

is no less than
(
n−2
ai−2

)
. Similarly, in the case 2 ≤ rj ≤ n− 1, the number of choices for S[rj] in the

layer A[rj] is no less than
(
n−2
rj−2

)
. For a given FSR(x0 + h+ xn) there are at least

∏
2≤ai≤n−1

(
n− 2

ai − 2

)
·

∏
2≤rj≤n−1

(
n− 2

rj − 2

)
choices for the set V .

Proof. It can be verified that, in the case 2 ≤ ai ≤ n − 1, S[ai] can be any state of weight ai

and be of the form (∗, . . . , ∗, 1, 1). Therefore, S[ai] has at least
(
n−2
ai−2

)
choices. Similarly, in the

case 2 ≤ rj ≤ n − 1, the number of choices for S[rj] is no less than
(
n−2
rj−2

)
. Therefore, for a given

FSR(x0 + h+ xn), there are at least
∏

2≤ai≤n−1
(
n−2
ai−2

)
·
∏

2≤rj≤n−1
(
n−2
rj−2

)
choices for the set V .

Since the special states are chosen from different layers, for any cycle in FSR(x0 +h+xn), there

are at most one special state on this cycle. Let C0, C1, . . . , Ck be the cycles in FSR(x0 + h + xn).

5

Without lose of generality, we assume C0 is the cycle that contains the zero state. By the definition

of cycle representative, C0 contains no cycle representative. Let A0 be the layer in FSR(x0+h+xn)

that contains the cycle C0. By the definition of special state, it is easy to see that, there are

no special state in A0, therefore, there are no special state on the cycle C0. We can assume

C1, C2, . . . , Ct are the cycles that each contains a special state, and Ct+1, Ct+2, . . . , Ck are the cycles

that each does not contain a special state. For the cycles C1, C2, . . . , Ct, their representatives

are chosen to form a set R1, that is, R1 = {the cycle representative of Ci|i = 1, 2, . . . , t}. For

the cycles Ct+1, Ct+2, . . . , Ck, their representatives are chosen to form a set R2, that is, R2 =

{the cycle representative of Ci|i = t+ 1, t+ 2, . . . , k}. According to the definition of V and R2, for

any cycle C in FSR(x0 + h + xn) that does no contain the zero state, there is one state S on C

such that S ∈ V ∪R2. All the states in V ∪R2 are odd states. The cardinality of V ∪R2 is k, i.e.,

|V ∪R2| = k.

Theorem 2. For a given FSR(x0 + h + xn). Let V and R2 be the two sets defined above. If we

interchange the predecessors of S and S̃ for every S ∈ V ∪R2, we get a full cycle.

Proof. Let C0, C1, . . . , Ck be the cycles in FSR(x0 + h + xn), where C0 is the cycle that contains

the zero state, C1, C2, . . . , Ct are the cycles that each contain a special state and Ct+1, Ct+2, . . . , Ck

are the cycles that each does not contain a special state. Let Si be the special state on Ci for

i = 1, 2, . . . , t, and Sj be the cycle representative of Cj for j = t + 1, t + 2, . . . , k. Let T be the

directed graph that take C0, C1, . . . , Ck as his nodes, and there is a directed edge from Ci to Cj if

and only if S̃i is on Cj . We need to show that T is a directed tree with root C0.

Suppose there is a directed edge from Ci to Cj . Since Si is an odd state, we have W (S̃i) =

W (Si) − 1. If Ci and Cj belong to the same layer, then Si is the cycle representative of Ci.

Therefore, the length of the longest run of ZEROS in Cj is larger than the length of the longest run

of ZEROS in Ci. If Ci and Cj lies on two different layers, then there are two cases may happen:

(1) Si is the cycle representative of Ci, or (2) Si is a special state. In either case, the layer that

contains Cj is lighter than the layer contains Ci. Therefore, there are no cycles in T . Considering

also that there are k edges in T , we know T is a directed tree with root C0.

The properties of the tree T defined in the proof of Theorem 2 are illustrated by the following

two pictures. The cycles in FSR(x0 + h + xn) are divided into u + v layers: FSR(x0 + h + xn) =

(∪ui=1A[ai, bi + 1])
⋃

(∪vj=1A[rj]). For a cycle C in the layer A[ai, bi + 1], the directed edge start

from C will end at some cycle in the same layer or in the layer that lighter than A[ai, bi + 1].

· · ·

· · ·

A[ai, bi + 1]:

For a cycle C in the layer A[rj], the directed edge started from C will end at some cycle in the

layer that lighter than A[rj].

6

· · ·

· · ·

A[rj]:

Based on Theorem 2, an algorithm for generating full cycles from FSR(x0+h+xn) is presented.

Given FSR(x0+h+xn) and an initial state, the algorithm will generate a full cycle. This algorithm

complements the value of the feedback function only if the odd successor (si+1, . . . , si+n−1, 1) of

the current state S = (si, si+1, . . . , si+n−1) belongs to the set V ∪R2.

Algorithm 1 Generation of full cycles based on a symmetric FSR

Input: A symmetric Boolean function h, an initial state S0 = (s0, s1, . . . , sn−1).

Output: A De Bruijn cycle [S0,S1, . . . ,S2n−1].

1: Choose and store the set V .

2: Determine and store the set R1.

3: for i ∈ {0, 1, . . . , 2n − 1} do

4: Define S = (si+1, . . . , si+n−1, 1).

5: if S ∈ V then

6: Si+1 = (si+1, . . . , si+n−1, si + h(si+1, si+2, . . . , si+n−1) + 1)

7: else if S is not a cycle representative then

8: Si+1 = (si+1, . . . , si+n−1, si + h(si+1, si+2, . . . , si+n−1))

9: else if S ∈ R1 then

10: Si+1 = (si+1, . . . , si+n−1, si + h(si+1, si+2, . . . , si+n−1))

11: else

12: Si+1 = (si+1, . . . , si+n−1, si + h(si+1, si+2, . . . , si+n−1) + 1)

13: end if

14: end for

The cardinalities of the two sets V and R1 are no more than n, that is, |V | = |R1| ≤ n.

According to the proof of Theorem 1, the set V can be chosen in time O(n2). For each special state

in V , traversing the cycle that contains this special state can determine the representative of this

cycle. Therefore, the set R1 can be determined at the cost of n · l FSR shifts, where l is the length

of the longest cycle in FSR(x0 + h+ xn). We are more interested in the complexity of each step of

the for-loop in Algorithm 1 because most times we only generate a tiny fraction of the full cycle.

The most consuming part of the for-loop lies in line 5, line 7 and line 9. In the line 5, it needs at

most n comparisons to test whether S ∈ V or not. Similarly, it needs at most n comparisons to

test whether S ∈ R1 or not. In the line 7, by traversing the cycle that contains S, we can determine

whether S is a cycle representative or not at the cost of no more than l FSR shifts. Therefore, we

have the following theorem.

Theorem 3. For a given FSR(x0 + h + xn), Algorithm 1 can generate the next state from the

7

current state at the cost of 2n comparisons and l FSR-shifts, where l is the length of the longest

cycle in FSR(x0 + h+ xn).

This algorithm are not very efficient if a general symmetric FSR is used because the length of

the longest cycle in this FSR may be very large. In the following, we will show that, for some

special symmetric FSRs, this algorithm can be very fast. For a set M of integers, we say M is

scattered if for any k ∈ M we have k − 1 /∈ M . We define the symmetric FSR with characteristic

function x0 + h + xn such that Ind(h) is scattered as scattered symmetric FSR. Some properties

about the scattered symmetric FSRs are given in [16].

Lemma 3. [16] Let FSR(x0 + h+ xn) be an n-stage scatted symmetric FSR, and C be a cycle in

FSR(x0 + h+ xn). Then the length of C is a divisor of n or n+ 1.

The exact number of the n-stage scattered symmetric FSRs is not known to us, however, an

obvious lower bound is given by 2
n+1
2 , since Ind(h) can be any subset of {i is odd|0 ≤ i ≤ n− 1} or

{i is even|0 ≤ i ≤ n− 1}. A scattered symmetric FSR contains only cycles of length no more than

n+ 1, therefore, Algorithm 1 is very fast if a scattered symmetric FSR is used as the base FSR.

Theorem 4. Let FSR(x0 + h + xn) be an n-stage scattered symmetric FSR. Algorithm 1 can

generate at least O(2
n−6
2

logn) De Bruijn sequences based on FSR(x0 +h+xn). To generate the next

state in the full cycle, it needs no more than 2n comparisons and n+ 1 FSR shifts.

Proof. According to Theorem 1, there are at least
∏

2≤ai≤n−1
(
n−2
ai−2

)
·
∏

2≤rj≤n−1
(
n−2
rj−2

)
choices for

the set V . Since FSR(x0 + h + xn) is scattered, for each even number 2 ≤ i ≤ n − 2, at least one

of
(
n−2
i−2
)

and
(
n−2
i−1
)

lies in the production
∏

2≤ai≤n−1
(
n−2
ai−2

)
·
∏

2≤rj≤n−1
(
n−2
rj−2

)
. Therefore, we have

∏
2≤ai≤n−1

(
n− 2

ai − 2

)
·

∏
2≤rj≤n−1

(
n− 2

rj − 2

)
≥

∏
2≤i≤n−2,
i is even

min

{(
n− 2

i− 2

)
,

(
n− 2

i− 1

)}
.

Then the first assertion of this theorem can be proved as follows,∏
2≤i≤n−2,
i is even

min

{(
n− 2

i− 2

)
,

(
n− 2

i− 1

)}
=

∏
4≤i≤n−2,
i is even

min

{(
n− 2

i− 2

)
,

(
n− 2

i− 1

)}

≥
∏

4≤i≤n−2,
i is even

(n− 2) = (n− 2)
n−6
2 = O

(
n

n−6
2

)
= O(2

n−6
2

logn).

For the second assertion, it can be verified easily according to Theorem 3 and Lemma 3.

4 Other Methods for Joining Cycles

The scattered symmetric FSR is further studied in this section. Some properties of these FSRs are

given, and other methods for joining the cycles in these FSRs are suggested.

Let FSR(x0 + h+ xn) be a scattered symmetric FSR. Define P to be the set of odd integers in

Ind(h), Q to be the set of even integers in Ind(h), and Rem(h) = {0 ≤ i ≤ n|i /∈ Ind(h), i − 1 /∈

8

Ind(h)}. Then according to Lemma 2, the cycles in FSR(x0 + h + xn) can be divided into layers,

FSR(x0+h+xn) =
(
∪r∈Rem(h)A[r]

)
∪(∪p∈PA[p, p+ 1])∪(∪q∈QA[q, q + 1]). Some properties about

these layers are given in the following theorem.

Theorem 5. With the notations above, we have A[r] ⊂ FSR(x0 + xn), A[p, p + 1] ⊂ FSR(x0 +

x1 + · · ·+xn) and A[q, q+ 1] ⊂ FSR(x0 +x1 + · · ·+xn + 1) for any r ∈ Rem(h), p ∈ P and q ∈ Q.

Proof. Let C be a cycle in FSR(x0 + h + xn) and S be a state on C. We need to show that:

(1) if W (S) ∈ Rem(h), then C ∈ FSR(x0 + xn); (2) if W (S) ∈ P or W (S) − 1 ∈ P , then C ∈
FSR(x0+x1+ · · ·+xn); and (3) if W (S) ∈ Q or W (S)−1 ∈ Q, then C ∈ FSR(x0+x1+ · · ·+xn+1).

Denote S by S = (s0, s1, . . . , sn−1). Let sn be the next bit generated by FSR(x0 + h+ xn) on the

state S, i.e., sn = s0 + h(s1, s2, . . . , sn−1).

Suppose W (S) ∈ Rem(h). In the case of s0 = 0, we have W (s1, s2, . . . , sn−1) ∈ Rem(h) which

implies W (s1, s2, . . . , sn−1) /∈ Ind(h). Therefore, we have h(s1, s2, . . . , sn−1) = 0 and sn = s0. In the

case of s0 = 1, we have W (s1, s2, . . . , sn−1)− 1 ∈ Rem(h) which also implies W (s1, s2, . . . , sn−1) /∈
Ind(h). Therefore, we have h(s1, s2, . . . , sn−1) = 0 and sn = s0. Thus, we know that C is a cycle

in FSR(x0 + xn).

Suppose W (S) ∈ P or W (S)−1 ∈ P . There are four cases need to be considered. In the case of

W (S) ∈ P and s0 = 0, we have W (s1, s2, . . . , sn−1) ∈ Ind(h) and sn = s0 + h(s1, s2, . . . , sn−1) = 1.

Since W (S) is odd, we have s0 + s1 + . . .+ sn = 0. Similarly, for the cases of W (S) ∈ P and s0 = 1,

W (S)−1 ∈ P and s0 = 0, and W (S)−1 ∈ P and s0 = 1, we can also prove that s0+s1+. . .+sn = 0.

Therefore, C is a cycle in FSR(x0 + x1 + · · ·+ xn)

Suppose W (S) ∈ Q or W (S)−1 ∈ Q. There are four cases need to be considered. In the case of

W (S) ∈ Q and s0 = 0, we have W (s1, s2, . . . , sn−1) ∈ Ind(h) and sn = s0 + h(s1, s2, . . . , sn−1) = 1.

Since W (S) is even, we have s0 + s1 + . . . + sn + 1 = 0. Similarly, for the cases of W (S) ∈ Q

and s0 = 1, W (S) − 1 ∈ Q and s0 = 0, and W (S) − 1 ∈ Q and s0 = 1, we can also prove that

s0 + s1 + . . .+ sn + 1 = 0. Therefore, C is a cycle in FSR(x0 + x1 + · · ·+ xn + 1)

Example 1. Let h(x1, x2, . . . , x4) = E1 + E4 be a symmetric function. Then we have P = {1},
Q = {4}, and Rem(h) = {0, 3}. The cycles in FSR(x0 + h+ x5) can be divided into 4 layers, A[0],

A[1, 2], A[3], and A[4, 5]. These layers are shown in the following table.

Table 1: The layers and cycles in FSR(x0 + E1 + E4 + x5)

layers cycles contained in

A[0] C0 = [00000] ⊂ FSR(x0 + x5)

A[1, 2]

C1 = [00001, 00011, 00110, 01100, 11000, 10000]

C2 = [00010, 00101, 01010, 10100, 01000, 10001]

C3 = [00100, 01001, 10010]

⊂ FSR(x0 + x1 + · · ·+ x5)

A[3]
C4 = [00111, 01110, 11100, 11001, 10011]

C5 = [01011, 10110, 01101, 11010, 10101]
⊂ FSR(x0 + x5)

A[4, 5] C6 = [01111, 11111, 11110, 11101, 11011, 10111] ⊂ FSR(x0 + x1 + · · ·+ x5 + 1)

9

Etzion et al. [2] proposed two algorithms for joining the cycles in FSR(x0 + xn) and FSR(x0 +

x1 + · · · + xn) respectively. The cycles in FSR(x0 + x1 + · · · + xn + 1) can be joined together in

a similar way as that of FSR(x0 + x1 + · · · + xn) as noted in [2]. According to Theorem 5, the

cycles in a scattered symmetric FSR are a selected combination of the cycles in FSR(x0 + xn),

FSR(x0 + x1 + · · ·+ xn) and FSR(x0 + x1 + · · ·+ xn + 1). Therefore, by making small changes, the

algorithms in [2] can be applied to scattered symmetric FSRs. Actually, there are many ways that

can efficiently join the cycles in a scattered symmetric FSR. Different ways to choose the special

states and different ways to define the representatives of cycles will result in different methods to

joining cycles. As an illustration, we suggest one method in the following.

Let FSR(x0 + h + xn) be a scattered symmetric FSR. For a cycle C in FSR(x0 + h + xn) ∩
FSR(x0 + xn), the cycle representative of C is defined as in [13], that is, if C contains the zero

state, then there is no representative on C, otherwise, the cycle representative of C is defined

as the as the numerically largest state S on C such that: S contains the longest run of ZEROS

and is of the form (∗, . . . , ∗,
t︷ ︸︸ ︷

0, . . . , 0, 1), where t is the length of the longest run of ZEROS. For a

cycle C in FSR(x0 + h + xn) ∩ FSR(x0 + x1 + · · · + xn), the cycle representative of C is defined

as in [2], that is, if C is a run-cycle, i.e., of the form [1, 1, . . . , 1, 0, 0, . . . , 0]n, then there is no

representative on C, otherwise, the cycle representative of C is defined as the numerically largest

state S on C such that: W (S) is even and S contains the longest run of ONES and is of the form

(

r︷ ︸︸ ︷
0, . . . , 0,

t︷ ︸︸ ︷
1, . . . , 1, ∗, . . . , ∗, 1), where r ≥ 0 and t is the length of the longest run of ONES. Similarly,

for a cycle C in FSR(x0 +h+xn)∩FSR(x0 +x1 + · · ·+xn + 1), if C is a run-cycle, then there is no

representative on C, otherwise, the cycle representative of C is defined as the numerically largest

state S on C such that: W (S) is odd and S contains the longest run of ONES and is of the form

(

r︷ ︸︸ ︷
0, . . . , 0,

t︷ ︸︸ ︷
1, . . . , 1, ∗, . . . , ∗, 1), where r ≥ 0 and t is the length of the longest run of ONES

For each a ∈ Ind(h), we choose a state S[a] from the layer A[a, a+1] such that: (1) W (S[a]) = a,

and (2) S[a] is an odd state. Define V be the set of these special states, that is, V = {S[a]|a ∈
Ind(h)}. We should note that, in the case of a 6= 0 the special state in the layer A[a, a+ 1] always

exists. Let R be the set of cycle representatives, that is, R = {the cycle representative of C|C ∈
FSR(x0 +h+xn)}. Then we have the following theorem. The proof of this theorem is quite similar

to that of Theorem 2 and so is omitted.

Theorem 6. Let FSR(x0 + h + xn) be a scattered symmetric FSR. Let V and R be the two sets

defined above. If we interchange the predecessors of S and S̃ for every S ∈ V ∪ R, we get a full

cycle.

Let C0, C1, . . . , Ck be the cycles in FSR(x0 + h + xn). Let T be the directed graph that take

C0, C1, . . . , Ck as his nodes, and there is a directed edge from Ci to Cj if and only if there is a

special state S on Ci whose companion S̃i is on Cj or the companion of the representative of Ci

lies on Cj , then T is a tree. The properties of the tree T are shown by the following two pictures.

Let C be a cycle in the layer A[a, a + 1]. In the case of C does not contain a special state, the

10

directed edge start from C (if it exists) will end at some cycle in the same layer. In the case of C

contains a special state, the directed edges start from C (one or two) will end at some cycle in the

same layer or some cycle in the layer that lighter than A[a, a+ 1].

· · ·A[a, a+ 1]:

For a cycle C in the layer A[r], the directed edge started from C will end at some cycle in the layer

that lighter than A[r].

· · ·

· · ·

A[r]:

An example is given to illustrate the process of the cycle joining algorithm proposed in this

section.

Example 2. The scattered symmetric FSR in Example 1 is used as the base FSR. The set V can

be chosen as V = {(00001), (10111)}. By the definition, R = {(10001), (01001), (11001), (01101)}.
The adjacency tree is shown below.

C0

C1 C2 C3

C4C5

C6

A[0] :

A[1, 2] :

A[3] :

A[4, 5] :

The resulting De Bruijn sequence is: [00000110101111101100111000101001]

5 Conclusion

The symmetric FSRs are used to construct De Bruijn sequences in this paper. From an n-stage

scattered symmetric FSR, at least O(2
n−6
2

logn) De Bruijn sequences of order n are constructed. To

11

generate the next bit in the De Bruijn sequence from the current state, it requires no more than 2n

comparisons and n + 1 FSR shifts. Some properties of the cycle structure of scattered symmetric

FSRs are given, and by these properties other ways to join cycles are suggested.

References

[1] N. G. de Bruijn, “A combinatorial problem,” Proc. Kon. Ned. Akad. Wetensch, vol. 49, pp.

758-746, 1946.

[2] T. Etzion and A. Lempel, “Algorithms for the generation of full-length shift-register sequences,”

IEEE Trans. Inf. Theory, vol. 30, no. 3, pp. 480-484, 1984.

[3] H. Fredricksen, “A class of nonlinear de Bruijn cycles,” J. Comb. Theory, Ser. A, vol. 19, no.

2, pp. 192-199, 1975.

[4] H. Fredricksen, “A survey of full length nonlinear shift register cycle algorithms,” SIAM Rev.,

vol.24, no. 2, pp. 195-221, 1982.

[5] S. W. Golomb, Shift Register Sequences, San Francisco, CA: Holden-Day, 1967.

[6] E. R. Hauge and J. Mykkeltveit, “On the classification of deBruijn sequences,” Discrete Math.,

vol. 148, no. 1, pp. 65-83, 1996.

[7] F. Hemmati, “A large class of nonlinear shift register sequences,” IEEE Trans. Inf. Theory, vol.

28, no. 2, pp. 355-359, 1982.

[8] C. J. A. Jansen, W. G. Franx and D. E. Boekee, “An efficient algorithm for the generation of

deBruijn cycles,” IEEE Trans. Inf. Theory, vol. 37, no. 5, pp. 1475-1478, 1991.

[9] K. Kjeldsen, “On the cycle structure of a set of nonlinear shift registers with symmetric feedback

functions,” J. Comb. Theory, Ser. A, vol. 20, no. 2, pp. 154-169, 1976.

[10] C.Y. Li, X.Y. Zeng, T. Helleseth, C.L. Li and L. Hu, “The properties of a class of linear FSRs

and their applications to the construction of nonlinear FSRs,” IEEE Trans. Inf. Theory, vol. 60,

no. 5, pp. 3052-3061, 2014.

[11] C.Y. Li, X.Y. Zeng, C.L. Li, and T. Helleseth, “A Class of De Bruijn Sequences,” IEEE Trans.

Inf. Theory, vol. 60, no. 12, pp. 7955-7969, 2014.

[12] M. Li, Y.P. Jiang, D.D. Lin, “The adjacency graphs of some feedback shift registers,” in

Cryptology ePrint Archive [online]. Available: http://eprint.iacr.org/2014/658, 2014.

[13] M. Li, D.D. Lin, “De Bruijn sequences from nonlinear feedback shift registers,” in Cryptology

ePrint Archive [online]. Available: http://eprint.iacr.org/2015/667, 2015.

12

[14] K. B. Magleby, “The synthesis of nonlinear feedback shift registers,” Tech. Rep. 6207-1, Stan-

ford Electronic Labs, Stanford, CA, 1963.

[15] J. Mykkeltveit, M. K. Siu and P. Tong, “On the cycle structure of some nonlinear shift register

sequences,” Inf. Contr., vol. 43, no. 2, pp. 202-215, 1979.

[16] Jan Sφreng, “The periods of the sequences generated by some symmetric shift registers,” J.

Comb. Theory, Ser. A, vol. 21, no. 2, pp. 164-187, 1976.

[17] Jan Sφreng, “Symmetric shift registers,” Pacific J. Math., vol. 85, no. 1, pp. 201-229, 1976.

[18] J. Sφreng, “Symmetric shift registers part 2,” Pacific J. Math., vol. 98, no. 1, pp. 203-234,

1982.

[19] Z.X. Wang, H. Xu, W.F. Qi, “On the cycle structure of some nonlinear feedback shift registers,”

Chinese Journal of Electronics, vol. 23, no. 4, pp. 801-804, 2014.

[20] X.X. Zhao, W.F. Qi, “The construction of de Bruijn sequences based on cascade connection,”

Journal of Crypologic Research (in Chinese), vol. 2, no. 3, pp. 245-257, 2015.

13

