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Abstract. In security proofs of lattice based cryptography, bounding the closeness of two probability
distributions is an important procedure. To measure the closeness, the Rényi divergence has been used
instead of the classical statistical distance. Recent results have shown that the Rényi divergence offers
security reductions with better parameters, e.g. smaller deviations for discrete Gaussian distributions.
However, since previous analyses used a fixed order Rényi divergence, i.e., order two, they lost tightness
of reductions. To overcome the deficiency, we adaptively optimize the orders based on the advantages
of the adversary for several lattice-based schemes. The optimizations enable us to prove the security
with both improved efficiency and tighter reductions. Indeed, our analysis offers security reductions
with smaller parameters than the statistical distance based analysis and the reductions are tighter than
those of previous Rényi divergence based analyses. As applications, we show tighter security reductions
for sampling discrete Gaussian distributions with smaller precomputed tables for Bimodal Lattice Sig-
nature Scheme (BLISS), and the variants of learning with errors (LWE) problem and the small integer
solution (SIS) problem called k-LWE and k-SIS, respectively.

Keywords: lattice based cryptography, tight reduction, Rényi divergence, sampling discrete Gaussian,
BLISS, LWE, SIS

1 Introduction

Background. The security of current cryptographic schemes relies on the hardness of the factor-
ization/RSA problem and the (elliptic curve) discrete logarithm problem. Solving these problems
becomes feasible when quantum computers are developed. Although quantum computers are not
currently available, it is worthwhile to research next candidate cryptographic constructions. Lattice
based cryptographic schemes have become central candidates for the post-quantum world. While
some papers have focused on theoretical analyses, there are several papers that discuss practical
implementations and the appropriate parameter selections [LP10, CN11, DDLL13, PDG14]. These
works reveal some drawbacks in the efficiency of the lattice based schemes. For example, one of the
deficiencies is the discrete Gaussian sampling with large deviations.

In security proofs of lattice based cryptography, bounding the closeness of two probability
distributions (e.g., zero centered and non-zero centered discrete Gaussian distributions) is an im-
portant procedure. To measure the closeness, the classical statistical distance (SD) is naturally
used. However, several papers [LPR13, LSS14, LPSS14, BLL+15] used the Rényi divergence (RD)
[Ren61, EH12] instead of the SD. These works show that the RD offers better security reductions for
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lattice based cryptographic schemes. More concretely, the RD enables security reductions with bet-
ter parameters (e.g. smaller deviations for discrete Gaussian distributions) that cannot be handled
by the SD.

In short, the SD denotes differences of two probability distributions whereas the RD denotes the
ratios of the distributions; hence, some properties of the SD expressed by additions are replaced
by multiplications in the RD. For the SD based security proofs to be relevant, the quantity of
the SD has to be smaller than a probability for an adversary to break the scheme. To satisfy the
restriction, inefficient parameters (e.g. large deviations for discrete Gaussian distributions) have to
be used. On the other hand, for the RD based security proofs to be relevant, the quantity of the
RD can be permitted to larger bounds, e.g. the logarithm of the probability for an adversary to
break the scheme. In some cases, the latter requirement (for the RD) is weaker than the former
requirement (for the SD). Indeed, there are several reports confirming that the RD based analysis
offers a significant parameter savings.

However, there is one disadvantage of the RD based analysis that cannot be disregarded; RD
based security reductions lose the tightness. If the quantity of the SD is significantly small, the SD
based security reduction becomes tight, and probabilities that an adversary will break the real and
simulated schemes are almost identical. However, even if the value of the RD is significantly small,
the probability that an adversary will break the real scheme is at least larger than the square root
of the probability that an adversary will break the simulated scheme. Therefore, for the probability
to break the real scheme to be sufficiently small, RD based analysis requires the probability to
break the simulated scheme to be smaller than the SD based analysis. As a result, the RD based
analysis sacrifices tightness to achieve the parameter saving compared with the SD based analysis.

Previous Results of RD Based Security Proofs. Suppose instances of a real cryptographic
scheme are sampled from one distribution and instances of a simulated scheme are sampled from
another distribution; the former (resp. latter) distribution is defined as the real (resp. ideal) distri-
bution. If the two distributions are statistically close, then an adversary that breaks the real scheme
is also an adversary that breaks the simulated scheme. Then, if the simulated scheme is assumed
to be secure, the real scheme is also secure.

The Bimodal Lattice Signature Scheme (BLISS) was proposed by Ducas et al. [DDLL13] (Crypto
2013), and its efficiency is comparable to RSA and ECDSA. For signing a message, about several
hundreds independent integers should be sampled from one-dimensional discrete Gaussian distri-
butions. To implement BLISS signature scheme over constrained devices, Ducas et al. also pro-
posed an efficient algorithm for the discrete Gaussian sampling. First, to sample an integer from
a discrete Gaussian distribution, several integers are sampled independently from Bernoulli dis-
tributions. Using these Bernoulli random integers and a rejection sampling technique, a discrete
Gaussian distribution is sampleable. Sampling from Bernoulli distributions is efficiently performed
with a precomputed table that stores the probabilities. Since the probabilities are not rational,
each stored value is truncated with some precisions. Required precisions to maintain the security
of BLISS are analyzed by measuring the statistical closeness between truncated Bernoulli distri-
butions (real distributions) and untruncated Bernoulli distributions (ideal distributions). Although
two distributions become close when large precisions are used, the scheme is inefficient since the
table storage becomes large. Ducas et al. analyzed the precisions using the SD, and Pöppelmann
et al. [PDG14] (CHES 2014) gave an alternative analysis using the Kullback-Leibler divergence
(KLD). The KLD based analysis reduces the required precisions that lead to reduced table storage.
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Table 1. Comparison of required precisions p and success probabilities ε for adversaries to break BLISS signatures
where each Bernoulli variable is sampled with truncated probabilities (real distribution). Each signature is generated
by sampling 2n discrete Gaussian variables, and each discrete Gaussian variable is produced by sampling ` Bernoulli
variables. Adversaries are allowed qs signing queries and break BLISS signatures with probabilities ε′ where each
Bernoulli variable is sampled with untruncated probabilities (ideal distribution). In the last column for ε, ≈ is defined
as the approximate equivalence when − ln(ε′) � ` · n · qs · 2−2p, which holds for practical numerical examples given
in the right parameter of Table 4.

disc.Gauss.
Sampling

stat.measure precision p ε

[DDLL13] SD log(` · 2n · qs/ε) ≤ ε′ + ` · 2n · qs · 2−p−1 ≈ ε′

[PDG14] KLD log(` · 2n · qs/ε2)/2 + 1/2 ≤ ε′ +
√

` · 2n · qs · 2−2p ≈ ε′

[BLL+15] RD, α = +∞ log(` · 2n · qs) ≤ ε′ · (1 + 2−p)`·2n·qs ≈ ε′

[BLL+15] RD, α = 2 log(` · 2n · qs)/2 ≤ ε′1/2 · (1 + 2−2p)`·2n·qs/2 ≈ ε′1/2

Proposed RD, α =
√

− ln(ε′)
`·n·qs·2−2p log(− ln(ε′)·`·n·qs)/2 ≤ exp

(
−
(√

− ln(ε′)−
√

`·n·qs ·2−2p
)2

)
≈ ε′

Recently, Bai et al. [BLL+15] (Asiacrypt 2015) further improved the analysis based on the RD,
however the reduction was no longer tight.

Boneh and Freeman [BF11] (PKC 2011) introduced the k-small integer solution (k-SIS) problem
that is a variant of the small integer solution (SIS) problem [MR07]. In short, the k-SIS problem
is defined as follows: given k hint vectors that are solutions to the original SIS problem and the
goal of the problem is to compute the other SIS solution that is orthogonal to the k hint vectors.
Based on the hardness of the k-SIS problem, Boneh and Freeman constructed lattice based linearly
homomorphic signatures, k-time signatures, and proved that the k time GPV signature scheme
[GPV08] is secure in the standard model. However, for the k-SIS problem to be no easier than the
SIS problem, the solution bound of the SIS problem becomes exponential of k; hence, the k-SIS
problem is as hard as the worst case standard lattice problems only when k = O(1). Ling et al.
[LPSS14] (Crypto 2014) introduced the dual problem, k-learning with errors (k-LWE) problem that
is a variant of the learning with errors (LWE) problem [Reg05]. Based on the hardness of the k-
LWE problem, Ling et al. proposed the first algebraic construction of a traitor tracing scheme from
lattices. Moreover, Ling et al. considered more efficient reductions than [BF11]. Their reduction
enables the value of k to be a polynomial of the lattice dimension and the technique used in
the reduction is applicable to the k-SIS problem. Specifically, Ling et al.’s reduction consists of
two subreductions. In the first subreduction, LWE is reduced to k-LWE where k hint vectors are
sampled from non-zero centered discrete Gaussian distributions (real distributions). In the second
subreduction, the former k-LWE is reduced to k-LWE where k hint vectors are sampled from
zero centered discrete Gaussian distributions (ideal distributions). To bound the closeness of two
distributions, the RD is used. Although the analyses can handle smaller Gaussian deviations than
the SD based analysis, the reduction is not tight.

Our Contributions. In this paper, we show improved security reductions for several lattice based
cryptographic schemes. Our analysis offers security reductions with smaller parameters than the SD
and KLD based analyses and the reductions are tighter than those of previous RD based analyses.
In particular, when we analyze specific parameter selections, the tightness improves significantly.
Our results are as follows:
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Table 2. Comparison of Gaussian deviations of hint vectors σm+k(S) and success probabilities ε for adversaries to
solve LWE. The quantity of γ has a negative correlation with standard deviations of discrete Gaussian distributions.
Adversaries A solve k-LWE with advantage ε′. λ denotes the security parameter and k denotes the number of hint
vectors. In the last column for ε, ≈ is defined as the approximate equivalence when − ln(ε′) � κγ.

LWE to k-LWE
reduction

stat. measure σm+k(S) ε

SD 2λ ≤ ε′ + negl(λ) ≈ ε′

[LPSS14] RD, α = 2 poly(λ) ≤ exp (ln (ε′) /3 + 2kγ/3) ≈ ε′1/3

Proposed RD,α =
(
1 +

√
−1− 2 ln(ε′)

kγ

)
/2 poly(λ) ≤ exp

(
ln (ε′) /2 + kγ

√
−1− 2 ln(ε′)

kγ
/2

)
≈ ε′1/2

Table 3. Comparison of Gaussian deviations of hint vectors σm+k(S) and success probabilities ε for adversaries to
solve SIS. The quantity of γ has a negative correlation with standard deviations of discrete Gaussian distributions.
Adversaries solve k-SIS with advantage ε′. λ denotes the security parameter and k denotes the number of hint vectors.
In the last column for ε, ≈ is defined as the approximate equivalence when − ln(ε′) � κγ.

SIS to k-SIS
reduction

stat. measure σm+k(S) ε

SD 2λ ≤ ε′ + negl(n) ≈ ε′

[LPSS14] RD, α = 2 poly(λ) ≤ exp (ln (ε′) /2 + kγ) ≈ ε′1/2

Proposed RD, α =
√

− ln(ε′)/(kγ) poly(λ) ≤ exp

(
−
(√

− ln(ε′)−
√
kγ

)2
)

≈ ε′

– Sampling discrete Gaussian distributions for the BLISS signature scheme (Theorem 1 in Section
3) is achieved with both reduced table storages and tight reductions. In particular, our analysis
shows that the sampling can be performed with a 1276 bits table for BLISS-I scheme with
128 bit security. Table 1 compares the required precisions p (affecting table storages), and the
probabilities ε′ (representing tightness) for an adversary to break the BLISS signature scheme
with idealized distributions. Our reduction is as tight as the SD [DDLL13], KLD [PDG14],
and RD of order +∞ [BLL+15] based analyses with reduced table storages. Although our
table requires slightly larger storage than that of RD of order 2 based analysis [BLL+15], the
reduction is tighter. See Table 4 in Section 3 for detailed comparisons.

– LWE to k-LWE reduction (Theorem 2 in Section 4) is achieved with both small Gaussian devia-
tions for sampling hint vectors and tighter reductions. Table 2 compares the Gaussian deviations
σm+k(S), and the probabilities ε′ (that represent the tightness) for an adversary to solve k-
LWE. Our reduction is as tight as the SD based analysis with smaller Gaussian deviations, and
the deviations are as small as the previous RD based analysis [LPSS14] with tighter reductions.

– SIS to k-SIS reduction (Theorem 4 in Section 5) is achieved with both small Gaussian deviations
for sampling hint vectors and tighter reductions. Table 3 compares the Gaussian deviations
σm+k(S), and the probabilities ε′ (that represent the tightness) for an adversary to solve k-SIS.
Our reduction is as tight as the SD based analysis with smaller Gaussian deviations, and the
deviations are as small as the previous RD based analysis with tighter reductions.

Our improved results are obtained with the RD as previous works [BLL+15, LPSS14]. In previous
RD based analyses, the order was fixed to α = 2. However, we adaptively optimize the order based
on the scheme parameters and probabilities for an adversary to break the simulated scheme. In
Tables 1–3, ε (resp. ε′) denotes the advantage for an adversary to break the real (resp. simulated)
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scheme. As the tables show, the RD based analyses (including previous works) offer security reduc-
tions with smaller parameters (p for Table 1 and σm+k(S) for Tables 2 and 3) than the SD based
analyses. Furthermore, our optimizations of the order offer tighter reductions than previous RD
based analyses with fixed orders. Briefly speaking, although upper bounds of ε for search problems
(resp. distinguishing problems) are at least larger than ε′1/2 (resp. ε′1/3) when the order is fixed
to α = 2, our improvements offer tighter upper bounds that are almost ε′ (resp. ε′1/2). For appro-
priate choices of parameters, our results offer almost the same tightness as the SD based analyses.
Therefore, efficient parameters and tight reductions are compatible in our improved analyses.

Adaptive Optimization of α. We briefly summarize the point of our improvements; the adaptive
optimization of the order α. Let P and P ′ be two computing problems where the problem P (resp.
P ′) is defined as follows: given X = {xi : xi ← Φ}i=1,...,k (resp. X ′ = {x′i : x′i ← Φ′}i=1,...,k) and the
goal of the problem is to compute f(X) (resp. f(X ′)). In cryptographic security proofs, P (resp.
P ′) can be viewed as the real (resp. simulated) cryptographic scheme, and Φ (resp. Φ′) is the real
(resp. ideal) distribution. Let γ be some quantity (that do not depend on α) that bounds the RD
between the real distribution Φ and the ideal distribution Φ′ such that Rα(Φ‖Φ′) ≤ exp(α · γ).
Although there are no assurance for the upper bound of Rα(Φ‖Φ′) to be O(exp(α)) for arbitrary
distributions Φ and Φ′, it holds for the distributions that we study in this paper. By the definition
and the properties of the RD, if there is an adversary A against the problem P with run-time T
and advantage ε, then A is also an adversary against the problem P ′ with run-time T ′ = T and
advantage ε′ where

ε ≤
(
ε′ ·Rα(Φ‖Φ′)k

)α−1
α ≤ exp

(
α− 1

α
· ln(ε′) + (α− 1) · kγ

)
(1)

where the second inequality is obtained from the fact Rα(Φ‖Φ′) ≤ exp(α · γ), and k is the number
of samples. We say that the reduction is tight when the right hand side of the inequality (1) is
approximately equivalent to ε′, i.e., ≈ ε′. Since the number of samples k (resp. the quantity γ) relate
to cryptographic security or functionality, e.g., the number of signing queries in BLISS signatures,
(resp. cryptographic efficiency, e.g., table storage size for sampling a discrete Gaussian distributions
for BLISS signatures), we try to handle as large k and γ as possible. Then, the goal of our analysis
is to prove the cryptographic security with both tight reductions and small parameters. When the
order is fixed to α = 2 as previous works, the inequality (1) becomes ε ≤ exp(ln(ε′)/2+kγ); hence,
even if k and γ are small, the upper bound of ε becomes larger than ε′1/2 and the reduction is not
tight. This is the disadvantage of previous RD based analyses that always lose the tightness.

To overcome the issue, we adaptively optimize the order α to enable the reduction to be tighter.
First, we analyze the inequality (1) with a general α ∈ (1,+∞]. For the fixed analysis with α = 2,
the tightness is lost by the existence of the exponent of ε′, α−1

α . If a larger α is used, the ex-
ponent becomes close to 1; therefore, the reduction is expected to be tighter. However, an in-
finitely large α cannot be used since Rα(Φ‖Φ′) becomes exponentially large, which results in a
loss of the tightness. Hence, we optimize the order α to minimize the right hand side of the in-
equality (1). The right hand side is bounded below by exp (ln(ε′)− kγ + (− ln(ε′)/α+ α · kγ)) ≥
exp

(
ln(ε′)− kγ + 2

√
− ln(ε′) · kγ

)
by the inequality of the arithmetic mean and geometric mean,

where the equality holds if and only if − ln(ε′)/α = α · kγ, i.e., α =
√
− ln(ε′)/(kγ). We then set



6

the order α =
√
− ln(ε′)/(kγ), and the inequality (1) becomes

ε ≤ exp
(
ln(ε′)− kγ + 2

√
− ln(ε′) · kγ

)
= exp

(
−
(√
− ln(ε′)−

√
kγ
)2)

. (2)

The right hand side of the inequality (2) is always smaller than that of the inequality (1) with
fixed α = 2. Hence, our optimization always offers a tighter reduction than previous analyses
[BLL+15, LPSS14]. Since we only consider the order α ∈ (1,+∞], it leads to α =

√
− ln(ε′)/(kγ) >

1, i.e., − ln(ε′) > kγ. Moreover, when − ln(ε′) � kγ, the right hand side of the inequality (2) is
approximately equivalent to ε′; that is, the ideal P ′ to the real P reduction is almost tight.

The above analysis captures security reductions for computing problems, a security proof for
discrete Gaussian sampling and SIS to k-SIS reduction in our results. Although the result of the
LWE to k-LWE reduction, which are distinguishing problems, does not follow the inequality (1),
the spirit of the improvement is the same.

2 Preliminaries

Notation. Let ln(x) (resp. log(x)) denote the natural logarithm (resp. the base 2 logarithm) of
x. Let T denote the additive group R/Z. For an integer q, we let Zq denote the ring of integers
modulo q. Vectors are denoted in bold and are column representations. For b ∈ Rn, we let ‖b‖
denote its Euclidean norm. We let 〈·, ·〉 denote the canonical inner product. If A is a matrix, its
entries are denote by aij . For two matrices A and B of compatible dimensions, we let (A|B) (resp.
(A‖B)) denote the horizontal (resp. vertical) concatenations of A and B. For A ∈ Zm×n

q , we define
Im(A) = {As : s ∈ Zn

q } ⊆ Zm
q . ForX ⊆ Zm

q , we let Span(X) denote the set of all linear combinations

of elements of X. We let X⊥ denote the linear subspace {b ∈ Zm
q : ∀c ∈ X, 〈b, c〉 = 0}. For a matrix

S ∈ Zm×n, we let ‖S‖ denote the norm of its largest column. The smallest (resp. largest) singular
value of S is denoted by σn(S) = inf(‖Su‖) (resp. σ1(S) = sup(‖Su‖)) where u ∈ Rn and ‖u‖ = 1.

If D is a probability distribution, we let Supp(D) = {x : D(x) 6= 0} denote its support. The
uniform distribution on a finite set X is denoted by U(X). The statistical distance (SD) between
two distributions D1 and D2 over a countable support X is given by ∆(D1, D2) =

1
2

∑
x∈X |D1(x)−

D2(x)|. For a function f : X → R over a countable domain X, we let f(X) =
∑

x∈X f(x). Let νβ
denote the one-dimensional Gaussian distribution on T with center 0 and standard deviation β.

Lattices and Discrete Gaussian Distributions. Lattice Λ is an additive discrete subgroup of
Rn. An n-dimensional lattice Λ ⊆ Rn is the set of all integer linear combinations

∑k
j=1 cjbj where

cj ∈ Z of some linearly independent vectors b1, . . . , bk ∈ Rn for some k ≤ n. The rank of Λ is k.

The determinant det(Λ) is defined by
√
det(BTB), where B = (bi)i is any such basis of Λ. For a

matrix A ∈ Zm×n
q , define Λ⊥(A) = {x ∈ Zm : xT · A = 0 mod q}. The dual Λ∗ of a lattice Λ is

defined by Λ∗ = {x ∈ Rn : ∀y ∈ Λ, 〈x, y〉 ∈ Z}.
For a rank-n matrix S ∈ Rm×n and a vector c ∈ Rn, the ellipsoid discrete Gaussian distribution

with parameter S and center c is defined as follows: ∀x ∈ Rn, ρS,c(x) = exp
(
−π(x− c)T

(
STS

)−1
(x− c)

)
.

Note that ρS,c(x) = exp(−π‖(ST )†(x−c)‖2), where X† denotes the pseudo-inverse of X. The ellip-
soid discrete Gaussian distribution over a coset Λ+ z of a lattice Λ, with parameter S and center
c is defined as follows: ∀x ∈ Λ + z, DΛ+z,S,c(x) = ρS,c(x)/ρS,c(Λ). For S = sIm, we write ρs,c and
DΛ+z,s,c. When c = 0, the subscript c is omitted.
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Smoothing Parameter. The smoothing parameter [MR07] ηε (Λ) of an n-dimensional lattice Λ
for real ε > 0 is defined as the smallest s such that ρ1/s (Λ

∗ \ {0}) ≤ ε. When the deviation of
the discrete Gaussian distribution is larger than the smoothing parameter, the following results are
known.

Lemma 1 (Lemma 2.5 of [LSS14]) Let Λ be an n-dimensional lattice and ε ∈ (0, 1). Then for
any c ∈ Rn and s ≥ ηε(Λ) we have ρs,c(Λ) ∈ [1− ε, 1 + ε] · det(Λ)−1.

Lemma 2 (Lemma 3 of [AGHS13]) For a rank-n lattice Λ, a constant 0 < ε < 1, a vector
c and a matrix S with σn(S) ≥ ηε(Λ), if x is sampled from DΛ,S,c then ‖x‖ ≤ σ1(S)

√
n with

probability ≤ 1+ε
1−ε · 2

−n.

Lemma 3 (Lemma 1 of [LPSS14]) Let q be a prime, m and n be integers with m ≥ 2n and ε >
0. Then ηε(Λ

⊥(A)) ≤ 4qn/m
√
log(2m(1 + 1/ε))/π, for all except a fraction 2−Ω(n) of A ∈ Zm×n

q .

Rényi Divergence. For any two discrete probability distributions P and Q such that Supp(P ) ⊆
Supp(Q) and α ∈ (1,∞], we define the Rényi divergence (RD) of order α by

Rα(P‖Q) =

 ∑
x∈Supp(P )

P (x)α

Q(x)α−1

 1
α−1

for α ∈ (1,∞), R∞(P‖Q) = max
x∈Supp(P )

P (x)

Q(x)
.

We summarize the basic properties of the RD that we use in this paper.

Lemma 4 (Lemma 4.1 of [LSS14]) Let P1, P2, P3 and Q1 and Q2 denote discrete distributions
on a domain X. Let α ∈ (1,+∞]. Then the following properties hold:

– Log. Positivity: Rα(P1‖Q1) ≥ Rα(P1‖P1) = 1.

– Data Processing Inequality: Rα

(
P f
1 ‖Q

f
1

)
≤ Rα (P1‖Q1) for any function f , where P f

1 (resp.

Qf
1) denotes the distribution of f(y) induced by sampling y ← P1(resp. y ← Q1).

– Multiplicativity: Let P and Q denote any two distributions of a pair of random variables (Y1, Y2)
on X × X. For i ∈ {1, 2}, let Pi(resp. Qi) denote the marginal distribution of Yi under P
(resp. Q), and P(2|1)(·|y1) (resp. Q(2|1)(·|y1)) denote the conditional distribution of Y2 given that
Y1 = y1. Then we have Rα(P‖Q) = Rα(P1‖Q1) ·Rα(P2‖Q2) if Y1 and Y2 are independent, and
Rα(P‖Q) ≤ R∞(P1‖Q1) ·maxy1∈X Rα(P2|1(·|y1)‖Q2|1(·|y1)).

– Weak Triangle Inequality: We have Rα(P1‖P3) ≤ Rα(P1‖P2) ·R∞(P2‖P3), and Rα(P1‖P3) ≤
R∞(P1‖P2)

α/(α−1) ·Rα(P2‖P3).
– R∞ Triangle Inequality: If R∞(P1‖P2) and R∞(P2‖P3) are defined, then R∞(P1‖P3) ≤ R∞(P1‖P2)·

R∞(P2‖P3).
– Probability Preservation: Let E ⊆ X be an arbitrary event. Then Q1(E) ≥ P1(E)α/(α−1)/Rα(P1‖Q1).

The divergence R1 is the exponential of the KLD, R1(P‖Q) = exp
(∑

x∈Supp(P ) P (x) log P (x)
Q(x)

)
. The

probability preservation property of the KLD can be written as Q(E) ≥ P (E)−
√
lnR1(P‖Q)/2.

In this paper, we use the following result1 that is essential for our improvements in Sections 4
and 5.
1 In the proceedings version of [BLL+15], Bai et al. showed a slightly better bound for our Lemma 5. However, we
do not know the proof, so we prove the lemma in this paper. See Section A.
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Lemma 5 For any n-dimensional lattice Λ ⊆ Rn and inversible rank-n matrix S ∈ Rm×n for
m ≥ n, set P = DΛ,S,c and Q = DΛ,S,c′ for some fixed c, c′ ∈ Rn. If c, c′ ∈ Λ, let ε = 0; otherwise,

fix ε ∈ (0, 1) and assume that σn(S) ≥ ηε(Λ). Then Rα(P‖Q) ≤
(
1+ε
1−ε

) α
α−1 · exp

(
απ ‖c−c′‖2

σn(S)2

)
.

3 Tighter Analysis for Discrete Gaussian Sampling with Small Precomputed
Tables

In this section, we study Ducas et al.’s discrete Gaussian sampling [DDLL13] with precomputed
tables. By adaptively optimizing the order of the RD, we show that the sampling for BLISS signature
scheme can be securely performed with less table storage.

Discrete Gaussian Sampling. In the BLISS signature scheme [DDLL13], signing a message
requires sampling 2n independent integers from one-dimensional discrete Gaussian distributions
DZ,s, where s is the standard deviation parameter. See Appendix B for detailed algorithms. In
[DDLL13], an efficient sampling algorithm forDZ,s is presented. Let Bc be the Bernoulli distribution
that outputs 1 with probability c and 0 otherwise. First, the algorithm samples ` Bernoulli random
variables of the form Bci for i = 0, . . . , `−1 where ci = exp(−π2i/s2). By using a rejection sampling
[GPV08], these ` Bernoulli samples produce a sample from DZ,s. Hence, to sign a signature, ` · 2n
Bernoulli variables are sampled. For the detailed algorithm, see Table 3 in [DDLL13]. In this paper,
we focus on sampling from Bernoulli distributions. To efficiently sample the Bernoulli random
variables, a precomputed table that stores the probabilities ci for i = 0, . . . , ` − 1 is used. The
algorithm samples x from a uniform distribution over (0, 1), and outputs 1 if x < ci and 0 otherwise.
Since the exact quantities of ci are real, the truncated values c̃i = ci+εi are stored. Here, |εi| ≤ 2−pci
denotes the truncation error where p is the bit precision. When ci > 1/2, truncated probabilities
are stored for 1− ci with the bit precisions p. Hence, the table storage becomes ` · p bits whose size
affects the efficiency.

Previous Analyses. As in [BLL+15], we analyze the security of BLISS when an adversary is
allowed up to qs signing queries. In this case, ` · 2n · qs Bernoulli random variables are sampled
since we should sample ` · 2n Bernoulli random variables to sign a signature. Let Φ (resp. Φ′) be
a distribution of signatures in the view of the adversary where all ` · 2n · qs variables are sampled
from the truncated (resp. untruncated) Bernoulli distribution Bc̃i (resp. Bci). The distribution Φ
(resp. Φ′) is regarded as the real (resp. ideal) distribution. We will show that the BLISS signature
scheme by sampling from the real distribution Φ is secure with smaller parameters, i.e., more signing
queries qs and less bit precision p, and the reduction from the scheme by sampling from the ideal
distribution Φ′ is tight, i.e., ε becomes small with larger ε′.

To examine the security, Ducas et al. [DDLL13] and Pöppelmann et al. [PDG14] used the SD
and KLD, respectively. Although we omit the details, the SD becomes ∆(Φ,Φ′) = ` · 2n · qs · 2−p−1,
which leads to ε ≤ ε′ + ` · 2n · qs · 2−p−1; hence, when p ≥ log(` · 2n · qs/ε), the reduction becomes
almost tight, i.e., ε ≤ 2 · ε′. The KLD becomes lnR1(Φ‖Φ′) ≤ ` · 2n · qs · 2−2p that leads to
ε ≤ ε′ +

√
` · 2n · qs · 2−2p. Hence, when p ≥ log(` · 2n · qs/ε2)/2 + 1/2, the reduction becomes

almost tight, i.e., ε ≤ 2 · ε′. See [BLL+15] for detailed analyses. Notice that the required precisions
p depend on ε for both SD and KLD based analyses.
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Bai et al. [BLL+15] used the RD of orders α = +∞ and 2, and showed that the sampling
algorithm becomes secure with less table storage ` · p, which does not depend on ε. From the
multiplicativity property over i = 0, . . . , ` − 1 and the data processing inequality of the RD,
Rα(Φ‖Φ′) ≤ (maxi∈[1,`]Rα(Bc̃i‖Bci))

`·2n·qs . Let ε (resp. ε′) be the advantage for an adversary to
break BLISS whose instances are sampled from Φ (resp. Φ′). From the probability preservation

property of the RD, ε ≤ (ε′ ·Rα(Φ‖Φ′))
α−1
α .

Using symmetry, we assume that ci ≤ 1/2; otherwise, we exchange ci and 1− ci in the following
calculations. First, Bai et al. used the RD of order α = +∞. By definition,

R∞(Bc̃i‖Bci) = max

{
ci + εi
ci

,
1− ci − εi
1− ci

}
= 1 +

|εi|
ci
≤ 1 + 2−p.

Then, R∞(Φ‖Φ′) ≤ (1 + 2−p)`·2n·qs from the multiplicativity property over i = 0, . . . , ` − 1 and
the data processing inequality of the RD. The RD bound implies ε ≤ ε′ · (1 + 2−p)`·2n·qs from
the probability preservation property of the RD. Hence, when p ≥ log(` · 2n · qs), the reduction
becomes almost tight, i.e., ε ≤ 2 · ε′. Since the probability preservation property of the RD is
multiplicative, the required precisions do not depend on ε, which results in less table storage. The
required precision is less than that of the previous SD and KLD based analyses [DDLL13, PDG14].

Next, the RD of order α ∈ (1,+∞) was considered. By definition,

(Rα(Bc̃i‖Bci))
α−1 = ci

(
ci + εi
ci

)α

+ (1− ci)

(
1− ci − εi
1− ci

)α

. (3)

In particular, Bai et al. focused on the case α = 2, which is, R2(Bc̃i‖Bci) = 1+
ε2i

ci(1−ci)
≤ 1+ 2−2p.

The last inequality holds by using the fact that |εi| ≤ 2−pci and the assumption ci ≤ 1/2. Then,
R2(Φ‖Φ′) ≤ (1 + 2−2p)`·2n·qs from the multiplicativity property over i = 0, . . . , ` − 1 and the
data processing inequality of the RD. The RD bound leads to ε ≤ ε′1/2 · (1 + 2−2p)`·2n·qs from
the probability preservation property of the RD. Hence, Bai et al. concluded the precision to be
p ≥ log(` · 2n · qs)/2. The required precision of the R2 based analysis is half that of the R∞ based
analysis. The improvements are derived from the exponent of R2(Bc̃i‖Bci), which becomes −2p,
although that of R∞ is −p. Although the required precision is less than that of the R∞ based
analysis, R2 based analysis offers a reduction that is no longer tight, i.e., ε ≤ 2 · ε′1/2 from the
probability preservation property of the RD. The deficiency comes from the preservation property
of R2, i.e., ε ≤ ε′1/2 ·R2(Φ‖Φ′). The exponent of ε′ never allows tight reductions even if the precision
become infinitely large.

Tighter RD Based Analysis with Smaller Table Storage. In the rest of this section, we
show that the Rα based analysis offers both less required precision and tighter reductions when the
order α is appropriately determined. First, the RD of the inequality (3) is bounded for general α
as follows.

Lemma 6 Let probability distributions Bc̃i and Bci be defined as above. If the order α is an integer

with α < 2p, then (Rα(Bc̃i‖Bci))
α−1 = exp

(
α(α−1)

2 · 2−2p
)
+O((α2−p)3).

The proof of Lemma 6 is given in Appendix C. Then, we obtain the following Theorem 1.
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For the condition in Theorem 1, we define the minimal key recovery advantage ε̂. In Appendix
A of [DDLL13], known attacks for BLISS are summarized including lattice reduction attacks for the
underlying SIS, primal and dual lattice reduction key recoveries. The most primitive brute-force
key recovery is also analyzed, where an adversary guesses a random secret vector g and checks
whether f = a−1

q (2g+1) mod q is a legitimate secret polynomial or not for the public polynomial

aq; otherwise, the adversary aborts. The advantage is estimated as2 ε̂ = 2−d1−d2 ·
(
n
d1

)−1 ·
(
n−d1
d2

)−1

where d1 and d2 are defined in the key generation of BLISS. For example, ε̂ ≈ 2−600 for BLISS-I
parameters n = 512, d1 ≈ 153, and d2 ≈ 0. In Theorem 1, we consider powerful adversaries with
signing query number qs ≈ 264. For such a powerful adversary, it holds that ` ·n · qs � − ln(ε̂). For
example, for practical BLISS-I parameters (n = 512, ` = 29), the left (resp. right) hand side ≈ 278

(resp. ≈ 600), then the above inequality holds.

Theorem 1 Let parameters p, `, n, and qs that satisfy ` · n · qs � − ln(ε̂), and probability distribu-
tions Bc̃i and Bci be defined as above. Then, if there is an adversary A against the BLISS signature
scheme when Bernoulli random variables are sampled from Bc̃i with run-time T and advantage ε,
then A is also an adversary against the BLISS signature scheme when Bernoulli random variables
are sampled from Bci with run-time T ′ = T and advantage ε′ that satisfies − ln(ε′) > ` ·n · qs · 2−2p

and

ε ≤ exp

(
−
(√
− ln(ε′)−

√
` · n · qs · 2−2p

)2)
. (4)

Proof. To prove the theorem, we consider the RD of order α that is much smaller than 2p. (The
fact is justified by the inequality ` · n · qs � − ln(ε̂) later in this proof. ) By Lemma 6, we ignore

the small term and assume (Rα(Bc̃i‖Bci))
α−1 = exp

(
α(α−1)

2 · 2−2p
)
, which implies

(Rα(Φ‖Φ′))α−1 ≤ (Rα(Bc̃i‖Bci))
(α−1)·`·2n·qs = exp

(
α(α− 1) · ` · n · qs · 2−2p

)
from the multiplicativity property over i = 0, . . . , ` − 1 and the data processing inequality of the
RD. Since the exponent is −2p, the analysis requires a small precision similar to the R2 based
analysis. Furthermore,

ε ≤
(
ε′ ·Rα(Φ‖Φ′)

)α−1
α = exp

(
α− 1

α
ln(ε′) + (α− 1) · ` · n · qs · 2−2p

)
holds from the probability preservation property of the RD. The inequality is equivalent to the
inequality (1) in Section 1. The right hand side of the inequality is bounded below by

exp
(
ln(ε′)− ` · n · qs · 2−2p +

(
− ln(ε′)/α+ α · ` · n · qs · 2−2p

))
≥ exp

(
ln(ε′)− ` · n · qs · 2−2p + 2

√
− ln(ε′) · ` · n · qs · 2−2p

)
by the inequality of the arithmetic mean and geometric mean; the equality holds if and only if

− ln(ε′)/α = α · ` · n · qs · 2−2p, i.e., α =
√

− ln(ε′)
`·n·qs·2−2p .

2 In [DDLL13], the brute-force adversary for all key candidates is considered; however, we consider the corresponding
one-time guessing adversary. Hence, the advantage of the guessing adversary is the inverse of the computation time
of the brute-force adversary.
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Table 4. Comparison of required precisions p, table bit-size and upper bounds of − log ε′. The left table is a summary
of previous analyses that are the same as in Table 1 of [BLL+15]. The right table is based on our analysis.

statistical measure p Table bit-size − log ε′

SD [DDLL13] 207 6003 ≤ 129

KLD [PDG14] 168 4872 ≤ 129

RD, α = +∞ [BLL+15] 79 2291 ≤ 129

RD, α = 2 [BLL+15] 40 1160 256.45

α p
Table

bit-size
− log ε′

2.48 36 1044 418.66

6.94 38 1102 184.97

24.76 40 1160 141.26

96.07 42 1218 131.25

381.30 44 1276 128.80

Notice that the order α =
√

− ln(ε′)
`·n·qs·2−2p satisfies our assumption α � 2p. By definition, the

inequality ε̂ ≤ ε′, which is equivalent to − ln ε′ ≤ − ln(ε̂), holds. Since we only consider the case

− ln(ε̂)� ` · n · qs, − ln(ε′)� ` · n · qs also holds. That leads to α =
√

− ln(ε′)
`·n·qs·2−2p � 2p.

Next, we set the order α =
√

− ln(ε′)
`·n·qs·2−2p . In this case, the above inequality becomes

ε ≤ exp

(
−
(√
− ln(ε′)−

√
` · n · qs · 2−2p

)2)
.

The inequality is equivalent to the inequality (2) in Section 1 as required. The order α =
√

− ln(ε′)
`·n·qs·2−2p

that is used satisfies α ∈ (1,+∞] since − ln(ε′) > ` · n · qs · 2−2p. ut

For the BLISS signature scheme to be secure, i.e., ε to be small, with smaller − ln(ε′) (larger
ε′, i.e., tighter reductions), more signing queries qs (i.e., for powerful adversaries), and larger 2−p

(less precision p, i.e., more efficiency), the inequality (4) shows an appropriate trade-off. The upper
bound of ε based on our analysis is lower than that of Bai et al.’s R2 based analysis for all ε′, `, n, qs,
and p. In particular, from the inequality (4), if

ε ≤ exp

(
−
(√
− ln(ε′)−

√
` · n · qs · 2−2p

)2)
= ε′ · exp

(
2
√
− ln(ε′) · ` · n · qs · 2−2p − ` · n · qs · 2−2p

)
,

when − ln(ε′) ·` ·n ·qs ·2−2p ≤ 1, then ε ≤ ε′ ·O(1) holds and the upper bound cannot be obtained by
the R2 based analysis. The condition leads to the precision requirement p ≥ log(− ln(ε′) · ` ·n ·qs)/2
that is less than that of the SD, KLD, and R∞ based analyses for powerful adversaries, i.e., `·n·qs �
− ln(ε̂).

Numerical Examples. Table 4 shows the numerical examples that compare required precisions p,
table bit-size ` · p, and upper bounds of − log(ε′) of previous analyses [DDLL13, PDG14, BLL+15]
and our analysis. According to Table 1 in [BLL+15], an adversary is allowed qs = 264 sign queries
and breaks BLISS-I with probability ε = 2−128 with parameters n = 512, and ` = 29. The values
of − log(ε′) are given by

− log(ε′) ≤ log(e) ·
(√
− ln(ε) +

√
` · n · qs · 2−2p

)2
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which is equivalent to the inequality (4). The table clarifies our improvements that are briefly
summarized in Table 1. Although Bai et al.’s R2 based analysis [BLL+15] requires less precision
p than SD, KLD, and R∞ based analyses [DDLL13, PDG14, BLL+15], the reduction is no longer
tight and − log(ε′) becomes much larger than − log(ε) = 128. Theorem 1 shows a better trade-
off than previous analyses. As the right table indicates, as the bit precision p increases, − log(ε′)
becomes smaller, which makes the reduction tighter. In particular, based on our analysis, the upper
bound of − log(ε′) for p = 40 is smaller that of the R2 based analysis by Bai et al. [BLL+15]. As
a result3 , when p ≥ 44, the reduction becomes almost tight, i.e., − log(ε′) ≤ 129. Notice that the
orders α are always much smaller than 2p, which we assume to bound the quantity of RD.

4 Tighter Analysis for LWE to k-LWE Reduction

In this section, we study LWE to k-LWE reduction [LPSS14]. By adaptively optimizing the order
of the RD, the reduction becomes tighter.

First, we introduce a variant of the LWE problem, where the number of samples m produced
by the oracle is a priori bounded.

Definition 1 (LWEβ,m Problem) Given A ← U
(
Zm×n
q

)
, the goal of the LWEβ,m problem is to

distinguish between the distributions (over Tm)

1

q
U (Im(A)) + νmβ and

1

q
U
(
Zm
q

)
+ νmβ .

Next, we introduce the k-LWE problem defined in [LPSS14].

Definition 2 ((k, S,C)-LWEβ,m Problem, Definition 7 of [LPSS14]) Let k ≤ m, S ∈ Rm×m

be invertible and C = (c1‖ · · · ‖ck) ∈ Rk×m. Given A← U
(
Zm×n
q

)
, and xi ← DΛ⊥(A),S,ci for i ≤ k,

the goal of the (k, S,C)-LWEβ,m problem (the (k, S)-LWEβ,m problem when C = 0) is to distinguish
between the distributions (over Tm)

1

q
U (Im (A)) + νmβ and

1

q
U
(
Spani≤k (xi)

⊥
)
+ νmβ .

The k vectors x1, . . . ,xk can be used to solve the original LWEβ,m. When we obtain a vector y
from the left distribution, 〈xi,y〉 becomes much smaller than 1 for standard parameter settings
since xi ∈ Λ⊥(A) and is orthogonal to Im(A). On the other hand, when we obtain a vector y from
the right distribution, 〈xi,y〉 is uniform. However, (k, S,C)-LWEβ,m becomes non-trivial and seems

to be hard since the right distribution 1
qU
(
Zm
q

)
is replaced by 1

qU
(
Spani≤k (xi)

⊥
)
.

Ling et al. [LPSS14] proved the security reduction for the (k, S)-LWEβ,m problem. An adversary
that solves the (k, S)-LWEβ′,m+k problem in Definition 2 is also an adversary that solves the
LWEβ,m problem in Definition 1. However, Ling et al.’s reduction is not tight since they fix the
order of the RD to α = 2. We show the tighter security reduction as follows by adaptively optimizing
the order.

3 In [BLL+15], Bai et al. analyzed the precisions by measuring the closeness between Bc̃i and Bci which depend
on i. The analysis further reduces the required precisions for SD and KLD based analyses, i.e., 4598 and 3893-bit
tables respectively. Although our analysis also offers lower precisions, we omit the analysis in this paper.
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Theorem 2 Let m, q, σ, σ′, and k satisfy σ ≥ Ω(max(m
√
logm,σ′k/(m+k))), σ′ ≥ Ω

(
m3σ2 log3/2(mσ)

)
,

q ≥ Ω
(
σ′√logm

)
is prime, and m ≥ Ω(n log q). Then there exists a probabilistic polynomial-

time reduction from A′ for LWEβ,m in dimension n to (k, S)-LWEβ′,m+k in dimension n, where
β′ = Ω

(
m3/2σ′β

)
, S is a diagonal matrix, aii = σ for 1 ≤ i ≤ m, and aii = σ′ for m+1 ≤ i ≤ m+k.

More concretely, using a (k, S)-LWEβ′,m+k algorithm with run-time T and advantage ε, the re-
duction gives an LWEβ,m algorithm with run-time T ′ = O

(
T · poly(m) · (ε− 2−Ω(n))−2 log((ε− 2−Ω(n))−1)

)
and advantage ε′ where

ε ≤ exp

(
ln
(
ε′ + 2−Ω(n)

)
2

+

√
−1− 2n ln(ε′ + 2−Ω(n))

2n

)
· 2O(k·2−n) + 2−Ω(n).

In [LPSS15], Ling et al. suggested appropriate selections of parameters as k = m/10, σ =
Θ̃(n), σ′ = Θ̃(n5), q = Θ̃(n5) and m = Θ(n log n).

Proof. The proof of Theorem 2 consists of Lemma 7 and Theorem 3; that is, the required reduction
of Theorem 2 consists of two subreductions as in [LPSS14]. The first is the LWE to (k, S,C)-
LWE reduction, and the second is the (k, S,C)-LWE to (k, S)-LWE reduction. We follow the first
subreduction.

Lemma 7 ([LPSS15]) Let parameters k, n,m, q, σ, σ′, β′, and matrix S be defined as in Theorem
2. Let C ∈ Rk×(m+k) be the matrix whose i-th row is the unit vector ci = (0m|δi) where δi denotes
the i-th canonical unit vector in Zk for k = 1, . . . , k. If there exists a distinguisher A against
(k, S,C)-LWEβ′,m+k in dimension n with run-time T and advantage ε, then A is also a distinguisher
against LWEβ,m in dimension n with run-time T ′ = T + poly(m) and advantage ε′ = ε− 2−Ω(n).

Next, we analyze the second subreduction. Although our analysis is similar to that in [LPSS14],
the following Theorem 3 is obtained as an application of our optimized selection of the order α.

Theorem 3 Let m′ = m+ k and assume that σm′(S) ≥ ω (
√
n). Let γ be a constant that satisfies

σm′(S) ≥
√

π/γ · ‖C‖. If there exists a distinguisher A against (k, S)-LWEβ′,m′ in dimension n′

with run-time T and advantage ε, then there exists a distinguisher A′ against (k, S,C)-LWEβ′,m′

with run-time T ′ = O
(
poly(m′) ·

(
ε− 2−Ω(n)

)−2 · T · log ((ε− 2−Ω(n))−1)
)

and advantage ε′ that

satisfies − ln
(
ε′ + 2−Ω(n)

)
≥ kγ, and

ε ≤ exp

(
ln
(
ε′ + 2−Ω(n)

)
2

+
kγ
√
−1− 2 ln(ε′ + 2−Ω(n))/(kγ)

2

)
· 2O(k·2−n) + 2−Ω(n).

The proof of Theorem 3 is given in Appendix D. Based on the SD, the deviations to sample k
hint vectors become exponentials of the security parameter. Since Ling et al. used the RD, the
deviations become smaller. Moreover, we optimize the order α and obtain a tighter reduction.

Note that in the above reduction from LWEβ,m to (k, S,C)-LWEβ′,m+k, ‖C‖ = 1 and σm′(S) =
σ = Ω(n); hence, we set γ = O(1/n2). Using the fact that k < n and we can obtain the required
inequality in Theorem 2. ut
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Analogous to Theorem 3, the inequality in [LPSS14] can be written as

ε ≤ exp

(
ln
(
ε′ + 2−Ω(n)

)
3

+
2kγ

3

)
· 2O(k·2−n) + 2−Ω(n).

The inequality can be obtained by R2. The right hand side of the inequality becomes the same as
ours only when α = 2; otherwise, our analysis always offers a tighter reduction since the right hand
side of the inequality in Theorem 3 is always smaller than that of Ling et al.

5 Tighter Analysis for SIS to k-SIS Reduction

In this section, we study SIS to k-SIS reduction [BF11, LPSS14]. By adaptively optimizing the
order of the RD, the reduction becomes tighter.

First, we introduce the SIS problem.

Definition 3 (SISβ,m Problem) Given A← U
(
Zm×n
q

)
, the goal of the SISβ,m problem is to find

a nonzero vector b ∈ Zm such that

– ‖b‖ ≤ β,
– bT ·A = 0 mod q.

Next, we introduce the k-SIS problem. The definition follows from Definition 2 rather than the
original definition from [BF11].

Definition 4 ((k, S,C)-SISβ,m Problem, Adapted from Definition 4.1 of [BF11]) Let k ≤
m, S ∈ Rm×m be invertible, and C = (c1‖ · · · ‖ck) ∈ Rk×m. Given A ← U

(
Zm×n
q

)
and xi ←

DΛ⊥(A),S,ci for i ≤ k, the goal of the (k, S,C)-SISβ,m problem (the (k, S)-SISβ,m problem when
C = 0) is to find a nonzero vector b ∈ Zm such that

– ‖b‖ ≤ β,
– bT ·A = 0 mod q,
– b ∈ Spani≤k (xi)

⊥.

The k vectors x1, . . . ,xk for (k, S)-SISβ,m can be used to solve the original SISβ,m. By definition,
the vectors satisfy the second condition of SISβ,m. Since the vectors are sampled from Gaussian
distributions, their norms are small and the vectors are expected to satisfy the first condition of
SISβ,m. However, (k, S,C)-SISβ,m is non-trivial and seems to be hard since the additional condition

b ∈ Spani≤k (xi)
⊥ have to be satisfied. The integer linear combinations of the k hint vectors cannot

be solutions to the (k, S,C)-SISβ,m.
Ling et al. [LPSS14] briefly summarized the SIS to k-SIS reduction. As the LWEβ,m to the

(k, S)-LWEβ,m+k reduction, they showed that an adversary that solves the (k, S)-SISβ′,m+k problem
in Definition 4 is also an adversary that solves the SISβ,m problem in Definition 3. However, Ling
et al.’s reduction is not tight since they fix the order of the RD to α = 2. We show the tighter
security reduction as follows by adaptively optimizing the order.

Theorem 4 Let parameters k, n,m, q, σ, σ′, β′, and a matrix S be defined as in Theorem 2. If there
exists an adversary A against (k, S)-SISβ′,m+k in dimension n, with run-time T and advantage ε,
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then A′ is also an adversary against SISβ,m in dimension n and β = Ω(
√
kmσ′β′) with run-time

T ′ = T + poly(m) and advantage ε′ where

ε ≤ exp

(
−
(√
− ln

(
ε′ + 2−Ω(n)

)
−
√
kγ
)2)
· 2O

(
k·2−n

)
+ 2−Ω(n).

Proof. As LWE to (k, S)-LWE reduction, the reduction consists of two subreductions. The first is
the SIS to (k, S,C)-SIS reduction, and the second is the (k, S,C)-SIS to (k, S)-SIS reduction. The
first subreduction is almost identical to that of the LWE to (k, S,C)-LWE reduction as suggested
in [LPSS14].

Lemma 8 (Adapted from [LPSS14]) Let k, n,m, q, σ, and σ′ be the same as those in The-
orem 2. Let matrices C and S be the same as Lemma 7. If there exists an adversary against
(k, S,C)-SISβ′,m+k in dimension n, with S as in Theorem 2, run-time T , and advantage ε, then

there exists an adversary against SISβ,m in dimension n with β = Ω(
√
kmσ′β′), run-time T ′ =

T + poly(m), and advantage ε′ = ε− 2−Ω(n).

The proof of Lemma 8 is given in Appendix E.

Next, we analyze the second subreduction. The following Theorem 5 is obtained as an application
of our optimized selection of the order α. We cannot obtain the same tightness when we fix the
order α = 2 as in [LPSS14].

Theorem 5 Assume that σm′(S) ≥ ω (
√
n). Let γ be a constant that satisfies σm′(S) ≥

√
π/γ ·‖C‖.

If there exists an adversary A against (k, S)-SISβ,m′ in dimension n with run-time T and advantage
ε, then A is also an adversary against (k, S,C)-SISβ,m′ with run-time T ′ = T and advantage ε′ that
satisfies − ln

(
ε′ + 2−Ω(n)

)
≥ kγ, and

ε ≤ exp

(
−
(√
− ln

(
ε′ + 2−Ω(n)

)
−
√
kγ
)2)
· 2O

(
k·2−n

)
+ 2−Ω(n).

The proof of Theorem 5 is given in Appendix E. Based on the SD, the deviations to sample k
hint vectors become exponentials of the security parameter. Since Ling et al. used the RD, the
deviations become smaller. Moreover, we optimize the order α and obtain a tighter reduction.

Note that in the above reduction from SISβ,m to (k, S,C)-SISβ′,m+2n, ‖C‖ = 1, and σm′(S) =
σ = Ω(n). Hence, we set γ = O(1/n2) and using the fact that k < n, we can obtain the required
inequality in Theorem 4. ut

Analogous to Theorem 5, the inequality can be written as

ε ≤ exp

(
ln
(
ε′ + 2−Ω(n)

)
2

+ kγ

)
· 2O(k·2−n) + 2−Ω(n).

when the order is fixed to α = 2. The right hand side of the inequality becomes the same as ours
only when α = 2. Otherwise, our analysis always offers a tighter reduction since the right hand side
of the inequality in Theorem 5 is always smaller than that of the R2 based analysis.



16

References

[AGHS13] S. Agrawal, C. Gentry, S. Halevi and A. Sahai, “Discrete gaussian leftover hash lemma over infinite
domains,” Proc. Asiacrypt 2013, LNCS 8629, pp. 97–116, Springer, Heidelberg, 2013.

[AD97] M. Ajtai and C. Dwork, “A public-key cryptosystem with worst-case/average-case equivalence,” Proc. STOC
1997, pp. 284–293, ACM, 1997.
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A Proof of Lemma 5 in Section 2

By the definition of a discrete Gaussian distribution,

P (x) =
exp(−π‖(ST )†(x− c)‖2)∑
y∈Λ exp(−π‖(ST )†(y− c)‖2)

and Q(x) =
exp(−π‖(ST )†(x− c′)‖2)∑
y∈Λ exp(−π‖(ST )†(y− c′)‖2)

.

By the definition of the RD, if follows that

Rα(P‖Q)α−1 =
∑
x∈Λ

P (x)α

Q(x)α−1

=
∑
x∈Λ

(
exp(−π‖(ST )†(x− c)‖2)∑
y∈Λ exp(−π‖(ST )†(y− c)‖2)

)α

·

(∑
y∈Λ exp(−π‖(ST )†(y− c′)‖2)
exp(−π‖(ST )†(x− c′)‖2)

)α−1
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=
(
∑

y∈Λ exp(−π‖(ST )†(y− c′)‖2))α−1

(
∑

y∈Λ exp(−π‖(ST )†(y− c)‖2))α
·
∑
x∈Λ

exp(−απ‖(ST )†(x− c)‖2 + (α− 1)π‖(ST )†(x− c′)‖2).

Define c̃ = αc− (α− 1)c′; then,

−απ‖(ST )†(x− c)‖2 + (α− 1)π‖(ST )†(x− c′)‖2 = −π‖(ST )†(x− c̃)‖2 + α(α− 1)π‖(ST )†(c− c′)‖2.

Therefore,

Rα(P‖Q)α−1

=
(
∑

y∈Λ exp(−π‖(ST )†(y− c′)‖2))α−1 ·
∑

x∈Λ exp(−π‖(ST )†(x− c̃)‖2)
(
∑

y∈Λ exp(−π‖(ST )†(y− c)‖2))α
· exp(α(α− 1)π‖(ST )†(c− c′)‖2).

The remaining analysis is the same as the proof of Lemma 4.2 in [LSS14]. For any c ∈ Λ, if
follows that

∑
x∈Λ exp(−π‖(ST )†(x−c)‖2) =

∑
x∈Λ exp(−π‖(ST )†x‖2). Therefore, if c, c′ ∈ Λ, then

c̃ ∈ Λ; hence, we have Rα(P‖Q) = exp(απ‖(ST )†(c− c′)‖2).
In general c, c′ ∈ Rn, we have ρσn(S),c(Λ) ≤

∑
x∈Λ exp(−π‖(ST )†(x− c)‖2) ≤ ρσ1(S),c(Λ), using

the fact that σn((S
T )†)‖x− c‖ ≤ ‖(ST )†(x− c)‖ ≤ σ1((S

T )†)‖x− c‖, and∑
x∈Λ

exp(−πσ1((ST )†)2‖x− c‖2) = ρ1/σ1((ST )†),c(Λ) = ρσn(S),c(Λ)∑
x∈Λ

exp(−πσn((ST )†)2‖x− c‖2) = ρ1/σn((ST )†),c(Λ) = ρσ1(S),c(Λ).

Using the assumption that σ1(S) ≥ σn(S) ≥ ηε(Λ) and Lemma 1, both ρσ1(S),c(Λ) and ρσn(S),c(Λ)

are in the interval [1−ε, 1+ε]·(det(Λ))−1. From the above inequality,
∑

x∈Λ exp(−π‖(ST )†(x−c)‖2)

are also in the interval. Hence, we have Rα(P‖Q) ≤
(
1+ε
1−ε

) α
α−1 · exp(απ‖(ST )†(c− c′)‖2).

Using the fact that ‖(ST )†c‖2 ≤ σ1((S
T )†)2 · ‖c‖2 and σ1((S

T )†) = 1/σn(S), the claimed
inequality is satisfied.

B BLISS Signature Scheme

The BLISS signature algorithm is as follows:

• Key generation algorithm, KeyGen():
– Choose f and g as uniform polynomials with exactly d1 = dδ1ne entries in {±1} and d2 =
dδ2ne entries in {±2}

– S = (s1, s2)
T ← (f, 2g + 1)T

– If Nκ(S) ≥ C2 · 5 · (dδ1ne+ 4dδ2ne) · κ then restart
– aq = (2g + 1)/f mod q (restart if f is not invertible)
– Return (pk = A, sk = S) where A = (2aq, q − 2) mod 2q

• Signature Algorithm, Sign(µ, pk = A, sk = S):
– y1,y2 ← DZn,s

– u = ζ · a1 · y1 + y2 mod 2q
– c← H(bued mod p, µ)
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– Choose a random bit b
– z1 ← y1 + (−1)bs1c
– z2 ← y2 + (−1)bs2c
– Continue with probability 1/

(
M exp

(
−‖Sc‖2

s2/π

)
cosh

(
〈z,Sc〉
s2/π

))
;

otherwise, restart
– z†2 ← (bued − bu− z2ed) mod p

– Return (z1, z
†
2, c)

• Verification Algorithm, Verify(µ, pk = A, (z1, z
†
2, c)):

– If ‖(z1|2d · z†2)‖2 ≥ B2, then reject

– If ‖(z1|2d · z†2)‖∞ ≥ B∞, then reject

– Accept if and only if c = H(bζ · a1 · z1 + ζ · q · ced + z†2 mod p, µ)

For the detailed definitions of parameters, see Table 3 in [DDLL13].

C Proof of Lemma 6 in Section 3

From the equality (3), it follows that

(Rα(Bc̃i‖Bci))
α−1 = ci

α∑
j=0

(
α

j

)(
εi
ci

)j

+ (1− ci)

α∑
j=0

(
α

j

)(
− εi
1− ci

)j

=
α∑

j=0

(
α

j

)(
εji
cj−1
i

+
(−εi)j

(1− ci)j−1

)

= 1 +
α(α− 1)

2
· ε2i
ci(1− ci)

+

α∑
j=3

(
α

j

)(
εji
cj−1
i

+
(−εi)j

(1− ci)j−1

)
.

The first two terms satisfy

1 +
α(α− 1)

2
· ε2i
ci(1− ci)

≤
(
1 +

|εi|2

ci(1− ci)

)α(α−1)
2

≤
(
1 + 2−2p · ci

1− ci

)α(α−1)
2

≤
(
1 + 2−2p

)α(α−1)
2

by using the fact that ci ≤ 1/2 and |εi| ≤ ci2
−p. Since ln(1 + 2−2p) ≤ 2−2p,(

1 + 2−2p
)α(α−1)

2 ≤ exp

(
α(α− 1)

2
· 2−2p

)
.

To complete the proof, it suffices to show that the remaining terms are of O((α2−p)3). The
terms are bounded above by

α∑
j=3

(
α

j

)(
(−εi)j

(1− ci)j−1
+

εji
cj−1
i

)
≤

α∑
j=3

αj

j!

(
(−εi)j

(1− ci)j−1
+

εji
cj−1
i

)
≤

α∑
j=3

αj

j!
· 2 · |εi|

j

cji
· ci ≤

α∑
j=3

(α2−p)j

j!

by using the fact that ci ≤ 1/2 and |εi| ≤ ci2
−p. Then, the terms are bounded above by

≤ (α2−p)3 ·
α−3∑
j=0

(α2−p)j

j!
≤ (α2−p)3 ·

∞∑
j=0

(α2−p)j

j!
= (α2−p)3 · exp(α2−p) = O((α2−p)3)

by using the fact that α2−p ≤ 1.
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D Proof of Theorem 3 in Section 4

As in the proof of Lemma 15 in [LPSS14], we consider the following sequence of games Game0, . . . ,Game3,
where the distributions from the view of the distinguisher A differ among the games as follows:

• Game0: The original (k, S)-LWE experiment. The distinguisher A receives an instance of the

form (r,y), where r = (A, {xi}i≤k) with A← U
(
Zm′×n
q

)
, and xi ← DΛ⊥(A),S,0 for i = 1, . . . , k,

and y ∈ Tm′
is a sample from either the distribution

1

q
U (Im (A)) + νm

′
β or

1

q
U
(
Spani≤k (xi)

⊥
)
+ νm

′
β .

• Game1: Modification of Game0 in that the distribution of A is the following rejection sam-
pling: A is sampled uniformly from Zm′×n′

q ; however, reject and resample A if η2−n(A) >

4qn/m
′√

log (2m′ (1 + 2n)) /π = O(
√
n).

• Game2: Modification of Game0 in that the distribution of the hint x′is in r is from the non-zero
centered distribution DΛ⊥(A),S,ci (instead of the zero centered distribution DΛ⊥(A),S,0).

• Game3: Modification of Game0 in that the distribution of A is A ← U
(
Zm′×n
q

)
. The instance

distribution is identical to that of the (k, S,C)-LWE experiment.

Let εi(A) for i = 0, . . . , 3 denote the advantage of A in distinguishing between the distributions
in Gamei. By definition, ε0(A) = ε. As in [LPSS14], ε1(A) ≥ ε0(A)− 2−Ω(n) by Lemma 3.

As claimed in [LPSS14], the (k, S,C)-LWE problem has the public samplability property required
to apply the following Lemma 9.

Lemma 9 (Theorem 4.1 of [BLL+15]) Let Φ and Φ′ denote two distributions with Supp (Φ) ⊆
Supp (Φ′), and let D0(r) and D1(r) denote two distributions determined by some parameter r ∈
Supp (Φ′). Let P and P ′ be two decision problems defined as follows:

• Problem P : Distinguish whether input x is sampled from X0 or X1, where

X0 = {x : r ← Φ, x← D0(r)} , X1 = {x : r ← Φ, x← D1(r)} .

• Problem P ′: Distinguish whether input x is sampled from X ′
0 or X ′

1, where

X ′
0 =

{
x : r ← Φ′, x← D0(r)

}
, X ′

1 =
{
x : r ← Φ′, x← D1(r)

}
.

Assum that D0(·) and D1(·) satisfy the following public sampleablity property: there exists a sampling
algorithm S with run-time TS such that for all (r, b), given any sample x from Db(r):

• S(0, x) outputs a fresh sample distributed as D0(r) over the randomness of S,
• S(1, x) outputs a fresh sample distributed as D1(r) over the randomness of S.

Then, given a distinguisher A for problem P with run-time T and advantage ε, a distinguisher
A′ can be constructed for problem P ′ with run-time T ′ and advantage ε′ where

T ′ = O

(
1

ε2
log

(
Rα (Φ‖Φ′)

εα/(α−1)

)
· (TS + T )

)
, ε′ =

ε

4 ·Rα (Φ‖Φ′)
·
(ε
2

) α
α−1

,

for any α ∈ (1,∞].
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Thus, there exists a distinguisher A′ in Game2 with run-time T ′ = O
(
poly(m′) · ε1(A)−2 · T

)
and

advantage ε2(A′) ≥ ε1(A)
4Rα(Φ‖Φ′) ·

(
ε1(A)

2

) α
α−1

, where Φ and Φ′ are the distribution of r in Game1

and Game2, respectively. The difference between the previous analysis [LPSS14] and our analysis
is the value of α. Although Ling et al. fixed the value α = 2, we adaptively optimize the order α.
Since the xi’s are independent, and conditioning A, we have, from the multiplicativity property of

the RD, Rα(Φ‖Φ′) ≤
∏

i≤k Rα

(
DΛ⊥(A),S,0‖DΛ⊥(A),S,ci

)
. The latter can be bounded from above by

applying Lemma 5. The condition of Lemma 5 holds since σm′(S) ≥ ω (
√
n) holds; thus, if follows

from the rejection step of the previous game that σm′(S) ≥ η2−n(A). This leads to Rα(Φ‖Φ′) ≤∏
i≤k exp

(
α

α−12
−n+2 + απ ‖ci‖2

σm′ (S)2

)
≤
∏

i≤k exp
(

α
α−12

−n+2 + αγ
)
≤ exp

(
k ·
(

α
α−12

−n+2 + αγ
))

from the condition σm′(S) ≥
√

π/γ · ‖C‖. Therefore, the advantage can be bounded from below by

ε2(A′) ≥ ε1(A)
4Rα(Φ‖Φ′)

·
(
ε1(A)
2

) α
α−1

≥ (ε1(A)/2)
2α−1
α−1

4 exp
(
k ·
(

α
α−12

−n+2 + απ ‖C‖2
σm′ (S)2

)) .
We optimize the value of α later.

Finally, as in [LPSS14], ε3(A′) ≥ ε2(A′)− 2−Ω(n) by Lemma 3. By definition, A′ has advantage
ε3(A′) against the (k, S,C)-LWE.

The above discussions lead to

ε ≤ exp

(
α− 1

2α− 1
ln
(
ε′ + 2−Ω(n)

)
+ k · α(α− 1)

2α− 1
γ

)
· 2O(k·2−n) + 2−Ω(n).

The right hand side of the inequality is bounded below by≥ exp

(
ln
(
ε′+2−Ω(n)

)
2 +

kγ
√

−1−2 ln(ε′+2−Ω(n))/(kγ)

2

)
·

2O(k·2−n)+2−Ω(n), where the equality holds if and only if α =
(
1 +

√
−1− 2 ln

(
ε′ + 2−Ω(n)

)
/(kγ)

)
/2.

Then, we set the order and the above inequality becomes

ε ≤ exp

(
ln
(
ε′ + 2−Ω(n)

)
2

+
kγ
√
−1− 2 ln(ε′ + 2−Ω(n))/(kγ)

2

)
· 2O(k·2−n) + 2−Ω(n)

as required. The order α =
(
1 +

√
−1− 2 ln

(
ε′ + 2−Ω(n)

)
/(kγ)

)
/2 that we use satisfies α ∈

(1,+∞] since − ln
(
ε′ + 2−Ω(n)

)
≥ kγ.

E Proofs of Lemma 8 and Theorem 5 in Section 5

Proof of Lemma 8. First, we show that given a matrix A for SISβ,m in dimension n, then we
can produce a matrix A′ for (k, S,C)-SISβ′,m+k in dimension n with k hint vectors x1, . . . ,xk. The
reduction is briefly written in [LPSS14].

Sample matrices (X1, X2, U) ∈ Zm×k × Zk×k × Z(m+k)×(m+k) using the following Lemma 10.

Lemma 10 (Theorem 17 of [LPSS15]) Let k ≥ 100 and σ, σ′ > 0 satisfying σ ≥
Ω(
√
(m+ k)k log(m+ k)),m+k ≥ Ω(k log(σk)) and σ′ ≥ Ω(k5/2

√
m+ kσ2 log3/2((m+k)σ)). Let

k ≥ n be bounded by nO(1) and k < m. There exists a ppt algorithm that given k and m (in unary),
and σ and σ′ as inputs, returns (X1, X2, U) ∈ Zm×k × Zk×k × Z(m+k)×(m+k) such that:
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• the distribution of (X1, X2) is within the SD 2−Ω(k) of the distribution Dm×k
Z,σ × (DZk,σ′,δ1×· · ·×

DZk,σ′,δk)
T where δi denotes the i-th canonical unit vector in Zk whose i-th coordinate is 1 and

whose remaining coordinates are 0,

• we have |detU | = 1 and U · (X1‖X2) = (Ik‖0),
• every row of U has norm ≤ O(

√
kmσ′), with probability 1− 2Ω(k).

Define xi as the i-th column of (X1‖X2) for i ≤ k. Let V ∈ Zm×(m+k) be the matrix consisting of the
bottom m rows of U . Let X ∈ Zk×(m+k) be the matrix whose i-th row is xi for all i ≤ k. Compute
A′ = V TA, and return (A′, X). All steps of the reduction can be implemented in polynomial time.
The following lemma shows that the output (A′, X) can be used as (k, S,C)-SIS instances: A′ is
the (k, S,C)-SIS matrix and the rows of X are k hint vectors.

Lemma 11 (Lemma 19 of [LPSS15]) The tuple (A′, X) is within statistical distance 2−Ω(k) of

the distribution in which A′ ∈ Z(m+k)×n
q are uniform, and the rows of X ∈ Zk×(m+k) are from

DΛ⊥(A′),S,ci, where ci = (0m|δi) ∈ Rm+k and δi denotes the i-th canonical unit vector in Zk for
i = 1, . . . , k.

Let b′ ∈ Zm+k be the solution to the (k, S,C)-SISβ′,m+k problem. Then, a vector b = V b′ can
be used as a solution to the SISβ,m problem, since b′T · A′ = b′T · V TA = bTA = 0 mod q. Notice
that V b′ 6= 0 since b′ is linearly independent from the rows of X, and V is a basis of the lattice
kerX. Furthermore, the following lemma bounds a norm of the solution ‖b‖.

Lemma 12 Given the solution of the (k, S,C)-SISβ′,m+k problem for (A′, X) defined above, the

solution to the SISβ,m problem can be computed for A, where β = Ω(
√
kmσ′β′) with probability

≥ 1− 2−Ω(k).

Proof. By Lemma 10, ‖V ‖ ≤ O(
√
kmσ′) holds with probability ≥ 1 − 2−Ω(k). Therefore, ‖b‖ =

‖V b′‖ ≤ Ω(
√
kmσ′β′). ut

Hence, Lemma 8 is proved. ut

Proof of Theorem 5. We consider the following sequence of games Game0, . . . ,Game3 as (k, S,C)-LWE
to (k, S)-LWE reduction, where the distributions from the view of A differ among the games as
follows:

• Game0: The original (k, S)-SIS experiment. The adversary A receives an instance of the form

(A, {xi}i≤k) with A← U
(
Zm′×n′
q

)
, and xi ← DΛ⊥(A),S,0 for i = 1, . . . , k.

• Game1: Modification of Game0 in that the distribution of A is the following rejection sam-
pling: A is sampled uniformly from Zm′×n′

q ; however, reject and resample A if η2−n(A) >

4qn
′/m′√

log (2m′ (1 + 2n)) /π = O(
√
n).

• Game2: Modification of Game1 in that the distribution of the hint xi’s are from the non-zero
centered distribution DΛ⊥(A),S,ci (instead of the zero centered distribution DΛ⊥(A),S,0).

• Game3: Modification of Game2 in that the distribution of A is A ← U
(
Zm′×n′
q

)
. The instance

distribution is identical to that of the (k, S,C)-LWE experiment.
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Let εi(A) for i = 0, . . . , 3 denote the advantage of A fo find the correct k-SIS solution in Gamei.
By definition, ε0(A) = ε. As in [LPSS14], ε1(A) ≥ ε0(A)− 2−Ω(n) by Lemma 3.

Let Φ and Φ′ be the distributions of {xi}i≤k in Game1 and Game2, respectively. Rα(Φ‖Φ′) ≤∏
i≤k Rα

(
DΛ⊥(A),S,0‖DΛ⊥(A),S,ci

)
. The latter can be bounded from above by applying Lemma 5.

The condition of Lemma 5 holds since σm′(S) ≥ ω (
√
n); thus, by the rejection step of the previous

game, it follows that σm′(S) ≥ η2−n(A). This leads toRα(Φ‖Φ′) ≤
∏

i≤k exp
(

α
α−12

−n+2 + απ ‖ci‖2
σm′ (S)2

)
≤∏

i≤k exp
(

α
α−12

−n+2 + αγ
)
≤ exp

(
k ·
(

α
α−12

−n+2 + αγ
))

from the condition σm′(S) ≥
√
π/γ ·

‖C‖. Therefore, the advantage can be bounded from below by ε2(A′) ≥ ε1(A)
α

α−1

Rα(Φ‖Φ′) ≥
ε1(A)

α
α−1

exp
(
k·
(

α
α−1

2−n+2+αγ
)) .

We optimize the value of α at the end of the proof.
Finally, as in [LPSS14], ε3(A′) ≥ ε2(A′)− 2−Ω(n) by Lemma 3. By definition, ε3(A′) = ε′.
The above discussion leads to

ε ≤ exp

(
α− 1

α
· ln
(
ε′ + 2−Ω(n)

)
+ (α− 1) · kγ

)
· 2O

(
k·2−n

)
+ 2−Ω(n).

The inequality is equivalent to the inequality (1) in Section 1. The term exp(·) on the RHS of the
inequality is bounded below by exp

(
ln
(
ε′ + 2−Ω(n)

)
− kγ +

(
− ln

(
ε′ + 2−Ω(n)

)
/α+ α · kγ

))
≥

exp
(
ln
(
ε′ + 2−Ω(n)

)
− kγ +

√
− ln

(
ε′ + 2−Ω(n)

)
· kγ

)
by the inequality of arithmetic mean and

geometric mean, where the equality holds if and only if − ln
(
ε′ + 2−Ω(n)

)
/α = α · kγ, i.e., α =√

− ln
(
ε′+2−Ω(n)

)
kγ . Then, we set the order α =

√
− ln

(
ε′+2−Ω(n)

)
kγ and the above inequality becomes

ε ≤ exp

(
−
(√
− ln

(
ε′ + 2−Ω(n)

)
−
√
kγ
)2)
· 2O

(
k·2−n

)
+ 2−Ω(n).

The inequality is equivalent to the inequality (2) in Section 1 as required. The order α =

√
− ln

(
ε′+2−Ω(n)

)
kγ

that we use satisfies α ∈ (1,+∞] since − ln
(
ε′ + 2−Ω(n)

)
≥ kγ. ut


