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Abstract. The notion of multi-input functional encryption (MI-FE)
was recently introduced by Goldwasser et al. [EUROCRYPT’14] as a
means to non-interactively compute aggregate information on the joint
private data of multiple users. A fundamental limitation of their work,
however, is that the total number of users (which corresponds to the
arity of the functions supported by the MI-FE scheme) must be a priori
bounded and fixed at the system setup time.

In this work, we overcome this limitation by introducing the notion of
unbounded input MI-FE that supports the computation of functions
with unbounded arity. We construct such an MI-FE scheme with indis-
tinguishability security in the selective model based on the existence of
public-coin differing-inputs obfuscation for turing machines and collision-
resistant hash functions.

Our result enables several new exciting applications, including a new
paradigm of on-the-fly secure multiparty computation where new users
can join the system dynamically.
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1 Introduction

Functional Encryption. Traditionally, encryption has been used as a tool
for private end-to-end communication. The emergence of cloud computing has
opened up a host of new application scenarios where more functionality is de-
sired from encryption beyond the traditional privacy guarantees. To address this
challenge, the notion of functional encryption (FE) has been developed in a long
sequence of works [21,13,4,16,17,3,19]. In an FE scheme for a family F , it is pos-
sible to derive decryption keys Kf for any function f ∈ F from a master secret
key. Given such a key Kf and an encryption of a message x, a user can compute
f(x). Intuitively, the security of FE says that an adversarial user should only
learn f(x) and “nothing else about x.”

Multi-Input Functional Encryption. Most of the prior work on FE focuses
on the problem of computing a function over a single plaintext given its cor-
responding ciphertext. However, many applications require the computation of
aggregate information from multiple data sources (that may correspond to dif-
ferent users). To address this issue, recently, Goldwasser et al. [10] introduced
the notion of multi-input functional encryption (MI-FE). Let F be a family of
n-ary functions where n is a polynomial in the security parameter. In an MI-FE
scheme for F , the owner of the master secret key (as in FE) can compute decryp-
tion keys Kf for any function f ∈ F . The new feature in MI-FE is that Kf can
be used to compute f(x1, . . . , xn) from n ciphertexts CT1, . . . ,CTn of messages
x1, . . . , xn respectively, where each CTi is computed independently, possibly us-
ing a different encryption key (but w.r.t. the same master secret key).

As discussed in [10] (see also [11,12]), MI-FE enables several important ap-
plications such as computing on multiple encrypted databases, order-revealing
and property-revealing encryption, multi-client delegation of computation, se-
cure computation on the web [14] and so on. Furthermore, as shown in [10],
MI-FE, in fact, implies program obfuscation [2,8].

A fundamental limitation of the work of Goldwasser et al [10] is that it
requires an a priori (polynomial) bound on the arity n of the function family F .
More concretely, the arity n of the function family must be fixed during system
setup when the parameters of the scheme are generated. This automatically
fixes the number of users in the scheme and therefore new users cannot join the
system at a later point of time. Furthermore, the size of the system parameters
and the complexity of the algorithms depends on n. This has an immediate
adverse impact on the applications of MI-FE: for example, if we use the scheme
of [10] to compute on multiple encrypted databases, then we must a priori fix the
number of databases and use decryption keys of size proportional to the number
of databases.

Our Question: Unbounded Arity MI-FE. In this work, we seek to overcome
this limitation. Specifically, we study the problem of MI-FE for general functions
F with unbounded arity. Note that this means that the combined length of all
the inputs to any function f ∈ F is unbounded and hence we must work in the



Turing machine model of computation (as opposed to circuits). In addition, we
also allow for each individual input to f to be of unbounded length.

More concretely, we consider the setting where the owner of a master secret
key can derive decryption keys KM for a general Turing machine M . For any
index i ∈ 2λ (where λ is the security parameter), the owner of the master secret
key can (at any point in time) compute an encryption key EKi. Finally, given a
list of ciphertexts CT1, . . . ,CT` for any arbitrary `, where each CTi is encryption
of some message xi w.r.t. EKi, and a decryption key KM , one should be able to
learn M(x1, . . . , x`).

We formalize security via a natural generalization of the indistinguishability-
based security framework for bounded arity MI-FE to the case of unbounded
arity. We refer the reader to Section 3 for details but point out that similar to
[10], we also focus on selective security where the adversary declares the challenge
messages at the beginning of the game.

1.1 Our Results

Our main result is an MI-FE scheme for functions with unbounded arity as-
suming the existence of public-coin differing-inputs obfuscation (pc-diO) [20] for
general Turing machines with unbounded input length and collision-resistant
hash functions. We prove indistinguishability-based security of our scheme in
the selective model.

Theorem 1 (Informal). If public-coin differing-inputs obfuscation for general
Turing machines and collision-resistant hash functions exist, then there exists
an indistinguishably-secure MI-FE scheme for general functions with unbounded
arity, in the selective model.

Discussion. Recently, Pandey et al. [20] defined the notion of pc-diO as a weak-
ening of differing-inputs obfuscation (diO) [2,5,1]. In the same work, they also
give a construction of pc-diO for general Turing machines with unbounded in-
put length based on pc-diO for general circuits and public-coin (weak) succinct
non-interactive arguments of knowledge (SNARKs).1 We note that while the
existence of diO has recently come under scrutiny [9], no impossibility results
are known for pc-diO.

On the Necessity of Obfuscation. It was shown by Goldwasser et al. [10]
that MI-FE for bounded arity functions with indistinguishability-based security
implies indistinguishability obfuscation for general circuits. A straightforward
extension of their argument (in the case where at least one of the encryption keys
is known to the adversary) shows that MI-FE for functions with unbounded arity

1 A recent work by [6] shows that SNARKs with privately generated auxiliary inputs
are impossible assuming the existence of pc-diO for circuits. We stress, however, that
[20] only assumes the existence of a much weaker notion of public-coin SNARKs for
their positive result. Therefore, the impossibility result of [6] is not applicable to
[20].



implies indistinguishability obfuscation for Turing machines with unbounded
input length.

Applications. We briefly highlight a few novel applications of our main result:

– On-the-fly secure computation: MI-FE for unbounded inputs naturally yields
a new notion of on-the-fly secure multiparty computation in the correlated
randomness model where new parties can join the system dynamically at
any point in time. To the best of our knowledge, no prior solution for secure
computation (even in the interactive setting) exhibits this property.
In order to further explain this result, we first recall an application of MI-FE
for bounded inputs to secure computation on the web [14] (this is implicit in
[10]): consider a group of n parties who wish to jointly compute a function
f over their private inputs using a web server. Given an MI-FE scheme that
supports f , each party can simply send an encryption of its input xi w.r.t.
to its own encryption key to the server. Upon receiving all the ciphertexts,
the server can then use a decryption key Kf (which is given to it as part of
a correlated randomness setup) to compute f(x1, . . . , xn). Note that unlike
the traditional solutions for secure computation that require simultaneous
participation from each player, this solution is completely non-interactive
and asynchronous (during the computation phase), which is particularly ap-
pealing for applications over the web.2

Note that in the above application, since the number of inputs for the MI-
FE scheme are a priori bounded, it means that the number of parties must
also be bounded at the time of correlated randomness setup. In contrast,
by plugging in our new MI-FE scheme for unbounded inputs in the above
template, we now no longer need to fix the number of users in advance, and
hence new users can join the system on “on-the-fly.” In particular, the same
decryption key Kf that was computed during the correlated randomness
setup phase can still be used even when new users are dynamically added to
the system.

– Computing on encrypted databases of dynamic size: In a similar vein, our MI-
FE scheme enables arbitrary Turing machine computations on an encrypted
database where the size of the database is not fixed a priori and can be
increased dynamically.3 Concretely, given a database of initial size n, we can
start by encrypting each record separately. If the database owner wishes to
later add new records to the database, then she can simply encrypt these
records afresh and then add them to the existing encrypted database. Note
that a decryption key KM that was issued previously can still be used to
compute on the updated database since we allow for Turing machines of
unbounded input length.

2 One should note, however, that due to its non-interactive nature, this solution only
achieves a weaker indistinguishability-based notion of security for secure computa-
tion where the adversary also gets access to the residual function f(xbH , ·). Here
(x0
H ,x

1
H) are vectors of inputs of the honest parties.

3 The same idea can be naturally extended to multiple databases.



We finally remark that this solution also facilitates “flexible” computations:
suppose that a user is only interested in learning the output of M on a subset
S of the records of size (say) `� n. Then, if we were to jointly compute on
the entire encrypted database, the computation time would be proportional
to n. In contrast, our scheme facilitates selective (joint) decryption of the
encryptions of the records in S; as such, the running time of the resulting
computation is only proportional to `.

1.2 Technical Overview

In this work, we consider the indistinguishability-based selective security model
for unbounded arity multi-input functional encryption4. The starting point for
our construction is the MiFE scheme for bounded arity functions [10]. Similar
to their work, in our construction, each ciphertext will consist of two ciphertexts
under pk1 and pk2, and some other elements specific to the particular encryption
key used. At a high level, a function key for a turing machine M will be an
obfuscation of a machine which receives a collection of ciphertexts, decrypts
them using sk1, and returns the output of the turing machine on the decrypted
messages. Before we decrypt the ciphertext with sk1, we also need to have a
some check that the given ciphertext is a valid encryption corresponding to a
certain index. This check needs to be performed by the functional key for the
turing machine M . Moreover, there is a distinct encryption key for each index
and we do not have any a-priori bound on the number of inputs to our functions.
Hence, the kinds of potential checks which need to be performed are unbounded
in number. Dealing with unbounded unbounded number of encryption keys is
the main technical challenge we face in designing an unbounded arity multi-input
functional encryption scheme. We describe this in more detail below.

In the indistinguishability based security game of MiFE, the adversary can
query for any polynomial number of encryption keys and is capable of encrypting
under those. Finally, it provides the two challenge vectors. For the security proof
to go through, we need to switch-off all encryption keys which are not asked by
the adversary. The construction of [10] achieves this by having a separate “flag”
value for each encryption key; this flag is part of the public parameters and also
hardcoded in all the function keys that are given out. This approach obviously
does not work in our case because we are dealing with unbounded number of
encryption keys. This is one of the main technical difficulties which we face in
extending the construction of MiFE for bounded arity to our case. We would
like to point out that these problems can be solved easily using diO along with
signatures, but we want our construction to only rely on pc-diO.

At a high level, we solve this issue of handling and blocking the above men-
tioned unbounded number of keys as follows: The public parameters of our
scheme will consist of a pseudorandom string u = G(z) and a random string

4 It was shown in [10] that simulation-based security even for bounded arity MiFE
implies the strong notion of black-box obfuscation. Hence, we do not consider that
notion in this paper.



α. An encryption key EKi for index i will consist of a proof that either there
exists a z such that u = G(z) or there exists a string x such that x[j] = i and
α = h(x), where h is a collision resistant hash function. Our programs only con-
tain u and α hardcoded and hence their size is independent of the number of
keys we can handle. In our sequence of hybrids, we will change u to be a random
string and α = h(I), where I denotes the indices of the keys given out to the
adversary. The encryption keys (which are asked by the adversary) will now use
a proof for the second part of the statement and we show that a valid proof for
an encryption key which is not given out to the adversary leads to a collision in
the hash function.

Another issue which occurs is relating to the challenge ciphertexts for the
indices for which the encryption key is not given to the adversary. Consider the
setting when there is some index, say i∗, in challenge vector such that EKi∗ is
secret. In the security game of MiFE we are guaranteed that output of M on
any subset of either of the challenge ciphertexts along with any collection of the
ciphertexts which the adversary can generate, is identical for both the challenge
vectors. As mentioned before, for security proof to go through we need to ensure
that for i∗, there should only exist the encryption of x0i∗ and x1i∗ (which are the
challenge messages) and nothing else. Otherwise, if the adversary is able to come
up with a ciphertext of y∗ 6= xbi∗ , he might be able to distinguish trivially. This
is because we do not have any output restriction corresponding to y∗. In other
words, we do not want to rule out all ciphertexts under EKi∗ ; we want to rule
out everything except x0i∗ and x1i∗ . In the MiFE for bounded inputs [10], this
problem was solved by hardcoding these specific challenge ciphertexts in public
parameters as well as function keys. In our case, this will clearly not work since
there is no bound on length of challenge vectors. We again use ideas involving
collision resistant hash functions to deal with these issues. In particular, we hash
the challenge vector and include a commitment to this hash value as part of the
public parameters as well as the function keys. Note that we can do this because
we only need to prove the selective security of our scheme.

We note that since collision resistant hash-functions have no trapdoor secret
information, they work well with pc-diO assumption. We will crucially rely on
pc-diO property while changing the program from using sk1 to sk2. Note that
there would exist inputs on which the programs would differ, but these inputs
would be hard to find for any PPT adversary even given all the randomness used
to sample the two programs.

MiFE with unbounded arity implies iO for turing machines with un-
bounded inputs. First we recall the proof for the fact that MiFE with bounded
number of inputs implies iO for circuits. To construct an iO for circuit C with
n inputs, consider an MiFE scheme which supports arity n+ 1. Under the first
index EK1, encrypt C and under keys {2, . . . , n+1} give out encryptions of both
0 and 1 under each index. Also, the secret key corresponding to universal circuit
is given out. For our case, consider the setting of two encryption keys EK1 and
EK2. We give out the encryption of the machine M under EK1 and also the



key EK2. That is, we are in the partial public key setting. We also give out the
secret key corresponding to a universal turing machine which accepts inputs of
unbounded length. Now, the user can encrypt inputs of unbounded length under
the key EK2 by encrypting his input bit by bit. Note that our construction allows
encryption of multiple inputs under the same key.

2 Preliminaries

In this section, we describe the primitives used in our construction. Let λ be the
security parameter.

2.1 Public-Coin Differing-Inputs Obfuscation

The notion of public coin differing-inputs obfuscation (pc-diO) was recently in-
troduced by Yuval Ishai, Omkant Pandey, and Amit Sahai [15].

Let N denote the set of all natural numbers. We denote by M = {Mλ}λ∈N,
a parameterized collection of Turing machines (TM) such that Mλ is the set
of all TMs of size at most λ which halt within polynomial number of steps on
all inputs. For x ∈ {0, 1}∗, if M halts on input x, we denote by steps(M, x) the
number of steps M takes to output M(x). We also adopt the convention that
the output M(x) includes the number of steps M takes on x, in addition to the
actual output. The following definitions are taken almost verbatim from [15].

Definition 1 (Public-Coin Differing-Inputs Sampler for TMs). An ef-
ficient non-uniform sampling algorithm Sam = {Samλ} is called a public-coin
differing-inputs sampler for the parameterized collection of TMs M = {Mλ} if
the output of Samλ is always a pair of Turing Machines (M0,M1) ∈ Mλ ×Mλ

such that |M0| = |M1| and for all efficient non-uniform adversaries A = {Aλ},
there exists a negligible function ε such that for all λ ∈ N :

Pr
r

[
M0(x) 6= M1(x)∧

steps(M0, x) = steps(M1, x) = t

∣∣∣∣ (M0,M1)← Samλ(r);
(x, 1t)← Aλ(r)

]
6 ε(λ)

By requiring Aλ to output 1t, we rule out all inputs x for which M0,M1 may
take more than polynomial steps.

Definition 2 (Public-Coin Differing-Inputs Obfuscator for TMs). A
uniform PPT algorithm O is called a public-coin differing-inputs obfuscator for
the parameterized collection of TMs M = {Mλ} if the following requirements
hold:

– Correctness: ∀λ,∀M ∈Mλ,∀x ∈ {0, 1}∗, we have
Pr[M′(x) = M(x) : M′ ← O(1λ,M)] = 1.

– Security: For every public-coin differing-inputs sampler Sam = {Samλ} for
the collection M, for every efficient non-uniform distinguishing algorithm
D = {Dλ}, there exists a negligible function ε such that for all λ :∣∣∣∣Pr[Dλ(r,M′) = 1 : (M0,M1)← Samλ(r),M′ ← O(1λ,M0)]−

Pr[Dλ(r,M′) = 1 : (M0,M1)← Samλ(r),M′ ← O(1λ,M1)]

∣∣∣∣ ≤ ε(λ)



where the probability is taken over r and the coins of O.
– Succinctness and input-specific running time: There exists a (global)

polynomial s′ such that for all λ, for all M ∈ Mλ, for all M′ ← O(1λ,M),
and for all x ∈ {0, 1}∗, steps(M′, x) 6 s′(λ, steps(M, x)).

We note that the size of the obfuscated machine M′ is always bounded by the
running time of O which is polynomial in λ. More importantly, the size of M′

is independent of the running time of M . This holds even if we consider TMs
which always run in polynomial time. This is because the polynomial bounding
the running time of O is independent of the collection M being obfuscated. It
is easy to obtain a uniform formulation from our current definitions.

2.2 Non Interactive Proof Systems

We start with the syntax and formal definition of a non-interactive proof system.
Then, we give the definition of non-interactive witness indistinguishable proofs
(NIWI) and strong non-interactive witness indistinguishable proofs (sNIWI).

Syntax : Let R be an efficiently computable relation that consists of pairs
(x,w), where x is called the statement and w is the witness. Let L denote the
language consisting of statements in R. A non-interactive proof system for a
language L consists of the following algorithms:

– Setup CRSGen(1λ) is a PPT algorithm that takes as input the security
parameter λ and outputs a common reference string crs.

– Prover Prove(crs, x, w) is a PPT algorithm that takes as input the common
reference string crs, a statement x and a witness w. If (x,w) ∈ R, it produces
a proof string π. Else, it outputs fail.

– Verifier Verify(crs, x, π) is a PPT algorithm that takes as input the com-
mon reference string crs and a statement x with a corresponding proof π. It
outputs 1 if the proof is valid, and 0 otherwise.

Definition 3 (Non-interactive Proof System). A non-interactive proof sys-
tem (CRSGen,Prove,Verify) for a language L with a PPT relation R satisfies the
following properties:

– Perfect Completeness : For every (x,w) ∈ R, it holds that

Pr [Verify(crs, x,Prove(crs, x, w))] = 1

where crs
$←− CRSGen(1λ), and the probability is taken over the coins of

CRSGen, Prove and Verify.
– Statistical Soundness: For every adversary A, it holds that

Pr
[
x /∈ L ∧ Verify(crs, x, π) = 1

∣∣ crs← CRSGen(1λ); (x, π)← A(crs)
]
6 negl(λ)

If the soundness property only holds against PPT adversaries, then we call it an
argument system.



Definition 4. (Strong Witness Indistinguishability sNIWI). Given a non-interactive
proof system (CRSGen,Prove,Verify) for a language L with a PPT relation R, let
D0 and D1 be distributions which output an instance-witness pair (x,w). We say
that the proof system is strong witness-indistinguishable if for every adversary A
and for all PPT distinguishers D′, it holds that

If
∣∣∣Pr[D′(x) = 1|(x,w)← D0(1λ)]− Pr[D′(x) = 1|(x,w)← D1(1λ)]

∣∣∣ 6 negl(λ)

Then
|Pr[A(crs, x,Prove(crs, x, w)) = 1|(x,w)← D0(1λ)] −
Pr[A(crs, x,Prove(crs, x, w)) = 1|(x,w)← D1(1λ)]| 6 negl(λ)

The proof system of [7] is a strong non-interactive witness indistinguishable proof
system.

2.3 Collision Resistent Hash Functions.

In this section, we describe the collision resistant hash functions mapping ar-
bitrary polynomial length strings to {0, 1}λ. We begin by defining a family of
collision resistant hash functions mapping 2λ length strings to λ length strings.

Definition 5. Consider a family of hash functions H′λ such that every h′ ∈ H′λ
maps {0, 1}2λ to {0, 1}λ. H′λ is said to be a collision resistant hash family if for
every PPT adversary A,

Pr
[
h′

$←− H′λ; (x, y)← A(h′);h′(x) = h′(y)
]
6 negl(λ)

In our scheme, we will need hash functions which hash unbounded length
strings to {0, 1}λ. We describe these next, followed by a simple construction
using Merkle trees [18]. In our construction, each block will consists of λ bits.
Note that it is sufficient to consider a hash family hashing 2λ blocks to λ bits,
i.e., hashing strings of length at most λ2λ to λ bits.

Definition 6. [Family of collision resistant hash functions for unbounded length
strings] Consider a family of hash functions Hλ such that every h ∈ Hλ maps

strings of length at most {0, 1}λ2λ to {0, 1}λ. Additionally, it supports the fol-
lowing functions:

– H.Open(h, x, i, y): Given a hash function key h, a string x ∈ {0, 1}∗ such
that |x| 6 λ2λ, an index i ∈ [|x|], and y ∈ {0, 1}λ, it outputs a short proof

γ ∈ {0, 1}λ2

that x[i] = y.
– H.Verify(h, y, u, γ, i): Given a hash function key h, a string y ∈ {0, 1}λ, a

string u ∈ {0, 1}λ, a string γ ∈ {0, 1}λ2

and an index i ∈ [2λ], it outputs
either accept or reject. This algorithm essentially verifies that there exists a
x such that y = h(x) and x[i] = u.

For security it is required to satisfy the following property of collision resistance.
Collision Resistance. The hash function family Hλ is said to be collision re-
sistant if for every PPT adversary A,

Pr
[
h

$←− Hλ; (x, u, γ, i)← A(h) s.t. h(x) = y;x[i] 6= u;H.Verify(h, y, u, γ, i) = accept
]
6 negl(λ)



Construction : The above described scheme can be constructed by a merkle
hash tree based construction on standard collision resistant hash functions of
Definition 5.

3 Unbounded Arity Multi-Input Functional Encryption

Multi-input functional encryption(MiFE) for bounded arity functions (or cir-
cuits) was first introduced in [11,12]. In other words, for any bound n on the
number of inputs, they designed an encryption scheme such that the owner of
the master secret key MSK, can generate function keys skf corresponding to
functions f accepting n inputs. That is, skf computes on CT1, . . . ,CTn to pro-
duce f(x1, . . . , xn) as output where CTi is an encryption of xi. In this work, we
remove the a-priori bound n on the cardinality of the function.

In this work, we consider multi-input functional encryption for functions
which accept unbounded number of inputs. That is, the input length is not
bounded at the time of function key generation. Since we are dealing with FE
for functions accepting unbounded number of inputs, in essence, we are dealing
with TMs (with unbounded inputs) instead of circuits (with bounded inputs).
Similar to MiFE with bounded inputs which allows for multi-party computation
with bounded number of players, our scheme allows multiparty computation
with a-priori unbounded number of parties. In other words, our scheme allows
for more parties to join on-the-fly even after function keys have been given out.
Moreover, similar to original MiFE, we want that each party is able to encrypt
under different encryption keys, i.e., we want to support unbounded number of
encryption keys. We want to achieve all this while keeping the size of the public
parameters, master secret key as well as the function keys to be bounded by
some fixed polynomial in the security parameter.

As mentioned before, we consider unbounded number of encryption keys,
some of which may be made public, while rest are kept secret. When all the
encryption keys corresponding to the challenge ciphertexts of the adversary are
public, it represents the “public-key setting”. On the other hand, when none
of the keys are made public, it is called the “secret-key” setting. Our modeling
allows us to capture the general setting when any polynomial number of keys
can be made public. This can correspond to any subset of the keys associated
with the challenge ciphertexts as well as any number of other keys. Note that we
have (any) unbounded polynomial number of keys in our system unlike previous
cases, where the only keys are the ones associated with challenge ciphertext.

As another level of generality, we allow that the turing machines or the
functions can be invoked with ciphertexts corresponding to any subset of the
encryption keys. Hence, if CTj is an encryption of xj under key EKij then skM
on CT1, . . . ,CTn computes M((x1, i1), . . . , (xn, in)). Here skM corresponds to the
key for the turing machine M.

Now, we first present the syntax and correctness requirements for unbounded
arity multi-input functional encryption in Section 3.1 and then present the se-
curity definition in Section 3.2.



3.1 Syntax

Let X = {Xλ}λ∈N, Y = {Yλ}λ∈N and K = {Kλ}λ∈N be ensembles where each
Xλ,Yλ,Kλ ⊆ [2λ]. Let M = {Mλ}λ∈N be an ensemble such that each M ∈ Mλ

is a turing machine accepting an (a-priori) unbounded polynomial (in λ) length
of inputs. Each input string to a function M ∈ Mλ is a tuple over Xλ × Kλ. A
turing machine M ∈Mλ, on input a n length tuple ((x1, i1), (x2, i2), . . . , (xn, in))
outputs M((x1, i1), (x2, i2), . . . , (xn, in)) ∈ Yλ, where (xj , ij) ∈ Xλ × Kλ for all
j ∈ [n] and n(λ) is any arbitrary polynomial in λ.

An unbounded arity multi-input functional encryption scheme FE forM con-
sists of five algorithms (FE.Setup,FE.EncKeyGen,FE.Enc,FE.FuncKeyGen,FE.Dec)
described below.

– Setup FE.Setup(1λ) is a PPT algorithm that takes as input the security
parameter λ and outputs the public parameters PP and the master secret
key MSK.

– Encryption Key Generation FE.EncKeyGen(PP, i,MSK) is a PPT algo-
rithm that takes as input the public parameters PP, an index i ∈ Kλ and
master secret key MSK, and outputs the encryption key EKi corresponding
to index i.

– Encryption FE.Enc(PP,EKi, x) is a PPT algorithm that takes as input pub-
lic parameters PP, an encryption key EKi and an input message x ∈ Xλ and
outputs a ciphertext CT encrypting (x, i). Note that the ciphertext also in-
corporates the index of the encryption key.

– Function Key Generation FE.FuncKeyGen(PP,MSK,M) is a PPT algo-
rithm that takes as input public parameters PP, the master secret key MSK,
a turing machine M ∈Mλ and outputs a corresponding secret key SKM.

– Decryption FE.Dec(SKM,CT1,CT2, . . . ,CTn) is a deterministic algorithm
that takes as input a secret key SKM and a set of ciphertexts CT1, . . . ,CTn
as input and outputs a string y ∈ Yλ. Note that there is no a-priori bound
on n.

Definition 7 (Correctness). An unbounded arity multi-input functional en-
cryption scheme FE for M is correct if ∀M ∈ Mλ, ∀n s.t n = p(λ), for some
polynomial p, all (x1, x2, . . . , xn) ∈ Xnλ and all I = (i1, . . . , in) ∈ Knλ :

Pr


(PP,MSK)← FE.Setup(1λ);EKI ← FE.EncKeyGen(PP, I,MSK);
SKM ← FE.FuncKeyGen(PP,MSK,M);
FE.Dec(SKM,FE.Enc(PP,EKi1 , x1), . . . ,FE.Enc(PP,EKin , xn)) 6=
M((x1, i1), . . . , (xn, in))

 6 negl(λ)

Here, EKI denotes a set of encryption keys corresponding to the indices in the
set I. For each i ∈ I, we run FE.EncKeyGen(PP, i,MSK) and we denote that in
short by FE.EncKeyGen(PP, I,MSK).



3.2 Security Definition

We consider indistinguishability based selective security (or IND-security, in
short) for unbounded arity multi-input functional encryption. This notion will
be defined very similar to the security definition in original MiFE papers [11,12].
We begin by recalling this notion.

Let us consider the simple case of 2-ary functions f(·, ·) such that adversary
requests the function key for f as well as the encryption key for the second index.
Let the challenge ciphertext be (x0, y0) and (x1, y1). For the indistinguishability
of challenge vectors, first condition required is that f(x0, y0) = f(x1, y1). More-
over, since the adversary has the encryption key for the second index, he can
encrypt any message corresponding to the second index. Hence, if there exists
a y∗ such that f(x0, y∗) 6= f(x1, y∗), then distinguishing is easy! Hence, they
additionally require that f(x0, ·) = f(x1, ·) for all the function queries made by
the adversary. That is, the function queries made have to be compatible with the
encryption keys requested by the adversary; otherwise the task of distinguishing
is trivial.

Similar to this notion, since in our case as well, the adversary can request
any subset of the encryption keys, we require that the function key queries are
compatible with encryption key queries. Since we allow the turing machine to be
invoked with any subset of the key indices and potentially unbounded number
of key indices, this condition is much more involved in our setting. At a high
level, we require that the function outputs should be identical for any subset
of the two challenge inputs combined with any vector of inputs for indices for
which adversary has the encryption keys. More formally, we define the notion of
I-compatibility as follows:

Definition 8 (I-Compatibility). Let {M} be any set of turing machines such
that every turing machine M in the set belongs to Mλ. Let I ⊆ Kλ such that
|I| = q(λ) for some polynomial q. Let X0 and X1 be a pair of input vectors, where
Xb = {(xb1, k1), (xb2, k2), . . . , (xbn, kn)} such that n = p(λ) for some polynomial
p. We say that {M} and (X0,X1) are I-compatible if they satisfy the following
property:

– For every M ∈ {M}, every I′ = {i1, . . . , iα} ⊆ I, every J = {j1, . . . , jβ} ⊆ [n],
and every y1, . . . , yα ∈ Xλ and every permutation π : [α+ β]→ [α+ β] :

M
(
π
(

(y1, i1), (y2, i2), . . . , (yα, iα), (x0j1 , kj1), (x0j2 , kj2), . . . , (x0jβ , kjβ )
))

=

M
(
π
(

(y1, i1), (y2, i2), . . . , (yα, iα), (x1j1 , kj1), (x1j2 , kj2), . . . , (x1jβ , kjβ )
))

Here, π(a1, a2, . . . , aα+β) denotes the permutation of the elements a1, . . . , aα+β.

We now present our formal security definition for IND-secure unbounded arity
multi-input functional encryption.

Selective IND-Secure MiFE . This is defined using the following game be-
tween the challenger and the adversary.



Definition 9 (Indistinguishability-Based Selective Security). We say that
an unbounded arity multi-input functional encryption scheme FE for M is IND-
secure if for every PPT adversary A = (A0,A1), for all polynomials p, q and for
all m = p(λ) and for all n = q(λ), the advantage of A defined as

AdvFE,INDA (1λ) =
∣∣∣Pr

[
INDFE

A (1λ) = 1
]
− 1

2

∣∣∣
is negl(λ) where the experiment is defined below.

Experiment INDFE
A (1λ) :

(I,X0,X1, st0)← A0(1λ) where |I| = m; X` = {(x`1, k1), (x`2, k2), . . . , (x`n, kn)}
(PP,MSK)← FE.Setup(1λ)
Compute EKi ← FE.EncKeyGen(PP, i,MSK), ∀i ∈ I. Let EKI = {EKi}i∈I.
b

$←− {0, 1}; CTi ← FE.Enc(EKki , x
b
i ), ∀i ∈ [n]. Let CT = {CT1, . . . ,CTn}

b′ ← AFE.FuncKeyGen(PP,MSK,·)
1 (st0,PP,EKI,CT)

Output: (b = b′)

Fig. 1

In the above experiment, we require :

– Let {M} denote the entire set of function key queries made by A1. Then, the
challenge message vectors X0 and X1 chosen by A1 must be I-compatible
with {M}.

4 A Construction from Public-Coin Differing-Inputs
Obfuscation

Notation : Without loss of generality, let’s assume that every plaintext message
and encryption key index is of length λ where λ denotes the security parameter of
our scheme. Let (CRSGen,Prove,Verify) be a statistically sound, non-interactive
strong witness-indistinguishable proof system for NP, O denote a public coin
differing-inputs obfuscator, PKE = (PKE.Setup,PKE.Enc,PKE.Dec) be a seman-
tically secure public key encryption scheme, com be a statistically binding and
computationally hiding commitment scheme and G be a pseudorandom genera-
tor from {0, 1}λ to {0, 1}2λ. Without loss of generality, let’s say com commits to
a string bit-by-bit and uses randomness of length λ to commit to a single bit.
Let {Hλ} be a family of merkle hash functions such that every h ∈ Hλ maps

strings from {0, 1}λ2λ to {0, 1}λ. That is, the merkle tree has depth λ.
We now describe our scheme FE = (FE.Setup,FE.EncKeyGen,FE.Enc,FE.FuncKeyGen,FE.Dec)
as follows:



– Setup FE.Setup(1λ) :
The setup algorithm first computes crs ← CRSGen(1λ). Next, it computes
(pk1, sk1)← PKE.Setup(1λ), (pk2, sk2)← PKE.Setup(1λ), (pk3, sk3)← PKE.Setup(1λ)
and (pk4, sk4) ← PKE.Setup(1λ). Let α = com(0λ;u), β1 = com(0λ;u1) and
β2 = com(0λ;u2) where u, u1 and u2 are random strings of length λ2. Choose

a hash function h← Hλ. Choose z
$←− {0, 1}λ and compute Z = G(z).

The public parameters are PP = (crs, pk1, pk2, pk3, pk4, h, α, β1, β2, Z).
The master secret key is MSK = (sk1, z, u, u1, u2).

– Encryption Key Generation FE.EncKeyGen(PP, i,MSK) :

Given an index i, this algorithm first defines bi = z||0λ||0λ2 ||0λ2 ||0λ. Then,
it computes di = PKE.Enc(pk4, bi; r) for some randomness r and σi ←
Prove(crs, sti, wi) for the statement that sti ∈ L1 using witness wi = (bi, r)
where sti = (di, i, pk4, α, Z).
L1 is defined corresponding to the relation R1 defined below.

Relation R1 :
Instance : sti = (di, i, pk4, α, Z)
Witness : w = (bi, r), where bi = z||hv||γ||u||t
R1(sti, w) = 1 if and only if the following conditions hold :

1. di = PKE.Enc(pk4, bi; r) and
2. The or of the following statements must be true :

(a) G(z) = Z
(b) H.Verify(h, hv, i, γ, t) = 1 and com(hv;u) = α

The output of the algorithm is the ith encryption key EKi = (σi, di, i), where
σi is computed using witness for statements 1 and 2(a) of R1.

– Encryption FE.Enc(PP,EKi, x) :
To encrypt a message x with the ith encryption key EKi, the encryption algo-
rithm first computes c1 = PKE.Enc(pk1, x||i; r1) and c2 = PKE.Enc(pk2, x||i; r2).

Define string a = x||i||r1||0λ
2 ||0λ||0λ2 ||x||i||r2||0λ

2 ||0λ||0λ2 ||0λ and compute
c3 = PKE.Enc(pk3, a; r3). Next, it computes a proof π ← Prove(crs, y, w) for
the statement that y ∈ L2 using witness w where :
y = (c1, c2, c3, pk1, pk2, pk3, pk4, β1, β2, i, di, α, Z)
w = (a, r3, σi)
L2 is defined corresponding to the relation R2 defined below.

Relation R2 :
Instance : y = (c1, c2, c3, pk1, pk2, pk3, pk4, β1, β2, i, di, α, Z)
Witness : w = (a, r3, σi) where a = x1||i1||r1||u1||hv1||γ1||x2||i2||r2||u2||hv2||γ2||t
R2(y, w) = 1 if and only if the following conditions hold :

1. c3 = PKE.Enc(pk3, a; r3) and
2. The or of the following two statements 2(a) and 2(b) is true :

(a) The or of the following two statements is true :



i. (c1 = PKE.Enc(pk1, (x1||i1); r1) and c2 = PKE.Enc(pk2, (x1||i1); r2)
and i1 = i and Verify(crs, sti, σi) = 1 such that
sti = (di, i, pk4, α, Z) ∈ L1); OR

ii. (c1 = PKE.Enc(pk1, (x2||i2); r1) and c2 = PKE.Enc(pk2, (x2||i2); r2)
and i2 = i and Verify(crs, sti, σi) = 1 such that
sti = (di, i, pk4, α, Z) ∈ L1);

(b) c1,c2 encrypt (x1||i1),(x2||i2) respectively, which may be different but
then both β1 and β2 contain a hash of one of them (which may be
different). That is,

i. c1 = PKE.Enc(pk1, (x1||i1); r1) and c2 = PKE.Enc(pk2, (x2||i2); r2)
ii. H.Verify(h, hv1, (x1||i1), γ1, t) = 1 and β1 = com(hv1;u1) OR

H.Verify(h, hv1, (x2||i2), γ1, t) = 1 and β1 = com(hv1;u1)
iii. H.Verify(h, hv2, (x1||i1), γ2, t) = 1 and β2 = com(hv2;u2) OR

H.Verify(h, hv2, (x2||i2), γ2, t) = 1 and β2 = com(hv2;u2)
The output of the algorithm is the ciphertext CT = (c1, c2, c3, di, π, i). π is
computed for the AND of statements 1 and 2(a)i of R2.

– Function Key Generation FE.FuncKeyGen(PP,MSK,M) : The algorithm
computes SKM = O(GM) where the program GM is defined as follows :

Program GM

Input : CT1,CTn, . . . ,CTn
Constants : (sk1,PP), i.e. (sk1, (crs, pk1, pk2, pk3, pk4, h, α, β1, β2, Z))
1. For every i ∈ [n] :

(a) Parse CTi = (ci,1, ci,2, ci,3, dki , πi, ki)
(b) Let yi = (ci,1, ci,2, ci,3, pk1, pk2, pk3, pk4, β1, β2, ki, dki , α, Z) be the state-

ment corresponding to the proof string πi. If Verify(crs, yi, πi) = 0, then
stop and output ⊥. Else, continue to the next step.

(c) Compute (xi||ki) = PKE.Dec(sk1, ci,1)
2. Output M((x1, k1), (x2, k2), . . . , (xn, kn))

Fig. 2

– Decryption FE.Dec(SKM,CT1, . . . ,CTn) : It computes and outputs SKM(CT1, . . . ,CTn).

5 Security Proof

We now prove that the proposed scheme FE is selective IND-secure.

Theorem 2. Let M = {Mλ}λ∈N be a parameterized collection of Turing ma-
chines (TM) such that Mλ is the set of all TMs of size at most λ which halt
within polynomial number of steps on all inputs. Then, assuming there exists a



public-coin differing-inputs obfuscator for the class M, a non-interactive strong
witness indistinguishable proof system, a public key encryption scheme, a non-
interactive perfectly binding computationally hiding commitment scheme, a pseu-
dorandom generator and a family of merkle hash functions, the proposed scheme
FE is a selective IND-secure MIFE scheme with unbounded arity for Turing ma-
chines in the class M according to definition 9.

We will prove the above theorem via a series of hybrid experiments H0, . . . ,H20

where H0 corresponds to the real world experiment with challenge bit b = 0 and
H20 corresponds to the real world experiment with challenge bit b = 1.

– Hybrid H0: This is the real experiment with challenge bit b = 0. The public
parameters are
PP = (crs, pk1, pk2, pk3, pk4, h, α, β1, β2, Z) such that α = com(0λ;u), β1 =

com(0λ;u1),β2 = com(0λ;u2) and Z = G(z), where z
$←− {0, 1}λ.

– Hybrid H1: This hybrid is identical to the previous hybrid except that β1
and β2 are computed differently. β1 is computed as a commitment to hash
of the string s1 = (x01||k1, . . . , x0n||kn) where {(x01, k1), . . . , (x0n, kn)} is the
challenge message vector X0. Similarly, β2 is computed as a commitment
to hash of the string s2 = (x11||k1, . . . , x1n||kn) where {(x11, k1), . . . , (x1n, kn)}
is the challenge message vector X1. That is, β1 = com(h(s1);u1) and β2 =
com(h(s2);u2). There is no change in the way the challenge ciphertexts are
computed.
Note that s1 and s2 are padded with sufficient zeros to satisfy the input
length constraint of the hash function.

– Hybrid H2: This hybrid is identical to the previous hybrid except that we
change the third component (c3) in every challenge ciphertext. Let the ith

challenge ciphertext be CTi = (ci,1, ci,2, ci,3, dki , πi, ki) for all i ∈ [n]. Let
s1 = (x01||k1, . . . , x0n||kn) and s2 = (x11||k1, . . . , x1n||kn). In the previous hy-

brid ci,3 is an encryption of ai = x0i ||ki||r1||0λ
2 ||0λ||0λ2 ||x0i ||ki||r2||0λ

2 ||0λ||0λ2 ||0λ.
Now, ai is changed to ai = x0i ||ki||r1||u1||h(s1)||γ1,i||x1i ||ki||r2||u2||h(s2)||γ2,i||i
where γ1,i, γ2,i are the openings for h(s1) and h(s2) w.r.t. x0i ||ki and x1i ||ki, re-
spectively. That is, γ1,i = H.Open(h, s1, i, x

0
i ||ki) and γ2,i = H.Open(h, s2, i, x

1
i ||ki).

Since ai has changed, consequently, ciphertext ci,3 which is an encryption of
ai, witness wi for πi and proof πi change as well for all i ∈ [n]. Note that
for all challenge ciphertexts, π still uses the witness for statement 1 and 2(a).

– Hybrid H3: This hybrid is identical to the previous hybrid except that we
change the second component in every challenge ciphertext. Let the ith chal-
lenge ciphertext be CTi where i ∈ [n]. Let’s parse CTi = (ci,1, ci,2, ci,3, dki , πi, ki).
We change ci,2 to be an encryption of x1i ||ki. Further, πi is now computed
using the AND of statements 1 and 2(b) in the relation R2.



– Hybrid H4: This hybrid is identical to the previous hybrid except that α
is computed as a commitment to hash of the string s = (k1, k2, . . . , km)
where {k1, . . . , km} is the set of indices I for which the adversary requests
encryption keys. i.e α = com(h(s);u).
Note that in this hybrid, for any encryption key EKi, the proof σi is un-
changed and is generated using the and of statements 1 and 2(a).

– Hybrid H5: This hybrid is identical to the previous hybrid except that we
change the second component dki for every encryption key EKki that is given
out to the adversary. First, let’s denote s = (k1, . . . , km) as in the previous

hybrid. dki is an encryption of bki = z||0λ||0λ2 ||0λ2 ||0λ. Now, bki is changed
to bki = z||h(s)||γi||u1||i where u1 is the randomness used in the commit-
ment of α and γi is the opening of the hash values in the merkle tree. That
is, γi = H.Open(h, s, i, ki). Consequently, dki which is an encryption of bki
also changes. Since bki has changed, the witness used in computing the proof
σki has also changed. Note that σki still uses the witness for statements 1
and 2(a).

– Hybrid H6: This hybrid is identical to the previous hybrid except that for
every encryption key EKki that is given out to the adversary, σki is now
computed using the AND of statements 1 and 2(b) in the relation R1.

– Hybrid H7: This hybrid is identical to the previous hybrid except that in
the public parameters Z is chosen to be a uniformly random string. There-
fore, now G(z) 6= Z except with negligible probability.

– Hybrid H8: Same as the previous hybrid except that the challenger sets the
master secret key to have sk2 instead of sk1 and for every function key query
M, the corresponding secret key SKM is computed as SKM ← O(G′M) where
the program G′M is the same as GM except that :
1. It has secret key sk2 as a constant hardwired into it instead of sk1.
2. It decrypts the second component of each input ciphertext using sk2.

That is, in step 1(C), xi||ki is computed as xi||ki = PKE.Dec(sk2, ci,2)

– Hybrid H9: This hybrid is identical to the previous hybrid except that in
the public parameters Z is chosen to be the output of the pseudorandom
generator applied on the seed z. That is, Z = G(z).

– Hybrid H10: This hybrid is identical to the previous hybrid except that for
every encryption key EKki that is given out to the adversary, we change σki to
now be computed using the AND of statements 1 and 2(a) in the relation R1.

Remark: Note that statement 2(b) is true as well for all EKki but we choose
to use 2(a) due to the following technical difficulty. Observe that at this point
we need to somehow change each ci,1 to be an encryption of x1i ||ki instead
of x0i ||ki. When we make this switch, the statement 2(b) in R2 is no longer



true. This is because β1 will not be valid w.r.t. ci,1 and ci,2 since both are
now encryptions of x1i ||ki. So we need to make statement 2(a) true for all
challenge ciphertexts including the ones under some EKkj such that kj /∈ I.

– Hybrid H11: This hybrid is identical to the previous hybrid except that we
change the first component in every challenge ciphertext. Let the ith chal-
lenge ciphertext be CTi where i ∈ [n]. Let’s parse CTi = (ci,1, ci,2, ci,3, dki , πi, ki).
We change ci,1 to be an encryption of x1i ||ki. Then, we change the proof πi
to be computed using the AND of statements 1 and 2(a) in the relation R2.

– Hybrid H12: This hybrid is identical to the previous hybrid except that β1 is
computed differently. β1 is computed as a commitment to hash of the string
s2 = (x11||k1, . . . , x1n||kn) where {(x11, k1), . . . , (x1n, kn)} is the challenge mes-
sage vector X1. That is, β1 = com(h(s2);u1)
Note that s2 is padded with sufficient zeros to satisfy the input length con-
straint of the hash function. There is no change in the way the challenge
ciphertexts are computed.

– Hybrid H13: This hybrid is identical to the previous hybrid except that we
change the proof in every challenge ciphertext. Let the ith challenge cipher-
text be CTi where i ∈ [n]. Let’s parse CTi = (ci,1, ci,2, ci,3, dki , πi, ki). We
change πi to now be computed using the AND of statements 1 and 2(b) in
the relation R2.

– Hybrid H14: This hybrid is identical to the previous hybrid except that for
every encryption key EKki that is given out to the adversary, we change σki to
now be computed using the AND of statements 1 and 2(b) in the relation R1.

– Hybrid H15: This hybrid is identical to the previous hybrid except that in
the public parameters Z is chosen to be a uniformly random string.

– Hybrid H16: This hybrid is identical to the previous hybrid except that
the master secret key is set back to having sk1 instead of sk2 and for every
function key query M, the corresponding secret key SKM is computed using
obfuscation of the original program GM, i.e SKM ← O(GM).

– Hybrid H17: This hybrid is identical to the previous hybrid except we change
Z to be the output of the pseudorandom generator applied on the seed z.
That is, Z = G(z).

– Hybrid H18: This hybrid is identical to the previous hybrid except that for
every encryption key EKki that is given out to the adversary, σki is now
computed using the AND of statements 1 and 2(a) in the relation R1.

– Hybrid H19: This hybrid is identical to the previous hybrid except that we
change the second component dki for every encryption key EKki that is given



out to the adversary. We change bki to be bki = z||0λ||0λ2 ||0λ2 ||0λ and conse-
quently dki also changes as it is the encryption of bki . Since bki has changed,
the witness used in computing the proof σki has also changed. Note that σki
still uses the witness for statements 1 and 2(a).

– Hybrid H20: This hybrid is identical to the previous hybrid except that we
change α to be a commitment to 0λ. That is, α = com(0λ;u).

– Hybrid H21: This hybrid is identical to the previous hybrid except that for
every challenge ciphertext key CTi that is given out to the adversary, πi is
now computed using the AND of statements 1 and 2(a) in the relation R2.

– Hybrid H22: This hybrid is identical to the previous hybrid except that we
change the third component in every challenge ciphertext. Let the ith chal-
lenge ciphertext be CTi where i ∈ [n]. Let’s parse CTi = (ci,1, ci,2, ci,3, dki , πi, ki)
where ci,3 is an encryption of ai. Now, ai is changed to

ai = x1i ||ki||r1||0λ
2 ||0λ||0λ2 ||x1i ||ki||r2||0λ

2 ||0λ||0λ2 ||0λ. Consequently, cipher-
text ci,3 which is an encryption of ai will also change. Note that for all chal-
lenge ciphertexts, π still uses the witness for statement 1 and 2(a).

– Hybrid H23: This hybrid is identical to the previous hybrid except that
β1 and β2 are both computed to be commitments of 0λ. That is, β1 =
com(0λ;u1) and β2 = com(0λ;u2). This is identical to the real experiment
with challenge bit b = 1.

Below we will prove that (H0 ≈c H1), (H1 ≈c H2), and (H7 ≈c H8). The
indistinguishability of other hybrids will follow along the same lines.

Lemma 1. (H0 ≈c H1). Assuming that com is a (computationally) hiding com-
mitment scheme, the outputs of experiments H0 and H1 are computationally
indistinguishable.

Proof. The only difference between the two hybrids is the manner in which the
commitments β1 and β2 are computed. Let’s consider the following adversary
Acom, which internally executes the hybrid H0 except that it does not generate
the commitments β1 and β2 on it’s own. Instead, after receiving the challenge
message vectors X0 and X1 from A, it sends two sets of strings, namely (0λ, 0λ)
and (h(s1), h(s2)) to the outside challenger where s1 and s2 are defined the same
way as in H1. In return, Acom receives two commitments β1, β2 corresponding
to either the first or the second set of strings. It then gives these to A. Now,
whatever bit b that A guesses, Acom forwards the guess to the outside challenger.
Clearly, Acom is a polynomial time algorithm and violates the hiding property
of com unless H0 ≈c H1.

Lemma 2. (H1 ≈c H2). Assuming the semantic security of PKE and the strong
witness indistinguishability of the proof system, the outputs of experiments H1

and H2 are computationally indistinguishable.



Proof. Recall that strong witness indistinguishability asserts the following: letD0

and D1 be distributions which output an instance-witness pair for an NP-relation
R and suppose that the first components of these distributions are computation-
ally indistinguishable, i.e., {y : (y, w) ← D0(1λ)} ≈c {y : (y, w) ← D1(1λ)};
then X0 ≈c X1 where Xb : {(crs, y, π) : crs← CRSGen(1λ); (y, w)← Db(1λ);π ←
Prove(crs, y, w)} for b ∈ {0, 1}.

Suppose that H1 and H2 can be distinguished with noticeable advantage δ. Note
that we can visualize Hybrid H2 as a sequence of n hybrids H1,0, . . . ,H1,n where
in each hybrid, the only change from the previous hybrid happens in the ith

challenge ciphertext CTi. H1,0 corresponds to H1 and H1,n corresponds to H2.
Therefore, if H1 and H2 can be distinguished with advantage δ, then there exists
i such that H1,i−1 and H1,i can be distinguished with advantage δ/n where n is
a polynomial in the security parameter λ. So, let’s fix this i and work with these
two hybrids H1,i−1 and H1,i.

Observe that both hybrids internally sample the following values in an identi-
cal manner: ζ = (pk1, pk2, pk3, pk4, h, α, β1, β2, Z, ci,1, ci,2, dki , ki). This includes
everything except crs, ci,3 and πi. By simple averaging, there is at least a δ/2n
fraction of strings st such that the two hybrids can be distinguished with ad-
vantage at least δ/2n when ζ = st. Call such a ζ to be good. Fix one such ζ,

and denote the resulting hybrids by Hζ1,i−1 and Hζ1,i. Note that the hybrids have

inbuilt into them all other values used to sample ζ namely : X0,X1 received
from A, randomness for generating the encryptions and the commitments, and
the master secret key msk.

The first distributionD(ζ)
0 is defined as follows: compute ci,3 = PKE.Enc(pk3, ai; ri,3)

where ai = x0i ||ki||ri,1||0λ
2 ||0λ||0λ2 ||x0i ||ki||ri,2||0λ

2 ||0λ||0λ2 ||0λ and let statement
y = (ci,1, ci,2, ci,3, pk1, pk2, pk3, pk4, β1, β2, ki, dki , α, Z), witness w = (ai, ri,3, σki).
It outputs (y, w). Note that y is identical to ζ except that h has been removed

and ci,3 has been added. Define a second distributionD(ζ)
1 identical toD(ζ)

0 except
that instead of ai , it uses a∗i = x0i ||ki||r1||u1||h(s1)||γi,1||x1i ||ki||r2||u2||h(s2)||γi,2||i.
Here, γi,1, γi,2 are the openings of the hash values in the merkle tree. That
is, γi,1 = H.Open(h, s1, i, x

0
i ||ki) and γi,2 = H.Open(h, s2, i, x

1
i ||ki) where s1 =

(x01||k1, . . . , x0n||kn) and s2 = (x11||k1, . . . , x1n||kn). Then, it computes c∗i,3 =
PKE.Enc(pk3, a

∗
i ; ri,3), y∗ = (ci,1, ci,2, c

∗
i,3, pk1, pk2, pk3, pk4, β1, β2, ki, dki , α, Z),

and w∗ = (a∗i , ri,3, σi). It outputs (y∗, w∗). It follows from the security of the

encryption scheme that the distribution of y sampled by D(ζ)
0 is computationally

indistinguishable from y∗ sampled by D(ζ)
1 , i.e., y ≈c y∗. Therefore, we must have

that X0 ≈c X1 with respect to these distributions. We show that this is not the
case unless Hζ1,i−1 ≈c H

ζ
1,i.

Consider an adversary A′ for strong witness indistinguishability who incor-
porates A and ζ (along with sk1 and all values for computing ζ described above),



and receives a challenge (crs, y, π) distributed according to either D(ζ)
0 or D

(ζ)
1 ;

here y has one component ci,3 that is different from ζ. The adversary A′ uses
crs, sk1 and other values used in defining ζ to completely define PP, answer en-
cryption key queries, generate other challenge ciphertexts and answer the func-
tion key queries and feeds it to A. Then, it uses (ci,3, π) to define the ithchallenge
ciphertext CTi = (ci,1, ci,2, ci,3, dki , π, ki). The adversary A′ outputs whatever A
outputs. We observe that the output of this adversary is distributed according
to Hm1,i−1 (resp., Hm1,i ) when it receives a tuple from distribution X0 (resp., X1 ).
A randomly sampled m is good with probability at least δ/2n, and therefore it

follows that with probability at least δ2

4n2 , the strong witness indistinguishability
property will be violated with non-negligible probability unless δ is negligible.

Lemma 3. (H7 ≈c H8). Assuming the correctness of PKE, that O is a public-
coin differing-inputs obfuscator for for Turing machines in the class M, G is a
pseudorandom generator, com is a perfectly binding and (computationally) hiding
commitment scheme and Hλ is a family of merkle hash functions, the outputs of
experiments H7 and H8 are computationally indistinguishable.

Proof. Suppose that the claim is false andA’s output in H7 is noticeably different
from its output in H8. Suppose that A’s running time is bounded by a polynomial
µ so that there are at most µ function key queries it can make. We consider a
sequence of µ hybrid experiments between H7 and H8 such that hybrid H7,v for
v ∈ [µ] is as follows.

Hybrid H7,v It is identical to H7 except that it answers the function key queries
as follows. For j ∈ [µ], if j 6 v, the function key corresponding to the jth query,
denoted by Mj , is an obfuscation of program GMj . If j > v, it is an obfuscation
of program G′Mj . We define H7,0 to be H7 and observe that H7,µ is the same as H8.

We see that if A’s advantage in distinguishing between H7 and H8 is δ, then
there exists a v ∈ [µ] such that A’s advantage in distinguishing between H7,v−1
and H7,v is at least δ/µ. We show that if δ is not negligible, then we can use
A to violate the indistinguishability of the obfuscator O. To do so, we define
a sampling algorithm Samv

A and a distinguishing algorithm DvA and prove that
Samv

A is a public-coin differing inputs sampler outputting a pair of differing-
input TMs yet DvA can distinguish an obfuscation of left TM from that of right
TM that is output by Samv

A. The description of these two algorithms is as follows:

Sampler Samv
A(ρ):

1. Receive (X0,X1, I) from A.
2. Parse ρ as (crs, h, τ).
3. Proceed identically to H7 using τ as randomness for all tasks except for

sampling the hash function which is set to h, and the CRS, which is set to
crs. This involves the following steps:



(a) Parse τ = (τ1, τ2, τ3, τ4, ri,1, ri,2, ri,3, r`, u, u1, u2) for all i ∈ [n] and for
all ` ∈ [|I|].

(b) Use τ1 as randomness to generate (pk1, sk1), τ2 as randomness to generate
(pk2, sk2) τ3 as randomness to generate (pk3, sk3) τ4 as randomness to
generate (pk4, sk4).

(c) Use u as randomness to generate α = com(h(s);u), where
s = (1||k1, 2||k2, . . . , t||km) and {k1, . . . , km} = I.

(d) Use u1, u2 as randomness to generate β1 = com(h(s1);u1) and
β2 = com(h(s2);u2), where s1 = (1||x01||k1, . . . , n||x0n||kn) and
s2 = (1||x11||k1, . . . , n||x1n||kn).

(e) Define Z to be a uniform random string of length 2λ. Define the public
parameters PP = (crs, pk1, pk2, pk3, pk4, h, α, β1, β2, Z). Send PP to A.

(f) For all ki ∈ I, to generate the ith encryption key EKki , compute bki =
z||h(s)||γi||u1||i and dki = PKE.Enc(pk4, bki ; ri). Using witness wki =
(bki , ri), compute proof σki using the AND of statements 1 and 2(b) in
the relation R1.
Send the encryption key EKki for all ki ∈ I to A.

(g) For all i ∈ [n], we generate the ith challenge ciphertext in the follow-
ing manner. We use ri,1 and ri,2 as randomness to generate ci,1 =
PKE.Enc(pk1, x

0
i ||ki; ri,1) and ci,2 = PKE.Enc(pk2, x

1
i ||ki; ri,2). Use ai =

x0i ||ki||ri,1||u1||h(s1)||γi,1||x1i ||ki||ri,2||u2||h(s2)||γi,2||i where γi,1, γi,2 are
the openings for h(s1) and h(s2) w.r.t. x0i ||ki and x1i ||ki respectively. That
is, γi,1 = H.Open(h, s1, i, x

0
i ||ki) and γi,2 = H.Open(h, s2, i, x

1
i ||ki). Com-

pute ci,3 = PKE.Enc(pk3, ai; ri,3). Then, use witness wi = (ai, ri,3, σki)
to compute proof πi using the AND of statements 1 and 2(b) in the
relation R2. The ith challenge ciphertext is (ci,1, ci,2, ci,3, dki , πi, ki).
Send all the challenge ciphertexts to A.

(h) Answer the function key queries of A as follows. For all queries Mj , until
j < v, send an obfuscation of GMj .

(i) Upon receiving the vth function key query Mv, output (M̃0, M̃1) and halt,
where :

M̃0 = GMv , M̃1 = G′Mv .

Distinguisher DvA(ρ,M′): on input a random tape ρ and an obfuscated TM M′,
the distinguisher simply executes all steps of the sampler Samv

A(ρ), answering
function keys for all j < v as described above. The distinguisher, however, does
not halt when the vth query is sent, and continues the execution of A answering
function key queries for Mj as follows :

– if j = v, send M′ (which is an obfuscation of either M̃0 or M̃1).
– if j > v, send an obfuscation of G′Mj .

The distinguisher outputs whatever A outputs.

We can see that if M′ is an obfuscation of M̃0, the output of DvA(ρ,M′) is

identical to A’s output in H7,k−1 and if M′ is an obfuscation of M̃1, it is identical



to A’s output in H7,k. We have that DvA(ρ,M′) distinguishes H7,k−1 and H7,k

with at least δ/µ advantage.

All that remains to prove now is that Samv
A(ρ) is a public-coin differing-inputs

sampler.

Theorem 3. Samv
A(ρ) is a public-coin differing inputs sampler.

Proof. We show that if there exists an adversary B who can find differing-inputs
to the pair of TMs sampled by Samv

A(ρ) with noticeable probability, we can
use B and Samv

A(ρ) to construct an efficient algorithm CollFinderB,SamvA(ρ) which
finds collisions in h with noticeable probability.

CollFinderB,SamvA(ρ)(h) :
On input a random hash function h ← Hλ, the algorithm first samples uni-
formly random strings (crs, τ) to define a random tape ρ = (crs, h, τ). Then, it
samples (M̃0, M̃1)← Samv

A(ρ) and computes e∗ ← B(ρ) e∗ is the differing input
and corresponds to a set of ciphertexts. Let e∗ = (e∗1, . . . , e

∗
` ) where each e∗j =

(e∗j,1, e
∗
j,2, e

∗
j,3, d

∗
k∗j
, π∗j , k

∗
j ) for j ∈ [`]. For each j, if π∗j is a valid proof, compute

a∗j = PKE.Dec(sk3, e
∗
j,3) and let a∗j = x∗j,1||k∗j,1||r∗j,1||u1||hv

∗
1||γ∗j,1||x∗j,2||k∗j,2||r∗j,2||u2||hv

∗
2||γ∗j,2||t∗.

Let (X0,X1) be the challenge message vectors output by A initially. Let X0 =
{(x01, k1), . . . , (x0n, kn)} and X1 = {(x11, k1), . . . , (x1n, kn)}. Define s1 = (x01||k1, . . . , x0n||kn)
and s2 = (x11||k1, . . . , x1n||kn) Let the encryption key queries be I = {k1, . . . , kt}.
Define s = (k1, . . . , kt). If h(s1) = h(s2), output (s1, s2) as collisions to the hash
function.

Claim. For all j ∈ [`], π∗j is a valid proof.

Proof. Since e∗ is a differing input, M̃0(e∗) 6= M̃1(e∗). Now, suppose for some
j ∈ [`], π∗j was not a valid proof. Then, both M̃0 and M̃1 would output ⊥ on
input e∗ which means that e∗ is not a differing input.

Condition A : A ciphertext C = (c1, c2, c3, dk, π, k) for which π is valid satisfies
condition A with respect to challenge message vectors (X0,X1) and encryption
key queries I iff

1. c1 and c2 encrypt the same message and k ∈ I (OR)
2. ∃i ∈ [n] such that {(x1||k1), (x2||k2)} = {(x0i ||ki), (x1i ||ki)}, where x1||k1 =

PKE.Dec(sk1, c1) and x2||k2 = PKE.Dec(sk2, c2).

Claim. For every j ∈ [`], if e∗j satisfies condition A, then e is not a differing
input.

Proof. Suppose the above two conditions are true for every j ∈ [`]. Then, from
the definition of I-compatibility of challenge message vectors (X0,X1) and func-
tion query Mv, we see that M̃0(e∗) = M̃1(e∗) which means that e∗ is not a
differing input.



Therefore, since we have assumed that e∗ is a differing input, there exists
j ∈ [`] such that e∗j does not satisfy condition A.

Claim. If there exists j ∈ [`] such that e∗j does not satisfy condition A, then we
can find a collision in the hash function h.

Proof. Let’s fix j ∈ [`] such that e∗j does not satisfy condition A. Since π∗j is
a valid proof, by the soundness of the strong witness indistinguishable proof
system, one of the following two cases must hold :

– case 1: π∗j was proved using statements 1 and 2(a) of relation R2.

Now, since e∗j does not satisfy condition A, it doesn’t satisfy condition A(1)
as well. Therefore, either e∗j,1 and e∗j,2 encrypt different messages or k∗j /∈ I.
If e∗j,1 and e∗j,2 encrypt different messages, statement 2(a) would clearly be
false and π∗j would not be valid. However, we already proved that π∗j is valid.
Therefore, it must be the case that k∗j /∈ I.
Since 2(a) is true in R2, we have Verify(crs, stk∗j , σk∗j ) = 1 where stk∗j =

(dk∗j , k
∗
j , pk4, α, Z) and σk∗j is a proof that stk∗j ∈ L1. Further, since Z is a

uniform random string, Z 6= G(z) for any z except with negligible probability.
As a result, σk∗j must be proved using statements 1 and 2(b) in relation R1.

Therefore, there exists hv∗, γ∗, t∗ such that H.Verify(h, hv∗, k∗j , γ
∗, t∗) = 1

and com(hv∗;u) = α. Since the commitment scheme is perfectly binding,
hv∗ = h(s). We know that s = (k1, . . . , kt). Therefore, s[t∗] 6= k∗j . Thus,
there exists γ∗, t∗ such that H.Verify(h, h(s), k∗j , γ

∗, t∗) = 1 and s[t∗] 6= k∗j .
By definition 6, we have found a collision in the hash function h.

– case 2: π∗j was proved using statements 1 and 2(b) of relation R2.

Since e∗j does not satisfy condition A, it doesn’t satisfy condition A(2) as

well. Therefore, ∀i ∈ [n] {(x∗j,1||k∗j,1), (x∗j,2||k∗j,2)} 6= {(x0i ||ki), (x1i ||ki)}. Since
π∗j was proved using 2(b), ∃hv∗1, hv

∗
2, γ
∗
1 , γ
∗
2 , t
∗ such that 2(b)(ii) and 2(b)(iii)

are true. Without loss of generality, let’s say that the first of the two con-
ditions in 2(b)(ii) is true and the second of the two conditions in 2(b)(iii)
is true. That is, H.Verify(h, hv∗1, x

∗
j,1||k∗j,1, γ∗1 , t∗) = 1, β1 = com(hv∗1;u1) and

H.Verify(h, hv∗2, x
∗
j,2||k∗j,2, γ∗2 , t∗) = 1, β2 = com(hv∗2;u2). Since the commit-

ment scheme is perfectly binding, hv∗1 = h(s1) and hv∗2 = h(s2). We know
that {(x∗j,1||k∗j,1), (x∗j,2||k∗j,2)} 6= {(x0t∗ ||kt∗), (x1t∗ ||kt∗)}. Without loss of gen-

erality, let’s say (x∗j,1||k∗j,1) 6= (x0t∗ ||kt∗). Since s1 = (x01||k1, . . . , x0n||kn), we
have s1[t∗] 6= (x∗j,1||k∗j,1). Thus, there exists γ∗1 , t

∗ such that s1[t∗] 6= x∗j,1||k∗j,1
and H.Verify(h, h(s1), x∗j,1||k∗j,1, γ∗1 , t∗) = 1. By definition 6, we have found a
collision in the hash function h.
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