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Abstract. Secret sharing schemes with general monotone access struc-
tures have been widely discussed in the literature. But in some scenarios,
non-monotone access structures may have more practical significance.
In this paper, we shed a new light on secret sharing schemes realizing
general (not necessarily monotone) access structures. Based on an at-
tack model for secret sharing schemes with general access structures,
we redefine perfect secret sharing schemes, which is a generalization of
the known concept of perfect secret sharing schemes with monotone ac-
cess structures. Then, we provide for the first time two constructions of
perfect secret sharing schemes with general access structures. The first
construction can be seen as a democratic scheme in the sense that the
shares are generated by the players themselves. Our second construction
significantly enhance the efficiency of the system, where the shares are
distributed by the trusted center (TC).

Keywords: Secret sharing schemes; general access structures; informa-
tion rate; orthogonal arrays; resilient functions.

1 Introduction

Secret sharing schemes were first introduced by Blakley [6] and Shamir [32] in-
dependently in 1979. Besides secure information storage, secret sharing schemes
have numerous other applications in cryptography such as secure multiparty
computations [5,15,16], key-distribution problems [27], multi-receiver authenti-
cation schemes [36] etc. Note that minimal codes introduced and studied in the
literature have applications in secret sharing (see for instance [1],[13],[17],[18],[19],
[20],[22]).
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2015 (IACR) published by Springer.



2 J. Liu, S. Mesnager, and L. Chen

The secret sharing schemes given in [6] and [32] are for the threshold case, i.e.,
the qualified groups that can reconstruct the secret key are all the subsets with
cardinality no smaller than a threshold. A (t, n) threshold scheme is a method
where n pieces of information of the secret key K, called shares are distributed
to n players so that the secret key can be reconstructed from the knowledge
of any t or more shares and the secret key can not be reconstructed from the
knowledge of fewer than t shares. But in reality, there are many situations in
which it is desirable to have a more flexible arrangement for reconstructing the
secret key. Given some n players, one may want to designate certain authorized
groups of players who can use their shares to recover the key. This kind of scheme
is called secret sharing scheme for general access structure, which generalizes the
threshold case. Formally, a secret sharing scheme for general access structure is
a method of sharing a secret K among a finite set of players P = {P1, . . . ,Pn}
in such a way that

1. if the players in A ⊆ P are qualified to know the secret, then by pooling
together their partial information, they can reconstruct the secret K,

2. any set B ⊂ P which is not qualified to know K, cannot reconstruct the
secret K.

The threshold secret sharing schemes have received considerably attention,
see e.g. [14,21,29,30]. Secret sharing schemes for general monotone access struc-
tures were first studied by Ito, Saito, and Nishizeki [25]. The access structure
defined in [25] is a set of qualified groups Γ which satisfies the monotone property
that if A ∈ Γ and A ⊆ B, then B ∈ Γ . Secret sharing schemes for general mono-
tone access structures have got a lot of attention, and there exist a wide range
of general methods of constructing monotone secret sharing schemes [3,4,8,26].
The approaches to the construction of monotone secret sharing schemes based
on linear codes can be found in [7,28]. To our best knowledge, all the known se-
cret sharing schemes are designed for realizing monotone access structures. We
refer to [16] for a survey on monotone secret sharing schemes.

A secret sharing scheme can be represented by a set of recovery algorithms
which realizes an access structure such that only qualified groups can reconstruct
the secret key by pooling their shares. For example, in the bank teller problem
described in Chapter 13 of [33], any two out of three tellers are authorized
to reconstruct the secret key. It is quite natural to assume that three tellers
are permitted to make a requirement on two of them to execute the recovery
algorithm and reconstruct the secret key, then any group with two or more
tellers is a qualified group. Hence, the access structure considered in this scenario
has monotone property. However, for some scenarios, the requirement on fewer
players of a group to recover the secret key is not available, and secret sharing
schemes with non-monotone access structures may be more preferable. For a
secret sharing scheme, it is reasonable to assume that the access structure is
public and in the reconstruction phase, the players are anonymous, that is to
say, the players will not disclose which group they belong to.

Scenario 1 Suppose that on the network, there are several groups of users
who share a large amount of information resources stored by the network center
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(e.g., a secure cloud storage server) with a secret key. Once the secret key is
recovered, only the users who pool their shares will get the access to download
the information. For some reasons, the users of the same group are not willing
to download their information together with an outsider who does not belong
to this group. So, only when all the users of the same group pool their shares,
the secret key can be reconstructed, and if an outsider joins, the reconstruction
reveals nothing about the secret key.

The access structure in the above scenario is non-monotone, since there exist
A ∈ Γ and B 6∈ Γ such that A ⊆ B. A secret key can always be recovered
by all the users in a qualified group A, but if an outsider, say P, intrudes, the
reconstruction by the users in the unqualified (i.e., forbidden) group B = A

⋃
P

reveals nothing about the secret key. Consider that in Scenario 1, different groups
of users have independently purchased the access to the database from the net-
work center, and the payment of each group is afforded by every user of this
group, thus the costs of the users from different groups may be different. Of
course, the users belonging to one group do not hope to download their data
together with an outsider. We consider data mining as another example for
Scenario 1. Suppose different groups of market investigators are employed by
different companies respectively to gather some information from the network
center. Because of the market competition, the companies do not hope to dis-
close what they are gathering to each other, i.e., the market investigators of
one company are not willing to reconstruct the secret key and download their
information together with an outsider. Thus, the access structures here should
be non-monotone.

Secret sharing scheme is also a key tool for secure multiparty computation
(MPC) (see [2,15,16]). Secure MPCs solve the problem that n players want
to compute some agreed function with their inputs private. For instance, two
millionaires want to know who is richer without disclosing their wealths to each
other. This millionaire problem, first introduced by Yao [35], is a secure MPC
problem which can be solved by monotone secret sharing schemes. A secure
MPC protocol can be described as that every player shares his input with all
the players by employing some secret sharing scheme, then the players in a
qualified group can compute the result of the agreed function, and the players in
a forbidden group cannot learn anything about the result and the inputs of the
other players, where the qualified and the forbidden groups are determined by
the access structure of the employed secret sharing scheme (see [2,15] for more
details). In the following scenario, a secure MPC with non-monotone access
structure is preferable.

Scenario 2 Suppose that the employees of several different companies are in-
terested in their salary level by comparing their incomes, i.e., they want to know
the ranking of the average income of each company by sharing their incomes pri-
vately. To avoid the risk of embarrassment, the employees of one company are
not willing to compute the ranking result together with an outsider who does
not belong to this company. So, only all the employees of the same company can
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compute the ranking result, and if an outsider joins, the computation reveals
nothing about the result.

In the above scenarios, we must guarantee that if B is a qualified group but
A ⊇ B is not, then the players in A cannot make a requirement on the players in
B to reconstruct the secret key or to compute the result of the agreed function.
When all the players in a forbidden group follow the protocol accordingly, they
can determine nothing about the secret key or the result of the agreed function.

Perhaps one can find some other means to solve the problems presented in
the above scenarios, and Scenario 2 may have less practical significance, but all
these are intended primarily as examples to provide us a direction for possible
applications of non-monotone secret sharing schemes. Similar practical scenarios
could be found.

In this paper, we mainly discuss secret sharing schemes realizing general (not
necessarily monotone) access structures. We first describe a general attack model
for secret sharing schemes. Afterwards, a formal definition of unconditional se-
curity (called perfect) for secret sharing schemes with general access structures
is given, which is a generalization of the known perfect monotone secret sharing
schemes. Moreover, we propose two constructions for secret sharing schemes re-
alizing general access structures. To the best of our knowledge, this is the first
time when constructions of non-monotone secret sharing schemes are proposed.
Our first construction is democratic in the sense that the shares are generated by
the players themselves instead of distributed by the trusted center (TC). In this
construction, TC has to recompute an updated function for every time the se-
cret key changes. The second construction is presented for the sake of efficiency,
where the shares are computed and distributed by TC. We also show that the
well designed secret sharing schemes presented in this paper are perfect.

This paper is organized as follows. Formal definitions and necessary prelim-
inaries are introduced in Section 2. In Section 3, we discuss the attack model
and the security of secret sharing schemes with general access structures. Per-
fect democratic secret sharing schemes are constructed in Section 4, and perfect
secret sharing schemes with distributed shares are constructed in Section 5. In
the last section, we summarize this paper and indicate some future research
directions.

2 Preliminaries

For a secret sharing scheme, we denote a player by Pi, where i = 1, 2, . . ., the
set of all the players by P, the set of all the subsets of P by 2P , and the trusted
center of the scheme by TC. The groups authorized to reconstruct the secret key
are called qualified, and the groups unauthorized to reconstruct the secret key are
called forbidden. The sets of qualified and forbidden groups are denoted by Γ and
∆ respectively, where Γ ⊆ 2P and ∆ ⊆ 2P . If Γ

⋂
∆ = ∅, then the tuple (Γ,∆)

is called an access structure. Moreover, an access structure is called complete if
Γ
⋃
∆ = 2P . In this paper, we focus on secret sharing schemes with complete

access structures. The set of qualified groups Γ is called monotone increasing if
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for each set A ∈ Γ , the superset of A is also in Γ . An access structure (Γ,∆) is
called monotone if Γ is monotone increasing.

Let S be a secret sharing scheme. We denote the set of all possible secret keys
by K, the set of all possible shares of group A = {Pi1 , . . . ,Pim} ∈ 2P by S(A),
i.e., S(A) = S(Pi1)×· · ·×S(Pim), where S(Pij ) is the set of all possible shares of
Pij and “×” denotes the Cartesian product. For a qualified group A ∈ Γ , there
exists a recovery algorithm fA defined on S(A) which satisfies fA(s(A)) = k,
where k ∈ K is the secret key that TC wants to share and s(A) ∈ S(A) is the
shares of the players in A. Then, a secret sharing scheme S realizing access
structure (Γ,∆) can be viewed as a set of recovery algorithms F = {fA | A ∈ Γ}
such that only qualified groups can reconstruct the secret key by pooling their
shares.

Definition 1. [9] Let S be a secret sharing scheme, K be the set of all possible
secret keys, and for 1 6 i 6 n, S(Pi) be the set of all possible shares that Pi
might have. Then, the information rate of Pi is defined as

ρi =
log2 |K|

log2 |S(Pi)|
,

and the information rate of S is defined as

ρ = min{ρi | 1 6 i 6 n}. (1)

In the following, we introduce some definitions and properties of q-ary func-
tions, which will be useful in constructing secret sharing schemes.

Let Fq be a finite field, where q is a power of a prime, then Fnq denotes
the n-dimensional vector space over the finite field Fq. In this paper, we always
assume q > 2. Let F∗q = Fq \ {0}, then (F∗q)n denotes the Cartesian product that

n︷ ︸︸ ︷
F∗q × · · · × F∗q . The mappings from the vector space Fnq to Fq are called n-variable
q-ary functions, which can be uniquely represented in the algebraic normal form
(ANF), see [31]:

F (x) =
∑
u∈Zn

q

aux
u1
1 xu2

2 · · ·xun
n ,

where Zq = {0, . . . , q − 1}, x = (x1, . . . , xn) ∈ Fnq , u = (u1, . . . , un) ∈ Znq , and
au ∈ Fq. In fact, given the values of F (w), w = (w1, . . . , wn) ∈ Fnq , the ANF of
F can be determined as

F (x) =
∑
w∈Fn

q

F (w)

n∏
i=1

(
1− (xi − wi)q−1

)
. (2)

For an n-variable q-ary function F , the set Fnq is called the domain set of
F and the vector (F (v0), . . . , F (vqn−1)) is called the value table of F , where
v0, . . . , vqn−1 are all the vectors in Fnq which have some prescribed order, e.g.,
the lexicographical order. F is called balanced if for any element a ∈ Fq, the size
of the pre-image set satisfies |F−1(a)| = qn−1.
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More generally, if F is a mapping from E1 ⊆ Fnq to E2 ⊆ Fq, then E1 is
called the domain set of F , and (F (v0), . . . , F (v|E1|−1)) is called the value table
of F , where v0, . . . , v|E1|−1 are all the vectors in E1 with some prescribed order.
In addition, F is called balanced onto E2 if for any element a ∈ E2, the size of
the pre-image set satisfies |F−1(a)| = |E1|/|E2|.

For i = 1, . . . ,m, let Fi be a mapping from Ei ⊆ Fnq to Fq, where E1, . . . , Em
are disjoint sets, then the concatenation function F of F1, . . . , Fm is the mapping
from

⋃m
i=1Ei to Fq which satisfies F (x) = Fi(x) for x ∈ Ei, where i = 1, . . . ,m.

3 The Security of Secret Sharing Schemes with General
Access Structures

For a secret sharing scheme with general access structure (Γ,∆), we assume that
the players in A ∈ ∆ are passively collaborating to pool their shares and try to
reconstruct the secret key. Note that the collaborating players are assumed to
execute the protocol correctly and every player will keep his share private, i.e.,
the attack is passive. We also assume that the collaborating players are static,
which means that the set of collaborating players is fixed during the protocol.

Attack Model The players in A ∈ ∆ are passively collaborating to find
some efficient recovery algorithms to reconstruct the secret key.

For a general access structure, the players in group A ∈ ∆ will try to guess the
secret key by collaborating, and in this case, even if A ⊇ B ∈ Γ (this case only
appears in the non-monotone case), the players in B are passively collaborating,
and cannot be required to execute their recovery algorithm and reconstruct the
secret key independently from A. In Section 1, we present two scenarios to show
that this assumption is reasonable for the non-monotone case. Note that a secret
sharing scheme can be viewed as a set of recovery algorithms F = {fA | A ∈ Γ}.
Hence, if the players in A ∈ ∆ are passively collaborating, they can only try to
guess the secret key by employing some known reconstruction algorithms that
fB , B ∈ Γ , where B 6⊆ A. Particularly, for monotone access structures, one
can just assume that all the players belonging to a forbidden group (which is a
proper subset of a qualified group) are passively collaborating to reconstruct the
secret key.

Let A be any subset of players, B ∈ Γ , and k ∈ K, then given s(A) ∈ S(A),
the conditional probability determined by algorithm fB is denoted by PrB(K =
k | S(A) = s(A)), which means that by using algorithm fB , the players in A
can guess the secret key correctly with probability PrB(K = k | S(A) = s(A)).
We use Pr(K = k | S(A) = s(A)) for short if there is no risk of confusion, and
use Pr(K = k) to denote the a prior probability distribution on the secret key
set K. Considering the above attack model, we present a formal definition of
unconditional security for secret sharing schemes with general access structures.

Definition 2. A secret sharing scheme S with access structure (Γ,∆) and se-
cret key set K is perfect if S satisfies the following two properties.

(i) For any A ∈ Γ , the secret key can be reconstructed correctly.



Secret Sharing Schemes with General Access Structures 7

(ii) For any A ∈ ∆ and any B ∈ Γ , where B 6⊆ A, the conditional probability
determined by algorithm fB satisfies

Pr(K = k | S(A) = s(A)) = Pr(K = k)

for every k ∈ K. In other words, by using algorithm fB, the players in A can
learn nothing about the secret key.

Remark 1. For secret sharing schemes with monotone access structures, the con-
cept of perfect system has been introduced in [9] and widely studied (see [2,33]
for a survey). If a secret sharing scheme S with monotone access structure
(Γ,∆) satisfies (i) for any A ∈ Γ , the secret key can be reconstructed correctly,
(ii) for any A ∈ ∆, the players in A can learn nothing about the secret key, then
S is called perfect. From the above discussion, it is easy to see that the concept
of perfect system given in Definition 2 is more general, and for the monotone
case, Definition 2 coincides with the standard perfect monotone secret sharing
schemes.

For perfect secret sharing schemes with monotone access structures, it is
proved that the information rate ρ 6 1, see [9,33]. We now show that this result
still holds for perfect secret sharing schemes with general access structures.

Theorem 1. For any perfect secret sharing scheme with general access struc-
ture, the information rate satisfies ρ 6 1.

Proof. Suppose that S is a perfect secret sharing scheme with general access
structure (Γ,∆), then there must exist a set A ∈ Γ such that B = A \ {Pi} ∈ ∆
for some Pi ∈ A. In fact, if for any A ∈ Γ and any Pi ∈ A, A′ = A \ {Pi} ∈ Γ ,
then ∅ 6= A′ ∈ Γ and A′\{Pj} = A\{Pi,Pj} ∈ Γ . This process can be continued
until we get the contradiction that ∅ ∈ Γ .

Without loss of generality, we assume that A = {P1, . . . ,Pm} ∈ Γ and
B = A \ {Pm} ∈ ∆. Since B ∈ ∆ and S is perfect, when the players in B
are collaborating to reconstruct the secret key by using the recovery algorithm
fA, then the conditional probability of the secret key is

Pr(K = k | S(B) = s(B)) = Pr(K = k), (3)

where k ∈ K. Since A ∈ Γ , then Eq.(3) implies that for any two distinct secret
keys k1, k2 ∈ K, there exist two distinct shares s1(Pm), s2(Pm) ∈ S(Pm) such
that

fA(s(B), s1(Pm)) = k1, fA(s(B), s2(Pm)) = k2. (4)

Therefore, |S(Pm)| > |K|, and thus ρm 6 1. Hence, from (1), we have ρ 6 1. ut

4 Democratic Secret Sharing Schemes

In this section, we present a construction of democratic secret sharing schemes
with general access structures, where the shares are generated on the set of all
possible shares independently by the players themselves. Moreover, we provide
a perfect secret sharing scheme with information rate ρ = 1.
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Table 1. Secret Sharing Scheme I

Initialization Phase:

1. For a player Pi ∈ P, where 1 6 i 6 n, Pi randomly chooses αi ∈ F∗q as his share,
and then transmits αi secretly to the trusted center TC.

2. The access structure (Γ,∆) is public.

Sharing Phase:

1. Suppose TC wants to share a secret key k ∈ F∗q , then TC chooses a q-ary
function F : Fnq → Fq which satisfies

F (x) = k, if x =
∑
i∈A

αiei for some A ∈ Γ, (5)

where e1, . . . , en are the identity vectors in Fnq , and for other x ∈ Fnq , F (x) are
carefully chosen.

2. TC computes the algebraic normal form of F by using Eq.(2),

F (x) =
∑

u=(u1,...,un)∈Zn
q

aux
u1
1 · · ·x

un
n .

3. TC publishes the algebraic normal form of F .

Reconstruction Phase:

For any A = {Pi1 , . . . ,Pim} ∈ 2P , the players in A do as follows.

1. Determine the recovery algorithm.
The players in A get

fA(xi1 , . . . , xim) = F (0, . . . , 0, xi1 , 0, . . . , 0, xim , 0, . . . , 0)

as their recovery algorithm.

2. Compute the secret key.
The players in A pool their shares and compute fA(αi1 , . . . , αim).

4.1 A General Description

Let ei be the identity vector in Fnq with 1 in the i-th position and zeros else-
where, where q is a power of a prime. By abuse of notation, we write a set
A = {i1, . . . , im} for A = {Pi1 , . . . ,Pim} ⊆ P.

In Table 1, we present a construction of democratic secret sharing schemes
realizing general access structures.

4.2 Perfect Democratic Secret Sharing Schemes Realizing General
Access Structures

As shown in Table 1, given a set of n players P = {P1, . . . ,Pn} with gen-
eral access structures (Γ,∆) and secret key set K = F∗q , one can always con-
struct a democratic secret sharing scheme. Clearly, the security of Secret Sharing
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Scheme I depends heavily on the choice of the q-ary function F . In Table 2, an
explicit construction of q-ary functions is presented. Employing such functions in
Secret Sharing Scheme I, one can get perfect democratic secret sharing schemes.
We first introduce some useful notations below.

For x = (x1, . . . , xn) ∈ Fnq , let supp(x) = {i | xi 6= 0} denote the support set
of x. Then, for an n-variable q-ary function F and a set A ⊆ P, F |A denotes the
restriction of F to the set

EA = {x ∈ Fnq | supp(x) = A}, (6)

i.e., F |A : EA → Fq satisfies F |A(x) = F (x) for x ∈ EA. For a set E ⊆ Fnq and
an element a ∈ Fnq , a+E = {a+ e | e ∈ E}. For s(Pi) ∈ S(Pi), i ∈ A, which are
the shares of players in A, define s(A) =

∑
i∈A s(Pi)ei ∈ Fnq , then for B ⊆ A,

we denote by F |s(A\B)×B the restriction of F to the set

Es(A\B)×B = s(A \B) + EB . (7)

Moreover, for B ⊆ A, we denote by F |s(A\B)×B the restriction of F to the set

Es(A\B)×B = {(x1, . . . , xn) ∈ Es(A\B)×B | xi 6= s(Pi), i ∈ B}. (8)

Clearly, if B = ∅, then F |s(A\B)×B = F |s(A\B)×B = F (s(A)).

Proposition 1. For A ⊆ P, the set EA can be partitioned into disjoint subsets
Es(A\B)×B, where B ⊆ A, i.e.,

EA =
⋃
B⊆A

Es(A\B)×B , (9)

where for two distinct subsets B1, B2 ⊆ A,

Es(A\B1)×B1

⋂
Es(A\B2)×B2

= ∅. (10)

Proof. We first prove (10). Since B1 6= B2, then without loss of generality, we
assume that i ∈ B1 but i 6∈ B2. Suppose that there exists x = (x1, . . . , xn) ∈
Es(A\B1)×B1

⋂
Es(A\B2)×B2

, then we have xi 6= s(Pi) since i ∈ B1. However,

i 6∈ B2 implies that xi = s(Pi), a contradiction. Hence, (10) holds.
It is obvious that

⋃
B⊆AEs(A\B)×B ⊆ EA. Suppose that |A| = m, then since

the sets Es(A\B)×B , where B ⊆ A, are disjoint, we have that∣∣∣∣ ⋃
B⊆A

Es(A\B)×B

∣∣∣∣ =
∑
B⊆A

|Es(A\B)×B | =
m∑
i=0

(
m

i

)
(q − 2)i = (q − 1)m = |EA|.

(11)

Therefore, (9) holds, and we get the desired result. ut

By using Proposition 1, we can prove that Construction I in Table 2 outputs
a q-ary function. A full proof of the following lemma is provided in Appendix A.
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Table 2. Construction I

Input: Secret shares s(Pi) ∈ F∗q , i = 1, . . . , n;
Secret key k ∈ F∗q ;
Access structure (Γ,∆).

Output: A function F : Fnq → Fq.

Step 1: For every subset of players A ∈ ∆, set F |A = 0, i.e., F |A is a zero function.

Step 2: For every subset of players A = {Pi1 , . . . ,Pim} ∈ Γ , execute the following
two steps.

1. Set F (s(A)) = k.

2. Define n0 = 1 and N0 = 0. From l = 1 to l = m, do as follows.
For every B = {Pj1 , . . . ,Pjl} ⊆ A, arrange the value table of
F |s(A\B)×B as follows.
(i) Let k appear nl times, where

nl = (q − 1)l−1 −
l−1∑
i=0

(
l

i

)
ni. (12)

(ii) Let every element in F∗q \ {k} appear Nl times, where

Nl = (q − 1)l−1 −
l−1∑
i=0

(
l

i

)
Ni. (13)

Lemma 1. Construction I outputs an n-variable q-ary function F .

Lemma 2. Let F be constructed by Construction I. Then, for any subset of play-
ers A ∈ Γ and any non-empty set B ⊆ A, the restriction function F |s(A\B)×B
is balanced onto F∗q .

Proof. Let A ∈ Γ and ∅ 6= B ⊆ A with |A| = m and |B| = l 6 m. According
to Step 2 of Construction I, we have that for any subset C ⊆ B with |C| = s,

where 0 6 s 6 l, the secret key k appears ns = (q − 1)s−1 −
∑s−1
i=0

(
s
i

)
ni times

in the value table of F |s(A\C)×C , where n0 = 1, and every element in F∗q \ {k}
appears Ns = (q − 1)s−1 −

∑s−1
i=0

(
s
i

)
Ni times in the value table of F |s(A\C)×C ,

where N0 = 0. Clearly, ns and Ns depend only on s. Similar to Proposition 1,
we can prove that

Es(A\B)×B =
⋃
C⊆B

Es(A\C)×C ,

where for two distinct subsets C1, C2 ⊆ B, Es(A\C1)×C1

⋂
Es(A\C2)×C2

= ∅.
Therefore, F |s(A\B)×B is the concatenation function of F |s(A\C)×C , C ⊆ B.

Note that the number of different C ⊆ B with |C| = s is
(
l
s

)
. Thus, in the
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value table of F |s(A\B)×B , the secret key k appears
∑l
i=0

(
l
i

)
ni times and every

element in F∗q \{k} appears
∑l
i=0

(
l
i

)
Ni times. According to Eq.(12) and Eq.(13),

we have
∑l
i=0

(
l
i

)
ni =

∑l
i=0

(
l
i

)
Ni = (q − 1)l−1, which implies that F |s(A\B)×B

is balanced onto F∗q . ut

Theorem 2. Let F be constructed by Construction I. Then, Secret Sharing
Scheme I is perfect with information rate ρ = 1.

Proof. It is clear that Secret Sharing Scheme I has ρ = 1. We now prove that if
F is constructed by Construction I, then Secret Sharing Scheme I is perfect.

For any A ∈ Γ , the recovery algorithm fA satisfies fA(s(A)) = F (s(A)) = k,
thus the qualified group A can reconstruct the secret key.

For any forbidden group A ∈ ∆, we assume that the players in A are
collaborating to reconstruct the secret key by using some recovery algorithm,
say fB , where B ∈ Γ . As discussed in Section 3, we must have B * A, i.e.,
C = A

⋂
B ( B, where C ( B means that C is a proper subset of B (i.e.,

C ⊆ B but C 6= B). Since C ( B, then B \ C 6= ∅. Due to Lemma 2, the
restriction function F |s(C)×(B\C) is balanced onto F∗q . Hence, the conditional
probability determined by fB satisfies

Pr(K = γ | S(C) = s(C)) =
1

q − 1
=

1

|K|
= Pr(K = γ), (14)

where γ ∈ F∗q , which implies that for every k ∈ K, the secret key k can be
guessed correctly with probability Pr(K = k) = 1/|K|. Therefore, according to
Definition 2, we get that Secret Sharing Scheme I is perfect. ut

5 Secret Sharing Schemes with Distributed Shares

In Section 4, we have shown a construction of perfect democratic secret sharing
schemes with information rate ρ = 1. Note that in Secret Sharing Scheme I, the
shares are generated by the players themselves, but when the secret key that TC
wants to share is changed, the function F published by TC should be updated
accordingly. This may cause the problem of low efficiency if n is large, because
TC has to recompute the ANF of the new function F , and this process needs
approximately O(nqn) operations over the finite field Fq.

To avoid the drawback of updating the function F , we propose Secret Sharing
Scheme II, where the shares of the players are computed and distributed secretly
by TC. In Secret Sharing Scheme II, the public q-ary function F is fixed, and
when the secret key is changed, the shares distributed to the players by TC
will be updated accordingly. Comparing the two constructions, one can see that
Secret Sharing Scheme I realizes the democracy, while Secret Sharing Scheme II
is designed towards enhancing the efficiency.
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5.1 A General Description

Recall that for an n-variable q-ary function F , F |A denotes the restriction of F
to the set EA = {x ∈ Fnq | supp(x) = A}, where A = {i1, . . . , im}, and we use
A = {Pi1 , . . . ,Pim} ⊆ P to denote a subset of players. In Table 3, we present
Secret Sharing Scheme II, in which the shares of the players are computed and
distributed secretly by TC. It can be seen that, different from Secret Sharing
Scheme I, in Secret Sharing Scheme II, the q-ary function determined by TC
does not depend on the choice of the secret key.

5.2 Perfect Secret Sharing Schemes from Orthogonal Arrays

An orthogonal array, denoted by OAλ(t,m, v), is a λvt ×m array of v symbols,
such that in any t columns of the array, every possible t-tuple of the symbols
appears exactly λ times. An orthogonal array is called simple if and only if no
two rows are identical. A large set of orthogonal arrays LOAλ(t,m, v) is a set of
vm−t/λ simple arrays OAλ(t,m, v) which satisfies that every possible m-tuple
of the symbols appears in exactly one of the orthogonal arrays in the set. We
refer to [34] for background on orthogonal arrays.

In Table 4, we propose a method to construct q-ary functions by using or-
thogonal arrays. By employing such functions in Secret Sharing Scheme II, we
can get perfect secret sharing schemes.

Theorem 3. Let F be constructed by Construction II. Then, Secret Sharing
Scheme II is perfect.

Proof. For any subset of players A = {Pi1 , . . . ,Pim} ∈ Γ , the recovery algorithm

fA satisfies fA

(
x
(A)
i1
, . . . , x

(A)
im

)
= F |A

(
x(A)

)
= k, where

x(A) =
(

0, . . . , 0, x
(A)
i1
, 0, . . . , 0, x

(A)
im
, 0, . . . , 0

)
,

thus the qualified group A can reconstruct the secret key.
For any forbidden group A ∈ ∆, we assume that the players in A are

collaborating to reconstruct the secret key by using some recovery algorithm,
say fB , where B ∈ Γ . As discussed in Section 3, we must have B * A, i.e.,
C = A

⋂
B ( B. Suppose that |C| = t, |B| = m, then t < m. From Step 2.1 of

Construction II, we have that for B ∈ Γ , there exists
{
OA(B)

γ

∣∣ γ ∈ F∗q
}

, which
is a set of q− 1 disjoint simple arrays OA1(m− 1,m, q− 1). Given γ ∈ F∗q , every

possible (m − 1)-tuple of F∗q occurs exactly one time in OA(B)
γ , which implies

that every possible t-tuple of F∗q occurs exactly (q − 1)m−1−t times in OA(B)
γ .

Hence, from Step 2.2 of Construction II, we have that given γ ∈ F∗q , for any

shares s(B)(C) ∈ (F∗q)t, the conditional probability determined by fB satisfies

Pr
(
S(B)(C) = s(B)(C)

∣∣ K = γ
)

=
(q − 1)m−1−t

(q − 1)m−1
=

1

(q − 1)t
= Pr

(
S(B)(C) = s(B)(C)

)
,
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Table 3. Secret Sharing Scheme II

Initialization Phase:

1. The set of all the players is P = {P1, . . . ,Pn}.

2. The access structure (Γ,∆) is public.

Sharing Phase:

1. The trusted center TC chooses a q-ary function F : Fnq → Fq which satisfies
(i) For A ∈ Γ , F |A is balanced onto F∗q , which is carefully chosen.
(ii) For A ∈ ∆, F |A = 0, i.e., F |A is a zero function.
Then, TC computes the algebraic normal form of F by using Eq.(2),

F (x) =
∑

u=(u1,...,un)∈Zn
q

aux
u1
1 · · ·x

un
n ,

and the algebraic normal form of F is public.

2. Suppose TC wants to share a secret key k ∈ F∗q . Then, for every A =
{Pi1 , . . . ,Pim} ∈ Γ , TC randomly chooses

x(A) =
(

0, . . . , 0, x
(A)
i1
, 0, . . . , 0, x

(A)
im
, 0, . . . , 0

)
∈ (F |A)−1(k) = {x ∈ Fnq | F |A(x) = k},

and TC transmits the values x
(A)
i1
, . . . , x

(A)
im

secretly to Pi1 , . . . ,Pim respectively.

Finally, for i = 1, . . . , n, the player Pi receives s(Pi) =
{
s(A)(Pi) = x

(A)
i

∣∣ A ∈
Γ and Pi ∈ A

}
as his share.

Reconstruction Phase:

For any A = {Pi1 , . . . ,Pim} ∈ 2P , the players in A do as follows.

1. Determine the recovery algorithm.
The players in A get

fA(xi1 , . . . , xim) = F (0, . . . , 0, xi1 , 0, . . . , 0, xim , 0, . . . , 0) (15)

as their recovery algorithm.

2. Compute the secret key.

The players in A pool their shares and compute fA
(
x
(A)
i1
, . . . , x

(A)
im

)
.

which implies from Bayes’ theorem that

Pr
(
K = γ

∣∣ S(B)(C) = s(B)(C)
)

=
Pr
(
S(B)(C) = s(B)(C)

∣∣ K = γ
)

Pr(K = γ)

Pr
(
S(B)(C) = s(B)(C)

) = Pr(K = γ) =
1

|K|
. (16)
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Table 4. Construction II

Input: A set of players P = {P1, . . . ,Pn} with access structure (Γ,∆).

Output: A function F : Fnq → Fq.

Step 1: For every subset of players A ∈ ∆, set F |A = 0, i.e., F |A is a zero function.

Step 2: For every subset of players A = {Pi1 , . . . ,Pim} ∈ Γ , execute the following
two steps.

1. Choose a large set of orthogonal arrays LOA1(m−1,m, q−1), i.e., a set
of q− 1 disjoint simple arrays OA1(m− 1,m, q− 1), which is denoted by{
OA(A)

γ

∣∣ γ ∈ F∗q
}

.

2. For x ∈ EA, denote by x̃ the vector obtained by deleting all the zero
coordinates of x. Then, set F |A(x) = γ if and only if x̃ is a row vector

of OA(A)
γ .

Due to Eq.(16), we have that for every k ∈ K, the secret key k can be guessed
correctly with probability Pr(K = k) = 1/|K|. Therefore, from Definition 2,
Secret Sharing Scheme II is perfect. ut

Remark 2. We can prove that by employing q-ary function F constructed in
Construction II, Secret Sharing Scheme I is perfect. In fact, let k be the secret
key and α1, . . . , αn be the generated shares of P1, . . . ,Pn respectively. When we

add the constraint that x̃ = (αi1 , . . . , αim) is a row vector of OA(A)
k to Step 2.2

of Construction II, then the function F satisfies F (s(A)) = k for A ∈ Γ . Thus, it
can be proved similarly as in Theorem 3 that Secret Sharing Scheme I is perfect.
By adding this constraint, the output functions in Construction II form a proper
subset of all the output functions in Construction I.

5.3 Perfect Secret Sharing Schemes from Resilient Functions

For two integers n and m, the function F : Fnq → Fmq is called t-resilient if
the output value of F satisfies for any {i1, . . . , it} ⊆ {1, 2, . . . , n}, any zj ∈ Fq,
j = 1, . . . , t, and any γ ∈ Fq,

Pr(F (x1, . . . , xn) = γ | xi1 = z1, . . . , xit = zt) = Pr(F (x1, . . . , xn) = γ) =
1

qm
.

(17)

In [23], t-resilient functions from Fnq to Fmq are characterized in terms of
orthogonal arrays. Furthermore, Camion et al. [10] claimed that this charac-
terization holds for t-resilient functions from Fn to Fm, where F is a finite
alphabet. Inspired by Construction II in Table 4 and the close relationship be-
tween orthogonal arrays and t-resilient functions, we find a way to construct
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Table 5. Construction III

Input: A set of players P = {P1, . . . ,Pn} with access structure (Γ,∆).

Output: A function F : Fnq → Fq, where q − 1 is a power of a prime.

Step 1: Choose a one-to-one mapping φ : F∗q → Fq′ , where q′ = q − 1.

Step 2: For every subset of players A ∈ ∆, set F |A = 0, i.e., F |A is a zero function.

Step 3: For every subset of players A = {Pi1 , . . . ,Pim} ∈ Γ , execute the following
two steps.

1. Choose an (m,m− 1, q′) resilient function GA.

2. For x ∈ EA, denote by x̃ = (xi1 , . . . , xim) the vector obtained by deleting
all the zero coordinates of x. By abuse of notation, we use φ(x̃) to denote
(φ(xi1), . . . , φ(xim)). Then, define

F |A(x) = φ−1 ◦GA ◦ φ(x̃). (18)

perfect secret sharing schemes with general access structures by employing t-
resilient functions. The idea of constructing perfect secret sharing schemes by
using resilient functions can be found in simplified (n, n)-threshold scheme that
all the n players pool their shares and compute the secret key k ∈ Zm (Zm is
the residue class ring with m elements) by the formula

k =

n∑
i=1

xi mod m,

where for i = 1, . . . , n, xi ∈ Zm is the share of player Pi (see [33, Chapter 13] for
more details). Note that the recovery algorithm F (x) =

∑n
i=1 xi mod m, x =

(x1, . . . , xn) ∈ Znm is indeed an (n− 1)-resilient function from Znm to Zm. When
m = 2, this idea appears in [21, Chapter 7] for the construction of binary (n, n)-
threshold schemes. Resilient functions can also be employed as building blocks
of perfect monotone secret sharing schemes from the description of monotone
circuit, see [3,4].

For convenience, we denote t-resilient functions from Fnq to Fq by (n, t, q)
resilient functions. Clearly, an (n, t, q) resilient function must be (n, t′, q) resilient
when t′ 6 t. In Table 5, we use (n, t, q) resilient functions to construct q-ary
functions. By employing such functions in Secret Sharing Scheme II, we can get
perfect secret sharing schemes.

Remark 3. In Construction III, the finite field Fq should satisfy that q − 1 is a
power of a prime, i.e., q = ps + 1 for some prime p and positive integer s. If
q = 2t for some t > 2, then p is odd and ps = 2t − 1. If q is odd, then p is even
and q = 2t + 1 for some t > 1. In Table 6, we give some examples of q such that
q − 1 is a power of a prime.
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Table 6. All numbers 2 < q < 264 satisfying q is a power of a prime and q − 1 is a
power of a prime

q q − 1 q q − 1

3 = 31 2 = 21 257 = 2571 256 = 28

4 = 22 3 = 31 8192 = 213 8191 = 81911

5 = 51 4 = 22 65537 = 655371 65536 = 216

8 = 23 7 = 71 131072 = 217 131071 = 1310711

9 = 32 8 = 23 524288 = 219 524287 = 5242871

17 = 171 16 = 24 2147483648 = 231 2147483647 = 21474836471

32 = 25 31 = 311 2305843009213693952 = 261 2305843009213693951
128 = 27 127 = 1271 = 23058430092136939511

Note: a1 means that a is a prime.

Theorem 4. Let F be constructed by Construction III. Then, Secret Sharing
Scheme II is perfect.

Proof. For any subset of players A = {Pi1 , . . . ,Pim} ∈ Γ , the recovery algorithm

fA satisfies fA

(
x
(A)
i1
, . . . , x

(A)
im

)
= F |A

(
x(A)

)
= k, where

x(A) =
(

0, . . . , 0, x
(A)
i1
, 0, . . . , 0, x

(A)
im
, 0, . . . , 0

)
,

thus the qualified group A can reconstruct the secret key.
For any forbidden group A ∈ ∆, we assume that the players in A are

collaborating to reconstruct the secret key by using some recovery algorithm,
say fB , where B ∈ Γ . As discussed in Section 3, we must have B * A, i.e.,
C = A

⋂
B ( B. Suppose that |C| = t, |B| = m, then t < m. Let x ∈ EB with

x̃ = (xi1 , . . . , xim) ∈ (F∗q)m, where x̃ is the vector obtained by deleting all the
zero coordinates of x. From Step 3.1 of Construction III, we have that GB is an
(m,m−1, q′) resilient function, where q′ = q−1. Let {j1, . . . , jt} ⊆ {i1, . . . , im},
then from Eq.(17), we have that for any zs ∈ Fq′ , s = 1, . . . , t, and any β ∈ Fq′ ,

Pr(GB ◦ φ(x̃) = β | φ(xj1) = z1, . . . , φ(xjt) = zt)

=Pr(GB ◦ φ(x̃) = β) =
1

q′
=

1

q − 1
. (19)

According to Eq.(18), we get that Eq.(19) is equivalent to

Pr(F |B(x) = φ−1(β) | xj1 = φ−1(z1), . . . , xjt = φ−1(zt))

=Pr(F |B(x) = φ−1(β)) =
1

q − 1
. (20)

Since φ is a one-to-one mapping from F∗q to Fq′ , then given the shares s(B)(C) ∈
(F∗q)t, for any γ ∈ F∗q , the conditional probability determined by fB satisfies

Pr
(
K = γ

∣∣ S(B)(C) = s(B)(C)
)

= Pr(K = γ) =
1

q − 1
=

1

|K|
, (21)
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which implies that for every k ∈ K, the secret key k can be guessed correctly
with probability Pr(K = k) = 1/|K|. Therefore, from Definition 2, we have that
Secret Sharing Scheme II is perfect. ut

Remark 4. It is proved in [23] that an (m, t, q) resilient function is equivalent
to a large set of orthogonal arrays LOAqm−1−t(t,m, q). In fact, in Step 3.2 of
Construction III, the sets {x̃ ∈ (F∗q)m | F |A(x) = γ, x ∈ EA}, γ ∈ F∗q , consist of
a large set of orthogonal arrays LOA1(m− 1,m, q− 1). Hence, Construction III
can be seen as a special case of Construction II.

There exist a large amount of constructions of resilient functions over finite
fields, e.g. see [11,12,24,37]. We remark that, generally, given the value table of a
q-ary function F , it needs approximately O(nqn) operations over the finite field
Fq to compute the ANF of F . However, it will be much easier for us to derive
the ANF of F by using the known ANFs of resilient functions. We illustrate
this process by a simple example in Appendix B, which provides a perfect secret
sharing scheme realizing a non-monotone access structure.

For Secret Sharing Scheme II, it is clear that the information rate is

ρ = min

{
ρi =

1

|{A ∈ Γ | Pi ∈ A}|

∣∣∣∣ 1 6 i 6 n

}
, (22)

which depends on the access structure. In the worst case, there may exist a player
who joins in 2n−1 qualified groups, then according to Eq.(22), the information
rate is O(2−n) which is much lower than the upper bound.

We emphasize that in the sharing phase of Secret Sharing Scheme I and Se-
cret Sharing Scheme II, the computational complexity depends on the access
structure, which is often exponential in the number of players for practical ap-
plications. In general, for non-monotone secret sharing schemes, it is hard to
decrease the complexity of the sharing phase (excepting some special access
structures).

6 Conclusion

In this paper, we discuss secret sharing schemes realizing general (not necessarily
monotone) access structures. For secret sharing schemes with general access
structures, the attack model and the definition of unconditional security (called
perfect) given in this paper are generalizations of the monotone access structure
case. Secret Sharing Scheme I presented in Table 1 is a democratic scheme such
that the shares are generated by the players. We prove that if the value table
of the q-ary function F is well arranged, Secret Sharing Scheme I is perfect
with information rate ρ = 1. We propose Secret Sharing Scheme II for the sake
of efficiency, which requires the trusted center TC to distribute the shares. By
employing orthogonal arrays as well as resilient functions in the construction of
q-ary function F , we prove that Secret Sharing Scheme II is perfect.
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For any access structure, the information rate of Secret Sharing Scheme I
achieves the upper bound. However, for Secret Sharing Scheme II, the informa-
tion rate depends on the access structure, which will be much lower than the
upper bound in the worst case. For some access structures, the size of the shares
in Secret Sharing Scheme II is exponential in the number of players. As a fur-
ther work, it would be very interesting to design efficient perfect secret sharing
schemes with general access structures which have high information rate.
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Appendix A: The Proof of Lemma 1

In this appendix, we give a full proof of Lemma 1. First we introduce a simple
lemma.

Lemma 3. For l > 1, the numbers nl and Nl defined in (12) and (13) satisfy
respectively,

nl = (q − 2)
(
nl−1 + (−1)l

)
, (23)

Nl = (q − 2)Nl−1 + (−1)l+1. (24)

Moreover, for l > 1, we have nl > 0 and Nl > 0.

Proof. We only prove that for l > 1, nl = (q−2)
(
nl−1 + (−1)l

)
and nl > 0. The

results that for l > 1, Nl = (q − 2)Nl−1 + (−1)l+1 and Nl > 0 can be proved
similarly.

Since n0 = 1, then according to Eq.(12), we can compute that n1 = 0, which
satisfies Eq.(23). Assume that for all 1 6 l 6 L, Eq.(23) holds, then for l = L+1,
we have

nL+1 = (q − 1)L −
L∑
i=0

(
L+ 1

i

)
ni = (q − 1)L −

L∑
i=1

((
L

i

)
+

(
L

i− 1

))
ni − 1

= (q − 1)L −
L∑
i=1

(
L

i

)
ni − 1−

L∑
i=1

(
L

i− 1

)
ni

= (q − 1)L −
L∑
i=0

(
L

i

)
ni −

L∑
i=1

(
L

i− 1

)
ni.

(25)

From Eq.(12), we obtain that for l > 1,

l∑
i=0

(
l

i

)
ni = (q − 1)l−1. (26)
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Put (26) into (25) and apply the inductive assumption, then we have

nL+1 = (q − 1)L − (q − 1)L−1 −
L∑
i=1

(
L

i− 1

)(
(q − 2)

(
ni−1 + (−1)i

))

= (q − 2)(q − 1)L−1 − (q − 2)

L∑
i=1

(
L

i− 1

)
ni−1 − (q − 2)

L∑
i=1

(
L

i− 1

)
(−1)i

= (q − 2)

(
(q − 1)L−1 − (q − 1)L−1 + nL − (−1)L

)
(27)

= (q − 2)
(
nL + (−1)L+1

)
,

where Eq.(27) is from Eq.(12) in the case that l = L. Hence, for l = L + 1,
Eq.(23) holds, which implies that for any l > 1, nl = (q − 2)

(
nl−1 + (−1)l

)
.

Suppose that for any 1 6 l 6 L, we have nl > 0, which is already true for
L = 1. Then, since nL+1 = (q−2)

(
nL + (−1)L+1

)
, we have nL+1 > 0 if nL > 1,

and nL+1 = (−1)L+1(q− 2) if nL = 0. If nL = (q− 2)
(
nL−1 + (−1)L

)
= 0, then

since q > 2, we have nL−1 + (−1)L = 0, which implies that L is odd because
nL−1 > 0. Hence, if nL = 0, then nL+1 = (−1)L+1(q−2) = q−2 > 1. Therefore,
for any l > 1, we have nl > 0.

The proof of Lemma 1. We only need to prove that for every x ∈ Fnq ,
F (x) can be uniquely determined. Firstly, if x = 0, then F (x) = 0. Suppose that
supp(x) = {i1, . . . , im}, where 1 6 m 6 n, and 1 6 ij 6 n for j = 1, . . . ,m. Let
A = {Pi1 , . . . ,Pim}. If A ∈ ∆, then F (x) = 0. If A ∈ Γ and x =

∑m
j=1 s(Pij )eij ,

then F (x) = k. Thanks to Proposition 1, the remaining case we need to consider
is that there exists a non-empty set B ⊆ A with |B| = l such that x ∈ Es(A\B)×B .

In the following, we will show that the value table of F |s(A\B)×B can be arranged
in Step 2.2 of Construction I. That is to say, we will prove that nl > 0, Nl > 0,
and

nl + (q − 2)Nl =
∣∣Es(A\B)×B

∣∣ = (q − 2)l. (28)

The results nl > 0 and Nl > 0 are shown in Lemma 3, so we prove Eq.(28)
below.

Since n0 = 1 and N0 = 0, which implies that n1 = 0 and N1 = 1, then it can
be seen that Eq.(28) holds for l = 0 and l = 1. Assume that Eq.(28) holds for
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all l 6 L, then for l = L+ 1,

nL+1 + (q − 2)NL+1

=(q − 1)L −
L∑
i=0

(
L+ 1

i

)
ni + (q − 2)

(
(q − 1)L −

L∑
i=0

(
L+ 1

i

)
Ni

)

=(q − 1)L+1 −
L∑
i=0

(
L+ 1

i

)
(ni + (q − 2)Ni)

=(q − 1)L+1 −
L∑
i=0

(
L+ 1

i

)
(q − 2)i (29)

=(q − 1)L+1 −
(
(q − 1)L+1 − (q − 2)L+1

)
=(q − 2)L+1,

where Eq.(29) is due to the inductive assumption. Hence, for every l = 1, . . . ,m,
Eq.(28) holds. Therefore, for x ∈ Es(A\B)×B , the value F |s(A\B)×B(x) can be
uniquely determined, and we have the desired result. �

Appendix B: An Example of Secret Sharing Scheme II

We illustrate Secret Sharing Scheme II by the following example, where the q-ary
function F is constructed by Construction III in Table 5.

Example 1. Let P = {P1,P2,P3,P4} and Γ = {A1 = {P1,P2,P3}, A2 = {P1,P2,
P4}, A3 = {P3,P4}, A4 = {P1,P2,P3,P4}}. The set of secret keys is K =
F∗8 = {1, α, α2, . . . , α6}, where α is a primitive element of F8. Suppose that
TC wants to share k = α5 as the secret key. Following Construction III, TC
defines φ : F∗8 → F7 as φ(γ) = logα γ, which means that if γ = αa ∈ F∗8 for some
integer a, then logα γ = a. For the access structure Γ , TC chooses

GA1(z1, z2, z3) = 2z1 + 3z2 + z3,
GA2(z1, z2, z4) = z1 + 2z2 + 3z4,

GA3
(z3, z4) = 2z3 + 4z4,

GA4
(z1, z2, z3, z4) = z1 + z2 + z3 + z4 + 1

(30)

as the 7-ary linear resilient functions (see [10] for more details). After that, TC
computes and secretly transmits the shares

s(P1) = {s(A1)
1 = α, s

(A2)
1 = α2, s

(A4)
1 = α},

s(P2) = {s(A1)
2 = α2, s

(A2)
2 = α3, s

(A4)
2 = α},

s(P3) = {s(A1)
3 = α4, s

(A3)
3 = α, s

(A4)
3 = α},

s(P4) = {s(A2)
4 = α6, s

(A3)
4 = α6, s

(A4)
1 = α},
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to P1, P2, P3, P4 respectively. From (30), the 8-ary function F is defined as

F |A1(x) = φ−1 ◦GA1 ◦ φ(x̃) = x21x
3
2x3,

F |A2
(x) = φ−1 ◦GA2

◦ φ(x̃) = x1x
2
2x

3
4,

F |A3
(x) = φ−1 ◦GA3

◦ φ(x̃) = x23x
4
4,

F |A4(x) = φ−1 ◦GA4 ◦ φ(x̃) = αx1x2x3x4,

where x ∈ F4
8, x̃ denotes the vector obtained by deleting all the zero coordinates

of x, and for every forbidden group A ∈ ∆ = 2P \ Γ , F |A = 0. Finally, TC
publishes

F (x) = (1− x74)x21x
3
2x3 + (1− x73)x1x

2
2x

3
4 + (1− x71)(1− x72)x23x

4
4 + αx1x2x3x4

= x23x
4
4 + x21x

3
2x3 + x1x

2
2x

3
4 − x71x23x44 − x72x23x44 + αx1x2x3x4 − x21x32x3x74

−x1x22x73x34 + x71x
7
2x

2
3x

4
4.

Due to Theorem 4, this secret sharing scheme is perfect. In fact, assume
that the players in the forbidden group B = {P1,P3,P4} ∈ ∆ are collabo-
rating to reconstruct the secret key. Their recovery algorithm defined in (15)
is fB(x1, x3, x4) = (1 − x71)x23x

4
4, which equals 0 for any (x1, x3, x4) ∈ (F∗8)3.

Suppose that they try to use the recovery algorithms

fA1
(x1, x2, x3) = F (x1, x2, x3, 0) = x21x

3
2x3,

fA2(x1, x2, x4) = F (x1, x2, 0, x4) = x1x
2
2x

3
4,

fA4
(x1, x2, x3, x4) = F (x1, x2, x3, x4) = x23x

4
4 + x21x

3
2x3 + x1x

2
2x

3
4 − x71x23x44

− x72x23x44 + αx1x2x3x4 − x21x32x3x74
− x1x22x73x34 + x71x

7
2x

2
3x

4
4,

which are functions defined on (F∗8)3, (F∗8)3, and (F∗8)4 respectively. For the

players P1, P3, and P4, the values of s
(A1)
2 , s

(A2)
2 , and s

(A4)
2 are unknown random

values, thus according to (21), the secret key can be guessed correctly with
probability 1/|K|, i.e., the players in B can learn nothing about the secret key.
Similar discussion holds for other forbidden groups.

Moreover, it is clear that the information rate of this scheme is

ρ = min

{
log2 |K|

log2 |S(Pi)|

∣∣∣∣ 1 6 i 6 4

}
=

1

3
.
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