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1 Laboratoire de Mathématiques Nicolas Oresme
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Abstract. In 2010, van Dijk, Gentry, Halevi, and Vaikuntanathan de-
scribed the first fully homomorphic encryption over the integers, called
DGHV. The scheme is based on a set of m public integers ci = pqi + ri,
i = 1, · · · ,m, where the integers p, qi and ri are secret. In this paper,
we describe two lattice-based attacks on DGHV. The first attack is ap-
plicable when r1 = 0 and the public integers ci satisfy a linear equation
a2c2 + . . .+amcm = a1q1 for suitably small integers ai, i = 2, . . . ,m. The
second attack works when the positive integers qi satisfy a linear equa-
tion a1q1 + . . . + amqm = 0 for suitably small integers ai, i = 1, . . . ,m.
We further apply our methods for the DGHV recommended parame-
ters as specified in the original work of van Dijk, Gentry, Halevi, and
Vaikuntanathan.

Keywords: Homomorphic Encryption, Cryptanalysis, Lattice reduction.

1 Introduction

In the last ten years, cloud computing has gained major importance and widespread.
Yet, a very important concern of cloud computing remains the security and pri-
vacy of data. A useful solution to this concern is the use of fully homomorphic
encryption (FHE) to encrypt data stored remotely. Indeed, a fully homomor-
phic encryption scheme supports the computation of arbitrary functions on en-
crypted data, possibly distributed across the cloud, without the need to resort
to decryption. Unfortunately, not all encryption schemes are fully homomorphic.
For example, RSA [20] is only multiplicatively homomorphic: given two cipher-
texts c1 ≡ me

1 (mod N) and c2 ≡ me
2 (mod N), one can compute the encrypted

form of m1m2, that is (m1m2)e (mod N), without having to recover the plain-
texts m1 and m2, simply by applying c1c2 ≡ me

1m
e
2 ≡ (m1m2)e (mod N). Sim-

ilarly, ElGamal [7] is multiplicatively homomorphic. By contrast, Paillier [19]

? Partially supported by SIMPATIC (SIM and PAiring Theory for Information and
Communications security).
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is additively homomorphic: given two ciphertexts c1 = gm1rN1 (mod N2) and
c2 = gm2rN2 (mod N2), one can perform c1c2 = gm1+m2(r1r2)N (mod N2),
which gives m1 + m2 without having to resort to the decryption of the cipher-
texts c1 and c2. Another example of an additively homomorphic scheme is the
Goldwasser-Micali scheme [10].

In 2009, Gentry [8], presented the first construction of a FHE scheme. Gen-
try’s scheme supports both addition and multiplication on ciphertexts and con-
sists of three main steps. The first step constructs a somewhat homomorphic
scheme, which is limited to evaluating low-degree polynomials over encrypted
data. The second step slightly modifies the somewhat homomorphic scheme to
make it bootstrappable, i.e., capable of evaluating its own decryption circuit (op-
erations). The third step transforms the bootstrappable somewhat homomorphic
encryption scheme into a fully homomorphic encryption through a recursive self-
embedding. The security of Gentry’s scheme has been determined to be based on
the worst-case hardness of solving specific problems in an ideal lattice, namely
the shortest independent vector problem (SIVP) over ideal lattices in the worst-
case (see [9]).

A key disadvantage of Gentry’s scheme, however, is its computational inef-
ficiency. Therefore, much effort has been made by the research community to
find alternative efficient FHE schemes. In 2010, van Dijk, Gentry, Halevi and
Vaikuntanathan [6] presented DGHV, a computationally efficient FHE scheme
over the integers. This scheme is based on a set of public integers, ci = pqi + ri,
i = 1, . . . ,m, where the parameters p, qi and ri are secrets with the following
size constraints:

• p is a prime number.

• η is the bit-length of the secret key p.

• ρ is the bit-length of the secret noises ri.

• γ is the bit-length of the public integers ci.

In [6,16,5], the security of DGHV has been studied against several attacks,
which served the purpose of improving its security by defining optimal bounds
for its parameter bit size (η, ρ, and γ). As reported in [16], these attacks can be
categorized according to their underling techniques:

• Brute force search [6,3]: When c1 = pq1, this technique consists in remov-
ing the noise, say r2 from c2 by trying all possibilities for r2 ∈ (−2ρ, 2ρ) and
computing gcd(c1, c2 − r2) which gives p with overwhelming probability.

• Continued fractions [6,16]: This consists on recovering qi/qj from ci/cj
using continued fractions, which yields immediate calculation of p = bci/qie.
• Attacks on the Approximate-GCD assumption [6,16]: The recovery

of p through the recovery of ri or qi, i = 1, . . . ,m, using a combination of
lattice reduction and other techniques. These attacks include Coppersmith’s
technique [4], the method for solving simultaneous diophantine equations [15]
and the orthogonal lattice attacks [6,16] (See Section 3 for more on these
attacks).
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Yet, a more direct way to break the DGHV scheme when r1 = 0 consists in
finding p and q1 by factoring c1 = pq1. To date, the most efficient known methods
to factor c1 are the Number Field Sieve (NFS) [2] and the Elliptic Curve Method
(ECM) [14]. As shown in [16] (p. 82, Table 7.1), the DGHV factorization problem
of c1 is considered as untractable if p > 2261 and c1 > 22911.

1.1 Our Contribution

In this paper, we propose two new attacks on the DGHV scheme. The starting
point of both attacks are the existance of two linear equations involving the
public integers ci for i = 2, . . . ,m and the secret parameter q1 on the one hand,
and the secret parameters qi, i = 1, . . . ,m on the other.

In the first attack, we suppose that c1 = pq1 and that ci = pqi + ri with
ri 6= 0 for i = 2, . . . ,m. To avoid factoring attacks on c1, we also suppose that
q1 is prime. If q1 is not coprime with one of the integers ci for 2 ≤ i ≤ m,
then gcd(c1, ci) = q1 which will reveal p = c1

q1
. Hence, q1 is coprime ci for

i = 2, . . . ,m. Therefore for any integers a2, . . . , am−1, the integer am ≡ −(a2c2+
. . .+ am−1cm−1)(cm)−1 (mod q1)) exists and satisfies the linear integer relation
a2c2+ . . .+amcm = a1q1 for an integer a1. We will leverage this relationship and
show that one can find the DGHV parameters p, qi and ri in polynomial time
if the coefficients ai, i = 1, · · · ,m are suitably small. The attack uses Copper-
smith’s method for solving multivariate linear modular equations, as presented
by Herrmann and May in [12].

In the second attack, we suppose that ci = pqi + ri for i = 1, . . . ,m. Let
G = gcd(q1, . . . , qm). Then qm−1

G is coprime with one qi
G , i 6= m−1. Assume that

qm−1

G is coprime with qm
G . Let a1, . . . , am−2 be arbitrary integers. Define

am−1 ≡ −
(
a1
q1
G

+ . . .+ am−2
qm−2
G

)(qm−1
G

)−1
(mod

qm
G

).

Then there exists an integer am such that

a1
q1
G

+ . . .+ am−2
qm−2
G

+ am−1
qm−1
G

+ am
qm
G

= 0,

or equivalently a1q1 + . . . + amqm = 0. This shows that the integers q1, . . . , qm
are linked by infinitely many linear integer relations. We exploit this relation,
and show that if the coefficients ai, i = 1, . . . ,m are sufficiently small, then one
can efficiently find all the DGHV parameters. Unlike the first attack, this attack
is based solely on lattice reduction techniques, namely the LLL algorithm [15].

For both attacks, we carry out experiments to verify the validity and the
effectiveness of our methods. We also define the new bounds for DGVH secret
parameters that resist our attacks, effectively improving on previously proposed
optimal bounds [6],[16].

1.2 Organization

The rest of this paper is organized as follows: In Section 2, we briefly review the
preliminaries necessary for both our attacks. Section 3 is dedicated to leading
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attacks on the DGHV scheme. In Section 4, we present our first lattice-based
attack on DGHV, that is when r1 = 0 and the numbers ci satisfy a linear
equation a2c2 + . . .+amcm = a1q1 for suitably small integers ai, i = 2, . . . ,m. In
section 5, we present our second lattice-based attack, which is applicable when
the integers qi satisfy a linear equation a1q1 + . . .+ amqm = 0 for suitably small
integers ai. We then conclude the paper in Section 6.

2 Preliminaries

In this section, we review the DGHV scheme parameters and the Approximate-
GCD assumption upon which its security is based. We also recall Coppersmith’s
method for solving linear diophantine equations, and review the lattice reduction
technique used in our new attacks on the DGHV scheme.

2.1 The DGHV Scheme over the Integers

In 2010, van Dijk, Gentry, Halevi and Vaikuntanathan [6] proposed a fully ho-
momorphic encryption scheme based on m public integers ci = pqi + ri where
the secret parameters p, qi, ri are such that:

• For i = 1, . . . ,m, ci is a public integer of bit-length γ.
• p is a private prime number of bit-length η.
• For i = 1, . . . ,m, qi is a private integer of bit-length γ − η.
• For i = 1, . . . ,m, ri is a private random integer with |ri| < 2ρ.

In [6], it is shown that the scheme is semantically secure under the Approximate-
GCD assumption which states the following:

Definition 1 (Approximate-GCD assumption).
Let γ, η, ρ be positive integers. For any η-bit prime number p, given m many
positive integers ci = pqi + ri with m many (γ − η)-bit integers qi and m many
integers ri satisfying |ri| < 2ρ, it is hard to find p.

The hardness of the Approximate-GCD assumption has been studied by Howgrave-
Graham [13], and used in the study of the security of the DHGV scheme in [6]
and [16], leading to the establishment of typical integer sizes that guarantee high
security levels of DHGV. Therein, the values ρ ≈ √η, γ = η3 + η are considered
secure (see [6]).

2.2 Lattice reduction

Here we present some basics on lattice reduction techniques. Let b1 . . . , bd be
d linearly independent vectors of Rn with d ≤ n. The lattice L spanned by
b1 . . . , bd is the set of all integer linear combination x1b1 + . . .+xdbd of b1 . . . , bd
with x1, . . . , xd ∈ Z. The set of vectors (b1 . . . , bd) is called a basis of L and d is
its dimension. If B is the matrix of b1 . . . , bd in the canonical basis of Rn, then
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the determinant of L is det(L) =
√
BtB, and the Euclidean norm of a vector

v ∈ L is defined using the scalar product ‖v‖ =
√
v · v.

Of interest to many applications and algorithms is the shortest non-zero
vector in a lattice. Finding the shortest non-zero vector is a computationally
hard problem known as the Shortest Vector Problem (SVP) that guarantees
the security of many cryptographic schemes. However, Minkowski’s theorem,
which dates back to 1889, guarantees the existence of short vectors, i.e., non-
zero vectors whose length is not too large as in the following theorem.

Theorem 1 (Minkowski). Let L be a lattice. Then there exists a non-zero
vector v ∈ L such that

‖v‖ ≤
√

dim(L) det(L)
1

dim(L) .

Given a lattice L and its original basis b1 . . . , bd, lattice reduction consists in
finding another basis, where a short non-zero vector is easily determined. This
can be achieved through different algorithms, whose running time is usually at
least exponential in the dimension of the lattice d. However, the LLL algorithm
of Lenstra, Lenstra, and Lovsz [15] can find, in polynomial time, short non-zero
vectors in a lattice with reasonable dimension.

Theorem 2 (LLL). Let L be a lattice spanned by a basis (u1, . . . , ud), then the
LLL algorithm produces a new basis (b1, . . . , bd) of L satisfying

‖b1‖ ≤ 2
d−1
4 det(L)

1
d ,

in polynomial time.

Thus, finding a reduced basis using LLL leads to finding reasonably short vectors
in polynomial time.

2.3 Coppersmith’s method for solving linear diophantine equations

The LLL algorithm has many applications in cryptography, including solving dio-
phantine equations. Using the LLL algorithm, Coppersmith [4] derived a method
for finding small roots of univariate modular equations and bivariate equations.
This strategy is know as Coppersmith’s technique and has been heuristically
generalized for finding small roots of multivariate linear equations. The follow-
ing result by Herrmann and May [12] gives a sufficient condition under which
small roots of a modular linear equation can be found in polynomial time.

Theorem 3 (Herrmann-May). Let N be a composite integer of unknown
factorization with a divisor p ≥ Nβ. Let f(x1, . . . , xn) ∈ Z[x1, . . . , xn] be a
linear polynomial in n variables. One can find in polynomial time all solu-

tions
(
x
(0)
1 , . . . , x

(0)
n

)
of the equation f(x1, . . . , xn) ≡ 0 (mod p) with

∣∣∣x(0)1

∣∣∣ <
Nλ1 , . . . ,

∣∣∣x(0)n ∣∣∣ < Nλn if

n∑
i=1

λi < 1− (1− β)
n+1
n − (n+ 1)

(
1− n

√
1− β

)
(1− β).
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3 Former attacks on the DGHV Scheme

We recall here the main existing attacks on the DGHV scheme. For more details,
we refer to [6] and [16]. Assume that we have an instance of DGHV with c1 = pq1
and ci = pqi + ri, i = 2, . . . ,m where the parameters p, qi and ri are secret. The
task is to recover p. We recall that p is a η-bit prime and 0 < ri < 2ρ.

3.1 Brute force on the remainder

A simple way to recover p is to remove the noise, say from c2, by finding r2, and
then compute p = gcd(c1, c2− r2). This can be achieved by trying all integers r2
with 0 < |r2| < 2ρ. The complexity of this attack is obviously O (2ρ). However,
applying the method of Chen and Nguyen [3], one can find p with complexity
O
(
2ρ/2

)
. As a consequence, removing the noise to recover p does not work in

practice when ρ is sufficiently large.

3.2 Continued fractions

Using c1 = pq1 and c2 = pq2 + r2, and given that q1 and q2 are prime numbers,
one gets ∣∣∣∣c2c1 − q2

q1

∣∣∣∣ =
|r2|
c1
.

To recover q2
q1

as a convergent of the continued fraction expansion of c2c1 , we need
|r2|
c1

< 1
2q21

, that is 2q1|r2| < p. This is not possible if q1 is much larger than p

as for the recommended values for the DGHV parameters where q1 is η3-bit size
while p is η-bit size.

3.3 Simultaneous Diophantine approximation

In [15], it is shown that the LLL algorithm can find a solution for the simultane-
ous diophantine approximations. That is, given n rational numbers α1, · · · , αn
and ε with 0 < ε < 1, one can efficiently find integers p1, . . . , pn, and q such
that, for i = 1, . . . , n,

|qαi − pi| ≤ ε, and 1 ≤ q ≤ 2
n(n+1)

4 ε−n.

This can be applied to the DHGV scheme. Using c1 = pq1 and ci = pqi + ri, we
get for i = 2, . . . ,m ∣∣∣∣q1 cic1 − qi

∣∣∣∣ =
|ri|
p

< 2ρ−η.

This gives m− 1 simultaneous diophantine approximations which can be solved
by applying the LLL algorithm [15] to reduce a basis of a lattice of dimension
m. The LLL algorithm will succeed under the condition:

q1 ≤ 2
(m−1)m

4 · 2−(ρ−η)(m−1) = 2
(m−1)m

4 +(η−ρ)(m−1).
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Since q1 ≈ 2γ−η, then γ − η ≤ m(m−1)
4 + (η − ρ)(m− 1), which can be achieved

if

m > −2η + 2ρ+
1

2
+

1

2

√
16η2 − 32ηρ+ 16ρ2 + 16γ − 8η − 8ρ+ 1.

For secure DHGV parameters, such as γ = η3 + η, ρ ≈ √η with a sufficiently
large η, this gives a large lower bound for m, and in this case lattice reduction
will not recover the shortest vector. For example, for η = 200 we get m > 5297,
which makes the lattice reduction totally inefficient according to the optimal
complexity bound O

(
m4 logBM(m log(B))

)
where B is an upper bound of the

Euclidean norms of the basis vectors and M(k) denotes the time required to
multiply k-bit integers (see [18]).

3.4 Orthogonal lattice attack

Another attack on DGHV is the orthogonal lattice attack [6,16]. Let c1 = pq1
and ci = pqi+ri, for i = 2, . . . ,m. Then there exist m−1 integers ai, i = 2, . . . ,m
such that a2c2 + . . .+ amcm ≡ 0 (mod c1). This can be rewritten as

p(a2q2 + . . .+ amqm) + a2r2 + . . .+ amrm ≡ 0 (mod pq1).

Hence a2r2 + . . . + amrm ≡ 0 (mod p), and when the integers ai, i = 2, . . . ,m,

satisfy |ai| ≤ 2η−1−ρ

m−1 , then

|a2r2 + . . .+ amrm| ≤ |a2||r2|+ . . .+ |am||rm|
≤ (m− 1) ·max

i
|ai| ·max

i
|ri|

≤ (m− 1) · 2η−1−ρ

m− 1
· 2ρ

≤ 2η−1.

Since p > 2η−1, then |a2r2 + . . . + amrm| < p, that is a2r2 + . . . + amrm = 0.
Finding many such ai’s, leads to recovering p using gcd(c1, a2c2+. . .+amcm) = p.

4 Our First Lattice-based Attack on DGHV

In this section, we present our first attack on the DGHV scheme. We exploit the
existence of a linear relation between the c2, . . . , cm and the factor q1 of c1 in
the form

a2c2 + . . .+ amcm = a1q1,

where a1, . . . , am are integers (see section 1.1). We derive a condition on the size
of each |ai| under which the above equation can be solved leading to the crypt-
analysis of the scheme. After presenting the attack, we will present a comparison
with the orthogonal lattice attack [6], and show that our attack significantly in-
creases the bound of the parameters ai leading to more successful attacks.
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4.1 The attack

Theorem 4. Let c1 = pq1 and ci = pqi+ri, i = 2, . . . ,m, be m positive integers
with 2η−1 < p < 2η, 2γ−1 < ci < 2γ and |ri| < p for i = 2, . . . ,m. Let a1, . . . , am
be m integers satisfying |ai| < 2αi for i = 2, . . . ,m and a2c2+ . . .+amcm = a1q1.
Define β = γ−η−1

γ . If

m∑
i=2

αi <
(

1− (1− β)
m
m−1 −m

(
1− m−1

√
1− β

)
(1− β)

)
(γ − 1),

then, one can find p, q1, . . . , qm, r2, . . . , rm in polynomial time.

Proof. Suppose that c1 = pq1 and ci = pqi + ri for i = 2, . . . ,m. Let a1, . . . , am
be m integers satisfying a2c2 + . . .+ amcm = a1q1. Then

a2c2 + . . .+ amcm ≡ 0 (mod q1), (1)

where q1 is an unknown divisor of c1. Suppose that 2η−1 < p < 2η and 2γ−1 <
c1 < 2γ . Then, since q1 = c1

p , we get

2γ−η−1 < q1 < 2γ−η+1.

Define β = γ−η−1
γ . Then

q1 > 2γ−η−1 = 2γβ > cβ1 .

Using Herrman-May’s Theorem 3, we can solve the equation (1) if the unknown
parameters ai satisfy |ai| < cλi1 for i = 2, . . . ,m where

m∑
i=2

λi < 1− (1− β)
m
m−1 −m

(
1− m−1

√
1− β

)
(1− β). (2)

For i = 2, . . . ,m, define αi = (γ − 1)λi. Then

cλi1 > 2(γ−1)λi = 2αi .

Now, suppose that |ai| < 2αi for i = 2, . . . ,m. Then |ai| < cλi1 and plugging
αi = (γ − 1)λi in equation (2), one can find the parameters ai, i = 2, . . . ,m if

m∑
i=2

αi <
(

1− (1− β)
m
m−1 −m

(
1− m−1

√
1− β

)
(1− β)

)
(γ − 1).

Using the recovered values of the parameters ai for i = 2, . . . ,m, we compute

q1 = gcd(c1, a2c2 + . . .+ amcm), p =
c1
q1
.

Next, for i = 2, . . . ,m, we find ri ≡ ci (mod p) and qi = ci−ri
p . ut

Let us summarize the whole method in Algorithm 1.
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Algorithm 1 : The first attack

Input: A set of public values c1 = pq1, ci = pqi + ri, i = 2, . . . ,m.
Output: The set of private parameters p, qi, i = 1, . . . ,m if the conditions of Theo-

rem 4 are fulfilled.
1: Set f(x2, . . . , xm) = c2x2 + . . .+ cmxm.
2: Apply Coppersmith’s technique and Herrman-May’s Theorem 3 to solve the poly-

nomial equation f(x2, . . . , xm) ≡ 0 (mod q1).
3: For each solution (x2, . . . , xm) do
4: Compute g = gcd(c1, x2c2 + . . .+ xmcm).
5: If g > 1 then
6: Set q1 = g and p = c1

q1
.

7: For i = 2, . . . ,m do
8: Compute ri ≡ ci (mod p).
9: Compute qi = ci−ri

p
.

10: End for
11: Output p, qi, i = 1, . . . ,m, ri, i = 2, . . . ,m.
12: Halt
13: End if
14: End for

4.2 Comparison with the orthogonal lattice attack

Let us now compare our method with the orthogonal lattice attack of [6]. Suppose
that c1 = pq1 and ci = pqi+ ri for i = 2, . . . ,m. Let a2, . . . , am be m−1 integers
satisfying a2c2 + . . . + amcm ≡ 0 (mod c1) and |ai| < 2α as required in the
orthogonal attack. Then, since c1 = pq1, we get a2c2 + . . .+ amcm ≡ 0 (mod q1)
which means that the equation can be exploited in our attack. Using Theorem 4,
our attack can recover all the parameters p, q1, qi, ri for i = 2, . . . ,m if

α <
1

m− 1

(
1− (1− β)

m
m−1 −m

(
1− m−1

√
1− β

)
(1− β)

)
(γ − 1), (3)

where β = γ−η−1
γ . Recall that the orthogonal attack of [6], as explained in

Section 3.4, will find p if

|ai| ≤
2η−1−ρ

m− 1
= 2η−1−ρ−log2(m−1),

for i = 2, . . . ,m. So, define the bound for the orthogonal lattice attack of [6]

α0 = η − 1− ρ− log2(m− 1),

and the bound for our attack

αnew =
1

m− 1

(
1− (1− β)

m
m−1 −m

(
1− m−1

√
1− β

)
(1− β)

)
(γ − 1).

Let us compare α0 and αnew in the optimal situation where η ≥ 200, γ = η3 + η
and ρ ≈ √η as recommended by [6]. These parameter sizes are believed to resist



10 Abderrahmane Nitaj and Tajjeeddine Rachidi

currently known attacks including factorization, diophantine and lattice-based
attacks. In Table 1, we show the maximal values of α0 for which the orthogonal
attack of [6] works, and the maximal values of αnew for which our attack works.
Clearly, our method significantly increases the bounds of the size of the unknown
integers ai, i = 2, . . . , am for which DGHV is vulnerable.

m = 2 m = 3 m = 5 m = 10 m = 15

η α0 αnew α0 αnew α0 αnew α0 αnew α0 αnew

200 184.8 7.9× 106 183.8 3.9× 106 182.8 1.9× 106 181.6 8.8× 105 181 5.7× 105

300 284.8 2.6× 107 283.8 1.3× 107 282.8 6.7× 106 281.6 2.9× 106 281 1.9× 106

400 384.8 6.3× 107 383.8 3.1× 107 382.8 1.5× 107 381.6 7.1× 106 381 4.5× 106

500 484.8 1.2× 108 483.8 6.2× 107 482.8 3.1× 107 481.6 1.3× 107 481 8.9× 106

Table 1. Comparison of α0 and αnew for certain values of η and m.

4.3 Deriving new parameter sizes

To avoid the new attack, it is sufficient to make the inequality (3) impossible or
hard to occur. Since γ is large, this could be possible if

1− (1− β)
m
m−1 −m

(
1− m−1

√
1− β

)
(1− β) ≈ 0,

where β = γ−η−1
γ . Therefore, for m > 1, our attack will fail if β ≈ 0, or equiv-

alently γ ≈ η. However, our attack is likely to be successful when β ≈ 1 and
the number m of public integers ci, i = 1, . . . ,m is not very large. In this situa-
tion, the inequality (3) reduces to α < γ−1

m−1 . Note that β ≈ 1 implies that γ is
much larger than η which is the case for the currently recommended parameters.
Therefore, for the recommended parameters γ = η3 + η with large η, our attack
will be successful as long as α < γ−1

m−1 .

4.4 Experimental Results

We implemented our attack and experimented it with 100 instances of DGHV.
All the 100 attacks were successful. For efficiency reasons, we considered only
instances of DGHV where the sizes of the parameters are small, typically η ≤ 60
and γ ≤ 200. The recommended DHGV parameters η ≥ 200 and γ = η3 + η
i.e., γ ≥ 8000200 are not suitable for experimentation using an off-the-shelf com-
puter.
The following example is presented as a concrete illustration of our attack.
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Consider the following situation with m = 4 public integers:

c1 = pq1 = 115681713396549343702207914242260837695350516124613657,

c2 = pq2 + r2 = 108225557677193859451749518166560930564055519997881978,

c3 = pq3 + r3 = 87008627993581418190653163120734875926757081732242410,

c4 = pq4 + r4 = 63900735072220368383452304843047856476842423469473333,

where, for i = 2, 3, 4, ci < 2γ with γ = 177. According to Theorem 4, we can solve
the linear equation a2c2 + a3c3 + a4c4 = a1q1 if the unknown parameters a2, a3
and a3 are suitably small. Combining the method of Herrmann and May [12] for
solving the equation a2c2+a3c3+a4c4 ≡ 0 (mod q1), and the LLL algorithm [15],
we get at least two polynomials sharing the solutions a2, a3, a4. Then applying
Gröbner Basis computation for solving systems of polynomial equations, we get
the solution

a2 = 130722418993, a3 = 16613347, a4 = 27131339.

Using these values, we get

q1 = gcd(c1, a2c2 + a3c3 + a4c4)

= 2939299645410290951093220439666796843647265081,

p =
c1
q1

= 39356897.

Using the value of p, we get

r2 ≡ c2 ≡ 13835383 (mod p),

r3 ≡ c3 ≡ 37261850 (mod p),

r4 ≡ c4 ≡ 1283090 (mod p).

Finally, we get

q2 =
c2 − r2
p

= 2749849859281179089188599349348118845956161635,

q3 =
c3 − r3
p

= 2210759349081341910431941906414392270985110481,

q4 =
c4 − r4
p

= 1623622285878390473300075075609945989310143619.

The whole process, including Gröbner Basis computation, took less than one
minute. Note that since a2c2 + a3c3 + a4c4 6≡ 0 (mod p), the orthogonal attack
of [6] and [16] is not applicable to this DGHV instance.

5 Our Second Lattice Attack on DGHV

In this section, we consider the situation where the DGHV public values are of the
general form ci = pqi+ri, i = 1, . . . ,m, and there exists a linear relation between
the qi’s of the form a1q1 + . . .+ amqm = 0. We show that it is possible to solve
the equation and recover all the private parameters, when specific conditions on
the size of the unknown coefficients ai, i = 1, . . . ,m are fulfilled.
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5.1 The attack

Theorem 5. Let ci = pqi + ri, i = 1, . . . ,m, be m positive integers with c1 <
. . . < cm and |ri| < 2ρ for i = 1, . . . ,m. Let a1, . . . , am be m integers satisfying
|ai| < 2α for i = 1, . . . ,m and a1q1 + . . .+ amqm = 0. If

α <
1

m
log2(cm) + log2

( √
m

m+ 1

)
− ρ,

then, one can find p, q1, . . . , qm, r1, . . . , rm in polynomial time.

Proof. Let ci = pqi+ri for i = 1, . . . ,m with ri 6= 0. Then, there exist m integers
ai, i = 1, . . .m such that a1q1 + . . .+ amqm = 0. Combining the values of ci for
i = 1, . . . ,m, we get:

a1c1 + . . .+ amcm = a1r1 + . . .+ amrm. (4)

Consider the m×m lattice L ⊂ Zm defined by the rows of the matrix

M =



1 0 0 . . . 0 c1
0 1 0 . . . 0 c2
0 0 1 . . . 0 c3
...

...
...

. . .
...

...
0 0 0 . . . 1 cm−1
0 0 0 . . . 0 cm


.

The dimension of L is dim(L) = m and the determinant is det(L) = cm. Let
v ∈ L be a target vector generated from the vector u = (a1, . . . , am) ∈ Zm, that
is,

v = uM = (a1, . . . , am−1, c1a1 + . . .+ cmam). (5)

Minkowski’s Theorem 1 for L asserts that there exists short non-zero vectors of
size at most σ(L) where

σ(L) =
√

dim(L) det(L)
1

dim(L) =
√
mc

1
m
m . (6)

For our target vector v to be among the shortest non-zero vectors of the lattice
L, the inequality σ(L) > ‖v‖ must hold. Assume further that for i = 1, . . . ,m,
we have |ai| ≤ 2α and |ri| ≤ 2ρ. Using (5) with a1q1 + . . .+ amqm = 0, we get

‖v‖ =

(
m−1∑
i=1

a2i + (c1a1 + . . .+ cmam)2

)1/2

=

m−1∑
i=1

a2i +

(
m∑
i=1

airi

)2
1/2

<
(

22α(m− 1) +
(
2α+ρm

)2)1/2
<
(

22(α+ρ) (m+ 1)
2
)1/2

= (m+ 1)2α+ρ.
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Therefore, the inequality σ(L) > ‖v‖ is fullfiled if
√
mc

1
m
m > (m + 1)2α+ρ, from

which we deduce the following condition on α.

α <
1

m
log2(cm) + log2

( √
m

m+ 1

)
− ρ. (7)

If the condition (7) holds, then applying lattice reduction to L yields the vector
v = (a1, . . . , am−1, c1a1+. . .+cmam) with c1a1+. . .+cmam = a1r1+. . .+amrm,
as in (4). Combining the obtained values from the reduction, that is a1, . . . , am−1
and c1a1 + . . . + cmam, and the known public values ci, i = 1, · · · ,m, one can
calculate am as follows:

am =
(c1a1 + . . .+ cmam)− (c1a1 + . . .+ cm−1am−1)

cm
.

The next step in the attack is to solve the equation

a1r1 + . . .+ amrm = c1a1 + . . .+ cmam, (8)

with the unknown parameters r1, . . . , rm with |ri| < 2ρ for i = 1, . . . ,m. To do
so, we consider the (m+ 1)× (m+ 1) lattice L′ ⊂ Zm+1 defined by the rows of
the matrix

M ′ =



1 0 0 . . . 0 Ca1
0 1 0 . . . 0 Ca2
0 0 1 . . . 0 Ca3
...

...
...

. . .
...

...
0 0 0 . . . 1 Cam
0 0 0 . . . 0 C(c1a1 + . . .+ cmam)


,

where C is a given parameter to be optimized later. The determinant of L′ is
det(L′) = C|c1a1 + . . .+ cmam| and its dimension is dim(L′) = m+ 1.
Let v′ ∈ L′ be a vector. Then there exists a vector u′ = (y1, . . . , ym+1) ∈ Zm+1

such that

v′ = u′M ′ = (y1, . . . , ym, C(a1y1 + . . .+ amym) + C(c1a1 + . . .+ cmam)ym+1).

We set our target vector to be v′ = (r1, . . . , rm, 0), therefore

y1 = r1, . . . , ym = rm,

(a1y1 + . . .+ amym) + (c1a1 + . . .+ cmam)ym+1 = 0.

In addition, we need ym+1 = −1 so that a1r1 + . . . + amrm = c1a1 + . . . +
cmam which provides a solution to equation (8). Now recall that Minkowski’s
Theorem 1 asserts that there exist short non-zero vectors in the lattice L′ of size
at most σ(L′) where

σ(L′) =
√

dim(L′) det(L′)
1

dim(L′) =
√
m+ 1 · C

1
m+1 · |c1a1 + . . .+ cmam|

1
m+1 .
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Since c1a1 + . . .+ cmam = a1r1 + . . .+ amrm with |ai| < 2α and |ri| < 2ρ, then,

σ(L′) <
√
m+ 1 · C

1
m+1 ·

(
2α+ρm

) 1
m+1 . (9)

The norm of our target vector v′ = (r1, . . . , rm, 0) with |ri| < 2ρ for i = 1, . . . ,m,
satisfies

‖v′‖ =

(
m∑
i=1

r2i

)1/2

< 2ρ
√
m.

Therefore, for our target vector v′ to be among the short vectors, the inequality
σ(L′) > ‖v′‖ must be satisfied. For this, it is sufficient that ρ satisfies

√
m+ 1 · C

1
m+1 ·

(
2α+ρm

) 1
m+1 > 2ρ

√
m

which leads to the following condition on C

C > m
m−1

2 · (m+ 1)−
m+1

2 · 2mρ−α. (10)

So, under condition 10, applying lattice reduction to L′ recovers a short non zero
vector v′ = (r1, . . . , rm, 0) which yields the ri’s. Next, using r1 and r2, we get
p = gcd(c1− r1, c2− r2) and for i = 1, . . . ,m, we get qi = ci−ri

p . This terminates
the proof. ut

We can summarize the whole method in Algorithm 2.

5.2 Application with the DGHV recommended parameters

Let us consider the recommended optimal parameters for a secure DGHV, as
stated in [6], that is γ = η3 + η, ρ ≈ √η and η ≥ 200. Then, the condition of
Theorem 5 becomes

α <
η3 + η

m
+ log2

( √
m

m+ 1

)
−√η.

On the other hand, the condition on the constant C in (10) becomes

C > m
m−1

2 · (m+ 1)−
m+1

2 · 2m
√
η−α.

In Table 2, we present the upper bounds for α in terms of η and m under which
our second method will solve the equation a1q1+. . .+amqm = 0 and then find all
the DGHV parameters. For all cases, we use C = 1, wich fullfils condition (10).

η m = 2 m = 3 m = 5 m = 10 m = 15

200 4× 106 2.6× 106 1.6× 106 8× 105 5.3× 105

300 1.3× 107 9× 106 5.4× 106 2.7× 106 1.8× 106

400 3.2× 107 2.1× 107 1.2× 107 6.4× 106 4.2× 106

500 6.2× 107 4.1× 107 2.5× 107 1.5× 107 8.3× 106

Table 2. Optimal values for α for different values of η and m.
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Algorithm 2 : The second attack

Input: A set of ciphertexts ci = pqi + ri, i = 1, . . . ,m.
Output: The set of private parameters p, qi, i = 1, . . . ,m if the conditions of Theo-

rem 5 are fulfilled.
1: Define the lattice L with the basis matrix

M =



1 0 0 . . . 0 c1
0 1 0 . . . 0 c2
0 0 1 . . . 0 c3
...

...
...

. . .
...

...
0 0 0 . . . 1 cm−1

0 0 0 . . . 0 cm


.

2: Apply the LLL algorithm to reduce the basis matrix.
3: For each row (a1, . . . , am−1, R) of the reduced matrix do

4: Compute am =
R−(c1a1+...+cm−1am−1)

cm
.

5: Compute α = maxi (log2(|ai|)).
6: Compute ρ = 1

m
log2(cm) + log2

( √
m

m+1

)
− α.

7: Let C be the integral part of m
m−1

2 · (m+ 1)−
m+1

2 · 2mρ−α + 1.
8: Define the lattice L′ with the basis matrix

M ′ =



1 0 0 . . . 0 Ca1
0 1 0 . . . 0 Ca2
0 0 1 . . . 0 Ca3
...

...
...

. . .
...

...
0 0 0 . . . 1 Cam
0 0 0 . . . 0 C(c1a1 + . . .+ cmam)


9: Apply the LLL algorithm to reduce the basis matrix.

10: For each row (r1, . . . , rm+1) of the reduced matrix do
11: If rm+1 = 0 then
12: Compute p = gcd(c1 − r1, c2 − r2).
13: If p > 1 then
14: For i = 1, . . . ,m do
15: Compute qi = ci−ri

p
.

16: End for
17: End if
18: End if
19: Output p, qi, i = 1, . . . ,m, ri, i = 1, . . . ,m.
20: Halt
21: End for
22: End for
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5.3 Experimental Results

For our second attack, we also experimented with 100 DHGV instances with
various practical sizes of the parameters η, ρ, γ and m. When the conditions
of Theorem 5 are satisfied, we always succeeded in finding the solutions of our
equations and recovered the secret parameters. We illustrate the steps of our
attack through the following detailed example.
Consider the following DHGV instance:

c1 = pq1 + r1 = 56405845507494530020941008480572940286181689237258854,

c2 = pq2 + r2 = 39904821464460948494700284192336525523357407545067668,

c3 = pq3 + r3 = 56294991345433284900612805613249060787237279328022519,

with the bounds ci < 2γ , i = 1, 2, 3, with γ = 176. According to Theorem 5,
one can solve the equation a1q1 + a2q2 + a3q3 = 0 if the unknown coefficients ai,
i = 1, 2, 3 satisfy |ai| < 2α with

α+ ρ <
1

3
log2(c3) + log2

(√
3

4

)
≈ 57.459,

where ρ is the bit size of the noise ri, i = 1, 2, 3. Let L be the lattice spanned by
the rows of the matrix 1 0 c1

0 1 c2
0 0 c3

 .

Applying the LLL algorithm [15] for reduction, yields a reduced basis, where the
first vector is (3991298341123, 3713241313153, 18196712614595893). From this,
we deduce

a1 = 3991298341123,

a2 = 3713241313153,

a3 =
18196712614595893− (a1c1 + a2c2)

c3
= −6631296680887.

In this example, we have |ai| < 2α for i = 1, 2, 3 with α = 43. Next, the aim is
to solve the equation

a1r1 + a2r2 + a3r3 = a1c1 + a2c2 + a3c3 = 18196712614595893,

with the unknown coefficients r1, r2, and r3. Let C be a constant, and consider
the lattice L′ spanned by the rows of the matrix

1 0 0 Ca1
0 1 0 Ca2
0 0 1 Ca3
0 0 0 C(a1c1 + a2c2 + a3c3)

 .
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Then, using C = 1 and applying the LLL algorithm, we get the following short
vector (−23593,−18617,−21881, 0). This leads to the values of

r1 = 23593, r2 = 18617, r3 = 21881.

Hence, in this example, we have |ri| < 2ρ for i = 1, 2, 3 with ρ = 15. We then
deduce

p = gcd(c1 − r1, c2 − r2) = 706549229,

q1 =
c1 − r1
p

= 79832859753208406686890615063671579331921809,

q2 =
c2 − r2
p

= 56478472874338029310481752988136833029305319,

q3 =
c3 − r3
p

= 79675964582268739409540570899482307392394422.

In this example, we have p < 2η with η = 30. We notice that the dimensions
of the underlying lattices are small and that the computation took less than 30
seconds using an off-the-shelf computer. Also, we notice that the condition of
Theorem 5 is satisfied since

α+ ρ ≈ 1

m
log2(cm) + log2

( √
m

m+ 1

)
≈ 58.

More importantly, this example shows that while our second attack was suc-
cessful, the existing attacks of [6], as described in Section 3, fail to recover the

parameter p: the continued fraction attack fails because we need |r2|
c1

< 1
2q21

,

which is not the case in this example, the simultaneous diophantine approxima-
tion attack fails too, because the condition on m should be

m > −2η + 2ρ+
1

2
+

1

2

√
16η2 − 32ηρ+ 16ρ2 + 16γ − 8η − 8ρ+ 1 > 9,

while m = 3 in this example. Finally, the orthogonal attack can not work since
none of the ri = 0.

6 Conclusion

In this paper, we presented two new lattice-based attacks on the DHGV encryp-
tion scheme using Coppersmith’s technique and the LLL algorithm for the first
attack, and only the LLL algorithm for the second attack. The first attack is
applicable when c1 = pq1 and the m − 1 public integers ci, i = 2, . . . ,m sat-
isfy a linear equation a2c2 + . . . + amcm = a1q1 for suitably small integers ai,
i = 2, . . . ,m. The second attack works even with c1 = pq1 +r1 when the integers
qi satisfy a linear equation a1q1 + . . .+ amqm = 0 for suitably small integers ai,
i = 1, . . . ,m. We illustrated our attacks by providing experimental results and
examples, and further computed the bounds for DGHV recommended parame-
ters for which our attacks are applicable, thus effectively extending on previously
proposed optimal parameter bounds for p, ci and ri, i = 1, . . . ,m.
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