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Abstract. Myers and Shelat (FOCS 2009) showed how to convert a chosen ciphertext secure (CCA
secure) PKE scheme that can encrypt only 1-bit plaintexts into a CCA secure scheme that can encrypt
arbitrarily long plaintexts (via the notion of key encapsulation mechanism (KEM) and hybrid encryp-
tion), and subsequent works improved efficiency and simplicity. In terms of efficiency, the best known
construction of a CCA secure KEM from a CCA secure 1-bit PKE scheme, has the public key size
Ω(k) · |pk| and the ciphertext size Ω(k2) · |c|, where k is a security parameter, and |pk| and |c| denote
the public key size and the ciphertext size of the underlying 1-bit scheme, respectively.
In this paper, we show a new CCA secure KEM based on a CCA secure 1-bit PKE scheme which achieves
the public key size 2 · |pk| and the ciphertext size (2k+o(k)) · |c|. These sizes are asymptotically optimal
in the sense that they are (except for a constant factor) the same as those of the simplest “bitwise-
encrypt” construction (seen as a KEM by encrypting a k-bit random session-key) that works for the
chosen plaintext attack and non-adaptive chosen ciphertext attack settings. We achieve our main result
by developing several new techniques and results on the “double-layered” construction (which builds a
KEM from an inner PKE/KEM and an outer PKE scheme) by Myers and Shelat and on the notion of
detectable PKE/KEM by Hohenberger, Lewko, and Waters (EUROCRYPT 2012).
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1 Introduction

1.1 Background and Motivation

In this paper, we revisit the problem of how to construct a chosen ciphertext secure (CCA2, or just
CCA) public key encryption (PKE) scheme that can encrypt plaintexts of arbitrary length from
a CCA secure PKE scheme whose plaintext space is only 1-bit. (Hereafter, we call a PKE scheme
whose plaintext space is {0, 1}n an n-bit PKE scheme.) It is well-known that if we only consider
chosen plaintext attack (CPA) and non-adaptive chosen ciphertext attack (CCA1) settings, then
the simple(st) “bitwise-encrypt” construction suffices, in which a plaintext is encrypted bit-by-bit
(under the same public key) by a 1-bit PKE scheme, and the concatenation of all ciphertexts is
regarded as a ciphertext of the construction. However, for the CCA setting, until recently, the
simple question of how (and even whether) one can realize such a “1-bit-to-multi-bit” conversion
had been left open.

This open problem was resolved affirmatively by Myers and Shelat [22]. They actually con-
structed a CCA secure key encapsulation mechanism (KEM) which encrypts a random session-key,
and can be used together with a CCA secure symmetric key encryption (SKE) scheme to achieve a
full-fledged CCA secure PKE scheme via hybrid encryption [8]. One of the important steps of the
approach by Myers and Shelat is to consider the “double-layered” construction of a KEM from an
“inner” PKE scheme and an “outer” PKE scheme, where the inner ciphertext encrypts a plaintext
(or a session-key if one wants to construct a KEM) and a randomness used for outer encryption,
and the outer ciphertext encrypts the inner ciphertext using the randomness encrypted in the inner
ciphertext. To decrypt a ciphertext, one first decrypts the outer ciphertext, and then the resulting
inner ciphertext, to recover a plaintext and a randomness (for outer encryption), and the plaintext
is output if the re-encryption of the inner ciphertext using the recovered randomness results in the
outer ciphertext. Myers and Shelat showed that if the outer scheme that is built from a 1-bit scheme
satisfies the security notion called “unquoted CCA” (UCCA) security (which is a weaker security
notion than CCA security that can be considered only for a PKE scheme constructed using another
PKE scheme as a building block), and the inner scheme satisfies “1-wise non-malleability against
UCCA” (which has a similar flavor to 1-bounded CCA security [7]), the resulting construction
achieves CCA security.

The efficiency and simplicity of the construction by Myers and Shelat were improved by Hohen-
berger, Lewko, and Waters [16]. Specifically, they introduced the notion of a detectable PKE scheme,
which is a PKE scheme that has an efficiently computable predicate F as part of the syntax, and
whose security notions are defined with respect to this F. In particular, they introduced the notions
of detectable CCA (DCCA) security (which is a relaxed variant of CCA security) and unpredictabil-
ity, and considered a construction which has a mixed flavor of the double-layered construction of
Myers and Shelat, and the double (parallel) encryption of Naor and Yung [23] (this construction
has two PKE schemes for the outer encryption). They showed that if the “inner” PKE scheme
satisfies DCCA security and unpredictability, and the “outer” PKE schemes are CPA secure and
1-bounded CCA secure [7], respectively, then the resulting PKE scheme is CCA secure. They also
showed that the “bitwise-encrypt” construction based on a CCA secure 1-bit PKE scheme yields
a DCCA secure and unpredictable detectable PKE scheme for long plaintexts, and thus achieves
a 1-bit-to-multi-bit conversion for CCA security. (In their construction, in fact a 1-bit scheme sat-
isfying only DCCA security and unpredictability suffices as the building block.) The efficiency of
the construction in [16] was further improved by Matsuda and Hanaoka [21] using the ideas and
techniques of hybrid encryption.
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Despite the elegant ideas employed in [22, 16, 21], however, even in the best construction of [21]
(in terms of efficiency), the public key size is Ω(k) · |pk| and the ciphertext size (when seen as a
KEM) is Ω(k2) · |c|, where k is a security parameter, and |pk| and |c| denote the public key size and
the ciphertext size of a CCA secure 1-bit scheme, respectively. On the other hand, for constructing
a CPA (resp. CCA1) secure KEM from a CPA (resp. CCA1) secure 1-bit scheme, one can use the
above mentioned bitwise-encrypt construction in which one encrypts a k-bit random string and
regards this as a session-key of a KEM. Note that the public key size of this KEM is just |pk| and
the ciphertext size is k · |c|. Compared to this simplest and most straightforward method, in the
CCA setting, the known constructions have the public key size and the ciphertext size that are at
least Ω(k) times larger.

Motivated by the above, in this paper we study the following question: How efficient can a
1-bit-to-multi-bit conversion for CCA security be?

1.2 Our Contributions

As our main result, we show a new 1-bit-to-multi-bit construction for the CCA setting, i.e., a
construction of a CCA secure KEM based on a CCA secure 1-bit PKE scheme, with much better
asymptotic efficiency than the existing constructions. Specifically, our construction achieves the
public key size 2 · |pk|, and the ciphertext size (2k+ o(k)) · |c| = O(k) · |c|, which are asymptotically
optimal in the sense that these sizes are (except for a constant factor) the same as for the simple
bitwise-encrypt construction for CPA and CCA1 security.

We achieve our main result by developing several new techniques and results on the double-
layered construction of Myers and Shelat [22] and on the notion of detectable PKE/KEM by
Hohenberger, Lewko, and Waters [16]. Our technical contributions in this paper lie in (1) coming
up with appropriate security notions for detectable PKE/KEM so that we can conduct CCA security
proofs for the double-layered construction using the language of detectable PKE/KEM (without
addressing the details of how each of the inner and outer schemes is constructed) which we believe
helps us understand our proposed construction (and more generally the double-layered approach
itself) in a clearer manner, and (2) showing how one can realize the inner and outer schemes
(satisfying the requirements of our security proofs) from a CCA secure 1-bit PKE scheme, so
that the resulting CCA secure KEM achieves asymptotically optimal efficiency with respect to the
bitwise-encrypt construction.

Below we explain more technical details of our results.

New Security Notions for Detectable PKE/KEM. In Section 3, we introduce new security notions
for detectable PKE and detectable KEMs. Recall that DCCA security of [16] is defined like ordinary
CCA security, except that in the security experiment, the decryption oracle is restricted according
to the predicate F (which is a part of the syntax of detectable PKE/KEM): an adversary is not
allowed to query a ciphertext c such that F(c∗, c) = 1 where c∗ is the challenge ciphertext. The first
notion we introduce is a weak form of non-malleability [12, 3, 24] under DCCA that we simply name
wNM-DCCA security, which is defined like DCCA security except that we allow an adversary to make
one “unrestricted” decryption query (which is not affected by the restriction of F). We also introduce
an even weaker variant, which is a “replayable”-CCA-analogue [4] of wNM-DCCA security, which we
call wRNM-DCCA security, that is defined like wNM-DCCA security except that the final unrestricted
decryption query (and only this query) is answered like a decryption query in the replayable CCA
security.
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We also introduce a new security notion for detectable PKE/KEM that we call randomness-
inextractability. Recall that a DCCA secure detectable PKE scheme is meaningful only if it also
satisfies another security notion that prevents the predicate F from outputting 1 for every input
(which makes DCCA security equivalent to CPA security). Unpredictability [16] is one example of
a security notion that prevents DCCA security from being trivial, which ensures that a ciphertext
c satisfying F(c∗, c) = 1 is hard to find without seeing c∗. Randomness-inextractability is another
such security notion for detectable PKE: Informally, it requires that if an adversary is given a
ciphertext c∗ (that encrypts a plaintext m of the adversary’s choice), it cannot come up with a
pair of a (possibly different) plaintext m′ and randomness r′ such that F(c∗, c′) = 1, where c′ is the
encryption of m′ generated using the randomness r′. We also show that randomness-inextractability
and unpredictability do not imply each other, even if we combine one notion with wNM-DCCA security.
See Section 3 for the details.

New CCA Security Proofs for the Double-Layered Construction Based on Detectable PKE/KEM.
In Section 4, we show our main technical results: two new CCA security proofs for the double-
layered construction of Myers and Shelat [22]. Our first security proof shows that if the inner KEM
is a detectable KEM satisfying DCCA security and unpredictability, and the outer PKE scheme
is a detectable PKE scheme satisfying wRNM-DCCA security and randomness-inextractability, then
the KEM obtained from the double-layered construction is CCA secure. Our main result with
asymptotically optimal efficiency is obtained from this security proof.

Our second security proof shows that if the inner KEM is wNM-DCCA secure and unpredictable,
and the outer PKE scheme is DCCA secure and randomness-inextractable, then the KEM obtained
from the double-layered construction is CCA secure. Interestingly, this security proof can be seen
as a generalization of Myers-Shelat’s original security proof of their construction [22].

Both of the security proofs have similar flavors to the security proofs of [16, 21]. Namely, DCCA
security of the inner KEM guarantees that a session-key (hidden in the challenge ciphertext) is
random as long as an adversary does not submit a “dangerous” decryption query (which are defined
with respect to the predicate F from the inner detectable KEM), and we then upperbound the
probability that the adversary comes up with such “dangerous” decryption queries to be negligible
by the combination of the security properties of the outer PKE scheme and the inner KEM. However,
unlike the previous works [16, 21] that use a “detectable” primitive only for the inner scheme, we
employ a detectable primitive also for the outer scheme. Consequently, we have to deal with two
types of “dangerous” decryption queries in the security proofs: an “inner-dangerous” query and
an “outer-dangerous” query, which, as the names indicate, are related to the inner KEM and the
outer PKE scheme, respectively. Our two security proofs differ in the treatment of the inner- and
outer-dangerous queries, which lead to the difference between which of the inner KEM or the
outer PKE scheme needs to be “non-malleable” under DCCA. In both of the proofs, randomness-
inextractability of the outer PKE scheme is used to show that the adversary’s outer-dangerous
queries do not help.

We also show an evidence that indicates that our reliance on “non-malleability” under DCCA for
either the inner KEM or the outer PKE scheme would be unavoidable, by showing a counterexample
for the double-layered construction that does not achieve CCA security if the inner and outer
schemes only satisfy DCCA security, unpredictability, and randomness-inextractability. For the
details, see Section 4.
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A Detectable PKE Scheme Satisfying wRNM-DCCA Security and Randomness-Inextractability from
CCA Secure 1-bit PKE. In Section 5, we show a construction of a detectable PKE scheme satisfying
wRNM-DCCA security and randomness-inextractability, using a CCA secure 1-bit PKE scheme and a
non-malleable code [14] for “bitwise-tampering and bit-level permutations” [1, 2]. The idea of this
construction is based on the recent result by Agrawal et al. [1] who showed how to transform a 1-bit
commitment scheme secure against chosen commitment attacks (CCA) into a non-malleable string
commitment scheme: We first encode a plaintext by a non-malleable code, and then do “bitwise-
encryption” of the encoded value by a CCA secure 1-bit PKE scheme. (Due to its structure, we
call this construction the “Encode-then-Bitwise-Encrypt” (EtBE) construction.) Our contribution
regarding this construction is to clarify that the approach of [1] also works well for detectable PKE
as we require.

Agrawal et al. [2] recently constructed a non-malleable code for the above mentioned class of
functions with “optimal rate”, meaning that the ratio between the length n of a codeword and
the length k of a message can be made arbitrarily close to 1 (i.e. n = k + o(k)). We employ this
non-malleable code to achieve the asymptotic efficiency of our proposed KEM.

The Proposed 1-Bit-to-Multi-Bit Conversion, and More. Our main result, i.e. a CCA secure KEM
from a CCA secure 1-bit PKE scheme that achieves optimal asymptotic efficiency in terms of the
public key and ciphertext sizes, is obtained by using the above mentioned detectable PKE scheme
(together with some hybrid encryption techniques) as the outer PKE scheme, and using the bitwise-
encrypt construction of a detectable KEM as the inner KEM, in the double-layered construction,
via our first security proof. In Section 6, we show the full description of our construction. As noted
above, our construction uses only two key pairs of the underlying 1-bit PKE scheme.

Interestingly, there (and in Appendix C), we also show that if a 2-bit PKE scheme can be used
instead of a 1-bit PKE scheme, then one can construct a CCA secure KEM (with almost the same
construction as our main construction) that uses only one key pair.

On the Necessity of Two Key Pairs. As mentioned above, our proposed KEM from a 1-bit PKE
scheme uses two key pairs of the underlying CCA secure 1-bit PKE scheme. Given this, it is natural
to ask if the number 2 of key pairs of the underlying 1-bit scheme is optimal for achieving 1-bit-to-
multi-bit constructions for CCA security. Although we could not answer this question affirmatively
or negatively, in Section 8, we show that the one-key variant of our proposed construction is
vulnerable to a CCA attack. This negative result shows a necessity of different techniques and
ideas than ours towards answering the question. It also contrasts strikingly with our 2-bit-to-multi-
bit construction for CCA security that uses only one key pair of the underlying 2-bit scheme.

We leave it as an open problem to clarify whether one can achieve a 1-bit-to-multi-bit conversion
using only one key pair of the underlying 1-bit scheme, or it is generally impossible.

1.3 Related Work

The double-layered construction [22, 16], and extension of the plaintext space of encryption schemes
based on it, have been used in several works: Lin and Tessaro [19] showed how to turn a 1-bit PKE
scheme whose correctness is not perfect and which only satisfies weak CCA security (weak in
the sense that an adversary may have bounded but non-negligible CCA advantage), into a PKE
scheme (with a large plaintext space) satisfying ordinary CCA security, via the construction of
[16]. Dachman-Soled et al. [9] studied the notion of “enhanced” CCA security for PKE schemes
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with randomness recovery property, where the decryption oracle in the security experiment returns
not only the decryption result of a queried ciphertext but also a randomness that is consistent
with the ciphertext, and (among other things) showed that the construction of [16] can be used to
achieve a 1-bit-to-multi-bit conversion for enhanced CCA security. Most recently, Kitagawa et al.
[18] showed that a simpler variant of the double-layered construction which does not have validity
check by re-encryption in the decryption algorithm, can be used to extend the plaintext space of
PKE satisfying key-dependent message (KDM) security against CCA with respect to projection
functions (projection-KDM-CCA security).

Very recently, Coretti et al. [6] showed a 1-bit-to-multi-bit conversion for a PKE scheme. How-
ever, the security notion considered in their construction is so-called “self-destruct” CCA security,
which is defined like ordinary CCA security except that in the security experiment, once an adver-
sary submits an invalid ciphertext (which does not decrypt to a valid plaintext) as a decryption
query, the decryption oracle “self-destructs”, i.e. it will not answer to subsequent decryption queries.
This security notion is strictly weaker than ordinary CCA security. Furthermore, in another recent
work, Coretti et al. [5] considered non-malleability under self-destruct CCA, which is also strictly
weaker than ordinary CCA security, and showed a 1-bit-to-multi-bit conversion for a PKE scheme
satisfying this security notion. The 1-bit-to-multi-bit constructions of [6, 5] share the same idea
with Agrawal et al.’s conversion (and hence with our “outer” PKE scheme): first encode a plaintext
by a suitable non-malleable code, and then do bitwise encryption. The main differences between
these works [6, 5] and our “double-layered” construction are: (1) Ours achieves ordinary (full) CCA
security, while they achieve weaker security notions. (2) Our construction uses only two key pairs
of the underlying 1-bit scheme, while the constructions in [6, 5] use O(k) key pairs, of the building
block 1-bit scheme. (3) The requirements of the used non-malleable codes are all different: [6, 5]
need stronger form of non-malleability called “continuous” non-malleability [15] (and its exten-
sion), while we only need the original definition of non-malleability in [14] that captures “one-time”
tampering.; The tampering functions with respect to which non-malleability is considered in [6, 5]
are based on bit-wise tampering (extended to take into account continuous non-malleability), while
ours requires additionally non-malleability against bit-level permutation (as in [2, 1]).

1.4 Paper Organization

The rest of this paper is organized as follows:

– Section 2 and Appendix A review the basic notation and definitions of the primitives.

– In Section 3, we introduce our new security notions for detectable PKE scheme, and also show
several useful facts on them. (New security notions for a detectable KEM is given in Ap-
pendix B.)

– In Section 4, we show our main technical results: two new security proofs for the “double-layered”
construction. We also explain some evidence that justifies our reliance on non-malleability under
DCCA.

– In Section 5, we show how to build a detectable PKE scheme satisfying our new security notions
based on a CCA secure 1-bit PKE scheme and a non-malleable code.

– In Section 6, we provide the full description of our 1-bit-to-multi-bit conversion for CCA security.
There (and in Appendix C), we also explain our 2-bit-to-multi-bit construction with a single
key pair.

– In Section 7, and we give a comparison among 1-bit-to-multi-bit constructions.
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– Finally, in Section 8, we show that a variant of our 1-bit-to-multi-bit conversion, in which we
only use one key pair of the underlying 1-bit scheme, is vulnerable to a CCA attack.

For theorems and lemmas, we only give proof sketches or intuitive explanations in the main body
of the paper, and the formal proofs of them are given in Appendices D or E.

2 Preliminaries

In this section, we review the basic notation and the definitions of the cryptographic primitives. The
definitions for standard primitives that are not reviewed in this section are given in Appendix A,
which include symmetric key encryption (SKE), message authentication codes (MAC), and a pseu-
dorandom generator (PRG).

2.1 Basic Notation

N denotes the set of all natural numbers. For n ∈ N, we define [n] := {1, . . . , n}. “x ← y” denotes
that x is chosen uniformly at random from y if y is a finite set, x is output from y if y is a function
or an algorithm, or y is assigned to x otherwise. If x and y are strings, then “|x|” denotes the

bit-length of x, “x∥y” denotes the concatenation x and y, and “(x
?
= y)” is defined to be 1 if x = y

and 0 otherwise. “(P)PTA” stands for a (probabilistic) polynomial time algorithm. For a finite set S,
“|S|” denotes its size. If A is a probabilistic algorithm then “y ← A(x; r)” denotes that A computes
y as output by taking x as input and using r as randomness. If furthermore O is an algorithm, then
“AO” denotes that A has oracle access to O. A function ϵ(·) : N→ [0, 1] is said to be negligible if for
all positive polynomials p(k) and all sufficiently large k ∈ N, we have ϵ(k) < 1/p(k). Throughout
this paper, we use the character “k” to denote a security parameter.

2.2 (Detectable) Public Key Encryption

A public key encryption (PKE) scheme Π consists of the three PPTAs (PKG,Enc,Dec) with the
following interface:

Key Generation: Encryption: Decryption:

(pk, sk)← PKG(1k) c← Enc(pk,m) m (or ⊥)← Dec(sk, c)

where Dec is a deterministic algorithm, (pk, sk) is a public/secret key pair, and c is a ciphertext of
a plaintext m under pk. We say that a PKE scheme satisfies correctness if for all k ∈ N, all keys
(pk, sk) output from PKG(1k), and all plaintexts m, it holds that Dec(sk,Enc(pk,m)) = m.

Detectable PKE. In this paper, we use the notion of detectable PKE as defined in [16]. It is a PKE
scheme that has a predicate F that tests whether two ciphertexts c and c′ are “related” in the sense
that to decrypt c, the information of the decryption result of c′ is useful (and hence, revealing the
decryption result of c′ is “dangerous”). This predicate F is used to define multiple security notions
of the primitive, and hence we explicitly define it as a part of the syntax of the primitive (this
approach is also taken in [16] and [21]).

Formally, a tuple of PPTAs Π = (PKG,Enc,Dec,F) is said to be a detectable PKE scheme if
(PKG,Enc,Dec) constitutes PKE, and F is a predicate that takes a public key pk and two ciphertexts
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ExptATKΠ,A(k) :

(pk, sk)← PKG(1k)

(m0,m1, st)← ADec(sk,·)
1 (pk)

b← {0, 1}
c∗ ← Enc(pk,mb)

b′ ← ADec(sk,·)
2 (st, c∗)

Return (b′
?
= b)

ExptATKΓ,A(k) :

(pk, sk)← KKG(1k)
(c∗,K∗

1 )← Encap(pk)
K∗

0 ← K
b← {0, 1}
b′ ← ADecap(sk,·)(pk, c∗,K∗

b )

Return (b′
?
= b)

ExptUNPΠ,A(k) :

(pk, sk)← PKG(1k)

(m, c)← ADec(sk,·)(pk)
c∗ ← Enc(pk,m)
Return F(pk, c∗, c)

ExptUNPΓ,A(k) :

(pk, sk)← KKG(1k)

c← ADecap(sk,·)(pk)
(c∗,K∗)← Encap(pk)
Return F(pk, c∗, c)

ExptF-NM
C,A (k) :

(f,m0,m1, st)← A1(1
k)

b← {0, 1}
s∗ ← E(1k,mb)
s′ ← f(s∗)

m′ ← D(1k, s′)
If m′ ∈ {m0,m1} then m′ ← same
b′ ← A2(st,m

′)

Return (b′
?
= b)

Fig. 1. The experiments for defining the security of detectable PKE (left-top/bottom), of detectable KEM (center-
top/bottom), and of an F-non-malleable code (right). In the CCA (resp. DCCA) experiment for PKE,A2 is not allowed to
query c∗ (resp. ciphertexts c such that F(pk, c∗, c) = 1). The same restrictions apply to A in the CCA/DCCA experiment
for KEMs.

c, c′ as input, and outputs either 0 or 1. We require that for all k ∈ N, all public keys pk output by
PKG(1k), and all ciphertexts c output by Enc(pk, ·), we have F(pk, c, c) = 1. 1

Security Notions. Here we recall chosen ciphertext security (CCA security) for PKE, and detectable
CCA (DCCA) security and unpredictability for detectable PKE [16].

Let ATK ∈ {CCA, DCCA}. For a (detectable) PKE scheme Π and an adversary A = (A1,A2), con-
sider the ATK experiment ExptATKΠ,A(k) described in Fig. 1 (left-top). In the experiment, it is required
that |m0| = |m1|, and A2 is not allowed to submit the “prohibited” queries to the decryption oracle:
If ATK = CCA, then the prohibited query is c∗, and if ATK = DCCA, then the prohibited queries are c
satisfying F(pk, c∗, c) = 1. We say that a (detectable) PKE scheme Π is ATK secure if for all PPTAs
A, AdvATKΠ,A(k) := 2 · |Pr[ExptATKΠ,A(k) = 1]− 1/2| is negligible.

For a detectable PKE scheme Π (with predicate F) and an adversary A, consider the unpre-
dictability experiment ExptUNPΠ,A(k) described in Fig. 1 (left-bottom). We say that a detectable PKE

scheme Π is unpredictable if for all PPTAs A, AdvUNPΠ,A(k) := Pr[ExptUNPΠ,A(k) = 1] is negligible.

2.3 (Detectable) Key Encapsulation Mechanism

A key encapsulation mechanism (KEM) Γ consists of the three PPTAs (KKG,Encap,Decap) with
the following interface:

Key Generation: Encapsulation: Decapsulation:

(pk, sk)← KKG(1k) (c,K)← Encap(pk) K (or ⊥)← Decap(sk, c)

where Decap is a deterministic algorithm, (pk, sk) is a public/secret key pair that defines a session-
key space K, and c is a ciphertext of a session-key K ∈ K under pk. We say that a KEM satisfies
correctness if for all k ∈ N, all keys (pk, sk) output from KKG(1k) and all ciphertext/session-key
pairs (c,K) output from Encap(pk), it holds that Decap(sk, c) = K.

1 This requirement is not explicitly defined in [16], but is actually necessary for DCCA security to be meaningful.
Without this requirement, DCCA security is unachievable, as an adversary can submit the challenge ciphertext to
the decryption oracle. For our purpose, it is convenient to explicitly require this for F.
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We also define a KEM-analogue of detectable PKE, which we call detectable KEM, as a KEM
that has an efficiently computable predicate F whose interface is exactly the same as that of de-
tectable PKE.

Security Notions. Here we review the definition of CCA security for a KEM, and the definitions of
DCCA security and unpredictability for a detectable KEM.

Let ATK ∈ {CCA, DCCA}. For a (detectable) KEM Γ and an adversary A, consider the ATK

experiment ExptATKΓ,A(k) described in Fig. 1 (center-top). In the experiment, A is not allowed to
submit the “prohibited” queries that are defined in the same way as those for the PKE case. We
say that a (detectable) KEM Γ is ATK secure if for all PPTAs A, AdvATKΓ,A(k) := 2 · |Pr[ExptATKΓ,A(k) =
1]− 1/2| is negligible.

For a detectable KEM Γ (with predicate F) and an adversary A, consider the unpredictability
experiment ExptUNPΓ,A(k) described in Fig. 1 (center-bottom). We say that a detectable KEM Γ is

unpredictable if for all PPTAs A, AdvUNPΓ,A(k) := Pr[ExptUNPΓ,A(k) = 1] is negligible.

2.4 Non-malleable Codes

Here, we recall the definition of non-malleable codes [14].

A code C with message length κ = κ(k) and codeword length n = n(k) (called also an (n, κ)-
code) consists of the two PPTAs (E,D): E is the encoding algorithm that takes 1k and a message
m ∈ {0, 1}κ as input, and outputs a codeword c ∈ {0, 1}n.; D takes 1k and c as input, and outputs
m ∈ {0, 1}κ or the special symbol ⊥ indicating that c is invalid. We require for all k ∈ N and all
messages m ∈ {0, 1}κ, it holds that D(1k,E(1k,m)) = m.

Non-malleability. Non-malleability for codes, formalized by Dziembowski et al. [14], is defined with
respect to a class of tampering functions F . Intuitively, non-malleability guarantees that if an
encoding c of a message m is modified into c′ = f(c) by a function f ∈ F , then the decoded value
m′ of c′ is either the original message m itself, or a completely unrelated message (or ⊥). Here we
recall the indistinguishability-based definition which is most convenient for us to work with, which
is called the “alternative-non-malleability” in [13, Definition A.1]. It was shown in [13] that this
definition is equivalent to the original simulation-based definition for codes whose message length
κ is superlogarithmic in k.

Let n, κ : N → N be positive polynomials of k such that n(k) ≥ κ(k). For an (n, κ)-code
C = (E,D), a class of functions F = {Fk : {0, 1}k → {0, 1}k}k∈N, and an adversary A = (A1,A2),
consider the F-NM experiment ExptF-NMC,A (k) described in Fig. 1 (right). In the experiment, “same” is
the special symbol indicating that the decoded message m′ was either m0 or m1, and it is required
that f ∈ Fn and |m0| = |m1| = κ(k). We say that C is non-malleable with respect to the function
class F (F-non-malleable, for short) if for all PPTAs2 A, AdvF-NMC,A (k) := 2 · |Pr[ExptF-NMC,A (k) =
1]− 1/2| is negligible. We also say that C is an F-non-malleable code.

Classes of Tampering Functions. In this paper, we consider the following classes of functions.

Composition of “Bitwise Tampering” and “Bit-Level Permutation” P [2, 1]: Let
set, reset, forward, toggle : {0, 1} → {0, 1} be the functions over a bit, defined by set(x) := 1,

2 The original definition [14] considered security against computationally unbounded adversaries. In this paper,
however, we only need security against PPTAs.
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reset(x) := 0, forward(x) := x, and toggle(x) := 1 − x. We define FBIT := {set, reset,
forward, toggle}.
Let P = {Pn}n∈N be the class of functions which first perform “bitwise tampering” to an input,
followed by a “bit-level permutation.” Namely, Pn is the set of all functions f : {0, 1}n →
{0, 1}n that can be described by using n bitwise-tampering functions f1, . . . , fn ∈ FBIT and a
permutation π : [n]→ [n], as follows:

x = (x1∥ . . . ∥xn)
f7→

(
fπ−1(1)(xπ−1(1)) ∥ . . . ∥ fπ−1(n)(xπ−1(n))

)
.

“Bit-Fixing” or “Quoting an Input without Duplicated Positions” Q: Let one : {0, 1}n
→ {0, 1} and zero : {0, 1}n → {0, 1} be the constant functions that output 1 and 0 for any n-
bit inputs, respectively. Furthermore, for j ∈ [n], let quotej : {0, 1}n → {0, 1} be the “quoting”
function that always outputs the j-th bit of its input.

Let Q = {Qn}n∈N be the class of functions each of whose output bits is either a “fixed value” or
“quoting the input without duplicated positions.” More formally, Qn is the set of all functions
f : {0, 1}n → {0, 1}n that can be decomposed to n functions f1, . . . , fn : {0, 1}n → {0, 1} so that
f(x) = (f1(x)∥ . . . ∥fn(x)) for all x ∈ {0, 1}n, and furthermore it holds that for every i ∈ [n]:

fi ∈ {one, zero} ∪
(
{quotej}j∈[n]\{fj}j∈[i−1]

)
. (1)

Note that the above guarantees that there exist no indices i, i′, j ∈ [n] such that fi = fi′ =
quotej and i ̸= i′. We call this condition the no duplicated quoting condition.

Agrawal et al. [2] showed the following elegant result, which is crucial for the efficiency of our
proposed KEM:

Lemma 1. ([2]) There exists an explicit (n, k)-code such that (1) it is P-non-malleable, and (2)
its “rate”, defined by k/n, asymptotically approaches to 1 as k increases (and hence n = k+ o(k)).

Furthermore, the following is implicitly used by Agrawal et al. [1], and also is useful for our
purpose. Although it is almost straightforward from the definitions of P and Q, we show its formal
proof in Appendix E.1 for self-containment.

Lemma 2. For all n ∈ N, Qn ⊆ Pn. (This holds even if FBIT does not contain toggle.) Hence,
any P-non-malleable code is also Q-non-malleable.

3 New Security Notions for Detectable PKE and KEM

In this section, we introduce new security notions for detectable PKE: wNM-DCCA security and
wRNM-DCCA security in Section 3.1, and randomness-inextractability in Section 3.2. We also show
some useful facts regarding the new security notions in Section 3.3.

We also define wNM-DCCA security and randomness-inextractability for detectable KEMs. Since
their definitions are straightforward KEM-analogues of those for detectable PKE in this section,
we provide them in Appendix B.
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3.1 “Weak” Non-malleability under DCCA and Its “Replayable” Variant

Here, we define a “weak” form of non-malleability against DCCA for detectable PKE, which we
call wNM-DCCA security, that captures the intuition that a DCCA adversary who works in the DCCA

experiment cannot come up with a ciphertext that is “meaningfully related” to the challenge ci-
phertext. Recall that the original definitions of non-malleability for PKE [12, 3, 24] ensure that an
adversary cannot come up with even a vector of ciphertexts that are “meaningfully related” to the
challenge ciphertext, while our notion here only requires that it cannot come up with only a single
related ciphertext. Technically, following the formalizations in [3, 24, 22], we formalize wNM-DCCA

security by modifying the original DCCA experiment (in which originally the usage of the decryp-
tion oracle is restricted according the predicate F of detectable PKE), so that at the end of the
experiment an adversary is allowed to make a single “unrestricted” decryption query, regardless
of F. Thus, it is like “1-bounded” CCA security [7], albeit an adversary has additionally access to
the DCCA decryption oracle. Myers and Shelat [22] defined a security notion for PKE-to-PKE con-
structions called “q-wise-non-malleability under UCCA.” Our definition of wNM-DCCA security is a
detectable-PKE-analogue of their 1-wise-non-malleability.

We also define a weaker variant of wNM-DCCA security, in the security experiment of which the
final “unrestricted” decryption query (and only this query) is answered like a decryption query
in the “replayable” CCA experiment [4], namely, if the decryption result is one of the challenge
plaintexts that an adversary uses, then the adversary is only informed so and is not given the
actual decryption result. Due to the lack of a better name, we call it wRNM-DCCA security (where R
stands for “Replayable”).

Fomally, for a detectable PKE schemeΠ = (PKG,Enc,Dec,F) and an adversaryA = (A1,A2,A3),
we define the wNM-DCCA experiment ExptwNM-DCCAΠ,A (k) and the wRNM-DCCA experiment ExptwRNM-DCCAΠ,A (k)
as described in Fig. 2 (left and center, respectively). In both of the experiments, it is required that
|m0| = |m1|, and as in the DCCA experiment, A2 is not allowed to submit a decryption query c
satisfying F(pk, c∗, c) = 1 to the decryption oracle. The adversary’s final “unrestricted” decryption
query is captured by the ciphertext c′ that is finally output by A2, and naturally it is required that
c′ ̸= c∗. However, we allow c′ to be such that F(pk, c∗, c′) = 1. In the wRNM-DCCA experiment, “same”
is the special symbol (which is distinguished from ⊥) that indicates that Dec(sk, c′) ∈ {m0,m1}.

Definition 1. We say that a detectable PKE scheme Π is wNM-DCCA secure if for all PPTAs A,
AdvwNM-DCCAΠ,A (k) := 2 · |Pr[ExptwNM-DCCAΠ,A (k) = 1] − 1/2| is negligible. We define wRNM-DCCA security
analogously.

3.2 Randomness-Inextractability

Here we introduce another security notion for detectable PKE that we call randomness-inextractability.
Roughly, this security notion ensures that given the challenge ciphertext c∗ (which is an encryption
of a plaintext of an adversary’s choice), an adversary cannot come up with a pair (m′, r′) of a plain-
text and a randomness such that F(pk, c∗,Enc(pk,m′; r′)) = 1. If the predicate F(pk, c∗, c′) tests

the equality (c∗
?
= c′), then this notion exactly demands that the randomness used in c∗ cannot

be recovered, and hence we use the name “randomness-inextractability” (although we allow more
general predicates for F).

Formally, for a detectable PKE scheme Π = (PKG,Enc,Dec,F) and an adversary A = (A1,A2),
consider the R-Inext experiment described in Fig. 2 (right).
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ExptwNM-DCCAΠ,A (k) :

(pk, sk)← PKG(1k)

(m0,m1, st)← ADec(sk,·)
1 (pk)

b← {0, 1}
c∗ ← Enc(pk,mb)

(c′, st′)← ADec(sk,·)
2 (st, c∗)

m′ ← Dec(sk, c′)
b′ ← A3(st

′,m′)

Return (b′
?
= b).

ExptwRNM-DCCAΠ,A (k) :

(pk, sk)← PKG(1k)

(m0,m1, st)← ADec(sk,·)
1 (pk)

b← {0, 1}
c∗ ← Enc(pk,mb)

(c′, st′)← ADec(sk,·)
2 (st, c∗)

m′ ← Dec(sk, c′)
If m′ ∈ {m0,m1} then m′ ← same
b′ ← A3(st

′,m′)

Return (b′
?
= b).

ExptR-InextΠ,A (k) :

(m, st)← A1(1
k)

(pk, sk)← PKG(1k)
c∗ ← Enc(pk,m)

(m′, r′)← ADec(sk,·)
2 (st, pk, c∗)

c′ ← Enc(pk,m′; r′)
Return F(pk, c∗, c′).

Fig. 2. Security experiments for wNM-DCCA security (left), wRNM-DCCA security (center), and randomness-
inextractability (right). In the wNM/wRNM-CCA experiments, the decryption oracle for A2 has the same restriction
as in the DCCA experiment.

Definition 2. We say that a detectable PKE scheme Π satisfies randomness-inextractability if
for all PPTAs A, AdvR-InextΠ,A (k) := Pr[ExptR-InextΠ,A (k) = 1] is negligible.

Remark. We could have defined the randomness-inextractability experiment so that we let an
adversary choose its challenge message m after given a public key pk. This makes the security
stronger. However, we do not need this stronger variant for our results.

3.3 Useful Facts

Stretching a Session-Key. As in the case of ordinary KEMs, for a detectable KEM, session-keys can
be stretched by using a PRG. More formally, let Γ = (KKG,Encap,Decap,F) be a detectable KEM
whose session-key space is {0, 1}k. Let G : {0, 1}k → {0, 1}ℓ be a PRG with ℓ = ℓ(k) > k, where for
convenience we define G(⊥) := ⊥. (The formal definition of a PRG can be found in Appendix A.3.)
Then, consider the detectable KEM Γ ′ = (KKG,Encap′,Decap′,F) whose session-key space is {0, 1}ℓ,
which is naturally constructed by combining Γ and G: Encap′(pk) runs (c,K) ← Encap(pk) and
outputs a ciphertext/session key pair (c,G(K)).; We define Decap′(sk, c) := G(Decap(sk, c)). The
following is straightforward, and thus its proof is omitted.

Lemma 3. If the detectable KEM Γ satisfies randomness-inextractability (resp. unpredictability),
then so does the detectable KEM Γ ′. Furthermore, if Γ is DCCA (resp. wNM-DCCA) secure and G is
a PRG, then Γ ′ is DCCA (resp. wNM-DCCA) secure.

Hybrid Encryption. For a detectable PKE scheme, a straightforward application of hybrid encryp-
tion preserves w(R)NM-DCCA security and randomness-inextractability, when combined with a CCA

secure SKE scheme. Since a CCA secure SKE scheme with “zero” ciphertext overhead can be re-
alized from a strong pseudorandom permutation [25] (which in turn can be realized based on any
one-way function), the ciphertext overhead of a detectable PKE scheme with w(R)NM-DCCA security
and randomness-inextractability, can be as small as the ciphertext size of the scheme for encrypting
a random session-key (usually a k-bit string).

Formally, let Π = (PKG,Enc,Dec,F) be a detectable PKE scheme where the randomness space
of Enc is {0, 1}ℓ, and let E = (SEnc, SDec) be a deterministic SKE scheme (i.e. its encryption
algorithm SEnc is deterministic). (The formal definition of SKE can be found in Appendix A.1.)
Then, we naturally construct the detectable PKE scheme ΠHYB = (PKGHYB,EncHYB,DecHYB,FHYB) via
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PKGHYB(1
k) :

(pk, sk)← PKG(1k).
Return (pk, sk).

EncHYB(pk,m;R) :

Parse R as (r,K) ∈ {0, 1}ℓ × {0, 1}k.
c← Enc(pk,K; r)
ĉ← SEnc(K,m)
Return C ← (c, ĉ).

DecHYB(sk, C) :
(c, ĉ)← C
K ← Dec(sk, c)
If K = ⊥ then return ⊥.
Return m← SDec(K, ĉ).

FHYB(pk, C
∗, C′) :

(c∗, ĉ∗)← C∗

(c′, ĉ′)← C′

Return F(pk, c∗, c′).

Fig. 3. Hybrid encryption ΠHYB for detectable PKE.

hybrid encryption, as in Fig. 3. (In the figure, we describe the randomness of EncHYB explicitly so
that it is convenient to consider its randomness-inextractability.) The randomness space of EncHYB
is {0, 1}ℓ+k. Regarding the security of the hybrid encryption construction, the following lemma is
straightforward to see. However, since this hybrid encryption is used in the “outer” PKE scheme
in our final construction to expand its plaintext space, we provide the formal proof in Appendix
E.2 to make the paper self-contained.

Lemma 4. If the detectable PKE scheme Π is wNM-DCCA secure (resp. wRNM-DCCA secure) and
the SKE scheme E is CCA secure, then the detectable PKE scheme ΠHYB in Fig. 3 is wNM-DCCA

secure (resp. wRNM-DCCA secure). Furthermore, if Π satisfies randomness-inextractability (resp. un-
predictability), then so does ΠHYB.

From wRNM-DCCA Security to wNM-DCCA Security. Canetti, Krawczyk, and Nielsen [4] showed how to
convert a “replayable” CCA secure PKE scheme into an ordinary CCA secure KEM, using a message
authentication code (MAC), with almost no overhead. This method can be used for converting
a wRNM-DCCA secure detectable PKE scheme into a wNM-DCCA secure detectable KEM. For self-
containment, we review this transformation in Appendix E.3.

On the Non-triviality of Randomness-Inextractability. One might wonder whether there is an im-
plication from randomness-inextractability to unpredictability and/or vice versa (especially in case
if a detectable PKE scheme already satisfies wNM-DCCA security). We show that this is not the case,
for both directions. Specifically, via artificial counterexamples, we can show the following lemma
that shows the non-triviality of these notions, which we formally show in Appendix D.1.

Lemma 5. A detectable PKE scheme satisfying wNM-DCCA security and unpredictability simulta-
neously does not necessarily satisfy randomness-inextractability. Furthermore, a detectable PKE
scheme satisfying wNM-DCCA security and randomness-inextractability simultaneously does not nec-
essarily satisfy unpredictability.

4 Chosen Ciphertext Security of the Double-Layered Construction

In this section, we show our main result: two new CCA security proofs for the “double-layered”
construction ΓDL (of a KEM) constructed based on the “inner” detectable KEM Γin and the “outer”
detectable PKE scheme Πout. We also show a partial evidence that we need to rely on “non-
malleability” that we defined in the previous section.

The Double-Layered Construction. Let Πout = (PKGout,Encout,Decout,Fout) be a detectable PKE
scheme. We assume the plaintext space of Πout to be {0, 1}n (where n = n(k) is determined below),
and the randomness space of Encout to be {0, 1}ℓ for some positive polynomial ℓ = ℓ(k). Let Γin =
(KKGin,Encapin,Decapin,Fin) be a detectable KEM such that the ciphertext length is n bit, and
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KKGDL(1
k) :

(pkin, skin)← KKGin(1
k)

(pkout, skout)← PKGout(1
k)

PK ← (pkin, pkout)
SK ← (skin, skout, PK)
Return (PK,SK).

EncapDL(PK) :
(pkin, pkout)← PK
(cin, α)← Encapin(pkin)
Parse α as (r,K) ∈ {0, 1}ℓ × {0, 1}k.
c← Encout(pkout, cin; r)
Return (c,K).

DecapDL(SK, c) :
(skin, skout, PK)← SK
(pkin, pkout)← PK
cin ← Decout(skout, c)
If cin = ⊥ then return ⊥.
α← Decapin(skin, cin)
If α = ⊥ then return ⊥.
Parse α as (r,K) ∈ {0, 1}ℓ × {0, 1}k.
If Encout(pkout, cin; r) = c

then return K else return ⊥.

Fig. 4. The double-layered KEM construction ΓDL from a detectable PKE scheme Πout and a detectable KEM Γin.

the session-key space is {0, 1}ℓ+k. Then we construct the “double-layered” KEM ΓDL = (KKGDL,
EncapDL,DecapDL) as in Fig. 4. For convenience, we occasionally call Γin the inner KEM and Πout

the outer PKE scheme.

Our First Security Proof. The CCA security of ΓDL can be shown as follows.

Theorem 1. Assume that the “outer” PKE scheme Πout is a detectable PKE scheme satisfying
wRNM-DCCA security and randomness-inextractability, and the “inner” KEM Γin is a detectable KEM
satisfying DCCA security and unpredictability. Then, the KEM ΓDL in Fig. 4 is CCA secure.

The formal proof is given in Appendix D.2. The structure of the proof is similar to the security
proofs for the constructions by Hohenberger et al. [16] and by Matsuda and Hanaoka [21]. However,
the details differ due to the difference in the construction and the used assumptions.

We explain the ideas for the proof of Theorem 1. (Here, the values with asterisk (*) represent
those related to the challenge ciphertext c∗.) As the first step, note that since a session-key K of
ΓDL is part of a session-key α = (r∥K) of the DCCA secure inner KEM Γin, unless a CCA adversary
A submits a decapsulation query c that simultaneously satisfies (1) Decout(skout, c) = cin ̸= ⊥ and
(2) Fin(pkin, c

∗
in, cin) = 1, A has no chance in distinguishing the real session-key K∗1 from a random

K∗0 . Following [16, 21], we call this type of decapsulation query a dangerous query. If the probability
that A comes up with a dangerous query is negligible, then we can finish the proof. Furthermore,
observe that since Γin satisfies unpredictability, if we can ensure that the information of the inner
ciphertext c∗in is hidden from A’s view, then the probability that A comes up with a dangerous
query is negligible.

To show that the probability that A comes up with a dangerous query in the original security
game is negligibly close to that in the security game in which A’s view does not contain c∗in at all
(and hence we can invoke the unpredictability of Γin), we rely on the security properties of the outer
PKE scheme Πout to gradually change the security game for A so that in the final game, c∗ as well
as other values in A’s view contain no information on c∗in. Note that in the actual encapsulation
algorithm EncapDL, the randomness r used for outer encryption is also a part of the session-key α
of the inner KEM. Thus, once we invoke the DCCA security of the inner KEM Γin (which we have
already done as the first step), not only the real session-key K∗1 but also the randomness r∗ used to
generate the challenge ciphertext c∗ are made uniformly random values, which enables us to rely
on the security properties of Πout from that point on.

Now, intuitively, the DCCA security (which is implied by wRNM-DCCA security) of Πout guarantees
that c∗in is hidden from A’s view as long as A only submits a decapsulation query c such that
Fout(pkout, c

∗, c) = 0. However, A is free to choose its own decapsulation query, and may submit c
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such that Fout(pkout, c
∗, c) = 1. As mentioned in Section 1.2, this is another type of “dangerous”

query, in the sense that the condition Fout(pkout, c
∗, c) = 1 prevents us from relying on the DCCA

security of the outer PKE scheme Πout. To distinguish this from the above mentioned type of
dangerous queries with respect to the inner KEM, let us use the names “inner-dangerous queries”
and “outer-dangerous queries” which are associated with the inner KEM and the outer PKE scheme,
respectively.

In the full proof, we will show that the randomness-inextractability of the outer PKE scheme
allows us to reject decapsulation queries c satisfying Fout(pkout, c

∗, c) = 1, without being noticed
by A. Intuitively, this is possible because in order for A to notice the difference between a security
game in which a decapsulation query c with Fout(pkout, c

∗, c) = 1 is not rejected and a security game
in which such c is rejected, A has to come up with a “valid” query c satisfying Fout(pkout, c

∗, c) =
1 and DecapDL(SK, c) ̸= ⊥. However, the latter condition implies Decout(skout, c) = cin ̸= ⊥,
Decapin(skin, cin) = (r∥K) ̸= ⊥, and Encout(pkout, cin; r) = c, among which the combination of
Fout(pkout, c

∗, c) = 1 and Encout(pkout, cin; r) = c is exactly the condition of violating randomness-
inextractability, and thus such a valid query c must be hard to find.

If we can safely reject an outer-dangerous query, one might wonder why we need non-malleability
for the outer PKE scheme, and why ordinary DCCA security is not sufficient. The reason is that
although DCCA security ofΠout intuitively ensures thatA cannot “see” the inner challenge ciphertext
c∗in, it does not prevent A from coming up with an inner-dangerous decapsulation query c such that
Fout(pkout, c

∗, c) = 1. From the viewpoint of the security proof, we may be able to come up with
a DCCA adversary (a reduction algorithm) for Πout that perfectly simulates the security game (in
which queries c with Fout(pkout, c

∗, c) = 1 are rejected) for A. However, such DCCA adversary cannot
check if A’s query satisfying Fout(pkout, c

∗, c) = 1 is an inner-dangerous query due to the restriction
on the decryption oracle.

This is the place where the non-malleability of the outer PKE scheme comes into play. Note
that an inner ciphertext is a “plaintext” of the outer PKE scheme, and the notion of “inner-
dangerous queries” is a “meaningful relation” between c∗in and another inner ciphertext. There-
fore, the wRNM-DCCA security of Πout ensures that A cannot come up with even a single inner-
dangerous query c, as long as A can only observe the decapsulation results of queries c′ satisfying
Fout(pkout, c

∗, c′) = 0. From the viewpoint of the security proof, if a reduction algorithm is a
wRNM-DCCA adversary for Πout, it can check if A’s query c is inner-dangerous by its final “unre-
stricted” decryption query, even if Fout(pkout, c

∗, c) = 1 holds. This enables us to finally show that
the probability that A comes up with an inner-dangerous query in the original security game, is
negligibly close to the probability that A does so in the game in which A’s view does not contain
the information on c∗in.

Hence, combining all the security properties of the building blocks leads to CCA security. How-
ever, the explanation so far hides some technical subtleties that arise due to the “replayable-CCA”-
like nature of wRNM-DCCA security, and the treatment of the cases where A’s decapsulation query c
satisfies Decout(skout, c) = c∗in, etc. For the details, see Appendix D.2.

Our Second Proof. We show an alternative security proof for the double-layered construction based
on slightly different assumptions on the building blocks.

Theorem 2. Assume that the “outer” PKE scheme Πout is a detectable PKE scheme satisfying
DCCA security and randomness-inextractability, and the “inner” KEM Γin is a detectable KEM
satisfying wNM-DCCA security and unpredictability. Then, the KEM ΓDL in Fig. 4 is CCA secure.
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The formal proof is given in Appendix D.3. Recall that Myers and Shelat’s original double-layered
construction uses an “unquoted” CCA (UCCA) secure construction of a PKE scheme for the outer
PKE scheme and a construction of a KEM which is “1-wise-non-malleable under UCCA” for the
inner KEM, where UCCA security and its non-malleable variant are security notions considered for
PKE-to-PKE constructions (i.e. constructions that use another PKE scheme as a building block).
Recall also that DCCA security is an abstraction of UCCA security [16], from a security notion for a
PKE-to-PKE construction to that of a wider notion of detectable PKE. Analogously, our definition
of wNM-DCCA security can be seen as an abstraction of Myers and Shelat’s “1-wise non-malleability
under UCCA”. Furthermore, we can easily see that the actual instantiations of the inner KEM
and the outer PKE scheme used in the original Myers-Shelat construction [22], when respectively
seen as a detectable KEM and a detectable PKE scheme, satisfy unpredictability and randomness-
inextractability. Therefore, Theorem 2 can be seen as a generalization of Myers and Shelat’s result,
stated using the language of detectable PKE/KEM.

The structure of the proof of Theorem 2 is similar to our first proof. However, there are several
subtle but crucial differences. In particular, the definitions of “inner/outer-dangerous queries” are
different from those used in the proof of Theorem 1, and correspondingly we consider a different
ordering of the sequence of games for this proof. Furthermore, the role of the “non-malleability” in
this proof and that of the proof of Theorem 1 are different. Informally speaking, in this proof, the
wNM-DCCA security of the inner detectable KEM Γin is used to ensure that the probability that a CCA
adversary comes up with an outer-dangerous query is not noticeably different between the games
in which we invoke (the indistinguishability property of) the DCCA security of the inner KEM. For
the details, see Appendix D.3.

Can We Avoid w(R)NM-DCCA Security? Both of our security proofs for the CCA security of the
double-layered construction require either the inner detectable KEM or the outer detectable PKE
scheme to be “non-malleable” under DCCA.

Looking ahead, in the next section, we will see that the simplest “bitwise-encrypt” construc-
tion based on CCA secure 1-bit PKE satisfies DCCA security, unpredictability, and randomness-
inextractability. Thus, a natural question would be whether we can prove the CCA security of the
double-layered construction without using the non-malleability notions for both of the building
blocks (and instead only requiring DCCA security). If such a security proof were possible, then one
can use the bitwise-encrypt-based construction both for the inner KEM and the outer PKE scheme,
and the resulting CCA secure KEM would be fairly simple. (If we appropriately use the known tech-
niques and results on hybrid encryption, then the key and ciphertext sizes of the resulting KEM
could be made only twice as large as those of the bitwise-encrypt-based KEM construction that
works for the CPA and non-adaptive CCA (CCA1) settings.)

Unfortunately, however, we show that such a security proof is impossible, as there is a coun-
terexample.

Theorem 3. Assume there exists a detectable PKE scheme which is DCCA secure and unpredictable.
Then, there exist a detectable KEM Γin and a detectable PKE scheme Πout such that the follow-
ing simultaneously hold: (1) Γin is DCCA secure and unpredictable. (2) Πout is DCCA secure and
randomness-inextractable. (3) The double-layered KEM ΓDL constructed using Γin as the inner
KEM and Πout as the outer PKE scheme, is not CCA secure (in fact, not secure in the sense of
one-wayness under 1-bounded CCA).
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The formal proof is given in Appendix D.4. Our counterexample is based on an observation that the
combination of DCCA security, unpredictability, and randomness-inextractability, does not rule out
a double-layered KEM with the following property: A ciphertext C is of the form C = (c1, c2) and
the corresponding session-key K is of the form K = (K1,K2), and furthermore it is “blockwise”
consistent, meaning that each pair (ci,Ki) is individually consistent as a ciphertext/session-key
pair of the double-layered construction. Thus, the decapsulation result of the “swapped” ciphertext
Ĉ = (c2, c1) is the “swapped” session-key K̂ = (K2,K1). Such a KEM is clearly malleable, and its
one-wayness is broken by just a single decapsulation query. For the details, see Appendix D.4.

5 Concrete Instantiations of Building Blocks

In this section, we show how to construct a detectable PKE scheme, which we call “encode-then-
bitwise-encrypt” (EtBE) construction, that uses a CCA secure 1-bit PKE scheme and a Q-non-
malleable code as building blocks and simultaneously satisfies wRNM-DCCA security and randomness-
inextractability. Since it is much easier to understand it if we first review the simple “bitwise-
encrypt” construction, we first review it in Section 5.1 together with its security properties, and
then we show the EtBE construction in Section 5.2.

5.1 Bitwise-Encrypt Construction

Here, we show that the simple “bitwise-encrypt” construction of a detectable PKE scheme based
on a 1-bit PKE scheme, in which each bit of a plaintext is encrypted in a bit-by-bit fashion by the
underlying 1-bit scheme, can be shown to satisfy randomness-inextractability, DCCA security, and
unpredictability, if the underlying 1-bit PKE scheme is CCA secure.

Let Π1 = (PKG1,Enc1,Dec1) be a 1-bit PKE scheme, and the randomness space of whose
encryption algorithm Enc1 is {0, 1}ℓ (where ℓ = ℓ(k) is some positive polynomial). Then, for
a polynomial n = n(k) > 0, consider the “bitwise-encrypt” construction Πn

BE = (PKGn
BE :=

PKG1,Enc
n
BE,Dec

n
BE,F

n
BE) of an n-bit detectable PKE scheme described in Fig. 5 (left). The key

generation algorithm PKGn
BE is actually PKG1 itself, and we do not show it in the figure. The ran-

domness space of EncBE is {0, 1}ℓ·n. In the figure, we make the randomness used by EncnBE explicit
so that it is convenient to consider its randomness-inextractability.

The following result was shown by Hohenberger et al. [16]:

Lemma 6. ([16]) Let n = n(k) > 0 be a polynomial. If the 1-bit PKE scheme Π1 is CCA secure,
then the detectable PKE scheme Πn

BE scheme satisfies DCCA security and unpredictability.

We show a similar statement regarding randomness-inextractability.

Lemma 7. Let n = n(k) > 0 be a polynomial. If the PKE scheme Π1 is CCA secure, then the
detectable PKE scheme Πn

BE satisfies randomness-inextractability.

The formal proof is given in Appendix D.5, and here we explain an intuition why the lemma
is true, which is quite straightforward: Suppose an adversary A, given a public key pk and the
challenge ciphertext C∗ = (c∗1, . . . , c

∗
n) and access to the decryption oracle, succeeds in outputting

a plaintext m′ = (m′1∥ . . . ∥m′n) and a randomness r′ = (r′1, . . . , r
′
n) such that FnBE(pk, C

∗, C ′) = 1
with C ′ = (c′1, . . . , c

′
n) = EncnBE(pk,m

′; r′). Then, by definition, there must be a position i ∈ [n]
such that c∗i = c′j holds for some j ∈ [n], where c′a = Enc1(pk,m

′
a; r
′
a) for each a ∈ [n]. Note that

such A is in fact “extracting” the randomness used for generating c∗i . Note also that extracting
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EncnBE(pk,m; r) :

Parse r as (r1, . . . , rn) ∈ ({0, 1}ℓ)n.
View m as (m1∥ . . . ∥mn) ∈ {0, 1}n.
∀i ∈ [n] : ci ← Enc1(pk,mi; ri)
Return C ← (c1, . . . , cn).

DecnBE(sk, C) :
(c1, . . . , cn)← C
∀i ∈ [n] : mi ← Dec1(sk, ci)
If ∃i ∈ [n] : mi = ⊥ then return ⊥.
Return m← (m1∥ . . . ∥mn).

Fn
BE(pk, C

∗, C′) :
(c∗1, . . . , c

∗
n)← C∗; (c′i, . . . , c

′
n)← C′

If ∃i, j ∈ [n] : c∗i = c′j
then return 1 else return 0.

EncEtBE(pk,m;R) :

Parse R as (r, r̂) ∈ {0, 1}ℓ·n × {0, 1}ℓ̂.
s = (s1∥ . . . ∥sn)← E(1k,m; r̂)
C = (c1, . . . , cn)← EncnBE(pk, s; r)
If DUPCHK(C) = 0 then return C else return ⊥.†

DecEtBE(sk, C) :
If DUPCHK(C) = 1 then return ⊥.
s← DecnBE(sk, C)
If s = ⊥ then return ⊥.
Return m← D(1k, s).

FEtBE(pk, C
∗, C′) :

If (a) ∧ (b) then return return 1 else return 0:
(a) DUPCHK(C∗) = DUPCHK(C′) = 0
(b) Fn

BE(pk, C
∗, C′) = 1

Fig. 5. The “bitwise-encrypt” (n-bit) construction Πn
BE (left), and the “encode-then-bitwise-encrypt” (EtBE) con-

struction ΠEtBE (right), both based on a 1-bit PKE scheme Π1. The key generation algorithms for Πn
BE and ΠEtBE are

the key generation algorithm PKG1 of the underlying scheme Π1.
† Regarding the case in which EncEtBE returns ⊥,

see the explanation in the text.

a randomness used for generating a ciphertext is a harder task than breaking indistinguishability.
Thus, it is easy to construct another CCA adversary (a reduction algorithm) B for Π1 that initially
guesses the position i such that c∗i = c′j holds with some j, embeds B’s challenge ciphertext into
the i-th position of the challenge ciphertext for A, and has the CCA advantage at least 1/n times
that of A’s advantage in breaking randomness-inextractability.

5.2 Encode-then-Bitwise-Encrypt Construction

Here, we show the construction of detectable PKE that we call “Encode-then-Bitwise-Encrypt”
(EtBE), which simultaneously achieves wRNM-DCCA security and randomness-inextractability, based
on the security properties of the bitwise-encrypt construction (which are in turn based on the
underlying CCA secure 1-bit scheme) and a Q-non-malleable code. Our construction is actually a
direct “PKE”-analogue of the transformation of a CCA secure 1-bit commitment scheme into a
non-malleable string commitment scheme by Agrawal et al. [1]. We adapt their construction into
the (detectable) PKE setting.

Let C = (E,D) be a code with message length k and codeword length n = n(k) ≥ k. Let
Π1 = (PKG1,Enc1,Dec1) be a 1-bit PKE scheme. Let Πn

BE = (PKGn
BE = PKG1,Enc

n
BE,Dec

n
BE,F

n
BE)

be the bitwise-encrypt construction based on Π1. For convenience, we introduce the procedure
“DUPCHK(·)” which takes a ciphertext C = (c1, . . . , cn) of Πn

BE as input, and returns 1 if there
exist distinct i, j ∈ [n] such that ci = cj , and returns 0 otherwise. (That is, DUPCHK(C) checks a
duplication in the component ciphertexts (ci)i∈[n].)

Using C, Πn
BE (and Π1), and DUPCHK, the EtBE construction ΠEtBE = (PKGEtBE := PKG1,EncEtBE,

DecEtBE,FEtBE) is constructed as in Fig. 5 (right). Like Πn
BE, the key generation algorithm PKGEtBE

is PKG1 itself, and we do not show it in the figure. The plaintext space of ΠEtBE is {0, 1}k.

On the Correctness of ΠEtBE. Note that the encryption algorithm EncEtBE returns ⊥ if it happens
to be the case that DUPCHK(C) = 1. This check is to ensure that a valid ciphertext does not
have “duplicated” components, which is required due to our use of a Q-non-malleable code whose
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non-malleability can only take care of a “non-duplicated” quoting. Since the probability (over
the randomness of EncEtBE) that EncEtBE outputs ⊥ is not zero, our construction ΠEtBE does not
satisfy correctness in a strict sense. (The exactly same problem arises in the construction of string
commitments in [1].) However, it is easy to show that if Π1 satisfies CCA security (or even CPA

security), the probability of EncEtBE outputting ⊥ is negligible, and thus it does not do any harm
in practice. (In practice, for example, in case ⊥ is output, one can re-execute EncEtBE with a fresh
randomness. The expected execution time of EncEtBE is negligibly close to 1.) Furthermore, if one
needs standard correctness, then instead of letting EncEtBE output ⊥ in case DUPCHK(C) = 1, one can
let it output a plaintext m (being encrypted) as an “irregular ciphertext”, so that if the decryption
algorithm DecEtBE takes an irregular ciphertext C as input, it outputs C as a “decryption result”
of C. (In order to actually implement this, in case DUPCHK(C) = 1 occurs, m ∈ {0, 1}k needs to
be padded to the length n · |c| of an ordinary ciphertext, and we furthermore need to put a prefix
for every ciphertext that tells the decryption algorithm whether the received ciphertext should be
treated as a normal ciphertext or an irregular one.) Such a modification also does no harm to the
security properties of ΠEtBE (it only contributes to increasing an adversary’s advantage negligibly),
thanks to the CCA security of the building block Π1. For simplicity, in this paper we focus on the
current construction of ΠEtBE.

Security of ΠEtBE. The security properties of the EtBE construction is guaranteed by the following
lemmas.

Lemma 8. Assume that Π1 is CCA secure and C is a Q-non-malleable code. Then, the detectable
PKE scheme ΠEtBE in Fig. 5 (right) is wRNM-DCCA secure.

Lemma 9. If Π1 is CCA secure, then the detectable PKE scheme ΠEtBE scheme in Fig. 5 (right)
satisfies unpredictability and randomness-inextractabilty.

The proof of Lemma 8 is given in Appendix D.6. The proof of Lemma 9 is straightforward given
the unpredictability (Lemma 6) and randomness-inextractability (Lemma 7) of the bitwise-encrypt
construction Πn

BE, and thus omitted.
The proof of Lemma 8 follows essentially the same story line as the security proof of the non-

malleable string commitment by Agrawal et al. [1]. A high-level idea is as follows: In the wRNM-DCCA
experiment, an adversary A = (A1,A2,A3) is allowed to submit a single “unrestricted” decryption
query C ′ = (c′1, . . . c

′
n), which is captured by the ciphertext finally output by A2. In order for this

query to be valid, however, C ′ has to satisfy DUPCHK(C ′) = 0, which guarantees that C ′ does not
have duplicated components. Thus, since each component is a ciphertext of the CCA secure scheme
Π1, the best A can do to generate C ′ that is “related” to the challenge ciphertext C∗ = (c∗1, . . . , c

∗
n)

is to “quote” some of c∗i ’s into C ′ in such a way that no c∗i appears more than once. However,
such “quoting without duplicated positions” is exactly the function class Q with respect to which
the code C is non-malleable. Specifically, the Q-non-malleability of C guarantees that even if an
adversary observes the decryption result of such C ′ that quotes some of components of C∗ without
duplicated positions, A gains essentially no information of the original content mb of the encoding
s∗ encrypted in C∗, and hence no information of the challenge bit b. Actually, it might be the case
that A succeeds in generating C ′ so that DecnBE(sk, C

′) is s∗ itself (and hence its decoded value is
exactly the challenge plaintext mb). According to the rule of the wRNM-DCCA experiment, however,
in such a case A is not given the actual decryption result DecEtBE(sk, C

′) directly but is given the
symbol same which only informs that the decryption result is either m0 or m1. Furthermore, all
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other queries without quoting do not leak the information of the challenge bit b because of the
DCCA security of the bitwise-encrypt construction Πn

BE (Lemma 6). These ideas lead to wRNM-DCCA

security of ΠEtBE. For the details, see Appendix D.6.

6 Full Description of Our 1-bit-to-Multi-bit Conversion

Given the results in the previous sections, we are now ready to describe our proposed 1-bit-to-
multi-bit conversion, i.e. a CCA secure KEM from a CCA secure 1-bit PKE scheme. Let Π1 = (PKG1,
Enc1,Dec1) be a 1-bit PKE scheme whose public key size is “|pk|”, the ciphertext size is “|c|”, and
the randomness space of whose encryption algorithm Enc1 is {0, 1}ℓ. Let C = (E,D) be a Q-non-
malleable (n, k)-code with n = n(k) ≥ k, and the randomness space of whose encoding algorithm E

is {0, 1}ℓ̂. Let ℓ′ = n·ℓ+ ℓ̂+2k, and G : {0, 1}k → {0, 1}ℓ′ be a PRG. Finally, let E = (SEnc, SDec) be
a deterministic SKE scheme whose plaintext space is {0, 1}k·|c|, and it has zero ciphertext overhead
(i.e. its ciphertext size is the same as that of a plaintext).

From these building blocks, consider the following detectable KEM Γin and detectable PKE
scheme Πout:

Γin: Consider the bitwise-encrypt construction Πk
BE (Fig. 5) based on the PKE scheme Π1, and

regard it as a detectable KEM by encrypting a random k-bit string as a session-key. For this
detectable KEM, use the PRG G with the method explained in the first paragraph of Section 3.3
to stretch its session-key into ℓ′ bits. Γin is the resultant KEM.
The public key size of Γin is |pk|, its ciphertext size is k · |c|, and its session-key space is {0, 1}ℓ′ .
Due to Lemmas 3 and 6, Γin satisfies DCCA security and unpredictability based on the CCA

security of Π1 and the security of G.
Πout: Consider the EtBE construction ΠEtBE based on the code C and the bitwise-encrypt con-

struction Πn
BE (which is in turn based on Π1) (Fig. 5). Combine this detectable PKE scheme

with the SKE scheme E by the method explained in the second paragraph of Section 3.3 (see
Fig. 3). Πout is the resultant PKE scheme.
The public key size of Πout is |pk|, its ciphertext overhead (the difference between the total
ciphertext size minus the plaintext size) is n · |c|, its plaintext space is {0, 1}k·|c|, and the
randomness space of its encryption algorithm is {0, 1}ℓ′−k. Due to Lemmas 4, 6, 7, 8, and 9,
Πout satisfies wRNM-DCCA security and randomness-inextractability, based on the CCA security of
Π1, Q-non-malleability of C, and the CCA security of E.

Our proposed KEM Γ̃ = (K̃KG, Ẽncap, D̃ecap) is then obtained from the double-layered construction
ΓDL in which the inner KEM is Γin and the outer PKE scheme is Πout explained above. More
concretely, the description of Γ̃ is as in Fig. 6.

The public key size of Γ̃ is 2 · |pk|, and its ciphertext size is (n+ k) · |c| (where Γin contributes
k · |c| and Πout contributes n · |c|). Using the P-non-malleable code with “optimal rate” (Lemma 1)
by Agrawal et al. [2] which also satisfies Q-non-malleability by Lemma 2, we have n = k + o(k).
Thus, the ciphertext size of Γ̃ can be made asymptotically (2k + o(k)) · |c|.

The following statement is obtained as a corollary of the combination of Theorem 1 and Lem-
mas 1, 2, 3, 4, 6, 7, 8, and 9.

Theorem 4. Assume that the PKE scheme Π1 is CCA secure, C is a Q-non-malleable code, G is a
PRG, and the SKE scheme E is CCA secure. Then, the KEM Γ̃ in Fig. 6 is CCA secure.

21



K̃KG(1k) :
(pkin, skin)← PKG1(1

k)

(pkout, skout)← PKG1(1
k)

PK ← (pkin, pkout)
SK ← (skin, skout, PK)
Return (PK,SK).

Ẽncap(PK) :
(pkin, pkout)← PK

Kin = (K
(1)
in ∥ . . . ∥K

(k)
in )← {0, 1}k

∀i ∈ [k] : c
(i)
in ← Enc1(pkin,K

(i)
in )

α← G(Kin)
Parse α as (r1, . . . , rn, r̂,Kout,K)

∈ ({0, 1}ℓ)n × {0, 1}ℓ̂ × ({0, 1}k)2.
s = (s1∥ . . . ∥sn)← E(1k,Kout; r̂)
∀i ∈ [n] : ci ← Enc1(pkout, si; ri)
If DUPCHK((ci)i∈[n]) = 1 then return ⊥.
ĉ← SEnc(Kout, (c

(1)
in ∥ . . . ∥c

(k)
in ))

C ← (c1, . . . , cn, ĉ)
Return (C,K).

D̃ecap(SK,C) :
(skin, skout, PK)← SK
(pkin, pkout)← PK; (c1, . . . , cn, ĉ)← C
If DUPCHK((ci)i∈[n]) = 1 then return ⊥.
∀i ∈ [n] : si ← Dec1(skout, ci)
If ∃i ∈ [n] : si = ⊥ then return ⊥.
Kout ← D(1k, s = (s1∥ . . . ∥sn))
If Kout = ⊥ then return ⊥.
(c

(1)
in ∥ . . . ∥c

(k)
in )← SDec(Kout, ĉ)

If SDec has returned ⊥ then return ⊥.
∀i ∈ [k] : K

(i)
in ← Dec1(skin, c

(i)
in )

If ∃i ∈ [k] : K
(i)
in = ⊥ then return ⊥.

α← G(Kin = (K
(1)
in ∥ . . . ∥K

(k)
in ))

Parse α as (r1, . . . , rn, r̂,K
′
out,K)

∈ ({0, 1}ℓ)n × {0, 1}ℓ̂ × ({0, 1}k)2.
If (a) ∧ (b) ∧ (c) then return K else return ⊥:
(a) ∀i ∈ [n] : Enc1(pkout, si; ri) = ci
(b) E(1k,K′

out; r̂) = s

(c) SEnc(K′
out, (c

(1)
in ∥ . . . ∥c

(k)
in )) = ĉ

Fig. 6. The proposed “1-bit-to-multi-bit” construction (KEM) Γ̃ .

2-bit-to-multi-bit Construction with a Single Key Pair. Note that our proposed 1-bit-to-multi-bit
conversion Γ̃ uses two key pairs of the underlying 1-bit scheme Π1. It turns out that if we can use
a 2-bit PKE scheme as a building block instead of a 1-bit scheme, then we can construct a CCA

secure KEM that uses only one key pair of the underlying 2-bit scheme, with a very similar way to
Γ̃ . We detail it in Appendix C.

The idea of this 2-bit-to-multi-bit conversion is to use the additional 1-bit of the plaintext space
as the “indicator bit” that indicates whether each component ciphertext is generated for the inner

layer or the outer layer. That is, each inner ciphertext c
(i)
in is an encryption of (1∥K(i)

in ), and each
outer ciphertext ci is an encryption of (0∥si), and in the decapsulation algorithm, we check whether

the component ciphertexts {ci}i∈[n] and {c
(i)
in}i∈[k] have appropriate indicator bits (“1” for the inner

layer and “0” for the outer layer). This additional indicator bit and its check prevent a quoting of
an inner ciphertext into the outer layer and vice versa, and thus make the encryption/decryption
operations for the inner layer and those of the outer layer virtually independent, as if each layer
has an individual key pair. This enables us to conduct the security proof in essentially the same
way as that of Γ̃ . For the details, see Appendix C.

7 Comparison

Table 1 compares the public key size and ciphertext size of the existing “1-bit-to-multi-bit” con-
structions that achieve CCA security (or related security). Specifically, in the table, “MS” represents
the construction by Myers and Shelat [22].; “HLW” represents the construction by Hohenberger
et al. [16] which uses a CPA secure PKE scheme, a 1-bounded CCA secure [7] PKE scheme, and
a detectable PKE scheme satisfying DCCA security and unpredictability. We assume that for the
1-bounded CCA secure scheme, the construction by Dodis and Fiore [10, Appendix C] is used, which
constructs such a scheme from a CPA secure scheme and a one-time signature scheme, and we also
assume that its detectable scheme and the CPA secure scheme are realized by the bitwise-encrypt
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Table 1. Comparison among the 1-bit-to-multi-bit constructions for CCA (and related) security. In
the columns “PK Size” and “Ciphertext Size”, |pk| and |c| denote the public key size and the ciphertext size of the
underlying 1-bit PKE scheme Π1, respectively, and |vk| and |σ| denote the size of a verification key and that of a
signature of the one-time signature scheme used as a building block, respectively. The column “Sec. on Π1” shows the
assumption on the security of the underlying 1-bit PKE scheme required to show the CCA (or the related) security of
the entire construction. Here, “SDA” and “NM-SDA” denote “(indistinguishability against) self-destruct CCA” [6] and
“non-malleability against SDA” [5], respectively. The column “Add. Bld. Blk.” shows the additional building blocks
(used in each construction) that can be realized only from the existence of a one-way function. Here, “Sig” stands for
a one-time signature scheme. (†) As explained in Introduction, CMTV [6] and CTDV [5] only achieve SDA security
and NM-SDA security, respectively, which are both implied by ordinary CCA security but are strictly weaker than it.

Scheme PK Size Ciphertext Size Sec. of Π1 Add. Bld. Blk.

MS [22] (20k2 + 1)|pk| (10k3|c|+ |vk|+ |σ|)|c| CCA Sig., PRG
HLW [16] (2k + 2)|pk| (k2 + 3k)|c|+ |vk|+ |σ|+ 6k DCCA & UNP Sig., PRG, SKE
MH [21] (2k + 2)|pk| (k2 + 2k)|c|+ |vk|+ |σ| DCCA & UNP Sig., PRG, SKE

CMTV† [6] ≈ k|pk| ≈ 5k|c| SDA —

CDTV† [5] O(k)|pk| O(k)|c| NM-SDA —
Ours (§ 6) 2|pk| (2k + o(k))|c| CCA PRG, SKE

construction Πk
BE. (If we need to encrypt a value longer than k-bit, then we assume that hybrid

encryption is used everywhere possible by encrypting a k-bit random session-key and using it as
a key for SKE (where the length of SKE ciphertexts are assumed to be the same as a plaintext
[25]), which we do the same for the constructions explained below.); “MH” represents the construc-
tion by Matsuda and Hanaoka [21], which can be seen as an efficient version of HLW [16] due to
hybrid encryption techniques, and we assume that the building blocks similar to HLW are used.;
“CMTV” represents the construction by Coretti et al. [6], the size parameters of which are taken
from the introduction of [6].; “CDTV” represents the construction by Coretti et al. [5], where the
size parameters are estimated according to the explanations in [5, Sections 4.2 & 4.3].; “Ours” is
the KEM Γ̃ shown in Fig. 6 in Section 6.

As is clear from Table 1, if one starts from a CCA secure 1-bit PKE scheme (and assuming
that building blocks implied by one-way functions are available for free), then “Ours” achieves
asymptotically the best efficiency. Notably, the public size and the ciphertext size of “Ours” are
asymptotically “optimal” in the sense that they are asymptotically the same as the bitwise-encrypt
construction Πk

BE that works as a 1-bit-to-multi-bit conversion for the CPA and non-adaptive CCA

(CCA1) settings. Note also that all the previous constructions that achieve ordinary CCA security
have the public key size Ω(k) · |pk|, and the ciphertext size Ω(k2) · |c|.

We note that, as mentioned in Section 1.3, CMTV [6] and CDTV [5] achieve only indistin-
guishability under self-destruct CCA (SDA) and non-malleability under self-destruct CCA (NM-SDA),
respectively, which are both implied by ordinary CCA security but are strictly weaker than it.
Nonetheless, “Ours” actually achieves better asymptotic efficiency than them.

However, for fairness we note that our construction requires CCA security for the underlying 1-
bit PKE scheme Π1, while HLW [16] and MH [21] only require DCCA security and unpredictability,
and the constructions CMTV [6] and CDTV [5] only require SDA and NM-SDA security for Π1,
respectively, and thus there is a tradeoff among the assumptions on the building block Π1.

8 On the Necessity of Two Key Pairs

Our positive results on the 1-/2-bit-to-multi-bit constructions for CCA security raise an interesting
question in terms of the number of public keys: Is it necessary to use two key pairs in 1-bit-to-
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multi-bit constructions for CCA security? Motivated by this question, in this section we consider
the one-key variant of our proposed KEM Γ̃ , and study its security. Specifically, consider a variant
of the KEM Γ̃ in Fig. 6 in which the key generation algorithm only generates one key pair (pk, sk)
and then pk is used for both pkin and pkout, and sk is used for both skin and skout. Let Γ̃ ′ =

(K̃KG
′
, Ẽncap

′
, D̃ecap

′
) be this “one-key-pair” version of the KEM Γ̃ .

Unfortunately, we will show that this KEM Γ̃ ′ is vulnerable to a CCA attack. Hence, our negative
result in this section shows that using two key pairs of the underlying 1-bit scheme is essential for
our proposed construction Γ̃ . This also contrasts strikingly with our 2-bit-to-multi-bit construction
explained in Section 6 (and Appendix C) that only requires one key pair. Although the negative
result on the one-key pair variant does not rule out the possibility of 1-bit-to-multi-bit constructions
that use only one-key pair in general, it does show a necessity of different techniques and ideas for
fully answering the optimal number of keys needed for 1-bit-to-multi-bit conversion for CCA security.
We leave it as an open problem to clarify whether we can achieve a 1-bit-to-multi-bit conversion
for CCA security that uses only one key pair.

Theorem 5. If G is a PRG, then the KEM Γ̃ ′ is not CCA secure.

The formal proof is given in Appendix D.7. Here, we explain a proof overview. Our key observations

for the CCA attack on Γ̃ ′ are: (1) One can use the decapsulation oracle D̃ecap
′
(sk, ·) to decrypt any

“honestly generated” ciphertext c′ of the underlying 1-bit PKE scheme that is in the range of

Enc1(pk, ·), and (2) the “outer” ciphertexts {c∗i }i∈[n] and the “inner” ciphertexts {c∗(i)in }i∈[k] in the

challenge ciphertext C∗ = (c∗1, . . . , c
∗
n, ĉ
∗ = SEnc(Kout, (c

∗(1)
in ∥ . . . ∥c

∗(k)
in ))) are all generated honestly.

These (1) and (2) imply that the following simple adversary A works: Given the challenge ciphertext
C∗, A decrypts the outer ciphertexts {c∗i }i∈[n] to recover s∗ with the help of the decapsulation oracle

D̃ecap
′
(sk, ·) and the above mentioned property (1), decodes s∗ to obtain K∗out, decrypts ĉ∗ using

K∗out to recover the inner ciphertexts {c∗(i)in }i∈[k], decrypts them to recover K∗in with the help of
the decapsulation oracle as above, and finally recovers the session-key K∗ = LSBk(G(K

∗
in)). (Here,

LSBk(·) denotes the least significant k-bits of the input.)

Therefore, our task is reduced to showing how one uses the decapsulation oracle D̃ecap
′
(sk, ·) to

decrypt honestly generated ciphertexts ofΠ1. Let c
′ be an honestly generated ciphertext in the range

of Enc1(pk, ·), and let K⋆
in ∈ {0, 1}k−1 be a string satisfying LSBk(G(1∥K⋆

in)) ̸= LSBk(G(0∥K⋆
in)).

Then, consider the procedure of generating a ciphertext/session-key pair (C,K) in the same manner

as Ẽncap
′
(pk), except that c′ is used as the first inner ciphertext c

(1)
in , Kin = (1∥K⋆) is used for

computing α, and the rest is unchanged from Ẽncap
′
(pk). This is as if we generate a ciphertext

C and a session-key K so that we treat c′ as an encryption of 1 and embed it into the position

of c
(1)
in in C. Indeed, we can show that if c′ is an encryption of 1, then D̃ecap

′
(sk, C) = K holds,

while if c′ is an encryption of 0, then D̃ecap
′
(sk, C) = K never occurs, due to the property of K⋆

in.

Put differently, it holds that Dec1(sk, c
′) = (D̃ecap

′
(sk, C)

?
= K). Thus, the decapsulation oracle

D̃ecap
′
(sk, ·), together with the above method of “embedding” c′, can be used to decrypt c′.

However, there is one problem: There could be a PRG G such that LSBk(G(1∥s)) = LSBk(G(0∥s))
holds for all s ∈ {0, 1}k−1 (e.g. a PRG that ignores the first bit). If such G is used, we cannot mount
the above attack. Thus, in the actual proof we use a more sophisticated (and more complicated)
method for embedding c′ into a ciphertext/session-key pair so that essentially the same method
works for any PRG G. For more details, see Appendix D.7.
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A Standard Cryptographic Primitives and a Basic Fact on Probability

A.1 Symmetric Key Encryption

A symmetric key encryption (SKE) scheme E consists of the two PPTAs (SEnc, SDec) with the
following interface:

Encryption: Decryption:

c← SEnc(K,m) m (or ⊥)← SDec(K, c)

where SDec is a deterministic algorithm, c is a ciphertext of a plaintext m under a key K ∈ {0, 1}k,
and k ∈ N is a security parameter.

We say that a SKE scheme satisfies correctness if for all k ∈ N, all K ∈ {0, 1}k, and all plaintexts
m, it holds that SDec(K, SEnc(K,m)) = m.

CCA Security. Here, we review the CCA security of a SKE scheme. For a SKE scheme E and an
adversary A = (A1,A2), consider the CCA experiment ExptCCAE,A(k) that is defined as follows:

ExptCCAE,A(k) : [ (m0,m1, st)← A1(1
k); K ← {0, 1}k; b← {0, 1}; c∗ ← SEnc(K,mb);

b′ ← ASDec(K,·)
2 (st, c∗); Return (b′

?
= b). ],

where it is required that |m0| = |m1| holds, and A2 is not allowed to submit c∗ to its decryption ora-
cle. We say that a SKE scheme E is CCA secure if for all PPTAs A, AdvCCAE,A(k) := 2·|Pr[ExptCCAE,A(k) =
1]− 1/2| is negligible.

A.2 Message Authentication Code

Amessage authentication code (MAC)M consists of the two PPTAs (Mac,MVer) with the following
interface:

MAC-Tag Generation: Verification:

τ ← Mac(K,m) ⊤ or ⊥ ← MVer(K,m, τ)

where MVer is a deterministic algorithm, τ is a MAC-tag of a message m under a key K ∈ {0, 1}k,
⊤ (resp. ⊥) is the symbol indicating that τ is a valid (resp. invalid) MAC tag on m under K, and
k ∈ N is a security parameter.

We say that a MAC satisfies correctness if for all k ∈ N, all keys K ∈ {0, 1}k, and all messages
m, it holds that MVer(K,m,Mac(K,m)) = ⊤.
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Strong One-Time Security. Here, we recall the definition of strong one-time unforgeability (SOT
security) of a MAC. For a MACM and an adversary A = (A1,A2), consider the SOT experiment
ExptSOTM,A(k) that is defined as follows:

ExptSOTM,A(k) : [ (m, st)← A1(1
k); K ← {0, 1}k; τ ← Mac(K,m); (m′, τ ′)← A2(st, τ);

If MVer(K,m′, τ ′) = ⊤ ∧ (m′, τ ′) ̸= (m, τ) then return 1 else return 0. ],

We say that a MAC M is SOT secure if for all PPTAs A, AdvSOTM,A(k) := Pr[ExptSOTM,A(k) = 1] is
negligible.

A.3 Pseudorandom Generator

Let ℓ = ℓ(k) > k be a polynomial and let G : {0, 1}∗ → {0, 1}∗ be a function such that |G(x)| = ℓ(|x|)
holds for all strings x ∈ {0, 1}∗. We say that G is a pseudorandom generator (PRG) if (1) it is
efficiently computable, and (2) for all PPTAs A, the following advantage function AdvPRGG,A(k) is
negligible:

AdvPRGG,A(K) :=
∣∣∣ Pr
x←{0,1}k

[A(1k,G(x)) = 1]− Pr
y←{0,1}ℓ

[A(1k, y) = 1]
∣∣∣.

A.4 Basic Fact on Probability

We will use the following simple fact on probability.

Fact 1 Let S and B be events defined over the same probability space. Then, it holds that∣∣∣Pr[S]− 1

2

∣∣∣≤ ∣∣∣Pr[S ∧ B] +
1

2
Pr[B]− 1

2

∣∣∣+1

2
Pr[B]. (2)

Proof of Fact 1. If Pr[B] = 0, then the right hand side of Equation (2) is exactly |Pr[S]− 1
2 |, and

thus the inequality trivially holds. Otherwise (i.e. Pr[B] > 0), using the triangle inequality, we have∣∣∣Pr[S]− 1

2

∣∣∣ = ∣∣∣Pr[S ∧ B] + Pr[S|B] · Pr[B]− 1

2

∣∣∣
≤

∣∣∣Pr[S ∧ B] +
1

2
Pr[B]− 1

2

∣∣∣+ Pr[B] ·
∣∣∣Pr[S|B]− 1

2

∣∣∣.
Then, the proof finishes by noting that we have |Pr[S|B]− 1

2 | ≤
1
2 . ⊓⊔ (Fact 1)

B wNM-DCCA Security and Randomness-Inextractability for Detectable KEM

wNM-DCCA Security. For a detectable KEM Γ = (KKG,Encap,Decap,F) and an adversary A =
(A1,A2), we define the wNM-DCCA experiment ExptwNM-DCCAΓ,A (k) as described in Fig. 7 (left). As in an
adversary A in the DCCA experiment for KEMs, A1 in wNM-DCCA experiment is not allowed to submit
a decapsulation query c satisfying F(pk, c∗, c) = 1 to the decapsulation oracle. The adversary’s final
“unrestricted” decapsulation query is captured by the ciphertext c′ that is finally output by A1. It
is required that c′ ̸= c∗. However, we allow c′ to be such that F(pk, c∗, c′) = 1.

Definition 3. We say that a detectable KEM Γ is wNM-DCCA secure if for all PPTAs A, AdvwNM-DCCAΓ,A (k)

:= 2 · |Pr[ExptwNM-DCCAΓ,A (k) = 1]− 1/2| is negligible.
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ExptwNM-DCCAΓ,A (k) :

(pk, sk)← KKG(1k)
(c∗,K∗

1 )← Encap(pk)
K∗

0 ← K
b← {0, 1}
(c′, st)← ADecap(sk,·)

1 (pk, c∗,K∗
b )

K′ ← Decap(sk, c′)
b′ ← A2(st,K

′)

Return (b′
?
= b)

ExptR-InextΓ,A (k) :

(pk, sk)← KKG(1k)
(c∗,K∗)← Encap(pk)

r′ ← ADecap(sk,·)(pk, c∗,K∗)
(c′,K′)← Encap(pk; r′)
Return F(pk, c∗, c′)

Fig. 7. Security experiments for wNM-DCCA security (left), and randomness-inextractability (right) for detectable
KEMs.

Randomness-Inextractability. For a detectable KEM Γ = (KKG,Encap,Decap,F) and an adversary
A = (A1,A2), consider the R-Inext experiment ExptR-InextΓ,A (k) as described in Fig. 7 (right).

Definition 4. We say that a detectable KEM Γ satisfies randomness-inextractability if for all
PPTAs A, AdvR-InextΓ,A (k) := Pr[ExptR-InextΓ,A (k) = 1] is negligible.

C 2-bit-to-Multi-bit Conversion with a Single Key Pair

Here, we give our 2-bit-to-multi-bit conversion that uses only one key pair of the building block
2-bit PKE scheme. The idea is to use the additional 1-bit of the plaintext space as an “indicator

bit” that indicates whether each of component ciphertexts (i.e. c
(i)
in ’s and ci’s) is generated for the

inner layer or the outer layer.
Let Π2 = (PKG2,Enc2,Dec2) be a 2-bit PKE scheme whose ciphertext length is “|c2|” and

the randomness space of whose encryption algorithm Enc2 is {0, 1}ℓ. Let C = (E,D) be a Q-non-
malleable (n, k)-code with n = n(k) ≥ k, and the randomness space of whose encoding algorithm E

is {0, 1}ℓ̂. Let ℓ′ = n · ℓ+ ℓ̂+2k, and G : {0, 1}k → {0, 1}ℓ′ be a PRG. Finally, let E = (SEnc, SDec)
be a deterministic SKE scheme whose plaintext space is {0, 1}k·|c2|. Then, we construct a KEM

Γ̂ = (K̂KG, Êncap, D̂ecap) as in Fig. 8.
The CCA security of the KEM Γ̂ is guaranteed in essentially the same way as that of Γ̃ , as

follows.

Theorem 6. Assume that the PKE scheme Π2 is CCA secure, C is a Q-non-malleable code, G is a
PRG, and the SKE scheme E is CCA secure. Then, the KEM Γ̂ in Fig. 8 is CCA secure.

The proof can be shown in essentially the same way as that of the 1-bit-to-multi-bit construction Γ̃
via a sequence of games that takes into account all the steps in the security proof of the (suitable
analogues of the) double-layered construction (Theorem 1), the bitwise-encrypt construction Πn

BE

(Lemmas 6 and 7), and the EtBE construction ΠEtBE (Lemmas 8 and 9) and the miscellaneous
methods explained in Section 3.3. Since it is redundant and tedious given all the proofs used for
Theorem 4 given in this paper, we omit it.

Note that the consistency of each of the “indicator” bits encrypted together with the actual

contents (si or K
(i)
in ) by the 2-bit scheme, is checked in the decapsulation algorithm D̂ecap. This

check prevents a quoting of an inner ciphertext into the outer layer and vice versa, and thus makes
the encryption/decryption operations for the inner layer and those of the outer layer virtually
independent, as if each layer has an individual key pair, which enables us to conduct the security
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K̂KG(1k) :
(pk, sk)← PKG2(1

k)
SK ← (sk, pk)
Return (pk, SK).

Êncap(pk) :

Kin = (K
(1)
in ∥ . . . ∥K

(k)
in )← {0, 1}k

∀i ∈ [k] : c
(i)
in ← Enc2(pk, (1∥K(i)

in ))
α← G(Kin)
Parse α as (r1, . . . , rn, r̂, Kout,K)

∈ ({0, 1}ℓ)n × {0, 1}ℓ̂ × ({0, 1}k)2.
s = (s1∥ . . . ∥sn)← E(1k,Kout; r̂)
∀i ∈ [n] : ci ← Enc2(pk, (0∥si); ri)
If DUPCHK((ci)i∈[n]) = 1 then return ⊥.
ĉ← SEnc(Kout, (c

(1)
in ∥ . . . ∥c

(k)
in ))

C ← (c1, . . . , cn, ĉ)
Return (C,K).

D̂ecap(SK,C) :
(sk, pk)← SK
(c1, . . . , cn, ĉ)← C
If DUPCHK((ci)i∈[n]) = 1 then return ⊥.
∀i ∈ [n] : (βi∥si)← Dec2(sk, ci)
If ∃i ∈ [n] : si /∈ {0, 1} ∨ βi ̸= 0 then return ⊥.
Kout ← D(1k, s = (s1∥ . . . ∥sn))
If Kout = ⊥ then return ⊥.
(c

(1)
in ∥ . . . ∥c

(k)
in )← SDec(Kout, ĉ)

If SDec has returned ⊥ then return ⊥.
∀i ∈ [k] : (β′

i∥K
(i)
in )← Dec2(sk, c

(i)
in )

If ∃i ∈ [k] : K
(i)
in /∈ {0, 1} ∨ β′

i ̸= 1 then return ⊥.
Kin ← (K

(1)
in ∥ . . . ∥K

(k)
in )

α← G(Kin)
Parse α as (r1, . . . , rn, r̂,K

′
out,K)

∈ ({0, 1}ℓ)n × {0, 1}ℓ̂ × ({0, 1}k)2.
If (a) ∧ (b) ∧ (c) then return K else return ⊥:
(a) ∀i ∈ [n] : Enc2(pk, (0∥s(i)); ri) = ci
(b) E(1k,K′

out; r̂) = s

(c) SEnc(K′
out, (c

(1)
in ∥ . . . ∥c

(k)
in )) = ĉ

Fig. 8. The “2-bit-to-multi-bit” construction with optimal key size: The construction of the KEM Γ̂ .

proof in essentially the same way as that of Γ̃ . Put differently from the viewpoint of the security
proof, even if an adversary submits a decryption query with “cross-layer” quoting, i.e. quoting one

(or more) of the inner layer components {c∗(i)in }i∈[k] of the challenge ciphertext C∗ as one (or more)
of the outer layer components {ci}i∈[n] in an adversary’s decryption query C (and vice versa), the
reduction algorithms can simply just reject them. Note that the reduction algorithms can always

know all the inner layer component ciphertexts {c∗(i)in }i∈[k] and outer layer component ciphertexts
{c∗i }i∈[n] used for the challenge ciphertext C∗ (but not necessarily the decryption results of them),
which enables the reduction algorithms to always find such “cross-layer” quoting queries.

Understanding the Proposed Constructions via Tag-Based Encryption. We note that our proposed
1- and 2-bit-to-multi-bit constructions can also be understood via CCA secure tag-based encryption
(TBE) [20, 17] both of whose tag space and plaintext space are just 1-bit. (Recall that TBE is
PKE in which the encryption and decryption algorithms take a tag tag as an additional input, and
the correctness holds if we use the same tag for both encryption and decryption. This primitive is
sometimes also called “PKE with lables”, “label-based PKE”, etc.) The idea is to use the 1-bit tag
as the “indicator” bit in Γ̂ .

Specifically, let us denote a TBE scheme with 1-bit tag-space and 1-bit plaintext space by T1.
Then consider a modification of our 2-bit-to-multi-bit construction Γ̂ , as follows: Replace the key

generation algorithm PKG2 with the key generation algorithm of T1.; Replace “Enc2(pk, (1∥K(i)
in ))”

in Êncap with an encryption of K
(i)
in using the tag “1” by the encryption algorithm of T1, and

correspondingly replace “Dec2(sk, c
(i)
in )” in D̂ecap with decryption of c

(i)
in using the same tag “1” by

the decryption algorithm of T1.; Likewise, replace “Enc2(pk, (0∥si); ri)” in Êncap with encryption of
si using the tag “0” by the encryption algorithm of T1, and correspondingly, replace “Dec2(sk, ci)”

in D̂ecap with decryption of ci using the tag “0”.
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Let us denote by ΓT this modified version of Γ̂ using the TBE scheme T1. Then, we can prove
that the KEM ΓT is CCA secure under the assumption that the TBE scheme T1 is CCA secure (which
is the version called “full CCA” in [17]) and with the same assumptions on C, E, and G). (The
proof is again very similar to those for Γ̃ and Γ̂ .)

Furthermore, as explained in [17], given a CCA secure PKE scheme that can encrypt 2-bit
or longer plaintexts, one can construct a CCA secure TBE scheme with 1-bit tag-space and 1-bit
plaintext space by encrypting (tag∥m) by the encryption algorithm of the 2-bit PKE scheme, where
tag ∈ {0, 1} and m ∈ {0, 1} are a tag and a plaintext, respectively, and in the decryption algorithm,
whether the first bit of the decryption result and the tag that is input to the decryption algorithm
match. Now, notice that if we instantiate T1 in ΓT with this TBE scheme based on 2-bit PKE, we
obtain the proposed 2-bit-to-multi-bit construction Γ̂ itself.

The PKE-to-TBE construction explained in [17] is applicable only for PKE schemes that can
encrypt messages whose length is the sum of a tag and a plaintext (to be encrypt by TBE), and
hence, we cannot use it to obtain a TBE scheme with 1-bit tag space and 1-bit plaintext space,
from a 1-bit PKE scheme. However, there is a simple construction of such a TBE scheme even from
a 1-bit PKE scheme. We can just generate two independent key pairs (pk0, sk0) and (pk1, ski) of
the 1-bit PKE scheme, and regard (pk0, pk1) (resp. (sk0, sk1)) as a public (resp. secret) key of TBE,
and in the encryption (resp. decryption), if a tag is tag ∈ {0, 1}, we just use pktag (resp. sktag) to
encrypt a 1-bit plaintext (resp. decrypt a ciphertext). It is straightforward to see that if the 1-bit
PKE scheme is CCA secure, then the TBE scheme obtained in this way is CCA secure. Now, if we
instantiate the TBE scheme T1 in ΓT with this TBE scheme based on 1-bit PKE, then we obtain
the proposed 1-bit-to-multi-bit construction Γ̃ itself.

D Proofs for Main Results

D.1 Proof of Lemma 5: Non-triviality of Randomness-Inextractability

Proof for “wNM-DCCA + UNP ̸⇒ R-Inext.” Here, we show that if there exists a detectable PKE
scheme that satisfies wNM-DCCA security and unpredictability, then there exists a detectable PKE
scheme that satisfies wNM-DCCA security and unpredictability, but does not satisfy randomness-
inextractability.

Note that if there exists a detectable PKE scheme satisfying (wNM-)DCCA security and unpre-
dictability (which is guaranteed by assumption), then due to the result by Hohenberger et al. [16],
there exists a CCA secure PKE scheme Π = (PKG,Enc,Dec) whose plaintext space is {0, 1}k+1.
Then, using this PKE scheme Π as a building block, we construct the “separating” PKE scheme
ΠSEP1 = (PKGSEP1,EncSEP1,DecSEP1,FSEP1) whose plaintext space is {0, 1}, as described in Fig 9
(left).

Note that the construction in Fig. 9 (left) is in fact exactly the “transformation” of a CCA secure
PKE scheme into a CCA secure tag-based encryption (TBE) scheme explained by Kiltz [17], except
that the tag tag is always chosen uniformly at random from {0, 1}k. (Here, we consider the CCA

security of a TBE scheme in which an adversary is allowed to submit a tag/ciphertext pair (tag, c)
as a decryption query, as long as it is different (as a pair) from the challenge tag/ciphertext pair
(tag∗, c∗).) Therefore, it is straightforward from [17] that if Π is CCA secure, then ΠSEP1 is wNM-DCCA
secure (in particular, the final “unrestricted” decryption query in the wNM-DCCA experiment can be
handled by the CCA security of the tag-based encryption scheme).
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PKGSEP1(1
k) :

Return (pk, sk)← PKG(1k).

EncSEP1(pk,m) :

tag← {0, 1}k
c← Enc(pk, (tag∥m))
Return C ← (tag, c).

DecSEP1(sk, C) :
(tag, c)← C
(tag′∥m)← Dec(sk, c)
If Dec has returned ⊥ or tag′ ̸= tag then return ⊥.
Return m.

FSEP1(pk, C
∗, C′) :

(tag∗, c∗)← C∗

(tag′, c′)← C′

Return (tag∗
?
= tag′).

PKGSEP2(1
k) :

Return (pk, sk)← PKG(1k).

EncSEP2(pk,m) :
c← Enc(pk,m)
Return C ← (0∥c).

DecSEP2(sk, C) :
Parse C as (γ∥c) s.t. |γ| = 1.
If γ = 1 then return ⊥.
Return m← Dec(sk, c).

FSEP2(pk, C
∗, C′) :

Parse C∗ as (γ∗∥c∗) s.t. |γ∗| = 1.
Parse C′ as (γ′∥c′) s.t. |γ′| = 1.
If γ∗ ̸= γ′ or F(pk, c∗, c′) = 1

then return 1 else return 0.

Fig. 9. The “separating” detectable PKE schemes used to show the separations of security notions. The scheme ΠSEP1

that separates randomness-inextractability from the combination of wNM-DCCA security and unpredictability (left),
and the scheme ΠSEP2 that separates unpredictability from the combination of wNM-DCCA security and randomness-
inextractability (right).

Furthermore, it is also easy to see that ΠSEP1 is information-theoretically unpredictable. This is
because the first component tag∗ is chosen uniformly at random, and thus even if an adversary is
computationally unbounded, it can output a ciphertext C ′ = (tag′, c) such that FSEP1(pk,C

∗, C ′) = 1
(i.e. tag∗ = tag′) for an unseen ciphertext C∗ = (tag∗, c∗) only with negligible probability, which
implies that ΠSEP1 unconditionally satisfies unpredictability.

Finally, we show that ΠSEP1 does not satisfy randomness-inextractability. Specifically, consider
an adversary A that first submits any plaintext m to the experiment, and then is given a public key
pk and the challenge ciphertext C∗ = (tag∗, c∗), where by definition c∗ is an encryption of (tag∗∥m)
generated by c∗ ← Enc(pk, (tag∗∥m)). Now, A picks a randomness r′ = (tag∗, r) where r is any
randomness in the randomness space of Enc, and terminates with output (m, r′). Note that we
have C ′ = EncSEP1(pk,m; r′ = (tag∗, r)) = (tag∗∥Enc(pk, (tag∗∥m); r)) = (tag∗∥c′) for some c′, and
thus FSEP1(pk, C

∗, C ′) = 1 holds. That is, A has maximum advantage in breaking the randomness-
inextractability of ΠSEP1, meaning that ΠSEP1 does not satisfy randomness-inextractability.

Proof for “wNM-DCCA + R-Inext ̸⇒ UNP.” Here, we show that if there exists a detectable PKE
scheme that satisfies wNM-DCCA security and randomness-inextractability, then there exists a PKE
scheme that satisfies wNM-DCCA security and randomness-inextractability, but does not satisfy un-
predictability.

Let Π = (PKG,Enc,Dec,F) be a detectable PKE scheme that satisfies wNM-DCCA security and
randomness-inextractability that is guaranteed to exist by assumption. Then, consider the “sepa-
rating” scheme ΠSEP2 = (PKGSEP2,EncSEP2,DecSEP2,FSEP2) as described in Fig. 9 (right).

Firstly, it is not hard to see that ΠSEP2 preserves the wNM-DCCA security of the underlying
detectable PKE scheme Π. Specifically, using a wNM-DCCA adversary A = (A1,A2,A3) as a building
block, we can straightforwardly construct a reduction algorithm B = (B1,B2,B3) that attacks the
wNM-DCCA security of the building block scheme Π, such that AdvwNM-DCCAΠ,B (k) = AdvwNM-DCCAΠSEP2,A (k). In
particular, the challenge ciphertext C∗ for A is always of the form C∗ = (0∥c∗), and thus the
allowable set of decryption queries C = (γ∥c) by the second stage A2 of the wNM-DCCA adversary

31



A, are those satisfying γ = 0 and F(pk, c∗, c) = 0 simultaneously. However, such ciphertexts can be
easily handled by the reduction algorithm B by B2’s own decryption oracle. The final “unrestricted”
decryption query output by A2 can also be dealt with straightforwardly by the final decryption
query allowed for the second stage B2 of the reduction algorithm.

Secondly, it is also not hard to see that ΠSEP2 preserves the randomness-inextractability of
the underlying scheme Π. Specifically, recall that randomness-inextractability is always about
ciphertexts generated “honestly” via the encryption algorithm EncSEP2. Therefore, to break the
randomness-inextractability of ΠSEP2, an adversary cannot use the condition γ′ ̸= γ∗ = 0, and thus
it has to essentially break the randomness-inextractability of the underlying scheme Π, which is
hard by assumption.

Finally, we note that it is easy to break the unpredictability of ΠSEP2. Specifically, consider an
adversaryA that outputs C ′ = (1∥c) with any c (which need not even be in the range of EncSEP2) and
any plaintext m. Then, since a ciphertext generated “honestly” by EncSEP2 always has the prefix 0
(and this is the case in the unpredictability experiment), the prefix of C∗ and that of C ′ are distinct.
This implies FSEP2(pk, C

∗, C ′) = 1, and thus the adversary A has maximum advantage in breaking
the unpredictability of ΠSEP2. Hence, ΠSEP2 does not satisfy unpredictability. ⊓⊔ (Lemma 5)

D.2 Proof of Theorem 1: Our First Proof of CCA Security of ΓDL

We will show that for any PPTA A that attacks the CCA security of the KEM ΓDL and makes
Q = Q(k) > 0 decapsulation queries, there exist PPTAs Bin1, Bin2, Bout, B′out, and B′in, such that

AdvCCAΓDL,A(k) ≤ Q · 2−(n−1) + 2 · AdvDCCAΓin,Bin1(k) + AdvDCCAΓin,Bin2(k) + AdvR-InextΠout,Bout(k)

+Q · AdvwRNM-DCCAΠout,B′out (k) +Q2 · AdvUNPΓin,B′in
(k), (3)

which, due to the assumptions on the building blocks Γin and Πout, implies that AdvCCAΓDL,A(k) is
negligible, and hence proves the theorem.

To this end, fix arbitrarily a PPTA adversary A that attacks the CCA security of the KEM ΓDL

and makes in total Q > 0 decapsulation queries. Consider the following sequence of games: (Here,
the values with asterisk (*) represent those related to A’s challenge ciphertext.)

Game 1: This is the experiment ExptCCAΓDL,A(k) itself. For defining the subsequent games, we make
Game 1 pick a randomness d∗ ∈ {0, 1}n, which we call the “dummy” plaintext, uniformly at
random at the beginning of the game. (The value d∗ does not appear in A’s view in Game 1,
and thus does not affect A’s behavior at all.)

Game 2: Same as Game 1, except that all decapsulation queries c satisfying Decout(skout, c) ∈
{c∗in, d∗} are answered with ⊥.

Game 3: Same as Game 2, except that r∗ ∈ {0, 1}ℓ and K∗1 ∈ {0, 1}k are picked uniformly at
random, independently of c∗in. More precisely, the steps “(c∗in, α

∗)← Encapin(pkin); Parse α
∗ as

(r∗,K∗1 ) ∈ {0, 1}ℓ×{0, 1}k” in Game 2 are replaced with the steps “(c∗in, α
∗)← Encapin(pkin); r

∗

← {0, 1}ℓ; K∗1 ← {0, 1}k,” and we do not use α∗ (corresponding to c∗in) at all.
Game 4: Same as Game 3, except that all decapsulation queries c satisfying Decout(skout, c) ∈
{c∗in, d∗} or Fout(pkout, c

∗, c) = 1 are answered with ⊥.
Game 5: Same as Game 4, except that the information of c∗in is erased from c∗, and instead

the “dummy” plaintext d∗ is encrypted. More precisely, the step “c∗ ← Encout(pkout, c
∗
in)” in

Game 4 is replaced with the step “c∗ ← Encout(pkout, d
∗).”
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Table 2. An overview of the games used in the proof of Theorem 1.

Game c∗ r∗ and K∗
1 A’s decapsulation query c is answered with

1 Encout(pkout, c
∗
in; r

∗) (r∗∥K∗
1 ) = α∗ DecapDL(SK, c)

2 Encout(pkout, c
∗
in; r

∗) (r∗∥K∗
1 ) = α∗

{
⊥ if Decout(skout, c) ∈ {c∗in, d∗}
DecapDL(SK, c) otherwise

3 Encout(pkout, c
∗
in; r

∗)
r∗ ← {0, 1}ℓ
K∗

1 ← {0, 1}k

{
⊥ if Decout(skout, c) ∈ {c∗in, d∗}
DecapDL(SK, c) otherwise

4 Encout(pkout, c
∗
in; r

∗)
r∗ ← {0, 1}ℓ
K∗

1 ← {0, 1}k

⊥ if
Decout(skout, c) ∈ {c∗in, d∗}

or Fout(pkout, c
∗, c) = 1

DecapDL(SK, c) otherwise

5 Encout(pkout, d
∗; r∗)

r∗ ← {0, 1}ℓ
K∗

1 ← {0, 1}k

⊥ if
Decout(skout, c) ∈ {c∗in, d∗}

or Fout(pkout, c
∗, c) = 1

DecapDL(SK, c) otherwise

The above completes the description of the games. Table 2 is an overview of the differences among
the games in terms of how the challenge ciphertext c∗ and the values (r∗,K∗1 ) are generated, and
how the decapsulation oracle works.

We say that a decapsulation query c submitted by A in the above games is inner-dangerous if
c satisfies the following two conditions:

(1) Decout(skout, c) = cin /∈ {c∗in, d∗,⊥}, and
(2) Fin(pkin, c

∗
in, cin) = 1.

Furthermore, we say that a decapsulation query c submitted by A in the above games is outer-
dangerous if c satisfies the following four conditions3:

(1) Fout(pkout, c
∗, c) = 1,

(2) Decout(skout, c) = cin /∈ {c∗in, d∗,⊥},
(3) Decapin(skin, cin) = (r∥K) ̸= ⊥, and
(4) Encout(pkout, cin; r) = c.

For i ∈ [5], we define the following events in Game i:

Si: A succeeds in guessing the challenge bit (i.e. b′ = b occurs).

Ini: A submits at least one inner-dangerous decapsulation query.

In
(j)
i where j ∈ [Q]: A’s j-th decapsulation query is inner-dangerous.

By definitions of the games and events, we can show the following upperbound on A’s CCA

advantage AdvCCAΓDL,A(k):

3 Looking ahead, the definition of an outer-dangerous query will be used only in the proof of Claim 5, but we believe
that it is helpful to introduce the definition here to compare it with the above definition of an inner-dangerous
query, and also with the definitions of inner/outer queries used in the proof of Theorem 2 (in Appendix D.3).
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Claim 1 A’s CCA advantage AdvCCAΓDL,A(k) can be upperbounded as follows:

AdvCCAΓDL,A(k) ≤ 2 ·
∣∣∣Pr[S1]− Pr[S2]

∣∣∣+ 2 ·
∣∣∣Pr[S2 ∧ In2]− Pr[S3 ∧ In3] +

1

2
(Pr[In2]− Pr[In3])

∣∣∣
+ 2 ·

∣∣∣Pr[S3 ∧ In3] +
1

2
Pr[In3]−

1

2

∣∣∣+ ∑
i∈{2,3}

∣∣∣Pr[Ini]− Pr[Ini+1]
∣∣∣

+
∣∣∣∑
j∈[Q]

(
Pr[In

(j)
4 ]− Pr[In

(j)
5 ]

)∣∣∣+ ∑
j∈[Q]

Pr[In
(j)
5 ]. (4)

Proof of Claim 1. By the triangle inequality, we have

AdvCCAΓDL,A(k) = 2 ·
∣∣∣Pr[S1]− 1

2

∣∣∣ ≤ 2 ·
∣∣∣Pr[S1]− Pr[S2]

∣∣∣+ 2 ·
∣∣∣Pr[S2]− 1

2

∣∣∣.
Furthermore, by Fact 1 (stated in Appendix A.4) and the triangle inequality, we have∣∣∣Pr[S2]− 1

2

∣∣∣ ≤ ∣∣∣Pr[S2 ∧ In2] +
1

2
Pr[In2]−

1

2

∣∣∣+ 1

2
Pr[In2]

≤
∣∣∣Pr[S2 ∧ In2]− Pr[S3 ∧ In3] +

1

2
(Pr[In2]− Pr[In3])

∣∣∣
+

∣∣∣Pr[S3 ∧ In3] +
1

2
Pr[In3]−

1

2

∣∣∣+ 1

2

∑
i∈{2,3}

∣∣∣Pr[Ini]− Pr[Ini+1]
∣∣∣+ 1

2
Pr[In4].

Finally, noting that Pr[In4] = Pr[
∨

j∈[Q] In
(j)
4 ], and applying the union bound and the triangle

inequality, we estimate the upperbound of Pr[In4] as follows:

Pr[In4] ≤
∑
j∈[Q]

Pr[In
(j)
4 ] ≤

∣∣∣∑
j∈[Q]

(
Pr[In

(j)
4 ]− Pr[In

(j)
5 ]

)∣∣∣+ ∑
j∈[Q]

Pr[In
(j)
5 ].

Combining all the inequalities yields the claim. ⊓⊔ (Claim 1)

In the following, we show upperbounds of the terms that appear in the right hand side of
Equation (4).

Claim 2 |Pr[S1]− Pr[S2]| ≤ Q · 2−n.

Proof of Claim 2. Note that the difference between Game 1 and Game 2 is only in how a
decapsulation query c satisfying Decout(skout, c) ∈ {c∗in, d∗} is answered. (Such a query is answered
with DecapDL(SK, c) in Game 1, while it is answered with ⊥ in Game 2.) We first show that
if A’s decapsulation query c satisfies Decout(skout, c) = c∗in, then c is also answered with ⊥ in
Game 1 as well. To see this, let c be any decapsulation query satisfying Decout(skout, c) = c∗in.
Recall that in order for this query to satisfy DecapDL(SK, c) ̸= ⊥, it must additionally satisfy
Encout(pkout, c

∗
in; r

∗) = c, because we have Decapin(skin, cin) = Decapin(skin, c
∗
in) = (r∗∥K∗1 ).

However, the only ciphertext c satisfying this additional condition is the challenge ciphertext c∗

itself, while according to the rule of the CCA experiment, any of A’s decapsulation queries c must
satisfy c ̸= c∗. Therefore, any decapsulation query c satisfying Decout(skout, c) = c∗in is answered
with ⊥ in Game 1 as well.
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Therefore, Game 1 and Game 2 proceed identically unless A submits at least one decapsulation
query c satisfying Fout(pkout, c

∗, c) = 1 and Decout(skout, c) = d∗. Hence, |Pr[S1] − Pr[S2]| can be
upperbounded by the probability that A submits such a query in Game 1. However, recall that
d∗ ∈ {0, 1}n is chosen uniformly at random, and is information-theoretically hidden from A in
Game 1. Therefore, the probability that A submits a query c satisfying Decout(skout, c) = d∗ in
Game 1 is upperbounded by Q · 2−n. This completes the proof of the claim. ⊓⊔ (Claim 2)

Claim 3 For any constants p, q ∈ [0, 1], there exists a PPTA Bin such that AdvDCCAΓin,Bin(k) = |p ·
(Pr[S2 ∧ In2]− Pr[S3 ∧ In3]) + q · (Pr[In2]− Pr[In3])|.

Proof of Claim 3. Fix arbitrarily p, q ∈ [0, 1]. Using A as a building block, we show how to
construct a PPTA adversary Bin that attacks the DCCA security of the detectable KEM Γin with
the claimed advantage. The description of Bin is as follows:

BDecapin(skin,·)
in (pkin, c

∗
in, α

∗
γ): (where γ ∈ {0, 1} is Bin’s challenge bit in the DCCA experiment) Bin

first picks two coins bp, bq ∈ {0, 1} such that bp = 1 (resp. bq = 1) holds with probability p (resp.
q). Next, Bin parses α∗γ as (r∗,K∗1 ) ∈ {0, 1}ℓ×{0, 1}k, picksK∗0 ∈ {0, 1}k and b ∈ {0, 1} uniformly

at random, and then runs (pkout, skout) ← PKGout(1
k) and c∗ ← Encout(pkout, c

∗
in; r

∗). Then
Bin picks d∗ ∈ {0, 1}n uniformly at random, sets PK ← (pkin, pkout), and runs A(PK, c∗,K∗b ).

Bin answers A’s decapsulation queries c as follows: Bin runs cin ← Decout(skout, c). If cin ∈
{c∗in, d∗,⊥}, then Bin returns ⊥ to A. Otherwise (i.e. cin /∈ {c∗in, d∗,⊥}), if Fin(skin, c∗in, cin) = 1,
then Bin has detected that this query is inner-dangerous, and terminates with output γ′ ← bq.
Otherwise, Bin performs the remaining procedure of DecapDL(SK, c) using Bin’s own decapsu-
lation oracle as a substitute for Decapin(skin, ·), and returns the decapsulation result to A.
When A terminates with output its guess bit b′, Bin sets γ′ ← 1 if both b′ = b and bp = 1 hold,
otherwise (i.e. b′ ̸= b or bp = 0) Bin sets γ′ ← 0, and terminates with output γ′.

The above completes the description of Bin. Note that Bin never submits a prohibited decapsulation
query cin satisfying Fin(pkin, c

∗
in, cin) = 1 to its decapsulation oracle. Let InB be the event that A

submits an inner-dangerous decapsulation query in the experiment simulated by B.
Consider the case when γ = 1. It is easy to see that in this case, Bin simulates Game 2 perfectly

for A so that A’s challenge bit is b, until the point A submits an inner-dangerous query (i.e. a query
c satisfying Decout(skout, c) = cin /∈ {c∗in, d∗,⊥} and Fin(pkin, c

∗
in, cin) = 1). In particular, the value

α∗1 associated with c∗in is used as (r∗,K∗1 ) as is done in Game 2. All other values (PK, c∗, and the
answers to decapsulation queries) are distributed identically to those of Game 2. Furthermore, Bin
can detect whether A’s query is inner-dangerous by using skout, Fout, c

∗, c∗in, d
∗, and Fin. These

imply that Pr[b′ = b∧ InB|γ = 1] = Pr[S2∧ In2] and Pr[InB|γ = 1] = Pr[In2]. Recall that Bin outputs
γ′ = 1 only if either (1) A succeeds in guessing b without making any inner-dangerous queries
(i.e. b′ = b ∧ InB occurs) and bp = 1, or (2) A makes an inner-dangerous query (InB occurs) and
bq = 1. Furthermore, the choice of the coins bp and bq is independent of the behavior of A and Bin’s
challenge bit. These imply

Pr[γ′ = 1|γ = 1] = Pr[bp = 1 ∧ b′ = b ∧ InB|γ = 1] + Pr[bq = 1 ∧ InB|γ = 1]

= p · Pr[b′ = b ∧ InB|γ = 1] + q · Pr[InB|γ = 1]

= p · Pr[S2 ∧ In2] + q · Pr[In2].
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On the other hand, when γ = 0, Bin simulates Game 3 perfectly for A so that A’s challenge
bit is b, until the point A submits an inner-dangerous query. In particular, the uniformly chosen
random value α∗0 (independent of c∗in) is used as (r∗,K∗1 ), which is exactly how they are distributed
in Game 3. The rest is unchanged from the case of γ = 1, and thus, with a similar argument to the
above, we have Pr[γ′ = 1|γ = 0] = p · Pr[S3 ∧ In3] + q · Pr[In3].

We can calculate Bin’s DCCA advantage as follows:

AdvDCCAΓin,Bin(k) = 2 ·
∣∣∣Pr[γ′ = γ]− 1

2

∣∣∣ = ∣∣∣Pr[γ′ = 1|γ = 1]− Pr[γ′ = 1|γ = 0]
∣∣∣

=
∣∣∣p · (Pr[S2 ∧ In2]− Pr[S3 ∧ In3]) + q · (Pr[In2]− Pr[In3])

∣∣∣.
⊓⊔ (Claim 3)

Claim 4 |Pr[S3 ∧ In3] +
1
2 Pr[In3]−

1
2 | = 0.

Proof of Claim 4. Note that in Game 3, the real session-key K∗1 is chosen uniformly at random,
independently of A’s challenge ciphertext. Furthermore, the behavior of the decapsulation oracle in
Game 3 is independent of the challenge bit. Since the distribution ofK∗1 and that ofK∗0 are identical,
A’s view in Game 3 is distributed identically regardless of the challenge bit b. This guarantees that
Pr[S3] = 1/2, and that the event In3 is independent of S3. Hence, we have Pr[S3 ∧ In3] =

1
2 Pr[In3],

which implies the claim. ⊓⊔ (Claim 4)

Claim 5 There exists a PPTA Bout such that AdvR-InextΠout,Bout(k) ≥ |Pr[In3]− Pr[In4]|.

Proof of Claim 5. For i ∈ {3, 4}, let Outi be the event that in Game i, A submits at least one
outer-dangerous decapsulation query.

Note that the difference between Game 3 and Game 4 is in howA’s decapsulation query c satisfy-
ing the conditions Fout(pkout, c

∗, c) = 1, Decout(skout, c) = cin /∈ {c∗in, d∗}, and DecapDL(SK, c) ̸= ⊥,
is answered. (Such a query is answered with ⊥ in Game 4, while it is answered with non-⊥ in
Game 3.) However, note that DecapDL(SK, c) ̸= ⊥ implies cin ̸= ⊥, Decapin(skin, cin) = (r∥K) ̸= ⊥,
and Encout(pkout, cin; r) = c. Thus, a decapsulation query c satisfying the above conditions in fact
satisfies the conditions of an outer-dangerous query. This means that Game 3 and Game 4 proceed
identically unless Out3 or Out4 occurs in the corresponding games, and thus we have

|Pr[In3]− Pr[In4]| ≤ Pr[Out3] = Pr[Out4]. (5)

Now, using A as a building block, we show how to construct a PPTA adversary Bout that attacks
the randomness-inextractability of the detectable PKE schemeΠout with advantage AdvR-InextΠout,Bout(k) =
Pr[Out4], which implies the claim. The description of Bout = (Bout1,Bout2) is as follows:

Bout1(1k): Bout1 first runs (pkin, skin) ← KKGin(1
k) and (c∗in, α

∗) ← Encapin(pkin). Then Bout1
sets M ← c∗in and stB ← (Bout1’s entire view), and terminates with output (M, stB).

BDecout(skout,·)
out2 (stB, pkout, c

∗): Bout2 sets PK ← (pkin, pkout), picks K∗ ∈ {0, 1}k and d∗ ∈ {0, 1}n
uniformly at random, and runs A(PK, c∗,K∗).
Bout2 answers A’s decapsulation queries as the decapsulation oracle in Game 4 does, which is
possible because Bout2 possesses skin and has access to the decryption oracle Decout(skout, ·).
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When A terminates, Bout2 checks whether A has submitted a decapsulation query c satisfy-
ing the conditions of an outer-dangerous query, i.e. Fout(pkout, c

∗, c) = 1, Decout(skout, c) =
cin /∈ {c∗in, d∗,⊥}, Decapin(skin, cin) = (r∥K) ̸= ⊥, and Encout(pkout, cin; r) = c. (Note that
Decout(skout, c) can be performed by Bout2’s decryption oracle.) If such a query c is found, then
Bout2 sets M ′ ← cin and R′ ← r, and terminates with output (M ′, R′). Otherwise, Bout2 gives
up and aborts.

The above completes the description of Bout. Let OutB be the event that A submits an outer-
dangerous decapsulation query in the experiment simulated by Bout.

It is easy to see that Bout simulates Game 4 perfectly for A. Therefore, the probability that
OutB occurs in the experiment simulated by Bout is identical to the probability that Out4 occurs in
Game 4, namely we have Pr[OutB] = Pr[Out4]. Furthermore, whenever OutB occurs, Bout2’s output
(M ′, R′) = (cin, r) satisfies the condition:

Fout(pkout, c
∗,Encout(pkout,M

′;R′)) = 1,

which is exactly the condition of violating the randomness-inextractability of Πout. Therefore, we
have

AdvR-InextΠout,Bout(k) = Pr[OutB] = Pr[Out4].

Then, by Equation (5), we have AdvR-InextΠout,Bout(k) ≥ |Pr[In3]− Pr[In4]|, as required. ⊓⊔ (Claim 5)

Claim 6 There exists a PPTA B′out such that AdvwRNM-DCCAΠout,B′out (k) = (1/Q)·|
∑

j∈[Q](Pr[In
(j)
4 ]−Pr[In(j)5 ])|.

Proof of Claim 6. Using A as a building block, we show how to construct a PPTA adversary
B′out that attacks the wRNM-DCCA security of the detectable PKE scheme Πout with the claimed
advantage. The description of B′out = (B′out1,B′out2,B′out3) is as follows:

B′Decout(skout,·)
out1 (pkout): B′out1 first executes (pkin, skin)← KKGin(1

k) and (c∗in, α
∗)← Encapin(pkin),

and then picks d∗ ∈ {0, 1}n uniformly at random. Then B′out1 sets M0 ← d∗, M1 ← c∗in, and
stB ← (B′out1’s entire view), and terminates with output (M0,M1, stB).

B′Decout(skout,·)
out2 (stB, c

∗): B′out2 first picks K∗ ∈ {0, 1}k uniformly at random, sets PK ← (pkin, pkout),
and runs A(PK, c∗,K∗).
B′out2 answers A’s decapsulation queries c as the decapsulation oracle in Game 4 does, which is
possible because B′out2 possesses skin and has access to the decryption oracle Decout(skout, ·).
(Note that if Fout(pkout, c

∗, c) = 1, then B′out2 can immediately return ⊥ to A, which is the
correct behavior of the decapsulation oracle in Game 4 (and Game 5), and thus need not use
the oracle.)
When A terminates, B′out2 picks u ∈ [Q] uniformly at random. Let c(u) be the u-th decapsulation
query submitted by A. B′out2 sets st′B ← (B′out2’s entire view), and terminates with output
(c(u), st′B). (Note that it could be the case that Fout(pkout, c

∗, c(u)) = 1 holds.)
B′out3(st′B,M ′): (where M ′ = Decout(skout, c

(u)) or M ′ = same) If M ′ ∈ {same,⊥}, then B′out3 sets
γ′ ← 0. Otherwise, B′out3 interprets M ′ as a ciphertext c′in of the inner detectable KEM Γin,
and computes γ′ ← Fin(pkin, c

∗
in, c

′
in). Finally, B′out3 terminates with output γ′.

The above completes the description of B′out. Note that B′out2 never submits a prohibited decryption
query c satisfying Fout(pkout, c

∗, c) = 1 to B′out2’s own decryption oracle. Furthermore, since A’s
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queries c always satisfy c ̸= c∗, it is guaranteed that the ciphertext c(u) finally output by B′out2
satisfies c(u) ̸= c∗.

Let γ ∈ {0, 1} be B′out’s challenge bit, and for j ∈ [Q], let In
(j)
B be the event that A’s j-th

decapsulation query is an inner-dangerous query in the experiment simulated by B′out. Notice that

B′out3 outputs 1 only when In
(u)
B occurs. In particular, if M ′ ∈ {same,⊥}, then it implies that

Decout(skout, c
(u)) ∈ {c∗in, d∗,⊥} and thus In

(u)
B has not occurred, in which case B′out3 correspond-

ingly outputs 0.
It is not hard to see that if γ = 1 (resp. γ = 0), then B′out simulates Game 4 (resp. Game 5)

perfectly for A. Specifically, c∗ is an encryption of c∗in if γ = 1, and is an encryption of the “dummy”
plaintext d∗ ∈ {0, 1}n if γ = 0, which is exactly how A’s challenge ciphertext in Game 4 and that in
Game 5 are computed, respectively. Furthermore, B′out2 answers A’s decapsulation queries exactly
as the decapsulation oracle in Game 4 (and Game 5) does, by using B′out2’s decryption oracle,
Fout (which is publicly computable), and skin, c

∗
in, and d∗ (that are all known to B′out). Note also

that u ∈ [Q] is chosen uniformly and independently of γ and A’s behavior. These imply that for

all j ∈ [Q], we have Pr[In
(u)
B |u = j ∧ γ = 1] = Pr[In

(j)
4 ], Pr[In

(u)
B |u = j ∧ γ = 0] = Pr[In

(j)
5 ], and

Pr[u = j|γ = 1] = Pr[u = j|γ = 0] = 1/Q.
Using the above, B′out’s wRNM-DCCA advantage can be calculated as follows:

AdvwRNM-DCCAΠout,B′out (k) = 2 ·
∣∣∣Pr[γ′ = γ]− 1

2

∣∣∣ = ∣∣∣Pr[γ′ = 1|γ = 1]− Pr[γ′ = 1|γ = 0]
∣∣∣

=
∣∣∣Pr[In(u)B |γ = 1]− Pr[In

(u)
B |γ = 0]

∣∣∣
=

∣∣∣∑
j∈[Q]

(
Pr[In

(u)
B |u = j ∧ γ = 1] · Pr[u = j|γ = 1]

− Pr[In
(u)
B |u = j ∧ γ = 0] · Pr[u = j|γ = 0]

)∣∣∣
=

1

Q

∣∣∣∑
j∈[Q]

(Pr[In
(j)
4 ]− Pr[In

(j)
5 ])

∣∣∣.
⊓⊔ (Claim 6)

Claim 7 There exists a PPTA B′in such that AdvUNPΓin,B′in
(k) ≥ (1/Q2) ·

∑
j∈[Q] Pr[In

(j)
5 ].

Proof of Claim 7. The proof of this claim is done by showing an adversary (reduction algorithm)
B′in against the unpredictability of the detectable KEM Γin, such that B′in simulates Game 5 for A,
picks one of A’s decapsulation queries c randomly, uses its decryption result cin = Decout(skout, c)
as B′in’s final output in the unpredictability experiment, and hopes that the picked query was
inner-dangerous (and satisfies Fin(pkin, c

∗
in, cin) = 1, where c∗in is B′in’s challenge ciphertext in the

unpredictability experiment).
The reader may expect that such B′in can perfectly simulate Game 5 for A and should have

unpredictability advantage AdvUNPΓin,B′in
(k) ≥ (1/Q) ·

∑
j∈[Q] Pr[In

(j)] (and might wonder why the

“loss” that we show in this claim is 1/Q2). However, we could not come up with such a proof,
due to a technical subtlety that the behavior of the decapsulation oracle in Game 5 is dependent
on c∗in, while the unpredictability adversary B′in cannot see its challenge ciphertext c∗in during the
unpredictability experiment.
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Nonetheless, we show that such B′in can simulate Game 5 for A “almost” perfectly, and provide
an analysis that guarantees that our B′in has at least the claimed unpredictability advantage. The
description of B′in is as follows:

B′Decapin(skin,·)
in (pkin): B′in first picks d∗ ∈ {0, 1}n uniformly at random, and runs (pkout, skout) ←
PKGout(1

k) and c∗ ← Encout(pkout, d
∗). Next, B′in picks K∗ ∈ {0, 1}k uniformly at random, sets

PK ← (pkin, pkout), and then runs A(PK, c∗,K∗).
B′in answers decapsulation queries c from A as follows:
1. If Fout(pkout, c

∗, c) = 1, then return ⊥ to A.
2. Otherwise, compute cin ← Decout(skout, c) and return ⊥ to A if cin ∈ {d∗,⊥}.4
3. Otherwise, submit cin to B′in’s decapsulation oracle, and receive the result α. If α = (r∥K) ̸=
⊥ and Encout(pkoutcin; r) = c then return K, otherwise return ⊥, to A.

When A terminates, B′in picks u ∈ [Q] uniformly at random, and proceeds as follows: Let c(u)

be the u-th query submitted by A. If Decout(skout, c(u)) = c
(u)
in ̸= ⊥ holds, then B′in terminates

with output c
(u)
in . Otherwise, B′in gives up and aborts.

The above completes the description of B′in.
Let c∗in be the ciphertext generated by B′in’s unpredictability experiment. Since the challenge

ciphertext c∗in is information-theoretically hidden from B′in in the unpredictability experiment, we
can assume without loss of generality that c∗in is generated at the beginning of the experiment.
In order to analyze the unpredictability advantage of B′in, we introduce several definitions of the
events in the experiment simulated by B′in: (Here, the subscript “B” of each event indicates that it
is an event defined in the experiment simulated by B′in.)

In
(j)
B where j ∈ [Q]: A’s j-th query c(j) is inner-dangerous with respect to c∗in. Namely, it holds

that Decout(skout, c
(j)) = c

(j)
in /∈ {c∗in, d∗,⊥} and Fin(pkin, c

∗
in, c

(j)
in ) = 1.

În
(j)

B where j ∈ [Q]: A’s j-th query c(j) satisfies Decout(skout, c
(j)) = c

(j)
in ̸= ⊥ and Fin(pkin, c

∗
in, c

(j)
in )

= 1.
CB: A submits at least one decapsulation query c satisfying Decout(skout, c) = c∗in.

C
(j)
B where j ∈ [Q]: A’s j-th query c(j) satisfies Decout(skout, c

(j)) = c∗in.

Firstly, by definition of the unpredictability experiment and our design of B′in, we have AdvUNPΓin,B′in
(k)

= Pr[În
(u)

B ]. Note also that the index u ∈ [Q] is chosen uniformly, independently of A’s behavior.
Hence, for every j ∈ [Q], we have Pr[u = j] = 1/Q.

Next, by the definitions of the events In
(j)
B , În

(j)

B , and C
(j)
B , the event In

(j)
B implies În

(j)

B ∧C
(j)
B , and

hence for all j ∈ [Q], we have Pr[În
(j)

B ∧ C
(j)
B ] ≥ Pr[In

(j)
B ]. Note also that the event C

(j)
B implies În

(j)

B ,

because c
(j)
in = c∗in implies Fin(pkin, c

∗
in, c

(j)
in ) = 1.5 Hence, for all j ∈ [Q], we have Pr[În

(j)

B ∧ C
(j)
B ] =

Pr[C
(j)
B ]. Using these, for every j ∈ [Q], we have

Pr[În
(j)

B ] = Pr[În
(j)

B ∧ C
(j)
B ] + Pr[În

(j)

B ∧ C
(j)
B ] ≥ Pr[In

(j)
B ] + Pr[C

(j)
B ]. (6)

Finally, note that the distribution of the inner ciphertext c∗in in Game 5 and the distribution of
B′in’s challenge ciphertext in the unpredictability experiment are identical. We therefore analyze the

4 Here, if B′
in could check whether cin ∈ {c∗in, d∗,⊥} holds, then B′

in’s simulation of the decapsulation oracle in
Game 5 was perfect.

5 Recall that we require Fin(pkin, c, c) = 1 as a functional requirement of a detectable PKE scheme.
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unpredictability advantage of B′in by understanding that B′in simulates Game 5 for A as if the inner
ciphertext c∗in for A in Game 5 is B′in’s challenge ciphertext generated in B′in’s unpredictability
experiment (and the notion of an inner-dangerous query is with respect to this c∗in). Seeing in this
way, it is not hard to see that B′in perfectly simulates Game 5 for A until the point A submits a
decapsulation query that causes the event CB. Therefore, letting C5 be the event that A submits at
least one decapsulation query c such that Decout(skout, c) = c∗in in Game 5, we have

∀j ∈ [Q] : Pr[In
(j)
B ∧ CB] = Pr[In

(j)
5 ∧ C5] and Pr[CB] = Pr[C5]. (7)

Armed with these, B′in’s unpredictability advantage can be estimated as follows:

AdvUNPΓin,B′in
(k) = Pr[În

(u)

B ] =
∑
j∈[Q]

Pr[În
(u)

B |u = j] · Pr[u = j] =
1

Q

∑
j∈[Q]

Pr[În
(j)

B ]

≥ 1

Q

∑
j∈[Q]

(
Pr[In

(j)
B ] + Pr[C

(j)
B ]

)
(by Equation (6))

≥ 1

Q

∑
j∈[Q]

Pr[In
(j)
B ] +

1

Q
Pr[CB] (by the union bound)

≥ 1

Q

∑
j∈[Q]

Pr[In
(j)
B ∧ CB] +

1

Q
Pr[CB]

=
1

Q

∑
j∈[Q]

Pr[In
(j)
5 ∧ C5] +

1

Q
Pr[C5] (by Equation (7))

≥ 1

Q2

∑
j∈[Q]

Pr[In
(j)
5 ∧ C5] +

1

Q
Pr[C5] (multiply the first term by

1

Q
≤ 1)

=
1

Q2

∑
j∈[Q]

(
Pr[In

(j)
5 ∧ C5] + Pr[C5]

)
≥ 1

Q2

∑
j∈[Q]

(
Pr[In

(j)
5 ∧ C5] + Pr[In

(j)
5 ∧ C5]

)
=

1

Q2

∑
j∈[Q]

Pr[In
(j)
5 ],

which implies the claim. ⊓⊔ (Claim 7)

Claims 1 to 7 guarantee that there exist PPTAs Bin1, Bin2, Bout, B′out, and B′in, satisfying
Equation (3), where the second and the third terms in the right hand side of Equation (3) are
derived from Claim 3 in which we set (p, q) = (1, 1/2) and (p, q) = (0, 1), respectively. Recall that
the choice of A was arbitrarily, and thus for any PPTA A, we can show a negligible upperbound
on AdvCCAΓDL,A(k). Therefore, ΓDL is CCA secure. ⊓⊔ (Theorem 1)

D.3 Proof of Theorem 2: Our Second Proof of CCA Security of ΓDL

Before going into the actual proof, we note that although the proof of Theorem 2 would seem
structurally similar to that of Theorem 1, there are several subtle but crucial differences. Most
importantly, the definitions of “inner/outer-dangerous queries” in this proof are different from those
in the proof of Theorem 1, and correspondingly we consider a different ordering of the sequence of
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Table 3. An overview of the games used in the proof of Theorem 2.

Game c∗ r∗ and K∗
1 A’s decapsulation query c is answered with

1 Encout(pkout, c
∗
in; r

∗) (r∗∥K∗
1 ) = α∗ DecapDL(SK, c)

2 Encout(pkout, c
∗
in; r

∗) (r∗∥K∗
1 ) = α∗

{
⊥ if Fout(pkout, c

∗, c) = 1

DecapDL(SK, c) otherwise

3 Encout(pkout, c
∗
in; r

∗)
r∗ ← {0, 1}ℓ
K∗

1 ← {0, 1}k

{
⊥ if Fout(pkout, c

∗, c) = 1

DecapDL(SK, c) otherwise

4 Encout(pkout, 0
n; r∗)

r∗ ← {0, 1}ℓ
K∗

1 ← {0, 1}k

{
⊥ if Fout(pkout, c

∗, c) = 1

DecapDL(SK, c) otherwise

games for the proof. Furthermore, the role of the “non-malleability” of the assumption in this proof
and that of the proof of Theorem 1 are different. Informally speaking, in the proof of Theorem 2,
the wNM-DCCA security of the inner detectable KEM Γin is used to ensure that the probability that
a CCA adversary comes up with an outer-dangerous query is not noticeably different between the
games in which we invoke (the indistinguishability property of) the DCCA security of the KEM.

Now we proceed to the proof of Theorem 2. We will show that for any PPTA A that attacks the
CCA security of the KEM ΓDL and makes Q = Q(k) > 0 decapsulation queries, there exist PPTAs
Bin, B′in1, B′in2, Bout, B′out, and B′′in, such that

AdvCCAΓDL,A(k) ≤ 2Q · AdvwNM-DCCAΓin,Bin (k) + 2 · AdvDCCAΓin,B′in1
(k) + 3 · AdvDCCAΓin,B′in2

(k)

+ 2Q · AdvR-InextΠout,Bout(k) + 3 · AdvDCCAΠout,B′out(k) + 3Q · AdvUNPΓin,B′′in
(k), (8)

which, due to the assumptions on the building blocks Γin and Πout, implies that AdvCCAΓDL,A(k) is
negligible, and hence proves the theorem.

Let A be any PPTA adversary that attacks the CCA security of the KEM ΓDL and makes in
total Q > 0 decapsulation queries. Consider the following sequence of games: (Here, the values
with asterisk (*) represent those related to A’s challenge ciphertext.)

Game 1: This is the experiment ExptCCAΓDL,A(k) itself.
Game 2: Same as Game 1, except that all decapsulation queries c satisfying Fout(pkout, c

∗, c) = 1
are answered with ⊥.

Game 3: Same as Game 2, except that r∗ ∈ {0, 1}ℓ and K∗1 ∈ {0, 1}k are picked uniformly at
random, independently of c∗in. More precisely, the steps “(c∗in, α

∗)← Encapin(pkin); Parse α
∗ as

(r∗,K∗1 ) ∈ {0, 1}ℓ×{0, 1}k” in Game 2 are replaced with the steps “(c∗in, α
∗)← Encapin(pkin); r

∗

← {0, 1}ℓ; K∗1 ← {0, 1}k,” and we do not use α∗ (corresponding to c∗in) at all.
Game 4: Same as Game 3, except that the information of c∗in is erased from c∗. More precisely,

the step “c∗ ← Encout(pkout, c
∗
in)” in Game 3 is replaced with the step “c∗ ← Encout(pkout, 0

n).”

The above completes the description of the games. Table 3 is an overview of the differences among
the games in terms of how the challenge ciphertext c∗ and the values (r∗,K∗1 ) are generated, and
how the decapsulation oracle works.

We say that a decapsulation query c submitted by A in the above games is inner-dangerous if
c satisfies the following three conditions:

(1) Fout(pkout, c
∗, c) = 0,
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(2) Decout(skout, c) = cin ̸= ⊥, and
(3) Fin(pkin, c

∗
in, cin) = 1.

Furthermore, we say that a decapsulation query c submitted by A in the above games is outer-
dangerous if c satisfies the following four conditions:

(1) Fout(pkout, c
∗, c) = 1,

(2) Decout(skout, c) = cin /∈ {c∗in,⊥},
(3) Decapin(skin, cin) = (r∥K) ̸= ⊥, and
(4) Encout(pkout, cin; r) = c.

For i ∈ [4], we define the following events in Game i:

Si: A succeeds in guessing the challenge bit (i.e. b′ = b occurs).
Ini: A submits at least one inner-dangerous decapsulation query.

In
(j)
i where j ∈ [Q]: A’s j-th decapsulation query is inner-dangerous.

Outi: A submits at least one outer-dangerous decapsulation query.

Out
(j)
i where j ∈ [Q]: A’s j-th decapsulation query is outer-dangerous.

By definitions of the games and events, we can show the following upperbound on A’s CCA

advantage AdvCCAΓDL,A(k):

Claim 8 A’s CCA advantage AdvCCAΓDL,A(k) can be upperbounded as follows:

AdvCCAΓDL,A(k) ≤ 2 ·
∣∣∣∑
j∈[Q]

(
Pr[Out

(j)
2 ∧ In2]− Pr[Out

(j)
3 ∧ In3]

)∣∣∣+ 2 ·
∑
j∈[Q]

Pr[Out
(j)
3 ]

+ 2 ·
∣∣∣Pr[S2 ∧ In2]− Pr[S3 ∧ In3] +

1

2
(Pr[In2]− Pr[In3])

∣∣∣+ 2 ·
∣∣∣Pr[S3 ∧ In3] +

1

2
Pr[In3]−

1

2

∣∣∣
+ 3 ·

∑
i∈{2,3}

∣∣∣Pr[Ini]− Pr[Ini+1]
∣∣∣+ 3 ·

∑
j∈[Q]

Pr[In
(j)
4 ]. (9)

Proof of Claim 8. By the triangle inequality, we have

AdvCCAΓDL,A(k) = 2 ·
∣∣∣Pr[S1]− 1

2

∣∣∣ ≤ 2 ·
∣∣∣Pr[S1]− Pr[S2]

∣∣∣+ 2 ·
∣∣∣Pr[S2]− 1

2

∣∣∣.
Regarding the first term |Pr[S1] − Pr[S2]|, notice that the difference between Game 1 and

Game 2 is in how A’s decapsulation queries c satisfying the conditions Fout(pkout, c
∗, c) = 1 and

DecapDL(SK, c) ̸= ⊥ is answered. (Such a query is answered with ⊥ in Game 2, while it s answered
with non-⊥ in Game 1.) We first show that if c additionally satisfies Decout(skout, c) = c∗in, then
c is answered with ⊥ in Game 1 as well. To see this, recall that according to the validity check in
DecapDL, in order for a query c with Decout(skout, c) = c∗in to satisfy DecapDL(SK, c) ̸= ⊥, it must
hold that Decapin(skin, c

∗
in) = (r∗∥K∗1 ) and Encout(pkout, c

∗
in; r

∗) = c. However, the only ciphertext
c satisfying the last condition is the challenge ciphertext c∗ itself, but according to the rule of the
CCA experiment, any of A’s decapsulation query c must satisfy c ̸= c∗. Therefore, any decapsulation
query c satisfying Decout(skout, c) = c∗in is answered with ⊥ in Game 1 as well. (In fact, this is true
regardless of whether Fout(pkout, c

∗, c) = 1 holds.)
Hence, an actual difference between Game 1 and Game 2 occurs only if A submits a decapsu-

lation query c satisfying Fout(pkout, c
∗, c) = 1, Decout(skout, c) = cin ̸= c∗in, and DecapDL(SK, c) ̸=
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⊥. The last condition in particular implies cin ̸= ⊥, Decapin(skin, cin) = (r∥K) ̸= ⊥, and
Encout(pkout, cin; r) = c, which, combined with the condition Fout(pkout, c

∗, c) = 1, are exactly the
conditions of outer-dangerous queries. This implies that the difference between Pr[S1] and Pr[S2] is
upperbounded by the probability that A submits at least one outer-dangerous decapsulation query,
i.e., we have

|Pr[S1]− Pr[S2]| ≤ Pr[Out1] = Pr[Out2].

We further proceed to estimating the upperbound of Pr[Out2] based on whether In2 occurs, namely,

Pr[Out2] = Pr[Out2 ∧ In2] + Pr[Out2 ∧ In2] ≤ Pr[Out2 ∧ In2] + Pr[In2].

Note that by the definition of the events, for every i ∈ [4] we have Pr[Outi∧Ini] = Pr[
∨

j∈[Q](Out
(j)
i ∧

Ini)], and for every j ∈ [Q] we have Pr[Out
(j)
i ∧ Ini] ≤ Pr[Out

(j)
i ]. Using these and applying the union

bound and the triangle inequality, we obtain the following upperbound of Pr[Out2 ∧ In2]:

Pr[Out2 ∧ In2] ≤
∑
j∈[Q]

Pr[Out
(j)
2 ∧ In2] ≤

∣∣∣∑
j∈[Q]

(
Pr[Out

(j)
2 ∧ In2]−Pr[Out

(j)
3 ∧ In3]

)∣∣∣+ ∑
j∈[Q]

Pr[Out
(j)
3 ].

Regarding the term |Pr[S2]−1/2|, by Fact 1 (stated in Appendix A.4) and the triangle inequality,
we have ∣∣∣Pr[S2]− 1

2

∣∣∣ ≤ ∣∣∣Pr[S2 ∧ In2] +
1

2
Pr[In2]−

1

2

∣∣∣+ 1

2
Pr[In2]

≤
∣∣∣Pr[S2 ∧ In2]− Pr[S3 ∧ In3] +

1

2
(Pr[In2]− Pr[In3])

∣∣∣
+

∣∣∣Pr[S3 ∧ In3] +
1

2
Pr[In3]−

1

2

∣∣∣+ 1

2
Pr[In2].

Finally, noting that Pr[In4] = Pr[
∨

j∈[Q] In
(j)
4 ], and applying the union bound and the triangle

inequality, we can upperbound Pr[In2] as follows:

Pr[In2] ≤
∑

j∈{2,3}

∣∣∣Pr[Ini]− Pr[Ini+1]
∣∣∣+ Pr[In4] ≤

∑
i∈{2,3}

∣∣∣Pr[Ini]− Pr[Ini+1]
∣∣∣+ ∑

j∈[Q]

Pr[In
(j)
4 ].

Combining all the inequalities yields the claim. (Notice that in total the coefficient of Pr[In2], and
hence the coefficients of the last two terms of the right hand side of Equation (9), become 3.)

⊓⊔ (Claim 8)

In the following, we show upperbounds of the terms that appear in the right hand side of
Equation (9).

Claim 9 There exists a PPTA Bin such that AdvwNM-DCCAΓin,Bin (k) = (1/Q) · |
∑

j∈[Q](Pr[Out
(j)
2 ∧ In2] −

Pr[Out
(j)
3 ∧ In3])|.

Proof of Claim 9. Using A as a building block, we show how to construct a PPTA adversary Bin
that attacks the wNM-DCCA security of the detectable KEM Γin with the claimed advantage. The
description of Bin = (Bin1,Bin2) is as follows:
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BDecapin(skin,·)
in1 (pkin, c

∗
in, α

∗
γ): (where γ ∈ {0, 1} is Bin’s challenge bit in the wNM-DCCA experiment)

Bin1 first picks u ∈ [Q] uniformly at random. Next, Bin1 parses α∗γ as (r∗,K∗1 ) ∈ {0, 1}ℓ×{0, 1}k,
picks K∗0 ∈ {0, 1}k and b ∈ {0, 1} uniformly at random, and then runs (pkout, skout) ←
PKGout(1

k) and c∗ ← Encout(pkout, c
∗
in; r

∗). Then Bin1 sets PK ← (pkin, pkout), and runs
A(PK, c∗,K∗b ).

Bin1 answers A’s decapsulation queries c as follows:

1. If Fout(pkout, c
∗, c) = 1 or Decout(skout, c) = cin = ⊥, then Bin1 returns ⊥ to A.

2. Otherwise (i.e. Fout(pkout, c
∗, c) = 0 and cin ̸= ⊥), if Fin(pkin, c∗in, cin) = 1, then Bin1 has

detected that this query is inner-dangerous, in which case Bin1 gives up, prepares the state
information stB that tells Bin2 that Bin1 has given up, and terminates with output (⊥, stB).

3. Otherwise (i.e. Fin(pkin, c
∗
in, cin) = 0), Bin submits cin to its own decapsulation oracle,

receives the result α, performs the remaining procedure of DecapDL(SK, c), and returns the
result to A.

When A terminates and at this point Bin1 has not given up (i.e. A has not made an inner-
dangerous query), Bin1 proceeds as follows: Let c(u) be the u-th decapsulation query submitted

by A, and let c
(u)
in = Decout(skout, c

(u)) be the inner ciphertext corresponding to c(u) (which

Bin1 can compute because it possesses skout). If Fout(pkout, c
∗, c(u)) = 0 or c

(u)
in ∈ {c∗in,⊥},

then Bin1 gives up, and does the same procedure for “give up” as above. Otherwise (i.e.

Fout(pkout, c
∗, c(u)) = 1 and c

(u)
in /∈ {c∗in,⊥}), Bin1 sets stB ← (Bin1’s entire view), and ter-

minates with output (c
(u)
in , stB).

Bin2(stB, α′): (where α′ = Decapin(skin, c
(u)
in )) Bin2 first checks if Bin1 gave up (by looking at stB) or

α′ = ⊥ holds, and sets γ′ ← 0 if this is the case. Otherwise (i.e. Bin1 did not give up and α′ ̸= ⊥),
Bin2 parses α′ as (r′,K ′) ∈ {0, 1}ℓ × {0, 1}k, and then sets γ′ ← (Encout(pkout, c

(u)
in ; r

′)
?
= c(u)).

Finally, Bin2 terminates with output γ′.

The above completes the description of Bin. Note that Bin1 never submits a prohibited decapsulation
query cin satisfying Fin(pkin, c

∗
in, cin) = 1 to its own decapsulation oracle. Furthermore, due to our

design of Bin, it is guaranteed that the ciphertext that is finally output by Bin1 is different from
c∗in.

Let InB be the event that A submits an inner-dangerous decapsulation query in the exper-

iment simulated by B, and for j ∈ [Q], let Out
(j)
B be the event that A’s j-th decapsulation

query c(j) is outer-dangerous, namely, Fout(pkout, c
∗, c(j)) = 1, Decout(skout, c

(j)) = c
(j)
in /∈ {c∗in,⊥},

Decapin(skin, c
(j)
in ) = (r(j)∥K(j)) ̸= ⊥, and Encout(pkout, c

(j)
in ; r

(j)) = c(j).

Note that Bin2 outputs 1 only if A does not submit any inner-dangerous query (i.e. InB occurs)

and Out
(u)
B occurs. Note also that u ∈ [Q] is chosen uniformly at random, independently of Bin’s

challenge bit and A’s behavior. Hence, for every j ∈ [Q], we have Pr[u = j|γ = 1] = Pr[u = j|γ =
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0] = 1/Q. Using these, we can calculate Bin’s wNM-DCCA advantage as follows:

AdvwNM-DCCAΓin,Bin (k) = 2 ·
∣∣∣Pr[γ′ = γ]− 1

2

∣∣∣ = ∣∣∣Pr[γ′ = 1|γ = 1]− Pr[γ′ = 1|γ = 0]
∣∣∣

=
∣∣∣Pr[Out(u)B ∧ InB|γ = 1]− Pr[Out

(u)
B ∧ InB|γ = 0]

∣∣∣
=

∣∣∣∑
j∈[Q]

(
Pr[Out

(u)
B ∧ InB|u = j ∧ γ = 1] · Pr[u = j|γ = 1]

− Pr[Out
(u)
B ∧ InB|u = j ∧ γ = 0] · Pr[u = j|γ = 0]

)∣∣∣
=

1

Q

∣∣∣∑
j∈[Q]

(
Pr[Out

(j)
B ∧ InB|γ = 1]− Pr[Out

(j)
B ∧ InB|γ = 0]

)∣∣∣.
Consider the case when γ = 1. It is easy to see that in this case, Bin simulates Game 2

perfectly for A so that A’s challenge bit is b until the point A submits an inner-dangerous query.
In particular, the value α∗1 associated with c∗in is used as (r∗,K∗1 ) as is done in Game 2. All other
values (PK, c∗, and the answers to decapsulation queries) are distributed identically to those of
Game 2. Furthermore, Bin can detect whether A’s query is inner-dangerous by using skout, Fout,

c∗, and Fin. These imply that for every j ∈ [Q], we have Pr[Out
(j)
B ∧ InB|γ = 1] = Pr[Out

(j)
2 ∧ In2].

On the other hand, when γ = 0, Bin simulates Game 3 perfectly for A so that A’s challenge
bit is b until the point A submits an inner-dangerous query. In particular, the uniformly chosen
random value α∗0 (independent of c∗in) is used as (r∗,K∗1 ), which is exactly how they are distributed
in Game 3. The rest is unchanged from the case of γ = 1, and thus, with a similar argument to the

above, for every j ∈ [Q], we have Pr[Out
(j)
B ∧ InB|γ = 0] = Pr[Out

(j)
3 ∧ In3].

In summary, we have AdvwNM-DCCAΓin,Bin (k) = (1/Q) · |
∑

j∈[Q](Pr[Out
(j)
2 ∧ In2] − Pr[Out

(j)
3 ∧ In3])|, as

required. ⊓⊔ (Claim 9)

Claim 10 For any constants p, q ∈ [0, 1], there exists a PPTA B′in such that AdvDCCAΓin,B′in
(k) =

|p · (Pr[S2 ∧ In2]− Pr[S3 ∧ In3]) + q · (Pr[In2]− Pr[In3])|.

Proof of Claim 10. Fix arbitrarily p, q ∈ [0, 1]. Using A as a building block, we show how to
construct a PPTA adversary B′in that attacks the DCCA security of the detectable KEM Γin with
the claimed advantage. The description of B′in is as follows:

B′Decapin(skin,·)
in (pkin, c

∗
in, α

∗
γ): (where γ ∈ {0, 1} is B′in’s challenge bit in the DCCA experiment) B′in

first picks two coins bp, bq ∈ {0, 1} such that bp = 1 (resp. bq = 1) holds with probability p
(resp. q). Next, B′in parses α∗γ as (r∗,K∗1 ) ∈ {0, 1}ℓ × {0, 1}k, picks K∗0 ∈ {0, 1}k and b ∈ {0, 1}
uniformly at random, and then runs (pkout, skout)← PKGout(1

k) and c∗ ← Encout(pkout, c
∗
in; r

∗).
Then B′in sets PK ← (pkin, pkout), and runs A(PK, c∗,K∗b ).

B′in answers A’s decapsulation queries c in the same way as Bin1 in the proof of Claim 9 does,
except that if B′in detects that A’s query is inner-dangerous, then B′in terminates with output
γ′ ← bq.

When A terminates with output its guess bit b′ (which means that A made no inner-dangerous
query), B′in sets γ′ ← 1 if both b′ = b and bp = 1 hold, otherwise (i.e. b′ ̸= b or bp = 0) B′in sets
γ′ ← 0, and terminates with output γ′.
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The above completes the description of B′in. Note that B′in never submits a prohibited decapsulation
query cin satisfying Fin(pkin, c

∗
in, cin) = 1 to its decapsulation oracle. Let InB be the event that A

submits an inner-dangerous decapsulation query in the experiment simulated by B′in.
Consider the case when γ = 1. It is not hard to see that in this case, B′in simulates Game 2

perfectly for A so that A’s challenge bit is b until the point A submits an inner-dangerous query.
In particular, the value α∗1 associated with c∗in is used as (r∗,K∗1 ) as is done in Game 2. All other
values (PK, c∗, and the answers to decapsulation queries) are distributed identically to those of
Game 2. Furthermore, B′in can detect whether A’s query is inner-dangerous by using skout, Fout,
c∗, c∗in, and Fin. These imply that Pr[b′ = b∧ InB|γ = 1] = Pr[S2 ∧ In2] and Pr[InB|γ = 1] = Pr[In2].
Recall that B′in outputs γ′ = 1 only if either (1) A succeeds in guessing b without making any
inner-dangerous queries (i.e. b′ = b ∧ InB occurs) and bp = 1, or (2) A makes an inner-dangerous
query (InB occurs) and bq = 1. Furthermore, the choice of the coins bp and bq is independent of the
behavior of A and B′in’s challenge bit. These imply

Pr[γ′ = 1|γ = 1] = Pr[bp = 1 ∧ b′ = b ∧ InB|γ = 1] + Pr[bq = 1 ∧ InB|γ = 1]

= p · Pr[b′ = b ∧ InB|γ = 1] + q · Pr[InB|γ = 1]

= p · Pr[S2 ∧ In2] + q · Pr[In2].

On the other hand, when γ = 0, B′in simulates Game 3 perfectly for A so that A’s challenge
bit is b until the point A submits an inner-dangerous query. In particular, the uniformly chosen
random value α∗0 (independent of c∗in) is used as (r∗,K∗1 ), which is exactly how they are distributed
in Game 3. The rest is unchanged from the case of γ = 1, and thus, with a similar argument to the
above, we have Pr[γ′ = 1|γ = 0] = p · Pr[S3 ∧ In3] + q · Pr[In3].

We can calculate B′in’s DCCA advantage as follows:

AdvDCCAΓin,B′in
(k) = 2 ·

∣∣∣Pr[γ′ = γ]− 1

2

∣∣∣=∣∣∣Pr[γ′ = 1|γ = 1]− Pr[γ′ = 1|γ = 0]
∣∣∣

=
∣∣∣p · (Pr[S2 ∧ In2]− Pr[S3 ∧ In3]) + q · (Pr[In2]− Pr[In3])

∣∣∣.
⊓⊔ (Claim 10)

Claim 11 |Pr[S3 ∧ In3] +
1
2 Pr[In3]−

1
2 | = 0.

Proof of Claim 11. Note that in Game 3, the real session-key K∗1 is chosen uniformly at random,
independently of A’s challenge ciphertext. Furthermore, the behavior of the decapsulation oracle in
Game 3 is independent of the challenge bit. Since the distribution ofK∗1 and that ofK∗0 are identical,
A’s view in Game 3 is distributed identically regardless of the challenge bit b. This guarantees that
Pr[S3] = 1/2, and that the event In3 is independent of S3. Hence, we have Pr[S3 ∧ In3] =

1
2 Pr[In3],

which implies the claim. ⊓⊔ (Claim 11)

Claim 12 There exists a PPTA Bout such that AdvR-InextΠout,Bout(k) = (1/Q) ·
∑

j∈[Q] Pr[Out
(j)
3 ].

Proof of Claim 12. Using A as a building block, we show how to construct a PPTA adversary Bout
that attacks the randomness-inextractability of the detectable PKE scheme Πout with the claimed
advantage. The description of Bout = (Bout1,Bout2) is as follows:

46



Bout1(1k): Bout1 first runs (pkin, skin) ← KKGin(1
k) and (c∗in, α

∗) ← Encapin(pkin). Then Bout1
sets M ← c∗in and stB ← (Bout1’s entire view), and terminates with output (M, stB).

BDecout(skout,·)
out2 (stB, pkout, c

∗): Bout2 sets PK ← (pkin, pkout), picks K∗ ∈ {0, 1}k uniformly at ran-
dom, and runs A(PK, c∗,K∗).
Bout2 answers A’s decapsulation queries as Game 3 does, which is possible because Bout2 pos-
sesses skin and has access to the decryption oracle Decout(skout, ·).
When A terminates, Bout2 picks u ∈ [Q] uniformly at random, and proceeds as follows: Let

c(u) be the u-th decapsulation query submitted by A, and let c
(u)
in = Decout(skout, c

(u)) be
the inner ciphertext corresponding to c(u) (note that this must have been already computed
when having answered to the u-th decapsulation query). If c(u) is outer-dangerous, namely, it

holds that Fout(pkout, c
∗, c(u)) = 1, c

(u)
in /∈ {c∗in,⊥}, Decapin(skin, c

(u)
in ) = (r(u)∥K(u)) ̸= ⊥, and

Encout(pkout, c
(u)
in ; r

(u)) = c(u), then Bout2 sets M ′ ← c
(u)
in and R′ ← r(u), and terminates with

output (M ′, R′). Otherwise, Bout2 gives up and aborts.

The above completes the description of Bout. For j ∈ [Q], let Out
(j)
B be the event that A’s j-th

decapsulation query c(j) is outer-dangerous in the experiment simulated by Bout. Note that due to
our design of Bout, Bout succeeds in making the randomness-inextractability experiment output 1

if and only if Out
(u)
B occurs, i.e. we have AdvR-InextΠout,Bout(k) = Pr[Out

(u)
B ].

It is not hard to see that Bout simulates Game 3 perfectly for A. In particular, c∗ is an encryption
of c∗in generated by using a uniformly chosen randomness, which is exactly how A’s challenge

ciphertext in Game 3 is generated. Therefore, for every j ∈ [Q], the probability that Out
(j)
B occurs

in the experiment simulated by Bout is identical to the probability that Out
(j)
3 occurs in Game 3,

namely we have Pr[Out
(j)
B ] = Pr[Out

(j)
3 ] for every j ∈ [Q]. Furthermore, u ∈ [Q] is chosen uniformly

at random, independently of A’s behavior. Therefore, for every j ∈ [Q], we have Pr[u = j] = 1/Q.
Put everything together, we can calculate Bout’s R-Inext advantage as follows:

AdvR-InextΠout,Bout(k) = Pr[Out
(u)
B ] =

∑
j∈[Q]

Pr[Out
(u)
B |u = j] · Pr[u = j] =

1

Q

∑
j∈[Q]

Pr[Out
(j)
B ]

=
1

Q

∑
j∈[Q]

Pr[Out
(j)
3 ].

⊓⊔ (Claim 12)

Claim 13 There exists a PPTA B′out such that AdvDCCAΠ,B′out(k) = |Pr[In3]− Pr[In4]|.

Proof of Claim 13. Using A as a building block, we show how to construct a PPTA adversary B′out
that attacks the DCCA security of the detectable PKE scheme Πout with the claimed advantage.
The description of B′out = (B′out1,B′out2) is as follows:

B′Decout(skout,·)
out1 (pkout): B′out1 first executes (pkin, skin)← KKGin(1

k) and (c∗in, α
∗)← Encapin(pkin).

Then B′out1 sets M0 ← 0n, M1 ← c∗in, and stB ← (B′out1’s entire view), and terminates with
output (M0,M1, stB).

B′Decout(skout,·)
out2 (stB, c

∗): B′out2 first picks K∗ ∈ {0, 1}k uniformly at random, sets PK ← (pkin, pkout),
and runs A(PK, c∗,K∗).
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B′out2 answers A’s decapsulation queries c as the decapsulation oracle in Game 3 does, which
is possible because B′out2 has access to the decryption oracle, and possesses skin. B′out2 also
remembers whether A’s query is inner-dangerous, which Bout2 can detect by using Fin and c∗in.
Note that if Fout(pkout, c

∗, c) = 1, then B′out2 can immediately return ⊥ to A, which is the
correct behavior of the decapsulation oracle in Game 3 (and Game 4), and thus in this case
B′out2 need not use its decryption oracle. (Note also that such a query is not inner-dangerous.)
When A terminates, B′out2 checks whether A has submitted an inner-dangerous decapsulation
query. If an inner-dangerous query has been made, B′out2 sets γ′ ← 1, otherwise sets γ′ ← 0,
and terminates with output γ′.

The above completes the description of B′out. Note that B′out2 never submits a prohibited query c
satisfying Fout(pkout, c

∗, c) = 1 to its decryption oracle.
Let γ ∈ {0, 1} be B′out’s challenge bit, and let InB be the event that A submits an inner-

dangerous query in the experiment simulated by B′out. Note that B′out2 outputs 1 only when InB
occurs. Therefore, B′out’s advantage can be calculated as follows:

AdvDCCAΠout,B′out(k) = 2 ·
∣∣∣Pr[γ′ = γ]− 1

2

∣∣∣ = ∣∣∣Pr[γ′ = 1|γ = 1]− Pr[γ′ = 1|γ = 0]
∣∣∣

=
∣∣∣Pr[InB|γ = 1]− Pr[InB|γ = 0]

∣∣∣.
Furthermore, it is not hard to see that if γ = 1 (resp. γ = 0), then B′out perfectly simulates

Game 3 (resp. Game 4) for A. Specifically, c∗ is an encryption of c∗in if γ = 1, and is an encryption
of 0n if γ = 0, which is exactly how A’s challenge ciphertext in Game 3 and that in Game 4
are computed, respectively. Furthermore, B′out answers A’s decapsulation queries c perfectly as the
decapsulation oracle in Game 3 (and Game 4) does, using B′out2’s decryption oracle, Fout (which is
publicly computable), and skin, c

∗, and c∗in (that are all available for B′out). These imply that we
have Pr[InB|γ = 1] = Pr[In3] and Pr[InB|γ = 0] = Pr[In4].

In summary, we have AdvDCCAΠout,B′out(k) = |Pr[In3]− Pr[In4]|, as required. ⊓⊔ (Claim 13)

Claim 14 There exists a PPTA B′′in such that AdvUNPΓin,B′′in
(k) ≥ (1/Q) ·

∑
j∈[Q] Pr[In

(j)
4 ].

Proof of Claim 14. Using A as a building block, we show how to construct a PPTA adversary
B′′in that attacks the unpredictability of the detectable KEM Γin with the claimed advantage. The
description of B′′in is as follows:

B′′Decapin(skin,·)
in (pkin): B′′in first executes (pkout, skout) ← PKGout(1

k) and c∗ ← Encout(pkout, 0
n).

Next, B′′in picks K∗ ∈ {0, 1}k uniformly at random, sets PK ← (pkin, pkout), and then runs
A(PK, c∗,K∗).
B′′in answers decapsulation queries c from A as the decapsulation oracle in Game 4 does, where
B′′in uses its own decapsulation oracle as a substitute for Decapin(skin, ·).
When A terminates, B′′in picks u ∈ [Q] uniformly, and proceeds as follows: Let c(u) be the u-th

query submitted by A. If Decout(skout, c(j)) = c
(u)
in ̸= ⊥ holds, then B′′in terminates with output

c
(u)
in . Otherwise, B′′in gives up and aborts.

The above completes the description of B′′in. It is easy to see that B′′in perfectly simulates Game 4
for A.
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Let c∗in be the challenge ciphertext generated by B′′in’s unpredictability experiment. Since the
challenge ciphertext c∗in is information-theoretically hidden from B′′in in the unpredictability ex-
periment, we can assume without loss of generality that c∗in is generated at the beginning of the
experiment. Now, consider the following events in the experiment simulated by B′′in:

In
(j)
B where j ∈ [Q]: A’s j-th query c(j) is inner-dangerous with respect to c∗in. Namely, it holds

that Fout(pkout, c
∗, c(j)) = 0, Decout(skout, c

(j)) = c
(j)
in ̸= ⊥, and Fin(pkin, c

∗
in, c

(j)
in ) = 1.

În
(j)

B where j ∈ [Q]: A’s j-th query c(j) satisfies Decout(skout, c
(j)) = c

(j)
in ̸= ⊥ and Fin(pkin, c

∗
in, c

(j)
in )

= 1.

Note the difference between In
(j)
B and În

(j)

B . The former event implies the latter, and hence for every

j ∈ [Q], we have Pr[În
(j)

B ] ≥ Pr[In
(j)
B ]. Furthermore, by definition of the unpredictability experiment

and our design of B′′in, we have AdvUNPΓin,B′′in
(k) = Pr[În

(u)

B ]. Moreover, note that the distribution of

the “inner” ciphertext c∗in in Game 4 and that of B′′in’s challenge ciphertext in the unpredictability
experiment are identical. Since B′′in perfectly simulates Game 4 for A, for every j ∈ [Q], we have

Pr[In
(j)
B ] = Pr[In

(j)
4 ]. Finally, note that the index u ∈ [Q] is chosen uniformly, independently of A’s

behavior. Hence, for every j ∈ [Q], we have Pr[u = j] = 1/Q.

Armed with these, B′′in’s unpredictability advantage can be calculated as follows:

AdvUNPΓin,B′′in
(k) = Pr[În

(u)

B ] =
∑
j∈[Q]

Pr[În
(u)

B |u = j] · Pr[u = j] =
1

Q

∑
j∈[Q]

Pr[În
(j)

B ]

≥ 1

Q

∑
j∈[Q]

Pr[In
(j)
B ] =

1

Q

∑
j∈[Q]

Pr[In
(j)
4 ].

⊓⊔ (Claim 14)

Claims 8 to 14 guarantee that there exist PPTAs Bin, B′in1, B′in2, Bout, B′out, and B′′in, satisfying
Equation (8), where the second and the third terms in the right hand side of Equation (8) are
derived from Claim 10 in which we set (p, q) = (1, 1/2) and (p, q) = (0, 1), respectively. Recall that
the choice of A was arbitrarily, and thus for any PPTA A, we can show a negligible upperbound
on AdvCCAΓDL,A(k). Therefore, ΓDL is CCA secure. ⊓⊔ (Theorem 2)

D.4 Proof of Theorem 3: Why DCCA Security, Unpredictability, and
Randomness-Inextractability Are Not Enough

Recall that due to the result by Hohenberger et al. [16], if there exists a detectable PKE scheme
satisfying DCCA security and unpredictability, then there exists a CCA secure KEM (with arbitrarily
long session-keys) and a CCA secure PKE scheme (which can encrypt arbitrarily long plaintexts).

We note that any CCA secure KEM can be seen as a detectable KEM satisfying DCCA security and

unpredictability with respect to the “equality” predicate F(pk, c∗, c′) := (c∗
?
= c′) [16]. Therefore,

from a CCA secure KEM, we can construct a detectable KEM Γ ′in = (KKG′in,Encap
′
in,Decap

′
in,F

′
in)

such that:

– Γ ′in is DCCA secure and unpredictable.

49



– The session-key space is {0, 1}(3/2)k.6
– The ciphertext size is n = n(k) > 0 for some polynomial n.

Using this detectable KEM Γ ′in as a building block, consider another detectable KEM Γin = (KKGin,
Encapin,Decapin,Fin) as described in Fig. 10 (left). The session-key space of Γin is {0, 1}3k, and
the ciphertext size of it is 2n. It is straightforward to see that if Γ ′in is DCCA secure and un-
predictable, then so is Γin. Note that Γin is designed to have an obvious malleability against
the “swapping” attack: Suppose C = (c1, c2) is generated by Encapin together with a session-
key K = (r1∥r2∥K ′1∥K ′2) ∈ {0, 1}3k, then the decapsulation result of the “swapped” ciphertext

Ĉ = (c2, c1) is K̂ = (r2∥r1∥K ′2∥K ′1). 7

Similarly, any CCA secure PKE scheme can be seen as a detectable PKE scheme satisfying DCCA

security and randomness-inextractability with respect to the “equality” predicate 8. Therefore,
from a CCA secure PKE scheme, we can construct a detectable PKE scheme Π ′out = (PKG′out,
Enc′out,Dec

′
out,F

′
out) such that:

– Π ′out is DCCA secure and randomness-inextractable.
– The plaintext space is {0, 1}n.
– The randomness space of Enc′out is {0, 1}k.9

Using this detectable PKE scheme Π ′out as a building block, consider another detectable PKE
scheme Πout = (PKGout,Encout,Decout,Fout) as described in Fig. 10 (right). The plaintext space of
Πout is {0, 1}2n, and the randomness space of Encout is {0, 1}2k. It is straightforward to see that if
Π ′out is DCCA secure and randomness-inextractable, then so is Πout. Furthermore, as is similar to
Γin, Πout is also malleable against the “swapping” attack. In fact, the “swapping” attack preserves
the consistency of randomness: For a plaintext m = (m1,m2) ∈ ({0, 1}n)2 and a randomness
r = (r1, r2) ∈ ({0, 1}k)2, let m̂ = (m2,m1) and r̂ = (r2, r1). Then, for every public key pk output
by PKGout, if C = (c1, c2) = Encout(pk,m; r), then it holds that Ĉ = (c2, c1) = Encout(pk, m̂; r̂). 10

Now, consider the double-layered KEM ΓDL = (KKGDL,EncapDL,DecapDL) that is constructed by
using Γin and Πout as the inner KEM and the outer PKE scheme, respectively. It should be easy to
see that this KEM ΓDL inherits malleability against the “swapping” attack from the building blocks
Γin and Πout.

Specifically, let (PK,SK) = ((pkin, pkout), (skin, skout)) be a key pair of ΓDL, and suppose
C = (c1, c2) is a ciphertext andK = (K ′1∥K ′2) ∈ {0, 1}k is the session-key corresponding to C. Then,

we can show that the decapsulation result of the “swapped” ciphertext Ĉ = (c2, c1) is the “swapped”
session-key K̂ = (K ′2∥K ′1), i.e., DecapDL(SK, Ĉ) = (K ′2∥K ′1) ∈ {0, 1}k. To see this, note that if
C = (c1, c2) is generated by EncapDL(PK), then each ci is of the form ci = Encout(pkout, cini; ri)
where each cini is generated by Encapin(pkin) together with a session-key α′i = (ri∥K ′i) ∈ {0, 1}(3/2)k.
Thus, the decapsulation DecapDL(SK, Ĉ = (c2, c1)) proceeds as follows:

6 The session-key space of a detectable KEM satisfying DCCA security and unpredictability can be freely adjusted by
using a PRG with appropriate output length, which exists if a CCA secure KEM exists.

7 It would be worth noting that the detectable KEM Γin considered here is not wNM-DCCA secure.
8 Lemma 7 shown in Section 5.1 implies that any 1-bit CCA secure PKE scheme is by itself a detectable PKE scheme
with randomness-inextractability with respect to the equality predicate. It should be easily inferred (and easily
proved) that this is true for a CCA secure PKE with larger plaintext space.

9 The randomness space of a detectable PKE scheme satisfying DCCA security and randomness-inextractability can
be freely adjusted by using a PRG with appropriate output length, which exists if a CCA secure PKE scheme exists.

10 Similarly to Γin, the detectable PKE scheme Πout considered here is not wNM-DCCA secure. (It is not wRNM-DCCA

secure, either.)
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KKGin(1
k) :

Return (pk, sk)← KKG′
in(1

k).

Encapin(pk) :
∀i ∈ [2] : (ci, α

′
i)← Encap′in(pk)

∀i ∈ [2] : Parse α′
i as (ri,K

′
i) ∈ {0, 1}k × {0, 1}(1/2)k.

C ← (c1, c2)
K ← (r1∥r2∥K′

1∥K′
2)

Return (C,K).

Decapin(sk, C) :
Parse C as (c1, c2).
∀i ∈ [2] : α′

i ← Decap′in(sk, ci)
If α′

1 = ⊥ or α′
2 = ⊥ then return ⊥.

∀i ∈ [2] : Parse α′
i as (ri,K

′
i) ∈ {0, 1}k × {0, 1}(1/2)k.

Return K ← (r1∥r2∥K′
1∥K′

2).

Fin(pk, C
∗, C′) :

(c∗1, c
∗
2)← C∗; (c′1, c

′
2)← C′.

If ∃i, j ∈ [2] : F′
in(pk, c

∗
i , c

′
j) = 1
then return 1 else return 0.

PKGout(1
k) :

Return (pk, sk)← PKG′
out(1

k).

Encout(pk,m; r) :
Parse m as (m1,m2) ∈ ({0, 1}n)2.
Parse r as (r1, r2) ∈ ({0, 1}k)2.
∀i ∈ [2] : ci ← Enc′out(pk,mi; ri)
Return C ← (c1, c2).

Decout(sk, C) :
Parse C as (c1, c2).
∀i ∈ [2] : mi ← Dec′out(sk, ci)
If m1 = ⊥ or m2 = ⊥ then return ⊥.
Return m← (m1∥m2).

Fout(pk, C
∗, C′) :

(c∗1, c
∗
2)← C∗; (c′1, c

′
2)← C′.

If ∃i, j ∈ [2] : F′
out(pk, c

∗
i , c

′
j) = 1

then return 1 else return 0.

Fig. 10. The building blocks for showing the counterexample. The inner detectable KEM Γin (left) and the outer
detectable PKE scheme Πout (right).

1. It first runs Decout(skout, Ĉ), which results in Ĉin = (cin2, cin1).
2. Next, it runs Decapin(skin, Ĉin), which results in α̂ = (r2∥r1∥K ′2∥K ′1) ∈ {0, 1}3k.
3. Then, α̂ is parsed into r̂ = (r2∥r1) ∈ {0, 1}2k and K̂ = (K ′2∥K ′1) ∈ {0, 1}k.
4. Finally, DecapDL checks if Encout(pkout, Ĉin; r̂) = Ĉ, which is always true as seen above, and

thus returns K̂ = (K ′2∥K ′1).
Therefore, a CCA adversary, given a public key PK = (pkin, pkout) and the challenge ciphertext

C∗ = (c∗1, c
∗
2), can submit the “swapped” ciphertext Ĉ = (c∗2, c

∗
1) to the decapsulation oracle, and

obtain the “swapped” session-key K̂ = (K ′∗2 ∥K ′∗1 ). From this, the adversary can reconstruct the
session-key K∗ = (K ′∗1 ∥K ′∗2 ), and hence always break CCA security (actually, even in the sense of
one-wayness under 1-bounded CCA). ⊓⊔ (Theorem 3)

D.5 Proof of Lemma 7: Randomness-Inextractability of Πn
BE

Fix a polynomial n = n(k) > 0. We will show that for any PPTA adversary A that attacks the
randomness-inextractability of the detectable PKE scheme Πn

BE, there exists a PPTA adversary B
that attacks the CCA security of the underlying 1-bit PKE scheme Π1 in such a way that:

AdvCCAΠ1,B(k) ≥
1

n
· AdvR-InextΠn

BE,A (k), (10)

which by our assumption that Π1 is CCA secure, will prove the lemma.
To this end, fix arbitrarily a PPTA A = (A1,A2) that attacks the randomness-inextractability

of the detectable PKE scheme Πn
BE. Using A as a building block, we show how to construct a PPTA

adversary B that attacks the CCA security of Π1 with the advantage shown in Equation (10). The
description of B = (B1,B2) is as follows:

BDec1(sk,·)
1 (pk) : B1 first runs (m = (m1∥ . . . ∥mn), st) ← A1(1

k). Then B1 picks u ∈ [n] uniformly
at random, sets M1 ← mu, M0 ← 1 −mu, and stB ← (B1’s entire view), and terminates with
output (M0,M1, stB).
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BDec1(sk,·)
2 (stB, c

∗) : For all i ∈ [n]\{u}, B2 runs c∗i ← Enc1(pk,mi). Then, B2 sets c∗u ← c∗ and
C∗ ← (c∗1, . . . , c

∗
n), and then runs A2(st, pk, C

∗).
Decryption queries fromA2 are answered by using B2’s decryption oracle, except that if B2 needs
to perform “Dec1(sk, c

∗)”, it does not use the decryption oracle but use mu as the decryption
result of c∗.
When A2 terminates with output m′ = (m′1∥ . . . ∥m′n) ∈ {0, 1}n and r′ = (r′1, . . . , r

′
n) ∈

({0, 1}ℓ)n, B2 proceeds as follows: B2 computes C ′ = (c′1, . . . , c
′
n) ← EncnBE(pk,m

′; r′). (Note
that c′i = Enc1(pk,m

′
i; r
′
i) holds for every i ∈ [n].) If there exists j ∈ [n] such that c∗u = c′j and

mu = m′j simultaneously hold, then B2 sets b′ ← 1, and otherwise, B2 sets b′ ← 0. Finally, B2
terminates with output b′.

The above completes the description of B. Note that B2 never submits the prohibited query c∗ to
its decryption oracle.

Let b ∈ {0, 1} be B’s challenge bit, and let QB be the event that FnBE(pk,C
∗, C ′) = 1 occurs,

i.e. there exist i, j ∈ [n] such that c∗i = c′j , in the experiment simulated by B. B’s CCA advantage is
calculated as follows:

AdvCCAΠ1,B(k) = 2 ·
∣∣∣Pr[b′ = b]− 1

2

∣∣∣ = ∣∣∣Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]
∣∣∣.

Consider the case b = 1. It is easy to see that in this case, B perfectly simulates the randomness-
inextractability experiment for A. In particular, since c∗ = c∗u is an encryption of mu, the chal-
lenge ciphertext C∗ is generated in the same manner as that in A’s randomness-inextractability
experiment. Furthermore, A’s decryption oracle is also perfectly simulated. In particular, even
if A’s decryption query C contains c∗, B2 uses mu as the decryption result of c∗, and for A’s
queries that do not contain c∗, B2 can decrypt them using its own decryption oracle. Therefore,
the probability that A outputs (m′, r′) such that QB occurs is exactly the same as the probabil-
ity that A outputs (m′, r′) that makes the randomness-inextractability experiment output 1, i.e.
Pr[QB|γ = 1] = AdvR-InextΠn

BE,A (k). Furthermore, when QB occurs, there exists a position i ∈ [n] such
that c∗i = c′j holds for some j ∈ [n]. Under such positions i, j, it also holds that mi = m′j , due
to the correctness of Π. Due to our design of B, if this position i was u that B initially guesses,
then B outputs b′ = 1. Since the information of u ∈ [n] is information-theoretically hidden from
A’s view throughout the experiment simulated by B, A’s behavior is independent of the choice
of u. Therefore, conditioned on the event QB and b = 1, the probability that B’s guess on the
position that causes the event QB was right (and hence B outputs 1) is at least 1/n. That is, we
have Pr[b′ = 1|b = 1] ≥ (1/n) · Pr[QB|γ = 1] = (1/n) · AdvR-InextΠn

BE,A (k).
When b = 0, on the other hand, B2 never outputs 1, and hence Pr[b′ = 1|b = 0] = 0. To see

this, note that in this case c∗ is an encryption of 1 − mu. Note also that every c′j is of the form
c′j = Enc1(pk,m

′
j ; r
′
j). Therefore, even if there is a position j ∈ [n] such that c∗u = c′j holds, mu = m′j

cannot hold under the same j due to the correctness of Π1.
In summary, we have AdvCCAΠ1,B(k) ≥ (1/n) · AdvR-InextΠn

BE,A (k), as required. ⊓⊔ (Lemma 7)

D.6 Proof of Lemma 8: wRNM-DCCA Security of ΠEtBE

In this proof, for simplicity and clarity, we rely on the security results for the bitwise-encrypt
construction Πn

BE, which in turn follows from the CCA security of the building block 1-bit scheme Π1.
Furthermore, for notational convenience, for a ciphertext C = (c1, . . . , cn) of Π

n
BE and a ciphertext

c of Π1, we write “c ∈ C” to mean that there exists i ∈ [n] such that c = ci.
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Let A = (A1,A2,A3) be any PPTA adversary that attacks the wRNM-DCCA security of the
detectable PKE scheme ΠEtBE. We will show that there exist PPTAs Bp and Bn such that

AdvwRNM-DCCAΠEtBE,A (k) ≤ 2 · AdvDCCAΠBE,Bp(k) + AdvQ-NMC,Bn (k). (11)

For simplicity, we assume that A2’s decryption queries C always satisfy DUPCHK(C) = 0 and
FnBE(pk, C

∗, C) = 0, and the ciphertext C ′ that is finally output by A2 satisfies DUPCHK(C ′) = 0 (but
we allow C ′ to satisfy FnBE(pk,C

∗, C ′) = 1).11

Now, consider the following sequence of games: (Here, the values with asterisk (*) represent
those related to A’s challenge ciphertext C∗ = (c∗1, . . . , c

∗
n).)

Game 1: This is the experiment ExptwRNM-DCCAΠEtBE,A (k) itself.

Game 2: Same as Game 1, except that if C∗ satisfies DUPCHK(C∗) = 1, then A2 and A3 are never
executed. Instead, the game picks a bit b′ ∈ {0, 1} uniformly at random, and this bit b′ is used
for judging whether A has succeeded in the game (i.e. b′ = b occurs).

Game 3: Same as Game 2, except that if DUPCHK(C∗) = 0, then when computing the decryption
result m′ (which is input to A3) of the ciphertext C ′ = (c′1, . . . c

′
n) that is finally output by A2,

every c′i such that c′i ∈ C∗ is never decrypted, and instead the corresponding bit of the codeword
s∗ = (s∗1∥ . . . ∥s∗n) is used as the decryption result of c′i, where s∗ is the codeword computed by
s∗ ← E(1k,mb) during the generation of C∗.

More formally, in Game 3, m′ is computed by the following procedure: (The difference from
Game 2 is only in the step 1 below.)

1. ∀i ∈ [n] : s′i ←

{
s∗j if c′i = c∗j for some j ∈ [n]

Dec1(sk, c
′
i) otherwise

2. If ∃i ∈ [n] : s′i = ⊥ then return m′ ← ⊥.
3. s′ ← (s′1∥ . . . ∥s′n)
4. m′ ← D(1k, s′)
5. If m′ ∈ {m0,m1} then m′ ← same.
6. Return m′.

Note that in the step 1, if c′i ∈ C∗, then the position j such that c′i = c∗j holds is uniquely
determined, because we are assuming DUPCHK(C ′) = 0.

Game 4: Same as Game 3, except that the information of s∗ is erased from C∗. More precisely,
the step “C∗ ← EncnBE(pk, s

∗)” in Game 3 is replaced with the step “C∗ ← EncnBE(pk, 0
n).”

The above completes the description of the games.

For i ∈ [4], let Si be the event that b′ = b occurs in Game i. A’s wRNM-DCCA advantage can be
estimated as follows:

AdvwRNM-DCCAΠEtBE,A (k) = 2 ·
∣∣∣Pr[S1]− 1

2

∣∣∣ ≤ 2 ·
∑
i∈[3]

∣∣∣Pr[Si]− Pr[Si+1]
∣∣∣+ ∣∣∣Pr[S4]− 1

2

∣∣∣. (12)

It remains to upperbound each term that appears in the right hand side of the above inequality.

11 This assumption is without loss of generality, because even if A does not respect this assumption, we can always
consider a “wrapper” algorithm A′ for A that runs in exactly the same way as A, except that if A’s decryption
query does not satisfy the conditions, A′ instead makes a dummy decryption query satisfying them (and returns ⊥
to A as an “answer” to the query). A′ can handle the final output C′ of A2 analogously. Such “wrapper” algorithm
A′ has exactly the same advantage as A.
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Claim 15 Pr[S1] = Pr[S2].

Proof of Claim 15. For i ∈ [2], let Ci be the event that DUPCHK(C∗) = 1 occurs in Game i.
Note that Game 1 and Game 2 can differ only if C1 or C2 occurs in the corresponding games,
and hence we have Pr[S1 ∧ C1] = Pr[S2 ∧ C2] and Pr[C1] = Pr[C2]. Furthermore, it is clear that
Pr[S1|C1] = Pr[S2|C2] = 1/2, because if DUPCHK(C∗) = 1 occurs, then A’s view is independent of the
challenge bit b in Game 1, while a random bit b′ is used to judge whether A succeeds in Game 2.
Therefore, we have Pr[S1] = Pr[S2], as required. ⊓⊔ (Claim 15)

Claim 16 Pr[S2] = Pr[S3].

Proof of Claim 16. The difference between Game 2 and Game 3 is in how the decryption result
m′ of the ciphertext C ′ that is finally output by A2, is computed. More specifically, in Game 2, m′

is computed in exactly the same way as in Game 1 (which is the original wRNM-DCCA experiment).
However, in Game 3, for every i ∈ [n], if there is j ∈ [n] such that c′i = c∗j , then the bit s∗j is
directly used as the decryption result of c′i. However, since each c∗i is an encryption of s∗i in both
Game 2 and Game 3, s′i is exactly s∗j in both games. Therefore, from A’s viewpoint, these games
are identical, which implies the claim. ⊓⊔ (Claim 16)

Claim 17 There exists a PPTA Bp such that AdvDCCAΠn
BE,Bp(k) = |Pr[S3]− Pr[S4]|.

Proof of Claim 17. Using A as a building block, we show how to construct a PPTA adversary Bp
that attacks the DCCA security of the bitwise-encrypt construction Πn

BE with the claimed advantage.
The description of Bp = (Bp1,Bp2) is as follows:

BDecnBE(sk,·)
p1 (pk): Bp1 runs A1(pk), where Bp1 answers A1’s decryption queries in a straightforward
manner using Bp1’s own decryption oracle.
When A1 terminates with output (m0,m1, st), Bp1 picks a fair coin b ∈ {0, 1}, and runs s∗ =
(s∗1∥ . . . ∥s∗n) ← E(1k,mb). Then Bp1 sets M1 ← s∗, M0 ← 0n, and stB ← (Bp1’s entire view),
and terminates with output (M0,M1, stB).

BDecnBE(sk,·)
p2 (stB, C

∗ = (c∗1, . . . , c
∗
n)): If DUPCHK(C∗) = 1, then Bp2 picks a fair coin γ′ ∈ {0, 1}, and

terminates with output γ′. Otherwise, Bp2 runs A2(st, C
∗).

A2’s decryption queries are answered as the decryption oracle in Game 3 does by using Bp2’s own
decryption oracle, which is possible becauseA2’s queries C are assumed to satisfy FnBE(pk, C

∗, C) =
0, which guarantees that Bp2 never falls into the situation in which it has to submit a prohibited
query satisfying FnBE(pk,C

∗, C) = 1 to the oracle.
When A2 terminates with output (st′, C ′ = (c′1, . . . , c

′
n)), Bp2 performs the following procedure:

1. Let QUOTING := {i|c′i ∈ C∗}, and let a be the smallest index in the set [n]\QUOTING. (If
QUOTING = [n], then this step is skipped, and go to the step 3.) Bp2 needs to decrypt
c′i for i ∈ [n]\QUOTING, with the help of its own decryption oracle, but without violating
the rule of the DCCA experiment (i.e. Bp2 is not allowed to submit a query C such that
FnBE(pk, C

∗, C ′) = 1). To accomplish this, let C ′′ = (c′′1, . . . , c
′′
n) be a ciphertext of Πn

BE such
that for every i ∈ [n], c′′i = c′i if c

′
i /∈ C∗ and c′′i = c′a if c′i ∈ C∗. Note that it is guaranteed

that DecnBE(sk, C
′′) = ⊥ holds if and only if DecnBE(sk, C

′) = ⊥. 12 Note also that c′′i /∈ C∗

12 This is because all quoted ciphertexts c′i ∈ C∗ satisfy Dec1(sk, c
′
i) ̸= ⊥, and hence DecnBE(sk, C

′′) = ⊥ if and only
if there exists i ∈ [n] such that c′i /∈ C∗ and Dec1(sk, c

′
i) = ⊥, which is exactly the same as the condition of

DecnBE(sk, C
′) = ⊥.
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holds for every i ∈ [n], and hence it is guaranteed that FnBE(pk,C
∗, C ′′) = 0. Bp2 submits C ′′

as a decryption query to its own decryption oracle, and receives the result s′′ = (s′′1∥ . . . ∥s′′n)
or s′′ = ⊥.

2. If s′′ = ⊥ or s′′i = ⊥ for some i ∈ [n], then Bp2 sets m′ ← ⊥, and directly goes to the step 6.
3. Otherwise (i.e. s′′ ̸= ⊥ and every s′′i is non-⊥), for every i ∈ [n], Bp2 sets

s′i ←

{
s∗j if c′i = c∗j for some j ∈ [n]

s′′i otherwise
,

and then sets s′ ← (s′1∥ . . . ∥s′n).
4. Bp2 computes m′ ← D(1k, s′).
5. If m′ ∈ {m0,m1}, then Bp2 sets m′ ← same.

6. Finally, Bp2 runs b′ ← A3(st
′,m′), and terminates with output γ′ ← (b′

?
= b).

The above completes the description of Bp. Note that as explained above, Bp2 never submits a
prohibited query C such that FnBE(pk,C

∗, C) = 1 to the decryption oracle.
Let γ ∈ {0, 1} be Bp’s challenge bit. Bp’s DCCA advantage is estimated as follows:

AdvDCCAΠBE,Bp(k) = 2 ·
∣∣∣Pr[γ′ = γ]− 1

2

∣∣∣ = ∣∣∣Pr[γ′ = 1|γ = 1]− Pr[γ′ = 1|γ = 0]
∣∣∣

=
∣∣∣Pr[b′ = b|γ = 1]− Pr[b′ = b|γ = 0]

∣∣∣.
It is not hard to see that if γ = 1, then Bp simulates Game 3 perfectly for A so that A’s challenge

bit is b. Specifically, in this case, the challenge ciphertext C∗ encrypts a codeword s∗ of mb, and is
exactly how it is generated in Game 3. Furthermore, A2’s decryption queries are perfectly answered
as in Game 3. It is also not hard to see that Bp2 computes the decryption result m′ of the ciphertext
C ′ (which is finally output by A2) by appropriately using the decryption oracle (without violating
the rule of the DCCA experiment). Under the situation, the probability that b′ = b occurs in the
experiment simulated by Bp is exactly the same as the probability that b′ = b occurs in Game 3.
That is, we have Pr[b′ = b|γ = 1] = Pr[S3].

When γ = 0, on the other hand, Bp simulates Game 4 perfectly for A so that A’s challenge bit
is b. In particular, in this case, C∗ is an encryption of 0n, which is exactly how it is generated in
Game 4. The rest is unchanged from the case of γ = 1, and hence, with a similar argument to the
above, we have Pr[b′ = b|γ = 0] = Pr[S4].

In summary, we have AdvDCCAΠn
BE,Bp(k) = |Pr[S3]− Pr[S4]|, as required. ⊓⊔ (Claim 17)

Claim 18 There exists a PPTA Bn such that AdvQ-NMC,Bn (k) = 2 · |Pr[S4]− 1/2|.

Proof of Claim 18. Using A as a building block, we show how to construct a PPTA adversary Bn
that attacks the Q-non-malleability of the code C with the claimed advantage. The description of
Bn = (Bn1,Bn2) is as follows:

Bn1(1k): Bn1 first runs (pk, sk)← PKG1(1
k), (m0,m1, st)← ADecEtBE(sk,·)

1 (pk), and C∗ = (c∗1, . . . , c
∗
n)

← EncnBE(pk, 0
n). If DUPCHK(C∗) = 1, then Bn1 prepares the state information stB that tells Bn2

that Bn1 has given up, and terminates with output (⊥,⊥,⊥, stB).
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Otherwise (i.e. DUPCHK(C∗) = 0), Bn1 runs (C ′ = (c′1, . . . , c
′
n), st

′)← ADecEtBE(sk,·)
2 (st, C∗). Then,

for every i ∈ [n] such that c′i /∈ C∗, Bin1 computes s′i = Dec1(sk, c
′
i). If some of s′i is ⊥, then it

is guaranteed that DecEtBE(sk, C
′) = ⊥, and thus Bn1 has already computed m′ = ⊥, in which

case Bn1 terminates with output (⊥,⊥,⊥, stB).
Otherwise (i.e. all of s′i’s are non-⊥), Bn1 proceeds to the preparation of a function f ∈ Qn

used for the Q-NM experiment. Specifically, Bn1 defines n functions f1, . . . , fn ∈ {one, zero} ∪
{quotej}j∈[n] as follows:13 For every i ∈ [n], let

fi :=


quotej if c′i = c∗j for some j ∈ [n]

one if c′i /∈ C∗ and s′i = 1

zero if c′i /∈ C∗ and s′i = 0

,

and let f : {0, 1}n → {0, 1}n be the function defined by f(x) := (f1(x)∥ . . . ∥fn(x)). Note that
since we are assuming DUPCHK(C ′) = 0, the position j ∈ [n] such that c′i = c∗j must be unique if
such j exists. Therefore, f ∈ Qn.
Finally, Bn1 sets stB ← (Bn1’s entire view), and terminates with output (f,m0,m1, stB).

Bn2(stB,m′′): Bn2 first checks if Bn1 has given up by checking stB, in which case Bn2 picks a random
bit b′ ∈ {0, 1} and terminates with output b′. Otherwise, Bn2 also checks if the decryption result
m′ of C ′ is already known to be ⊥ (because s′ = ⊥). If this is not the case, then Bn2 sets
m′ ← m′′. Finally, Bn2 runs b′ ← A3(st

′,m′), and terminates with output b′.

The above completes the description of Bn.
Let b ∈ {0, 1} be Bn’s challenge bit. We argue that Bn simulates Game 4 perfectly for A so

that A’s challenge bit is b. Specifically, if Bn1 does not give up, then the challenge ciphertext C∗ is
generated as in Game 4, and the probability that Bn1 gives up is exactly the same as the probability
that Game 4 terminates at the step of generating the challenge ciphertext C∗. Furthermore, unless
s′ = ⊥ (in which case m′ = ⊥ is already known to Bn1), the value m′′ that Bn2 receives as input
is computed identically to m′ computed in Game 4. Specifically, in this case, the Q-NM experiment
computes s∗ = (s∗1, . . . , s

∗
n) ← E(1k,mb), s

′ ← f(s∗), m′′ ← D(1k, s′), and if m′′ ∈ {m0,m1}, m′′
is replaced with same. Here, by our design of f ∈ Qn, it is guaranteed that s′ = f(s∗) computed
above equals to the one that is computed in Game 4, and hence m′′ given to Bn2 is exactly the one
that should be input to A3 in Game 4. Therefore, under this situation, the probability that b′ = b
occurs in the experiment simulated by Bn is exactly the same as the probability that S4 occurs in
Game 4. Thus, Bn’s advantage in the Q-NM experiment can be calculated as follows:

AdvQ-NMC,Bn (k) = 2 ·
∣∣∣Pr[b′ = b]− 1

2

∣∣∣ = 2 ·
∣∣∣Pr[S4]− 1

2

∣∣∣.
⊓⊔ (Claim 18)

Claims 15 to 18 and Equation (12) guarantee that there exist PPTAs Bp and Bn satisfying
Equation (11). By the assumptions that Π1 is CCA secure and that C is Q-non-malleable, combined
with Lemma 6, we can conclude that AdvCCAΠEtBE,A(k) is negligible. Recall that the choice of A was

arbitrarily, and thus for any PPTA A, we can show a negligible upperbound on AdvwRNM-DCCAΠEtBE,A (k).
Therefore, ΠEtBE is wRNM-DCCA secure. ⊓⊔ (Lemma 8)

13 Recall that every function f in Qn can be described by n functions f1, . . . , fn ∈ {one, zero}∪{quotej}j∈[n], so that
f(x) = (f1(x)∥ . . . ∥fn(x)) holds for all x ∈ {0, 1}n. Furthermore, f needs to satisfy the “no duplicated quoting”
condition (Equation (1)), namely, there exist no indices i, i′, j ∈ [n] such that fi = fi′ = quotej and i ̸= i′.
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D.7 Proof of Theorem 5: A CCA Attack on the “One-Key-Pair” Construction Γ̃ ′

For notational convenience, for a string x = (x1∥ . . . ∥xk) ∈ {0, 1}k and positions i, j ∈ [k] with
i ≤ j, we define x[i:j] := (xi∥ . . . ∥xj) ∈ {0, 1}j−i+1, and we extend the definition for the cases
(i, j) = (1, 0) and (i, j) = (k + 1, k) so that x[1:0] and x[(k+1):k] are defined to be the empty string.
Furthermore, for a string x which is longer than k-bits, we denote by LSBk(x) the least significant
k-bits of x.

Call a string x ∈ {0, 1}k−1 sensitive if

LSBk(G(x
[1:(i⋆−1)]∥1∥x[(i⋆+1):k])) ̸= LSBk(G(x

[1:(i⋆−1)]∥0∥x[(i⋆+1):k]))

holds for some i⋆ ∈ [k], and call the position i⋆ ∈ [k] the sensitive position of x. (If there are
multiple such positions, the sensitive position is defined as the smallest one among them.)

We first introduce the following procedure “Embed” which takes as input (1) a sensitive string
K⋆

in ∈ {0, 1}k−1, (2) the sensitive position i⋆ of K⋆
in, (3) a public key pk, and (4) any ciphertext c′

(of the underlying 1-bit PKE scheme Π1), and outputs a ciphertext/session-key pair (C,K) into
which c′ is “embedded” as one of the “inner” ciphertexts, as follows:

Embed(K⋆
in, i

⋆, pk, c′): Set Kin = (K
(1)
in ∥ . . . ∥K

(k)
in ) ← (K

⋆[1:(i⋆−1)]
in ∥1∥K⋆[(i⋆+1):k]

in ) and c
(i⋆)
in ← c′.

Next, compute c
(i)
in ← Enc1(pk,K

(i)
in ) for every i ∈ [k]\{i⋆}. Then, execute the rest of the proce-

dure of Ẽncap
′
(pk) (i.e. from the step of computing α← G(Kin)) usingKin and c

(1)
in , . . . , c

(k)
in that

have been already computed, and output a ciphertext C = (c1, . . . , cn, ĉ) and the corresponding
session-key K.

The following shows that Embed can be used to decrypt an honestly generated ciphertext c′, given
access to the decapsulation oracle of Γ̃ ′:

Claim 19 Let K⋆
in ∈ {0, 1}k−1 be a sensitive string and i⋆ be the corresponding sensitive po-

sition. Furthermore, let (pk, sk) be a key pair output by PKG1(1
k) and c′ be a ciphertext out-

put by Enc1(pk, ·). If (C,K) is output by Embed(K⋆
in, i

⋆, pk, c′), then it holds that Dec1(sk, c
′) =

(D̃ecap
′
(sk, C)

?
= K).

Proof of Claim 19. Let K⋆
in, i

⋆, pk, and c′ be as stated in the lemma, and suppose (C,K) is output

from Embed(K⋆
in, i

⋆, pk, c′). We will show that if c′ is an encryption of 1, then D̃ecap
′
(sk, C) = K

holds, while if c′ is an encryption of 0, then this does not hold, which proves the claim.

This can be easily seen by checking the behavior of D̃ecap
′
(sk, C) step by step. Specifically, by

the definition of how C is generated in Embed, the value Kin ∈ {0, 1}k recovered in the procedure

of D̃ecap
′
(sk, C) satisfies Kin = (K

⋆[1:(i⋆−1)]
in ∥Dec1(sk, c′)∥K⋆[(i⋆+1):k]

in ). (Since c′ is generated by
Enc1(pk, ·), we have Dec1(sk, c

′) ∈ {0, 1}.) Since Embed generates the “outer” encryptions c1, . . . cn

and ĉ as if Kin = (K
⋆[1:(i⋆−1)]
in ∥1∥K⋆[(i⋆+1):k]

in ) is used, if c′ is an encryption of 1, then the validity

check by re-encryption performed in the last step is also passed and the output of D̃ecap
′
(sk, C)

is equal to K = LSBk(G(Kin)). On the other hand, if c′ is an encryption of 0, then the i⋆-th bit

of Kin computed in D̃ecap
′
(sk, C) is 0. However, by the property of the sensitive string K⋆

in, it

is guaranteed that LSBk(G(K
⋆[1:(i⋆−1)]
in ∥0∥K⋆[(i⋆+1):k]

in )) ̸= LSBk(G(K
⋆[1:(i⋆−1)]
in ∥1∥K⋆[(i⋆+1):k]

in )) = K,

and thus the output of D̃ecap
′
(sk, C) is either some value different from K or ⊥ (due to the failure

of the validity check). ⊓⊔ (Claim 19)
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Next, we show that if G is a PRG, then one can efficiently find a sensitive string together
with the corresponding sensitive position with overwhelming probability. Specifically, consider the
following procedure Find:

Find(1k): Firstly, pick two strings x = (x1∥ . . . ∥xk) ∈ {0, 1}k and x′ = (x′1∥ . . . ∥x′k) ∈ {0, 1}k
uniformly at random, and abort if LSBk(G(x)) = LSBk(G(x

′)). Otherwise, from i = 1 to k,
check if LSBk(G(x

[1:(i−1)]∥x′[i:k])) ̸= LSBk(G(x
[1:i]∥x′[(i+1):k])) holds. If it holds for some i ∈ [k],

then let i⋆ of the smallest position found, set x⋆ ← (x[1:(i
⋆−1)]∥x′[(i⋆+1):k]), and return (x⋆, i⋆) as

a pair of a sensitive string and the corresponding sensitive position. Otherwise (i.e. no position
i ∈ [k] satisfying the above check was found), give up and abort.

Claim 20 If G is a PRG, then Find(1k) outputs a sensitive string x⋆ ∈ {0, 1}k−1 and the corre-
sponding sensitive position i⋆ ∈ [k] with overwhelming probability.

Proof of Claim 20. We first show that if we pick two strings x, x′ ∈ {0, 1}k uniformly at random,
then the probability that LSBk(G(x)) = LSBk(G(x

′)) occurs, which we denote by p, is upperbounded
by AdvPRGG,B(k)+2−k for some PPTA B, and thus is negligible. Specifically, consider the distinguisher

B which is given 1k and y ∈ {0, 1}ℓ′ as input, picks a string x′ ∈ {0, 1}k uniformly at random, and

returns the bit (LSBk(G(x
′))

?
= LSBk(y)). Since B outputs 1 only when LSBk(G(x

′)) = LSBk(y)
holds, B’s advantage in distinguishing the output of G is as follows:

AdvPRGG,B(k) =
∣∣∣ Pr
x,x′←{0,1}k

[LSBk(G(x
′)) = LSBk(G(x))]

− Pr
y←{0,1}ℓ′ ,x′←{0,1}k

[LSBk(G(x
′)) = LSBk(y)]

∣∣∣
= p− 2−k,

which implies p ≤ AdvPRGG,B(k) + 2−k, as required.

Next, given two strings x, x′ satisfying LSBk(G(x)) ̸= LSBk(G(x
′)), it is easy to see that there

must exist at least one position i⋆ such that LSBk(G(x
[1:(i⋆−1)]∥x′[i⋆:k])) ̸= LSBk(G(x

[1:i⋆]∥x′[(i⋆+1):k])),
because otherwise LSBk(G(x)) = LSBk(G(x

′)) holds, which is a contradiction. Furthermore, un-
der this i⋆, we have xi⋆ ̸= x′i⋆ . Therefore, no matter whether (xi⋆ , x

′
i⋆) = (0, 1) or (1, 0), x⋆ =

(x[1:(i
⋆−1)]∥x′[(i⋆+1):k]) is a sensitive string and i⋆ is the corresponding sensitive position.

Therefore, we can conclude that with overwhelming probability, Find(1k) outputs a sensitive
string and its corresponding sensitive position. ⊓⊔ (Claim 20)

Now, armed with Claims 19 and 20, consider the following CCA adversary A against the KEM
Γ̃ ′: A is initially given a public key pk and the challenge ciphertext C∗ = (c∗1, . . . , c

∗
n, ĉ
∗), where

ĉ∗ = SEnc(K∗out, (c
∗(1)
in ∥ . . . ∥c

∗(k)
in )). Note that each of c∗i and c

∗(i)
in is guaranteed to be in the

range of Enc1(pk, ·) by the definition of Ẽncap
′
(pk). A first runs Find(1k) to find a sensitive

string K⋆
in ∈ {0, 1}k−1 together with its sensitive position i⋆, which succeeds with overwhelm-

ing probability due to Claim 20. Next, A decrypts each of the “outer” ciphertexts c∗1, . . . , c
∗
n by

running (Ci,Ki) ← Embed(K⋆
in, i

⋆, pk, c∗i ) and then checking whether D̃ecap
′
(sk, Ci) = Ki holds,

where D̃ecap
′
(sk, Ci) is performed by using A’s decapsulation oracle. By Claim 19, A obtains
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s∗ = (s∗1∥ . . . ∥s∗n). Then A runs K∗out ← D(1k, s∗), and then SDec(K∗out, ĉ
∗), to obtain the “in-

ner” ciphertexts c
∗(1)
in , . . . , c

∗(k)
in . Now, using the same procedure of using Embed and the decap-

sulation oracle D̃ecap
′
(sk, ·), A decrypts each of the inner ciphertexts c

∗(1)
in , . . . , c

∗(k)
in to recover

K∗in = (K
∗(1)
in ∥ . . . ∥K

∗(k)
in ), from which A can recover the session-key K∗ corresponding to C∗ by

computing K∗ = LSBk(G(K
∗
in)). The probability that A succeeds in recovering the session key

K∗ corresponding to C∗ (and thus breaks even the one-wayness of Γ ′ under CCA) is exactly the
probability that Find(1k) succeeds, which is overwhelming. ⊓⊔ (Theorem 5)

E Other Miscellaneous Proofs and Facts

E.1 Proof of Lemma 2: Q ⊆ P

Fix n ∈ N. We will show that for any f ∈ Qn, it holds that f ∈ Pn. To this end, fix arbitrarily
a function f ∈ Qn. By definition of Qn, there exist n functions f1, . . . , fn : {0, 1}n → {0, 1} such
that f(x) = (f1(x)∥ . . . ∥fn(x)) holds for all x ∈ {0, 1}n, and f1, . . . , fn satisfy the “no duplicated
quoting” condition (Equation (1)), namely, there exist no indices i, i′, j ∈ [n] such that fi = fi′ =
quotej and i ̸= i′.

In the following, we show that there exists a corresponding function f̂ ∈ Pn that satisfies
f̂(x) = f(x) for every x ∈ {0, 1}n. Recall that all functions in Pn have corresponding bitwise
tampering functions f̂1, . . . , f̂n ∈ FBIT and a permutation π : [n] → [n]. Thus, below we show a
procedure for specifying such f̂1, . . . , f̂n and π, thereby construct f̂ ∈ Pn:

1. Let QUOTING := {i|fi ∈ {quotej}j∈[n]} and QUOTED := {j|∃i ∈ [n] : fi = quotej}. (Intuitively,
QUOTING is the subset of [n] indicating the positions in the output of f that quote one of the
positions in the input. On the other hand, QUOTED is the subset of [n] indicating the positions
in the input to f that are quoted in one of the output bits of f . Note that |QUOTING| = |QUOTED|
holds, because there are no positions i, i′, j ∈ [n] such that fi = fi′ = quotej and i ̸= i′.)

2. Initialize a function π, whose domain is [n], such that π(i) := ⊥ for all i ∈ [n]. (In the following
steps, π will be made a permutation over [n].)

3. For every i ∈ QUOTING, define π−1(i) := j where j is such that fi = quotej . (Note that due to
the “no duplicated quoting” condition (Equation (1)), such j is unique for every i ∈ QUOTING.
At this point, only the mapping from QUOTED to QUOTING is defined in π.)

4. Let ϕ : [n]\QUOTING → [n]\QUOTED be any injection, and define π−1(i) = ϕ(i) for every i ∈
[n]\QUOTING. (At this point, π becomes a permutation over [n].)

5. For every i ∈ [n], define f̂i ∈ FBIT as follows:

f̂i :=


forward if fπ(i) ∈ {quotej}j∈[n]
set if fπ(i) = one

reset if fπ(i) = zero

. (13)

6. Let f̂ : {0, 1}n → {0, 1}n be the function that is defined using f̂1, . . . , f̂n and π as follows:

f̂(x) :=
(
f̂π−1(1)(xπ−1(1)) ∥ . . . ∥ f̂π−1(n)(xπ−1(n))

)
, (14)

where x = (x1∥ . . . ∥xn) ∈ {0, 1}n.
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The above completes the procedure for defining f̂ . By definition, we have f̂ ∈ P.
We now show that f and f̂ are equivalent as a function. i.e. f(x) = f̂(x) for every x ∈ {0, 1}n:

Let x = (x1∥ . . . ∥xn) ∈ {0, 1}n. Then, for each i ∈ [n]:

– If fi = one, then Equation (13) guarantees that f̂π−1(i) = set, and thus the i-th bit of f̂(x) is

f̂π−1(i)(xπ−1(i)) = set(xπ−1(i)) = 1 = one(x) = fi(x).

– If fi = zero, then Equation (13) guarantees that f̂π−1(i) = reset, and thus the i-th bit of f̂(x)

is f̂π−1(i)(xπ−1(i)) = reset(xπ−1(i)) = 0 = zero(x) = fi(x).

– If fi = quotej for some j ∈ [n], then Equation (13) guarantees f̂π−1(i) = forward and the step

3 of the above procedure guarantees π−1(i) = j, which in turn imply that the i-th bit of f̂(x)
is f̂π−1(i)(xπ−1(i)) = forward(xj) = xj = quotej(x) = fi(x).

Put everything together, for all x ∈ {0, 1}n, we have f(x) = f̂(x). Since f̂ ∈ Pn, we have f ∈ Pn.
We have seen that for every n ∈ N, any function f ∈ Qn also belongs to Pn, and hence it follows

that Qn ⊆ Pn for every n ∈ N, which in turn implies Q ⊆ P. ⊓⊔ (Lemma 2)

E.2 Proof of Lemma 4: w(R)NM-DCCA Security and Randomness-Inextractability of
ΠHYB

Regarding the “non-malleability” notions, it is indeed straightforward to see that if Π is wNM-DCCA
secure and E is CCA secure, then the detectable PKE scheme ΠHYB is wNM-DCCA secure, with essen-
tially the same proof as the proof of the CCA security for ordinary hybrid encryption by Cramer
and Shoup [8]. Thus, here we provide a proof for the (perhaps) less straightforward statement: If
Π is wRNM-DCCA secure and E is CCA secure, then the detectable PKE scheme ΠHYB is wRNM-DCCA
secure. (It turns out that it is somewhat complicated due to the “replayable” nature of wRNM-DCCA
security.)

After it, we provide a proof for the randomness-inextractability of ΠHYB.

Proof for wRNM-DCCA Security. We will show that for any PPTA adversary A that attacks the
wRNM-DCCA security of ΠHYB, there exist PPTAs Bp and Be such that

AdvwRNM-DCCAΠHYB,A (k) ≤ 2 · 2−k + 2 · AdvwRNM-DCCAΠ,Bp (k) + AdvCCAE,Be(k). (15)

We show this via a sequence of games.

Fix any PPTA adversary A that attacks the wRNM-DCCA security of ΠHYB. Consider the following
sequence of games: (Here, the values with asterisk (*) represent those related to A’s challenge
ciphertext.)

Game 1: This is the experiment ExptwRNM-DCCAΠHYB,A (k) itself. For defining the subsequent games, we

make Game 1 pick a string K̂ ∈ {0, 1}k uniformly at random at the beginning of the game.
(This value does not appear in A’s view in Game 1, and thus does not affect A’s behavior at
all.)

Game 2: Same as Game 1, except that the final output C ′ = (c′, ĉ′) of A2 is processed (and the
result m′ is input to A3) as follows:

1. K ′ ← Dec(sk, c′)
2. If K ′ = ⊥ then return m′ ← ⊥ (and the following steps are not performed).
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3. m′ ←


same if K ′ = K̂ ∧ ĉ′ = ĉ∗

SDec(K∗, ĉ′) if K ′ = K̂ ∧ ĉ′ ̸= ĉ∗

SDec(K ′, ĉ′) if K ′ ̸= K̂

4. If m′ ∈ {m0,m1} then m′ ← same.
5. Return m′.

Game 3: Same as Game 2, except that c∗ is generated by “c∗ ← Enc(pk, K̂),” instead of “c∗ ←
Enc(pk,K∗).”

The above completes the description of the games. For i ∈ [3], let Si be the event that in Game i,
A succeeds in guessing the challenge bit (i.e. b′ = b occurs).

By definition, A’s wRNM-DCCA advantage can be calculated as follows:

AdvwRNM-DCCAΠHYB,A (k) = 2 ·
∣∣∣Pr[S1]− 1

2

∣∣∣ ≤ 2 ·
∑
i∈[2]

∣∣∣Pr[Si]− Pr[Si+1]
∣∣∣+ 2 ·

∣∣∣Pr[S3]− 1

2

∣∣∣. (16)

It remains to show the upperbound of each term that appears in the right hand side of the above
inequality.

Claim 21 |Pr[S1]− Pr[S2]| ≤ 2−k.

Proof of Claim 21. Note that the difference between Game 1 and Game 2 is only in how the
ciphertext C ′ = (c′, ĉ′) that is finally output by A2 is processed. More specifically, these games differ
only if Dec(sk, c′) = K ′ = K̂ holds. Therefore, the difference |Pr[S1]−Pr[S2]| can be upperbounded
by the probability that A2 finally outputs such a ciphertext in Game 1. However, K̂ is chosen
uniformly at random from {0, 1}k, and is information-theoretically hidden from A’s view in Game 1.
Thus, the probability that A2’s final output C ′ = (c′, ĉ′) satisfies Dec(sk, c′) = K̂ is at most 2−k.
Therefore, we have |Pr[S1]− Pr[S2]| ≤ 2−k. ⊓⊔ (Claim 21)

Claim 22 There exists a PPTA Bp such that AdvwRNM-DCCAΠ,Bp (k) = |Pr[S2]− Pr[S3]|.

Proof of Claim 22. Using A as a building block, we show how to construct a PPTA adversary Bp
that attacks the wRNM-DCCA security of the underlying detectable PKE scheme Π with the claimed
advantage. The description of Bp = (Bp1,Bp2,Bp3) is as follows:

BDec(sk,·)
p1 (pk): Bp1 runs (m0,m1, st) ← A1(pk), where Bp2 answers A1’s decryption queries in a

straightforward manner using its own decryption oracle Dec(sk, ·). Then, Bp1 picks K∗, K̂ ∈
{0, 1}k uniformly at random, sets M1 ← K∗, M0 ← K̂, and stB ← (Bp1’s entire view), and
terminates with output (M0,M1, stB).

BDec(sk,·)
p2 (stB, c

∗): Bp2 picks a fair coin b ∈ {0, 1}, and then runs ĉ∗ ← SEnc(K∗,mb). Then, Bp2
sets C∗ ← (c∗, ĉ∗), and runs A2(st, C

∗).
Bp2 answers the decryption queries from A2 by using its own decryption oracle Dec(sk, ·). Here,
note that A2’s queries C = (c, ĉ) must satisfy FHYB(pk,C

∗, C) = F(pk, c∗, c) = 0, and thus Bp2
never falls into the situation in which it has to submit prohibited decryption queries c satisfying
F(pk, c∗, c) = 1.
When A2 terminates with output (C ′ = (c′, ĉ′), st′), B2 sets st′B ← (Bp2’s entire view). Then,
A2 outputs (c′, st′B) if c

′ ̸= c∗ or (⊥, st′B) otherwise, and terminates.
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Bp3(st′B,M ′): (where M ′ = same or M ′ = Dec(sk, c′)) If c′ = c∗, then Bp3 sets M ′ ← same. Then,
depending on the value of M ′, Bp3 proceeds as follows:
– If M ′ = ⊥, then Bp3 sets m′ ← ⊥.
– If M ′ = same and ĉ∗ = ĉ′, then Bp3 sets m′ ← same.
– If M ′ = same and ĉ∗ ̸= ĉ′, then Bp3 computes m′ ← SDec(K∗, ĉ′).
– Otherwise (i.e.M ′ /∈ {⊥, same}), Bp3 interpretsM ′ as the decryption resultK ′ = Dec(sk, c′) ∈
{0, 1}k, and computes m′ ← SDec(K ′, ĉ′).

Then, if m′ ∈ {m0,m1}, then Bp3 sets m′ ← same. Finally, Bp3 runs b′ ← A3(st
′,m′), and

terminates with output γ′ ← (b′
?
= b).

The above completes the description of Bp. Note that Bp2 never submits a prohibited decryption
query c such that F(pk, c∗, c) = 1. Furthermore, Bp2’s final output c′ is guaranteed to be distinct
from c∗.

Let γ ∈ {0, 1} be Bp’s challenge bit. Bp’s wRNM-DCCA advantage is estimated as follows:

AdvwRNM-DCCAΠ,Bp (k) = 2 ·
∣∣∣Pr[γ′ = γ]− 1

2

∣∣∣ = ∣∣∣Pr[γ′ = 1|γ = 1]− Pr[γ′ = 1|γ = 0]
∣∣∣

=
∣∣∣Pr[b′ = b|γ = 1]− Pr[b′ = b|γ = 0]

∣∣∣.
It is not hard to see that if γ = 1, then Bp simulates Game 2 perfectly for A so that A’s

challenge bit is b. Specifically, in this case c∗ is an encryption of K∗, which is exactly how it is
generated in Game 2. A2’s decryption queries are perfectly answered using Bp2’s decryption oracle.
We argue that A2’s final output C

′ = (c′, ĉ′) is processed in exactly the same way as that in Game
2. To see this, if M ′ ̸= same (which means M ′ /∈ {K∗, K̂}), then Bp3 computes m′ in the same

way as in Game 2.; If M ′ = K̂, then m′ is also computed as in Game 2.; If M ′ = K∗,14 then
we have two subcases: (1) If ĉ∗ = ĉ′, then it is guaranteed that SDec(K∗, ĉ′) = mb ∈ {m0,m1},
and thus setting m′ ← same directly is the correct behavior of Game 2. (2) If ĉ∗ ̸= ĉ′, then the
step “m′ ← SDec(K∗, ĉ′)” correctly computes m′ = SDec(K ′, ĉ′). Therefore, A2’s final output C ′

is processed in exactly the same way as that in Game 2. This means that the probability that
b′ = b occurs is exactly the same as the probability that A succeeds in guessing the challenge bit
in Game 2, i.e. we have Pr[b′ = b|γ = 1] = Pr[S2].

When γ = 0, on the other hand, Bp simulates Game 3 perfectly for A so that A’s challenge bit

is b. In particular, in this case, c∗ is an encryption of K̂, and this is the only difference from the
case γ = 1. Therefore, with essentially the same argument as the above, we have Pr[b′ = b|γ = 0] =
Pr[S3].

In summary, we have AdvwRNM-DCCAΠ,Bp (k) = |Pr[S2]− Pr[S3]|, as required. ⊓⊔ (Claim 22)

Claim 23 There exists a PPTA Be such that AdvCCAE,Be(k) = 2 · |Pr[S3]− 1/2|.

Proof of Claim 23. Using A as a building block, we show how to construct a PPTA adversary Be
that attacks the CCA security of the SKE scheme E with the claimed advantage. The description of
Be = (Be1,Be2) is as follows:

Be1(1k): Be1 runs (pk, sk)← PKG(1k) and (m0,m1, st)← ADecHYB(sk,·)
1 (pk), sets stB ← (Be1’s entire view),

and terminates with output (m0,m1, stB).

14 This case includes the case of c′ = c∗, because c∗ is an encryption of K∗.
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BSDec(K∗,·)
e2 (stB, ĉ

∗): (where K∗ denotes the key in Be’s CCA experiment) Be2 picks K̂ ∈ {0, 1}k

uniformly at random, and computes c∗ ← Enc(pk, K̂). Then, Be2 sets C∗ ← (c∗, ĉ∗), and runs
A2(st, C

∗).

Be2 answers A’s decryption queries as the decryption oracle in Game 3 does, which is possible
because Be2 possesses sk.

When A2 terminates with output (C ′ = (c′, ĉ′), st′), Be2 computes K ′ ← Dec(sk, c′), and pro-
ceeds as follows:

– If K ′ = ⊥, then Be2 sets m′ ← ⊥.
– If K ′ = K̂ and ĉ′ = ĉ, then Be2 sets m′ ← same.
– If K ′ = K̂ and ĉ′ ̸= ĉ, then Be2 submits ĉ′ to its own decryption oracle SDec(K∗, ·), and

receives the result m′.

– Otherwise (i.e. K ′ /∈ {⊥, K̂}), Be2 computes m′ ← SDec(K ′, ĉ′).

Then, if m′ ∈ {m0,m1}, then Be2 sets m′ ← same. Finally, Be2 runs b′ ← A3(st
′,m′), and

terminates with output b′.

The above completes the description of Be. Note that Be submits at most one decryption query
(and thus it is in fact an adversary against the 1-bounded CCA security [7] of E), and never submits
a prohibited decryption query ĉ∗.

Let b ∈ {0, 1} be Be’s challenge bit. It is easy to see that Be simulates Game 3 perfectly for A so
that A’s challenge bit is that of Be’s. In particular, the final output C ′ = (c′, ĉ′) of A2 is processed
in exactly the same way as that in Game 3. Therefore, the probability that b′ = b occurs in the
experiment simulated by Be is exactly the same as the probability that A succeeds in guessing the
challenge bit in Game 3, i.e. we have Pr[b′ = b] = Pr[S3]. Thus, we have

AdvCCAE,Be(k) = 2 ·
∣∣∣Pr[b′ = b]− 1

2

∣∣∣ = 2 ·
∣∣∣Pr[S3]− 1

2

∣∣∣.
⊓⊔ (Claim 23)

Claims 21 to 23 and Equation (16) guarantee that there exist PPTAs Bp and Be satisfying
Equation (15). Hence, we have shown that if Π is wRNM-DCCA secure and E is CCA secure, then ΠHYB

is wRNM-DCCA secure.

Proof for Randomness-Inextractability. Let A be any PPTA adversary that attacks the
randomness-inextractability of ΠHYB. Using A as a building block, we show how to construct a
PPTA adversary B that attacks the randomness-inextractability of the underlying detectable PKE
scheme Π. The description of B = (B1,B2) is as follows:

B1(1k): B1 picks K∗ ∈ {0, 1}k uniformly at random, sets stB ← (B1’s entire view), and terminates
with output (K∗, stB).

BDec(sk,·)
2 (stB, pk, c

∗): B2 runs (m, st) ← A1(1
k) and ĉ∗ ← SEnc(K∗,m), sets C∗ ← (c∗, ĉ∗), and

then runs A2(st, pk, C
∗).

B2 answers A2’s decryption queries by using B2’s own decryption oracle in a straightforward
manner.

When A2 terminates with output (m′, R′ = (r′,K ′)) where (r′,K ′) ∈ {0, 1}ℓ × {0, 1}k, B2
outputs (K ′, r′), and terminates.
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KKGCKN(1
k) :

(pk, sk)← PKG(1k)
Return (pk, sk).

EncapCKN(pk;R) :

Parse R as (r, s) ∈ {0, 1}ℓ × {0, 1}k.
c← Enc(pk, s; r)
α← G(s)
Parse α as (Km,K)

∈ {0, 1}k × {0, 1}n.
τ ← Mac(Km, c)
C ← (c, τ)
Return (C,K).

DecapCKN(sk, C) :
(c, τ)← C
s← Dec(sk, c)
If s = ⊥ then return ⊥.
α← G(s)
Parse α as (Km,K)

∈ {0, 1}k × {0, 1}n.
If MVer(Km, c, τ) = ⊤
then return K else return ⊥.

FCKN(pk, C
∗, C′) :

(c∗, τ∗)← C∗

(c′, τ ′)← C′

Return F(pk, c∗, c′).

Fig. 11. The CKN construction ΓCKN: A method for converting a wRNM-DCCA secure detectable PKE scheme Π into a
wNM-DCCA secure detectable KEM, using a MACM and a PRG G as additional building blocks.

The above completes the description of B. It is easy to see that B perfectly simulates the randomness-
inextractability experiment forA. Furthermore, ifA succeeds in violating the randomness-inextractability
of ΠHYB, then it holds that F(pk, c∗,Enc(pk,K ′; r′)) = 1, which is exactly the condition of making
B’s randomness-inextractability experiment output 1. This means that we have

AdvR-InextΠ,B (k) = AdvR-InextΠHYB,A (k).

Since Π is assumed to be randomness-inextractable, the above equality shows that AdvR-InextΠHYB,A (k) is
negligible. Since the choice ofA was arbitrary, for any PPTAA we can show a negligible upperbound
on AdvR-InextΠHYB,A (k). This means that ΠHYB satisfies randomness-inextractability. ⊓⊔ (Lemma 4)

E.3 From wRNM-DCCA Secure Detectable PKE to wNM-DCCA Secure Detectable KEM

In this section, we explain that the method by Canetti, Krawczyk, and Nielsen [4] for converting a
replayable CCA secure PKE scheme into a CCA secure detectable KEM using a MAC, can be used for
converting a wRNM-DCCA secure detectable PKE scheme into a wNM-DCCA secure KEM as well. Fur-
thermore, the transformation also preserves the unpredictability and randomness-inextractability.

More precisely, we show how to construct a wNM-DCCA secure detectable KEM (with unpre-
dictability) from a wRNM-DCCA secure detectable PKE scheme (with unpredictability), a strongly
one-time secure MAC, and a PRG.

Formally, the construction is as follows: Let n = n(k) be a positive polynomial. Let Π =
(PKG,Enc,Dec,F) be a detectable PKE scheme such that the randomness space of Enc is {0, 1}ℓ
for some polynomial ℓ = ℓ(k). Furthermore, let M = (Mac,MVer) be a MAC, and G : {0, 1}k →
{0, 1}k+n be a PRG.15 Then, we construct a detectable KEM ΓCKN = (KKGCKN,EncapCKN,DecapCKN,
FCKN), which we call the CKN construction, as described in Fig. 11. In the figure, we make the ran-
domness R used by EncapCKN explicit so that it is convenient to consider randomness-inextractability.
The session-key space of ΓCKN is {0, 1}n, and the randomness space of EncapCKN is {0, 1}ℓ+k.

The security properties of ΓCKN are guaranteed by the following lemmas.

Lemma 10. Assume that the detectable PKE scheme Π is wRNM-DCCA secure, the MACM is SOT
secure, and G is a PRG. Then, the detectable KEM ΓCKN in Fig. 11 is wNM-DCCA secure.

Lemma 11. Assume that the detectable PKE scheme Π satisfies unpredictability. Then, the de-
tectable KEM ΓCKN in Fig. 11 also satisfies unpredictability.

15 The formal definition of a MAC can be found in Appendix A.2.
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Lemma 12. Assume that the detectable PKE scheme Π satisfies randomness-inextractability. Then,
the detectable KEM ΓCKN in Fig. 11 also satisfies randomness-inextractability.

In the following, we first show the proof of Lemma 10, next the proof of Lemma 11, and finally the
proof of Lemma 12.

Proof of Lemma 10. We will show that for any PPTA adversary A that attacks the wNM-DCCA

security of the detectable KEM ΓCKN, there exist PPTAs Bp, Bg, and Bm, such that

AdvwNM-DCCAΓCKN,A (k) ≤ 2 ·
(
2−k + AdvwRNM-DCCAΠ,Bp (k) + AdvPRGG,Bg(k) + AdvSOTM,Bm(k)

)
. (17)

To this end, fix arbitrarily a PPTA A = (A1,A2) that attacks the wNM-DCCA security of ΓCKN.
Consider the following sequence of games: (Here, the values with asterisk (*) represent those related
to A’s challenge ciphertext.)

Game 1: This is the wNM-DCCA experiment ExptwNM-DCCAΓCKN,A (k) itself. For defining the subsequent

games, we make the experiment pick a random value s′ ∈ {0, 1}k at the beginning of the
game. (Since s′ does not appear in A’s view in Game 1, it does not affect A’s behavior at all.)

Game 2: Same as Game 1, except that the decapsulation result K ′ (which is input to A2) of the
ciphertext C ′ = (c′, τ ′) (which is finally output by A1) is computed by:

K ′ ←


DecapCKN(sk, C

′) if Dec(sk, c′) ̸= s′

K∗1 if Dec(sk, c′) = s′ and MVer(K∗m , c
′, τ ′) = ⊤

⊥ if Dec(sk, c′) = s′ and MVer(K∗m , c
′, τ ′) = ⊥

.

Game 3: Same as Game 2, except that the information of s∗ is erased from c∗, and instead s′

is encrypted. More precisely, in Game 3, c∗ is computed by “c∗ ← Enc(pk, s′),” instead of
“c∗ ← Enc(pk, s∗).”

Game 4: Same as Game 3, except that K∗m ∈ {0, 1}k and K∗1 ∈ {0, 1}n are picked uniformly at
random, independently of s∗.

Game 5: Same as Game 4, except that the decapsulation result K ′ (which is input to A2) of the
ciphertext C ′ = (c′, τ ′) (which is finally output by A1) is computed as follows:

K ′ ←

{
DecapCKN(sk, C

′) if Dec(sk, c′) ̸= s′

⊥ if Dec(sk, c′) = s′

For i ∈ [5], let Si be the event that in Game i, A succeeds in guessing b (i.e. b′ = b occurs).

By definitions of the events and applying the triangle inequality, A’s wNM-DCCA advantage can
be estimated as follows:

AdvwNM-DCCAΓCKN,A (k) = 2 ·
∣∣∣Pr[S1]− 1

2

∣∣∣ ≤ 2 ·
∑
i∈[4]

∣∣∣Pr[Si]− Pr[Si+1]
∣∣∣+ 2 ·

∣∣∣Pr[S5]− 1

2

∣∣∣. (18)

In the following we upperbound of each term that appears in the right hand side of the above
inequality.

Claim 24 |Pr[S1]− Pr[S2]| ≤ 2−k.
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Proof of Claim 24. The difference between Game 1 and Game 2 is only in how the ciphertext
C ′ = (c′, τ ′) (which is finally output by A1) satisfying Dec(sk, c′) = s′ is decapsulated. Therefore,
the difference between Pr[S1] and Pr[S2] is upperbounded by the probability that A1 outputs such a
ciphertext in Game 1. However, s′ is chosen uniformly at random from {0, 1}k, and is information-
theoretically hidden from A1 in Game 1. Hence, the probability that A1 outputs such a ciphertext
is upperbounded by 2−k. ⊓⊔ (Claim 24)

Claim 25 There exists a PPTA Bp such that AdvwRNM-DCCAΠ,Bp (k) = |Pr[S2]− Pr[S3]|.

Proof of Claim 25. Using A as a building block, we show how to construct a PPTA adversary Bp
that attacks the wRNM-DCCA security of the detectable PKE scheme Π with the claimed advantage.
The description of Bp = (Bp1,Bp2,Bp3) is as follows:

BDec(sk,·)
p1 (pk): Bp1 picks s∗, s′ ∈ {0, 1}k uniformly at random, sets M0 ← s′, M1 ← s∗, and stB ←
(Bp1’s entire view), and terminates with output (M0,M1, stB).

BDec(sk,·)
p2 (stB, c

∗): Bp2 computes α∗ ← G(s∗), parses α∗ as (K∗m ,K
∗
1 ) ∈ {0, 1}k × {0, 1}n, and then

computes τ∗ ← Mac(K∗m , c
∗). Next, Bp2 picks K∗0 ∈ {0, 1}n and b ∈ {0, 1} uniformly at random.

Then, Bp2 sets C∗ ← (c∗, τ∗), and runs A1(pk, C
∗,K∗b ).

Bp2 answers A1’s decapsulation queries C = (c, τ) by executing DecapCKN(SK,C), where Bp2
uses its own decryption oracle as a substitute for Dec(sk, ·). (Note that here, by the rule of the
wNM-DCCA experiment, A1’s decapsulation queries C = (c, τ) satisfy FCKN(pk, C

∗, C) = 0, which
is equivalent to F(pk, c∗, c) = 0, and hence Bp2 need not submit prohibited queries c satisfying
F(pk, c∗, c) = 1 to Bp2’s own decryption oracle.)
When A1 terminates with output (C ′ = (c′, τ ′), st), Bp2 sets c′′ ← c′ if c′ ̸= c∗, or sets c′′ ← ⊥
otherwise. Bp2 also prepares st′B ← (Bp2’s entire view). Finally, Bp2 terminates with output
(c′′, st′B).

Bp3(st′B,m′′): Bp3 checks if c′ = c∗ or m′′ = same. If this is the case, then Bp3 computes

K ′ ←

{
K∗1 if MVer(K∗m , c

′, τ ′) = ⊤
⊥ otherwise

.

Otherwise (i.e. c′ ̸= c∗ and m′′ ̸= same), Bp3 interprets m′′ as s′ = Dec(sk, c′), and computes
the decapsulation result K ′ of C ′ by performing the remaining procedure of DecapCKN(sk, C

′).

Finally, Bp3 runs b′ ← A2(st,K
′), and terminates with output γ′ ← (b′

?
= b).

The above completes the description of Bp. Note that Bp2 never submits a prohibited decryption
query c such that F(pk, c∗, c) = 1 to its decryption oracle, and the ciphertext c′ finally output by
Bp2 is guaranteed to be distinct from Bp’s challenge ciphertext c∗.

Let γ ∈ {0, 1} be Bp’s challenge bit. Note that Bp3 outputs γ′ = 1 only when b′ = b occurs.
Therefore, Bp’s wRNM-DCCA advantage can be calculated as follows:

AdvwRNM-DCCAΠ,Bp (k) = 2 ·
∣∣∣Pr[γ′ = γ]− 1

2

∣∣∣ = ∣∣∣Pr[γ′ = 1|γ = 1]− Pr[γ′ = 1|γ = 0]
∣∣∣

=
∣∣∣Pr[b′ = b|γ = 1]− Pr[b′ = b|γ = 0]

∣∣∣.
We argue that if γ = 1, then Bp simulates Game 2 perfectly for A. Specifically, if γ = 1, then c∗

is an encryption of s∗, and thus A’s challenge ciphertext C∗ = (c∗, τ∗) is computed in exactly the
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same way as that in Game 2. Furthermore, Bp’s response to A1’s decryption queries is perfect due to
the use of Bp’s decryption oracle. Finally, the decapsulation result K ′ of the ciphertext C ′ = (c′, τ ′)
that is finally output by A1 is also computed in exactly the same way as it is done in Game 2.
To see this, note that if c′ = c∗ or m′′ = same, then it is guaranteed that Dec(sk, c′) ∈ {s∗, s′}.
Correspondingly, if Dec(sk, c′) ∈ {s∗, s′}, then Game 2 computes K ′ by

K ′ ←

{
K∗1 if MVer(K∗m , c

′, τ ′) = ⊤
⊥ otherwise

.

(In particular, if C ′ = (c′, τ ′) satisfies Dec(sk, c′) = s∗, then DecapCKN(sk, C
′) computes α∗ =

(K∗m∥K∗1 ) ← G(s∗), and hence outputs K∗1 or ⊥ depending on the result of MVer(K∗m , c
′, τ ′).) Fur-

thermore, if c′ ̸= c∗ and m′′ ̸= same, then it holds that K ′ = DecapCKN(sk, C
′), and thus K ′ is

computed identically by Bp3 as in Game 2. Therefore, Bp3 inputs a correct decapsulation result
K ′ into A2. Under this situation, the probability that b′ = b occurs in the experiment simu-
lated by Bp is exactly the same as the probability that A succeeds in guessing b, i.e. we have
Pr[b′ = b|γ = 1] = Pr[S2].

On the other hand, when γ = 0, Bp simulates Game 3 perfectly for A. Specifically, if γ = 0, then
c∗ is an encryption of s′, which is exactly how c∗ is computed in Game 3. The rest is unchanged from
the case of γ = 1. Hence, with a similar argument to the above, we have Pr[b′ = b|γ = 0] = Pr[S3].

In summary, we have AdvwRNM-DCCAΠ,Bp (k) = |Pr[S2]− Pr[S3]|. ⊓⊔ (Claim 25)

Claim 26 There exists a PPTA Bg such that AdvPRGG,Bg(k) = |Pr[S3]− Pr[S4]|.

Proof of Claim 26. Using A as a building block, we show how to construct a PPTA distinguisher
Bg for the PRG G with the claimed advantage. The description of Bg is as follows:

Bg(1k, α∗): (where α∗ ∈ {0, 1}k+n) Bg first parses α∗ as (K∗m ,K
∗
1 ) ∈ {0, 1}k × {0, 1}n, and picks

s′,K∗0 ∈ {0, 1}k and b ∈ {0, 1} uniformly at random. Bg next computes (pk, sk) ← PKG(1k),
c∗ ← Enc(pk, s′), and τ∗ ← Mac(K∗m , c

∗). Then, Bg sets C∗ ← (c∗, τ∗), and runs (C ′, st) ←
ADecapCKN(sk,·)

1 (pk,C∗,K∗b ). Bg decapsulates C ′ in exactly the same way as Game 3 does, and

obtains K ′. Then, Bg runs b′ ← A2(st,K
′), and terminates with output (b′

?
= b).

The above completes the description of Bg. Note that Bg outputs 1 only when b′ = b occurs.
It is easy to see that if α∗ is an output of the PRG G (for some uniformly chosen seed), then

Bg simulates Game 3 perfectly for A, where the seed used for computing α∗ is regarded as s∗ in
Game 3. Hence, the probability that b′ = b occurs (and hence Bg outputs 1) is exactly the same as
the probability that it occurs in Game 3, i.e. we have Prs∗←{0,1}k; α∗←G(s∗)[Bg(1k, α∗) = 1] = Pr[S3].

On the other hand, if α∗ is a random (k+n)-bit string, then Bg simulates Game 4 perfectly for
A. With a similar argument to the above, we have Prα∗←{0,1}k+n [Bg(1k, α∗)] = Pr[S4].

In summary, we have

AdvPRGG,Bg(k) =
∣∣∣ Pr
s∗←{0,1}k; α∗←G(s∗)

[Bg(1k, α∗) = 1]− Pr
α∗←{0,1}k+n

[Bg(1k, α∗) = 1]
∣∣∣

=
∣∣∣Pr[S3]− Pr[S4]

∣∣∣.
⊓⊔ (Claim 26)
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Claim 27 There exists a PPTA Bm such that AdvSOTM,Bm(k) ≥ |Pr[S4]− Pr[S5]|.

Proof of Claim 27. For i ∈ {4, 5}, let Bi be the event that in Game i, the ciphertext C ′ = (c′, τ ′)
which is finally output by A1 satisfies the conditions Dec(sk, c′) = s′ and MVer(K∗m , c

′, τ ′) = ⊤.
Note that Game 4 and Game 5 can differ only when B4 or B5 occurs in the corresponding games.
(If the ciphertext C ′ finally output by A1 never satisfies the above conditions, then Game 4 and
Game 5 compute the decapsulation result K ′ in exactly the same way, and hence these games
proceed identically.) Therefore, we have

|Pr[S4]− Pr[S5]| ≤ Pr[B4] = Pr[B5].

We show that using A as a building block, we can construct a PPTA adversary Bm that attacks
the SOT security of the MAC M with advantage AdvSOTM,Bm(k) ≥ Pr[B5], which, combined with the
above inequality, proves the claim. The description of Bm = (Bm1,Bm2) is as follows:

Bm1(1k): Bm1 picks s′ ∈ {0, 1}k uniformly at random, and runs (pk, sk) ← PKG(1k) and c∗ ←
Enc(pk, s′). Then Bm1 sets M ← c∗ and stB ← (Bm1’s entire view), and terminates with output
(M, stB).

Bm2(stB, τ∗): Bm2 picks K∗ ∈ {0, 1}k uniformly at random, sets C∗ ← (c∗, τ∗), and runs (C ′ =

(c′, τ ′), st) ← ADecapCKN(sk,·)
1 (pk, C∗,K∗). Finally, Bm2 sets M ′ ← c′, and terminates with output

(M ′, τ ′).

The above completes the description of Bm. Note that it is guaranteed that (M, τ∗) ̸= (M ′, τ ′),
because we set M = c∗ and M ′ = c′, and A1’s output C

′ = (c′, τ ′) always satisfies C∗ = (c∗, τ∗) ̸=
(c′, τ ′) = C ′ according to the rule of the wNM-DCCA experiment.

Let K ∈ {0, 1}k be the key chosen in Bm’s SOT experiment. Then, it is straightforward to see that
Bm simulates Game 5 perfectly for A1 by regarding K as K∗m in Game 5. Therefore, the probability
that MVer(K,M ′, τ ′) = ⊤ and (M ′, τ ′) ̸= (M, τ∗) occur (and hence Bm’s SOT experiment outputs
1) is at least Pr[B5]. That is, we have AdvSOTM,Bm(k) ≥ Pr[B5], as required. ⊓⊔ (Claim 27)

Claim 28 Pr[S5] = 1/2.

Proof of Claim 28. In Game 5, both K∗1 and K∗0 are chosen uniformly at random, and the results of
the decapsulation oracle and the decapsulation result K ′ of C ′ do not reveal any information of the
challenge bit b. Therefore, A’s view is identical regardless of b, which means that b is information-
theoretically hidden from A’s view. Therefore, the probability that A succeeds in guessing b is
exactly 1/2. ⊓⊔ (Claim 28)

Claims 24 to 28 and Equation (18) guarantee that there exist PPTAs Bp, Bg, and Bm, satis-
fying Equation (17). This, combined with our assumptions on the building blocks, implies that
AdvwNM-DCCAΓCKN,A (k) is negligible. Since the choice of the PPTA adversary A was arbitrarily, for any
PPTA wNM-DCCA adversary A we can show that its advantage is negligible. Hence, ΓCKN is wNM-DCCA
secure. ⊓⊔ (Lemma 10)
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Proof of Lemma 11. Let A be any PPTA adversary that attacks the unpredictability of the
detectable KEM ΓCKN. By definition, A’s unpredictability advantage is calculated as follows:

AdvUNPΓCKN,A(k) = Pr[(pk, sk)← KKGCKN(1
k); C ′ = (c′, τ ′)← ADecapCKN(sk,·)(pk);

(C∗ = (c∗, τ∗),K∗)← EncapCKN(pk) : FCKN(pk, C
∗, C ′) = 1]

= Pr[(pk, sk)← PKG(1k); C ′ = (c′, τ ′)← ADecapCKN(sk,·)(pk);

s∗ ← {0, 1}k; c∗ ← Enc(pk, s∗) : F(pk, c∗, c′) = 1].

With this in mind, using A as a building block, we show how to construct a PPTA adversary B
that attacks the unpredictability of the detectable PKE scheme Π with advantage AdvUNPΠ,B(k) =

AdvUNPΓCKN,A(k), which implies the lemma. The description of B is as follows:

BDec(sk,·)(pk): B runs A(pk). B answers the decapsulation queries from A in a straightforward
manner by using B’s own decryption oracle Dec(sk, ·). When A terminates with output C ′ =
(c′, τ ′), B picks s∗ ∈ {0, 1}k uniformly at random, and terminates with output (s∗, c′) (where s∗

is regarded as a plaintext of Π).

The above completes the description of B. Note that B perfectly simulates the unpredictability
experiment (regarding the detectable KEM ΓCKN) for A. In particular, B can perfectly respond to
A’s decapsulation queries by using B’s own decryption oracle.
B’s unpredictability advantage is calculated as follows:

AdvUNPΠ,B(k) = Pr[(pk, sk)← PKG(1k); (s∗, c′)← BDec(sk,·)(pk);

c∗ ← Enc(pk, s∗) : F(pk, c∗, c′) = 1]

= Pr[(pk, sk)← PKG(1k); C ′ = (c′, τ ′)← ADecapCKN(sk,·)(pk);

s∗ ← {0, 1}k; c∗ ← Enc(pk, s∗) : F(pk, c∗, c′) = 1],

and the rightmost is exactly AdvUNPΓCKN,A(k) as we showed above. That is, we have AdvUNPΠ,B(k) =

AdvUNPΓCKN,A(k), which, by our assumption that Π satisfies unpredictability, implies that AdvUNPΓCKN,A(k)
is negligible. Since the choice of A was arbitrarily, for any PPTA adversary A we can show a
negligible upperbound on AdvUNPΓCKN,A(k). Hence, ΓCKN satisfies unpredictability. ⊓⊔ (Lemma 11)

Proof of Lemma 12. Let A be any PPTA adversary that attacks the randomness-inextractability
of the detectable KEM ΓCKN.

By definition, A’s randomness-inextractability advantage is calculated as follows:

AdvR-InextΓCKN,A (k)

= Pr[(pk, sk)← KKGCKN(1
k); (C∗,K∗)← EncapCKN(pk); R′ ← ADecapCKN(sk,·)(pk, C∗,K∗);

(C ′,K ′)← EncapCKN(pk;R
′) : FCKN(pk, C

∗, C ′) = 1]

= Pr[(pk, sk)← PKG(1k); s∗ ← {0, 1}k; c∗ ← Enc(pk, s∗); (K∗m ,K
∗)← G(s∗); τ∗ ← Mac(K∗m , c

∗);

C∗ ← (c∗, τ∗); R′ = (r′, s′)← ADecapCKN(sk,·)(pk, C∗,K∗); c′ ← Enc(pk, s′; r′) : F(pk, c∗, c′) = 1].

With this in mind, using A as a building block, we show how to construct a PPTA adversary
B that attacks the randomness-inextractability of the detectable PKE scheme Π with advantage
AdvR-InextΠ,B (k) = AdvR-InextΓCKN,A (k), which implies the lemma. The description of B = (B1,B2) is as
follows:
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B1(1k): B1 picks s∗ ∈ {0, 1}k uniformly, sets stB ← (B1’s entire view), and terminates with output
(s∗, stB).

BDec(sk,·)
2 (stB, pk, c

∗): B2 computes (K∗m ,K
∗) ← G(s∗) (where K∗m ∈ {0, 1}k and K∗ ∈ {0, 1}n) and

τ∗ ← Mac(K∗m , c
∗), sets C∗ ← (c∗, τ∗), and then runs A(pk, C∗,K∗). B2 answers the decapsula-

tion queries from A in a straightforward manner by using B2’s own decryption oracle Dec(sk, ·).
When A terminates with output R′ = (r′, s′), B2 terminates with output (s′, r′) where s′ is
viewed as a plaintext for Π.

The above completes the description of B. Note that B simulates the randomness-inextractability
experiment (regarding the detectable KEM ΓCKN) for A perfectly. In particular, B can perfectly
respond to A’s decapsulation queries by using B’s own decryption oracle.
B’s randomness-inextractability advantage is calculated as follows:

AdvR-InextΠ,B (k)

= Pr[(s∗, stB)← B1(1k); (pk, sk)← PKG(1k); c∗ ← Enc(pk, s∗); (s′, r′)← BDec(sk,·)
2 (stB, pk, c

∗);

c′ ← Enc(pk, s′; r′) : F(pk, c∗, c′) = 1]

= Pr[(pk, sk)← PKG(1k); s∗ ← {0, 1}k; c∗ ← Enc(pk, s∗); (K∗m ,K
∗)← G(s∗); τ∗ ← Mac(K∗m , c

∗);

C∗ ← (c∗, τ∗); R′ = (r′, s′)← ADecapCKN(sk,·)(pk, C∗,K∗); c′ ← Enc(pk, s′; r′) : F(pk, c∗, c′) = 1],

and the rightmost is exactly AdvR-InextΓCKN,A (k) as we showed above. That is, we have AdvR-InextΠ,B (k) =

AdvR-InextΓCKN,A (k), which, by our assumption that Π satisfies randomness-inextractability, implies that

AdvR-InextΓCKN,A (k) is negligible. Since the choice of A was arbitrarily, for any PPTA adversary A we can

show a negligible upperbound on AdvR-InextΓCKN,A (k). Hence, ΓCKN satisfies randomness-inextractability.
⊓⊔ (Lemma 12)
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