
A construction of 3-dimensional lattice sieve for
number field sieve over GF(pn)⋆

Kenichiro Hayasaka1, Kazumaro Aoki2, Tetsutaro Kobayashi2, and Tsuyoshi Takagi3

Mitsubishi Electric, Japan
NTT Secure Platform Laboratories, Japan

Kyushu University, Japan

Abstract. The security of pairing-based cryptography is based on the hardness of
solving the discrete logarithm problem (DLP) over extension field GF(pn) of char-
acteristic p and degree n. Joux et al. proposed an asymptotically fastest algorithm
for solving DLP over GF(pn) (JLSV06-NFS) as the extension of the number field
sieve over prime field GF(p) (JL03-NFS). The lattice sieve is often used for a large-
scaled experiment of solving DLP over GF(p) by the number field sieve. Franke and
Kleinjung proposed a 2-dimensional lattice sieve which efficiently enumerates all the
points in a given sieve region of the lattice. However, we have to consider a sieve
region of more than 2 dimensions in the lattice sieve of JLSV06-NFS. In this paper,
we extend the Franke-Kleinjung method to 3-dimensional sieve region. We construct
an appropriate basis using the Hermite normal form, which can enumerate the points
in a given sieve region of the 3-dimensional lattice. From our experiment on GF(p12)
of 303 bits, we are able to enumerate more than 90% of the points in a sieve region
in the lattice generated by special-q. Moreover, we implement the number field sieve
using the proposed 3-dimensional lattice sieve. Our implementation of the JLSV06
over GF(p6) of 240 bits is about as efficient as that of the current record over GF(p6)
using 3-dimensional line sieve by Zajac.

1 Introduction

Let GF(pn) be a finite field of characteristic p and extension degree n. The security of pairing-
based cryptography is based on the hardness of the discrete logarithm problem (DLP) over
finite field GF(pn). Recently the complexity of solving the DLP over finite field of small
characteristic p has been improved substantially [8, 1]. Thus we are interested in the pairing
constructed over finite field of large characteristic in this paper. For example, the optimal
ate pairing [21] that uses BN curves [3] and the Tate pairing that uses MNT curves [15] are
two efficient classes of computing paring. The security of pairing-based cryptography using
these pairings is based on the DLP over finite field GF(pn) of n = 12 and n = 6, respectively.

The number field sieve proposed by Joux et al. at CRYPTO ’06 (JLSV06-NFS) [10] is the
asymptotically fastest algorithm to solve DLP over GF(pn) whose characteristic p is large
with respect to extension degree n. JLSV06-NFS is the extension of the number field sieve
over a prime field GF(p) (JL03-NFS) [9] to an extension field GF(pn). In order to efficiently
implement the number field sieve, we deploy a sieve technique such as the line sieve and the
lattice sieve [17]. Recent experiments of JL03-NFS such as [11] show that the lattice sieve
is more efficient for a large-scaled implementation to solve the DLP over prime field GF(p).

Franke and Kleinjung proposed an excellent algorithm which can effectively enumerate
all the points in a sieve region of 2-dimensional lattice [5, 12]. The Franke-Kleinjung method

constructs an appropriate basis (u
(0)
0 , u

(0)
1 )T, (u

(1)
0 , u

(1)
1 )T of the 2-dimensional lattice by the

⋆ This work was carried out, when the first author was in the Graduate School of Mathematics,
Kyushu University. The preliminary work [7] of this paper was published at the Computer Security
Symposium, CSS 2014, held on October 22-24, 2014.



continued fraction expansion, which satisfies three conditions A1: |u(1)
0 | < I and |u(0)

0 | <
I, A2: |u(0)

0 − u
(1)
0 | ≥ I, A3: u

(0)
1 > 0 and u

(1)
1 > 0, where I is a bound of the sieve

region. Interestingly, we can exhaustively enumerate all the points of the lattice region in

the ascending order of v-coordinate just by repeatedly adding (u
(0)
0 , u

(0)
1 ) or (u

(1)
0 , u

(1)
1 ). On

the other hand, in the lattice sieve of JLSV06-NFS over extension field GF(pn), we have
to consider the lattice sieve of more than 2 dimensions in general. However, the Franke-
Kleinjung method is restricted to the lattice of 2 dimensions due to its construction using
the continued fraction expansion.

In this paper, we propose an extension of the Franke-Kleinjung method to 3-dimensional
case. We classify the basis of a 3-dimensional lattice generated from special-q by Hermite
normal form. There are three different classes. The first one is an orthogonal basis, and
we simply apply the line sieve in this lattice. The second one contains a two-dimensional
orthogonal projection that satisfies the above Conditions A1, A2 and A3, so that we are able
to do the Franke-Kleinjung method of 2 dimensions to this lattice. The third one is a non-
trivial case. We give the following conditions as a natural extension of the Franke-Kleinjung

method. Indeed we constructs a basis u(0) = (u
(0)
0 , u

(0)
1 , u

(0)
2 )T, u(1) = (u

(1)
0 , u

(1)
1 , u

(1)
2 )T,

u(2) = (u
(2)
0 , u

(2)
1 , u

(2)
2 )T of the 3-dimensional lattice, which satisfies four conditions:

B1: |u(a)
0 | < I and |u(a)

1 | < I for a = 0, 1, 2,

B2: |u(b)
0 − u

(c)
0 | ≥ I or |u(b)

1 − u
(c)
1 | ≥ I for all pairwise differences (b, c) ∈ {0, 1, 2}2,

B3: u
(0)
2 ≥ 0 and u

(1)
2 ≥ 0 and u

(2)
2 ≥ 0 and u

(0)
2 + u

(1)
2 + u

(2)
2 ̸= 0.

B4: |i0u(0)
0 + i1u

(1)
0 + i2u

(2)
0 | ≥ I or |i0u(0)

1 + i1u
(1)
1 + i2u

(2)
1 | ≥ I, if one of i0, i1, i2 ∈ Z is

negative and the others are positive or equal to 0,

where I is a bound of the sieve region. We present an algorithm that generates the basis that
satisfies the above conditions assuming such a basis exists. Here we also propose an explicit
algorithm that the points in the sieve region can be enumerated in the ascending order of

u2-coordinate just by repeatedly adding (u
(0)
0 , u

(0)
1 , u

(0)
2 ), (u

(1)
0 , u

(1)
1 , u

(1)
2 ), or (u

(2)
0 , u

(2)
1 , u

(2)
2 ).

Then we prove that all the points of the sieve region can be exhaustively enumerated by the
proposed explicit algorithm.

In general the above conditions are not fulfilled in all lattices generated from special-q,
namely Condition B4 is not achieved due to some exceptional points in some lattices. Indeed,
our experiment on GF(p12) of 303 bits shows that we can generate the basis that satisfies the
conditions with a probability of about 74% over 8,000 prime ideals on 10 special-qs. However,
our experiment in the same field using the proposed explicit algorithm confirms that we can
enumerate more than 90% of points in a sieve region of 3-dimensional lattices generated
from the same special-qs, even though the basis does not satisfy the above conditions. From
the proposed basis we are able to enumerate almost all the points in a sieve region of 3-
dimensional lattice efficiently.

Finally, we compare the running time of our lattice sieve that uses the extension of
Franke-Kleinjung method with the current record of GF(p6) of 240 bits by Zajac [22].

This paper is organized as follows. In Section 2 we give a short overview of the number
field sieve. Section 3 describes the line sieve and lattice sieve in multi-dimensions. In Section
4 we explained the lattice sieve proposed by Franke and Kleinjung. In Section 5 we propose
an extension of Franke-Kleinjung method to the 3-dimensional lattice. Section 6 presents
some data in our experiment on the number field sieve using the proposed lattice sieve. In
Section 7 we state the concluding remarks and future works.



2 The number field sieve over GF(pn) (JLSV06-NFS)

In this section, we describe an outline of the number field sieve over an extension field
GF(pn) proposed by Joux et al. [10] (JLSV06-NFS) that contains a sieve step implemented
with the lattice sieve we focus in this paper.

In the polynomial selection step of JLSV06-NFS, we choose two irreducible polynomials
f1, f2 ∈ Z[X] s.t. f1 ̸= f2, deg f1 = n, f1 are irreducible in GF(p) and f1|f2 (mod p). Such
a polynomial f2 can be generated by adding p to f1. Then there exists a common root v
of f1(X) = 0 and f2(X) = 0 in GF(pn). Denote by α1, α2 ∈ C a root of f1(X) = 0 and
f2(X) = 0, respectively. We also denote by O1 and O2 the ring of integers of the number
fields Q(α1) and Q(α2), respectively. For the orders Z[α1] ⊆ O1 and Z[α2] ⊆ O2, there are
homomorphism maps ϕi : Z[αi]→ GF(pn), αi 7→ v (i = 1, 2).

In the sieve step, we try to find many relations arisen from both O1 and O2. In the
beginning of this step, we choose the smoothness bound B1, B2 ∈ R>0 and an integer t ≥ 1.
For the above polynomials f1, f2 and a column vector a = (a0, a1, . . . , at)

T ∈ Zt+1, we

define the norm of a for fi as Ni (a) = Ni

(∑t
j=0 ajα

j
i

)
= |Res(

∑t
j=0 ajX

j , fi(X))|, where
Res(f, g) denotes the resultant of two polynomials f and g ∈ Z[X].

Let the factor bases B1,B2 be

Bi =

 (q, g)

∣∣∣∣∣∣
q : prime, q ≤ Bi,
g : irreducible monic polynomial in GF(q)[X],

g | fi mod q, deg g ≤ t}

 (i = 1, 2).

We call a hit tuple a = (a0, a1, . . . , at)
T ∈ Zt+1 if a satisfies following conditions: N1 (a)

is B1-smooth, N2 (a) is B2-smooth and
∑t

j=0 ajX
j is irreducible in Z[X]. A hit tuple a has a

property (
∑t

j=0 ajα
j
i )Oi =

∏
qi,j∈Bi

q
εi,j
i,j for i = 1 and 2, where εi,j is the exponent that we

can compute from the prime decomposition of Ni (a) =
∏

q:prime,q≤Bi
qeq for q ∤ [Oi : Z[αi]].

From homomorphism maps ϕ1, ϕ2 and a hit tuple a, we obtain the following relation of
the discrete logarithm

∑
q1,j∈B1

εi,j log ϕ1(q1,j) +

r1∑
j=1

λi,j logΛ1,j ≡

∑
q2,j∈B2

εi,j log ϕ2(q2,j) +

r2∑
j=1

λi,j logΛ2,j (mod pn − 1),

where log ϕi(qi,j) and logΛi,j are called the virtual logarithms [9, 20], λi,j is the character
map proposed by Schirokauer [19] and ri is the torsion-free rank of Oi for i = 1, 2.

Let Ha ⊂ Zt+1 be the (t + 1)-dimensional sieve region. In the sieve step, we find more
than ♯B1 + ♯B2 + 2n hit tuples a in Ha.

Finally, in the linear algebra step, we compute log ϕi(qi,j), logΛi,j (mod pn − 1) by
solving the linear system consists of the relations.

3 Sieve in multi-dimensions

In the following we describe how to find relations of JLSV06-NFS using the line sieve and
the lattice sieve in multi-dimensions discussed by Zajac in [23, 6].



3.1 Line sieve in multi-dimensions

In the sieve method, we search hit tuples a = (a0, a1, . . . , at)
T whose norm Ni (a) is divisible

by qdeg g for all q = (q, g) ∈ Bi. Note that we have relationship

g(X)

∣∣∣∣∣
t∑

j=0

ajX
j mod q ⇒ qdeg g | Ni (a) . (1)

In the following we describe how to find the polynomials that satisfies the sufficient condition
in (1), namely polynomials

∑t
j=0 ajX

j divisible by g(X) mod q.

Let Id be an identity matrix of size d× d. The set of all polynomials
∑t

j=0 ajX
j in Z[X]

of degree less than or equal to t that is divisible by g(X) mod q is generated by the integer
linear combination of the columns of the following matrix of size (t+ 1)× (t+ 1):

g0 0

qIdeg g

...
. . . g0

...
. . .

...

gdeg g

. . .
...

0
. . .

...
0 gdeg g


, (2)

where g0, . . . , gdeg g are the coefficient of the polynomial g(X) =
∑deg g

j=0 gjX
j , respectively.

Denote by Mq the Hermite normal form of this matrix, i.e.,

Mq =

(
qIdeg g Tq

0 It−deg g+1

)
, (3)

where Tq is an integer matrix whose size is deg g × (t− deg g + 1). Therefore we obtain the
relationship

(a0, a1, . . . , adeg g−1)
T ≡ Tq (adeg g, adeg g+2, . . . , at+1)

T mod q

for polynomial
∑t

j=0 ajX
j divisible by g(X) mod q. We namely can find the hit tuple a =

(a0, a1, . . . , at)
T by repeatedly adding q to each entry of vector (a0, a1, . . . , adeg g−1)

T.

3.2 Lattice sieve in multi-dimensions

The lattice sieve tries to find a candidate of hit tuples in the lattice whose points are divisible
by q ∈ Bi (i = 1, 2) (called special-q).

Let r = (r, h) ∈ Bi(i = 1, 2) be a different element from q, and we define Mr and Tr be
the matrix generated by the same method of Equation (3), where Mr and Tr are integer
matrices whose sizes are (t + 1) × (t + 1) and deg h × (t − deg h + 1), respectively. Then
we have the relationship (a0, a1, . . . , adeg h−1)

T ≡ Tr (adeg h, adeg h+2, . . . , at+1)
T mod r for

polynomial
∑t

j=0 ajX
j divisible by h(X) mod r.

Next, let MLLL
q be the matrix generated by LLL reduction algorithm [14] from Mq of

Equation (3). We decompose the (t+1)×(t+1) matrix MLLL
q into the deg h×(t+1) matrix

MLLL
q,1 and the (t− deg h+ 1)× (t+ 1) matrix MLLL

q,2 as follows:

MLLL
q =

(
MLLL

q,1

MLLL
q,2

)
. (4)



Fig. 1. An example of an enumeration of lattice points with the generated basis u(0),u(1) by the
Franke-Kleinjung method on 2 dimensions

Then the solution x ∈ Zt+1 of (MLLL
q,1 − Tr MLLL

q,2 )x ≡ 0 (mod r) becomes a hit tuple in the
lattice whose points divisible by q. We denote by Mq,r the matrix whose columns are the
basis of kernel of the linear map (MLLL

q,1 − Tr MLLL
q,2 ) (mod r), then Mq,r becomes a matrix

of size (t + 1) × (t + 1). The basis of Mq,r can be generated by the algorithm proposed by
Hayasaka et al. [6].

In the lattice sieve we run the points on lattice Mq,r in the sieve region Hc ⊂ Zt+1

(c-space):

Hc = {(c0, c1, . . . , ct)T ∈ Zt+1 | −I/2 ≤ ci < I/2 (i = 0, 1, · · · , t− 1), 0 ≤ ct < J},

where I, J ∈ Z>0 and I is even. I, J are called the bound of sieve region. One of the main
operations in the lattice sieve is to enumerate the points in the sieve region Hc of lattice
Mq,r.

4 The Franke-Kleinjung method in 2 dimensions

In this section, we explain how to efficiently enumerate the points in the two-dimensional
lattice proposed by Franke and Kleinjung [5].

Let L2
q,r be the two-dimensional lattice generated by M2

q,r defined in Section 3.2 for the

case of 2 dimension i.e. t = 1. Let u(0) = (u
(0)
0 , u

(0)
1 )T,u(1) = (u

(1)
0 , u

(1)
1 )T be the basis of

L2
q,r. Let H2

c be the sieve region such that

H2
c = {(c0, c1)T ∈ Z2 | −I/2 ≤ c0 < I/2, 0 ≤ c1 < J},

where I, J ∈ Z>0 and I is even.
The Franke-Kleinjung method enumerates the points in sieve region H2

c by a special
basis u(0),u(1) of lattice L2

q,r, which has the following good properties (See Figure 1 for

an example: u(1) = (27, 1)T and u(0) = (−47, 2)T with I = 64). (1) We can exhaustively
compute all the points in H2

c ∩L2
q,r by adding vector u(0), u(1), or u(0)+u(1) recursively. (2)

The second coordinate of the points in sieve region H2
c ∩L2

q,r generated by the enumeration
algorithm is monotonically increasing. Indeed we have the following theorem. We also show
a proof which will be extended to the case of 3 dimensions in the proposed method in Section
5.

Theorem 1 ((Franke-Kleinjung [5])). We assume that the basis u(0) = (u
(0)
0 , u

(0)
1 )T,u(1) =

(u
(1)
0 , u

(1)
1 )T of lattice L2

q,r satisfies the following conditions:



A1: |u(0)
0 | < I and |u(1)

0 | < I, A2: |u(0)
0 − u

(1)
0 | ≥ I, A3: u

(0)
1 > 0 and u

(1)
1 > 0.

Let p = (p0, p1)
T, q = (q0, q1)

T be points in H2
c ∩ L2

q,r. If q1 > p1 holds, then q =

p+ iu(0) + ju(1) satisfies i ≥ 0, j ≥ 0 and i+ j ̸= 0.

Proof. From p,q ∈ L2
q,r, then we have q = p + iu(0) + ju(1), q0 = p0 + iu

(0)
0 + ju

(1)
0 and

q1 = p1 + iu
(0)
1 + ju

(1)
1 .

At first, both i = 0 and j = 0 can not be satisfied due to q1 > p1. If i = 0 and j ̸= 0

hold, then we obtain 0 < q1 − p1 = ju
(1)
1 and thus j > 0 from Condition A3. The assertion

of the theorem is derived. Similarly, if i ̸= 0 and j = 0 hold, then the theorem holds.
Next, we assume i ̸= 0 and j ̸= 0. We will prove that i > 0 and j > 0 hold under the

assumption of q1 > p1 and p,q ∈ H2
c , i.e., −I/2 ≤ p0 < I/2 and −I/2 ≤ q0 < I/2. At first,

if i < 0 and j < 0 hold, then we have iu
(0)
1 + ju

(1)
1 < 0 from Condition A3. However, it

contradicts from the assumption of q1 > p1 due to q1− p1 = iu
(0)
1 + ju

(1)
1 . Next, we consider

the case that i and j have the different sign. Note that if u
(0)
0 and u

(1)
0 satisfy Conditions

A1 and A2, then u
(0)
0 u

(1)
0 < 0 holds. From u

(0)
0 u

(1)
0 < 0, we know that iu

(0)
0 and ju

(1)
0 have

the same sign and |u(0)
0 |+ |u

(1)
0 | = |u

(0)
0 − u

(1)
0 |. Then we obtain |q0 − p0| = |iu(0)

0 + ju
(1)
0 | =

|iu(0)
0 |+ |ju

(1)
0 | ≥ |u

(0)
0 |+ |u

(1)
0 | = |u

(0)
0 −u

(1)
0 | ≥ I from Condition A2. However, it contradicts

|q0 − p0| < I from the assumption of p,q ∈ H2
c .

In the following, we denote byMFK2
q,r the basis (u(0),u(1)) that satisfies Conditions A1, A2

and A3 in Theorem 1. Franke and Kleinjung showed that the basis that satisfies Conditions
A1, A2 and A3 in Theorem 1 can be generated by the continued fraction method shown in
Algorithm 1.

From Theorem 1 Franke-Kleinjung proved the following theorem [5]. We also show the
proof which is extended to the case of 3-dimensions.

Theorem 2. Let u(0) = (u
(0)
0 , u

(0)
1 )T,u(1) = (u

(1)
0 , u

(1)
1 )T be the basis of MFK2

q,r . Let p =
(p0, p1),q = (q0, q1) be points in H2

c ∩ L2
q,r. If q1 is the smallest among all the points whose

second coordinate is larger than p1, then q is one of the points p + u(0), p + u(1), or
p+ u(0) + u(1).

Proof. From Theorem 1, we know that all the points, whose second coordinate is larger than
p1 in H2

c ∩L2
q,r, can be obtained by repeatedly adding u(0) or u(1). Every time we add point

u(0) or v, then the second coordinate of the resulting point becomes larger from Condition
A3. At first note that if p+u(0) is contained in H2

c , then p+u(1) ̸∈ H2
c holds from Condition

A2. Therefore, if p+u(0) ∈ H2
c holds, then the second coordinate of p+u(0) is the smallest

among all points whose second coordinate is larger than p1 in H2
c ∩ L2

q,r. Similarly, we can

prove the case of p+ u(1) ∈ H2
c . Finally, if both p+ u(1) and p+ u(0) are not contained in

H2
c , then p + u(0) + u(1) ∈ H2

c from Condition A2. Therefore either p + u(0), p + u(1), or
p+ u(0) + u(1) is contained in H2

c ∩ L2
q,r.

From this monotonically increasing property, we can enumerate all the points in H2
c∩L2

q,r

by Algorithm 2.
We stress that the Franke-Kleinjung method for M2

q,r is not required in some cases. The
Hermite normal form (HNF) of the basis of M2

q,r in Section 3.2 becomes one of the following:

Cases 1 :

(
r z
0 1

)
, 2 :

(
r 0
0 1

)
, 3 :

(
1 0
0 r

)
where z ∈ Z>0, z < r. The basis is orthogonal in Cases 2 and 3, and thus we can use the
line sieve on c-space. Therefore we only deal with Case 1 where r > I for the lattices sieve.



Algorithm 1 : Generation of basis MFK2
q,r of Franke-Kleinjung method

Input: bound of the lattice region I, M2
q,r = (u(0),u(1)) = ((u

(0)
0 , u

(0)
1 )T, (u

(1)
0 , u

(1)
1 )T) =

((r, 0)T, (z, 1)T), where r > I and 0 < z < r (Case 1 of HNF in Section 4)
Output: MFK2

q,r that satisfies Conditions A1, A2 and A3 in Theorem 1

1: u(1) ← u(1) − u(0)

2: while |u(1)
0 | ≥ I do

3: u(0) ← u(0) + au(1), a = ⌊−u(0)
0 /u

(1)
0 ⌋

4: SWAP(u(0),u(1))

5: a← ⌊(|u(0)
0 | − I)/|u(1)

0 |⌋+ 1 /* a is the least positive integer s.t. |u(0)
0 + au

(1)
0 | < I */

6: u(0) ← u(0) + au(1)

7: return MFK2
q,r = (u(0),u(1))

Algorithm 2 : NEXTFK2(I,MFK2
q,r , p)

Input: bound of the lattice region I, MFK2
q,r = (u(0),u(1)) = ((u

(0)
0 , u

(0)
1 )T, (u

(1)
0 , u

(1)
1 )T),

where u
(0)
0 < 0, point p = (p0, p1)

T ∈ L2
q,r ∩H2

c

Output: point q = (q0, q1) s.t. q ∈ L2
q,r ∩H2

c and q1 > p1 and q1 − p1 is the least

1: if −I/2 ≤ p0 + u
(0)
0 then return p+ u(0)

2: if p0 + u
(1)
0 < I/2 then return p+ u(1)

3: return p+ u(0) + u(1)

5 Proposed extension of the Franke-Kleinjung method to 3
dimensions

In this section, we extend the Franke-Kleinjung method of 2 dimensions in Section 4 to that
of 3 dimensions. First we give a classification of matrix M3

q,r by Hermite normal form. We
then explain the conditions for the proposed basis in 3 dimensions and how to generate such
a basis in analogue with Section 4. Finally, we present an enumeration algorithm using the
proposed basis of the 3-dimensional lattice.

5.1 Hermite normal form of M3
q,r

Let L3
q,r be the the 3-dimensional lattice generated by the basis M3

q,r of size 3× 3 in Section
3.2 for the case of t = 2. We classify the HNF matrix M3

q,r to exclude some trivial cases.
The HNF of matrix M3

q,r becomes one of the following:

Cases 1 :

 r z1 z2
0 1 0
0 0 1

 , 2 :

 r z1 0
0 1 0
0 0 1

 , 3 :

 r 0 z2
0 1 0
0 0 1

 , 4 :

 r 0 0
0 1 0
0 0 1

 ,

5 :

1 0 0
0 r z2
0 0 1

 , 6 :

1 0 0
0 r 0
0 0 1

 , 7 :

1 0 0
0 1 0
0 0 r

 ,

8 :

 r 0 z1
0 r z2
0 0 1

 , 9 :

 r 0 0
0 r z2
0 0 1

 , 10 :

 r 0 z1
0 r 0
0 0 1

 , 11 :

 r 0 0
0 r 0
0 0 1

 ,

12 :

 r z1 0
0 1 0
0 0 r

 , 13 :

 r 0 0
0 1 0
0 0 r

 , 14 :

1 0 0
0 r 0
0 0 r

 .



Fig. 2. An example of an enumeration of lattice points with the generated basis u(0),u(1) and u(2)

by the proposed Franke-Kleinjung method on 3 dimensions

where z1, z2 ∈ Z>0, z1, z2 < r.
The basis is orthogonal in Cases 4, 6, 7, 11, 13 and 14, and thus we can efficiently use the

line sieve on c-space. Moreover, Cases 2, 3, 5, 9, 10, and 12 contain an orthogonal subspace
spanned by the 2-dimensional basis of the Franke-Kleinjung type which are colored by gray.
We use the line sieve on the non-colored vector and the 2-dimensional Franke-Kleinjung
method for its orthogonal projection. Consequently, we have to consider an HNF matrix
M3

q,r that corresponds to one of the Case 1 and 8 in the following.

5.2 The proposed conditions for M3
q,r

In this section we extend the conditions of Theorem 1 used in the Franke-Kleinjung method
to the lattice of 3 dimensions, and then present how to generate the proposed basis.

Let H3
c be the sieve region in Z3 such that

H3
c = {(c0, c1, c2)T ∈ Z3 | −I/2 ≤ ci < I/2 (i = 0, 1), 0 ≤ c1 < J},

where I, J ∈ Z>0 is a bound of lattice region and I is even. Our proposed enumeration
algorithm can generate all the points in sieve region H3

c if we generate an appropriate basis

u(0) = (u
(0)
0 , u

(0)
1 , u

(0)
2 )T, u(1) = (u

(1)
0 , u

(1)
1 , u

(1)
2 )T and u(2) = (u

(2)
0 , u

(2)
1 , u

(2)
2 )T of lattice

L3
q,r with the following properties (See Figure 2 for an example: u(0) = (22, 39, 1)T, u(1) =

(−63,−12, 7)T, and u(2) = (45,−49, 11)T with I = 64). (1) We can exhaustively compute all
the points in H3

c ∩ L3
q,r by adding the linear combination of u(0), u(1) and u(2), recursively.

(2) The third coordinate of the points in sieve region H3
c∩L3

q,r generated by the enumeration
algorithm is monotonically increasing. Indeed we can prove the following theorem.

Theorem 3. We assume that the basis u(0) = (u
(0)
0 , u

(0)
1 , u

(0)
2 )T, u(1) = (u

(1)
0 , u

(1)
1 , u

(1)
2 )T,

u(2) = (u
(2)
0 , u

(2)
1 , u

(2)
2 )T of lattice L3

q,r satisfies the following conditions:

B1: |u(a)
0 | < I and |u(a)

1 | < I for a = 0, 1, 2,

B2: |u(b)
0 − u

(c)
0 | ≥ I or |u(b)

1 − u
(c)
1 | ≥ I for all pairwise differences (b, c) ∈ {0, 1, 2}2,

B3: u
(0)
2 ≥ 0 and u

(1)
2 ≥ 0 and u

(2)
2 ≥ 0 and u

(0)
2 + u

(1)
2 + u

(2)
2 ̸= 0.

B4: |i0u(0)
0 + i1u

(1)
0 + i2u

(2)
0 | ≥ I or |i0u(0)

1 + i1u
(1)
1 + i2u

(2)
1 | ≥ I, if one of i0, i1, i2 ∈ Z is



negative and the others are positive or equal to 0.
Let p = (p0, p1, p2)

T, q = (q0, q1, q2)
T be points in H3

c ∩ L3
q,r with p ̸= q. If q2 ≥ p2 holds,

then q = p + j0u
(0) + j1u

(1) + j2u
(2) satisfies (j0 ≥ 0, j1 ≥ 0, j2 ≥ 0 and j0 + j1 + j2 ̸= 0)

or (j0 ≤ 0, j1 ≤ 0, j2 ≤ 0 and j0 + j1 + j2 ̸= 0).

Proof. From p,q ∈ L3
q,r, then we have relation q = p + j0u

(0) + j1u
(1) + j2u

(2), qk =

pk+j0u
(0)
k +j1u

(1)
k +j2u

(2)
k for j0, j1, j2 ∈ Z and k = 0, 1, 2. Moreover, from −I/2 ≤ pk < I/2

and −I/2 ≤ qk < I/2 for k = 0, 1, then we have |qk − pk| < I for k = 0, 1.
First of the proof, we prove the theorem in the cases of q2 > p2. We first consider the

case that some coefficients j0, j1, j2 are equal to zero. At first j0 = j1 = j2 = 0 can not be

satisfied due to q2 > p2. If j0 = 0, j1 = 0 and j2 ̸= 0 hold, then we obtain 0 < q2−p2 = j2u
(2)
2

and thus j2 > 0 from Condition B3. The assertion of the theorem is derived. Similarly, two
of coefficients j0, j1, j2 are zero, the theorem holds. If we assume that one of coefficients
j0, j1, j2 is zero. In the case of j0 ̸= 0, j1 ̸= 0 and j2 = 0. From Conditions B1 and B2.

there exists k ∈ {0, 1} s.t. u(0)
k u

(1)
k < 0. For such k, if j0 and j1 have different sign, we have

|j0u(0)
k − j1u

(1)
k | > I in the same manner of Theorem 1. Then, it contradicts |qk − pk| < I

for k = 0, 1. On the other hand, if j0 < 0 and j1 < 0 holds, we have j0u
(0)
2 + j1u

(1)
2 ≤ 0

from Condition B3. Then, it contradicts q2 > p2. Similarly, we can prove that the theorem
holds in the case of (j0 ̸= 0, j1 = 0, j2 ̸= 0) or (j0 = 0, j1 ̸= 0, j2 ̸= 0). Next, we consider
the case of j0 ̸= 0, j1 ̸= 0, and j2 ̸= 0. We will prove that j0 > 0, j1 > 0 and j2 > 0 hold
under the assumption of Condition B4, q2 > p2, and p,q ∈ H3

c , i.e., −I/2 ≤ pk < I/2
and −I/2 ≤ qk < I/2 for k = 0, 1. Recall that Condition B4 assume that |u0| ≥ I or
|u1| ≥ I for (u0, u1, u2)

T = i0u
(0)+ i1u

(1)− i2u
(2) (i0, i1, i2 ∈ Z>0). At first, if j0 < 0, j1 < 0

and j2 < 0 hold, then we have j0u
(0)
2 + j1u

(1)
2 + j2u

(2)
2 < 0 from Condition B3. However,

it contradicts from the assumption of q2 > p2 due to q2 − p2 = j0u
(0)
2 + j1u

(1)
2 + j2u

(2)
2 .

Next, we assume that one of j0, j1, j2 is negative. Here we show the case of j0 < 0, j1 > 0
and j2 > 0 (the other cases can be obtained similarly). From Condition B4, we know that

|j0u(0)
0 + j1u

(1)
0 + j2u

(2)
0 | ≥ I or |j0u(0)

1 + j1u
(1)
1 + j2u

(2)
1 | ≥ I holds. However, it contradicts

|q0 − p0| < I and |q1 − p1| < I from the assumption of p,q ∈ H3
c . Finally, if one of j0, j1, j2

is negative, then we can show a contradiction using Condition B4 in the same manner.

In the following, we prove the case of q2 = p2. First, we consider the case that some
coefficients j0, j1, j2 are equal to zero. From p ̸= q and q2 = p2 we know that p0 ̸= q0 or
p1 ̸= q1. At first j0 = j1 = j2 = 0 can not be satisfied due to q0 ̸= p0 or q1 ̸= p1. Second,
if two of coefficients j0, j1, j2 are zero, the theorem holds. Third, if we assume that one of
coefficients j0, j1, j2 is zero. We can prove that the theorem in the same manner of the case of
q2 > p2. Next, we consider the case of j0 ̸= 0, j1 ̸= 0 and j2 ̸= 0. At first we assume that two
of j0, j1, j2 are negative. Here we show the case of j0 < 0, j1 > 0 and j2 > 0 (the other cases

can be obtained similarly). From Condition B4, we know that |j0u(0)
0 + j1u

(1)
0 + j2u

(2)
0 | ≥ I

or |j0u(0)
1 + j1u

(1)
1 + j2u

(2)
1 | ≥ I holds. However, it contradicts |q0− p0| < I and |q1− p1| < I

from the assumption of p,q ∈ H3
c . Finally, if one of j0, j1, j2 is negative, then we can show

a contradiction using Condition B4 in the same manner.

We propose an algorithm for generating MFK3
q,r that satisfies Conditions B1, B2, B3 and

B4. Algorithm 3 presents a procedure to transform M3
q,r to MFK3

q,r . In Algorithm 3, we first

reduce u0 and u1-coordinate of u(0),u(1) and u(2) to satisfy Condition B1 as Steps 1-6, and
we adjust the basis in Steps 7 and 8 to satisfy Conditions B2 and B3. We deal with whether
MFK3

q,r generated by Algorithm 3 satisfies Condition B4 in Section 6.1.
In Step 1 of Algorithm 3, we use Algorithm 1 with respect to u0 and u1-coordinate of

u(0),u(1) and u(2), then we have |u(0)
0 |, |u

(1)
0 |, |u

(2)
2 | < I. Note that we don’t need to care the

values |u(0)
2 | and |u

(1)
2 |, since |u

(0)
2 | = |u

(1)
2 | = 0.



Algorithm 3 : Proposed generation of 3-dimensional basis MFK3
q,r

Input: region bound I, integer matrix M3
q,r = (u(0),u(1),u(2)) = ((r, 0, 0)T, (z1, 1, 0)

T, (z2, 0, 1)
T)

s.t. r > I, 0 < z1 < r and 0 < z2 < r (Case 1 of HNF in Section 5.1).
Output: reduced integer matrix MFK3

q,r

1: reduce by Algorithm 1 with respect to u(0),u(1).
2: while |u(2)

1 | ≥ I do
3: RADIATE(u(0),u(1),u(2))

4: if sign(u
(0)
1 ) = sign(u

(1)
1 ) then do REDUCE1(u(0),u(1),u(2))

5: else do REDUCE2(u(0),u(1),u(2))

6: if |u(0)
1 | > |u

(1)
1 | then do SWAP(u(2),u(0)) else do SWAP(u(2),u(1))

7: if ∃a ∈ {0, 1, 2} s.t. u(a)
2 < 0 then u(a) ← −u(a)

8: ADJUST(u(0),u(1),u(2))
9: return MFK3

q,r = (u(0),u(1),u(2))

Algorithm 4 : REDUCE1(u(0),u(1),u(2))

Input: bound of lattice region I, basis u(0),u(1),u(2) of the lattice generated by M3
q,r s.t.

sign(u
(0)
1 ) = sign(u

(1)
1 )

Output: reduced basis u(2) s.t. |u(2)
1 | < |u

(0)
1 | or |u

(2)
1 | < |u

(1)
1 |

1: (x,y)← (u(0),u(1)) /* (x0, x1, x2)← (u
(0)
0 , u

(0)
0 , u

(0)
0 ), (y0, y1, y2)← (u

(1)
0 , u

(1)
0 , u

(1)
0 ) */

2: if x2 > y2 then do SWAP(x,y)
3: else if (x2 = y2) ∧ (x1 > y1) then do SWAP(x,y)
4: while true do
5: while |u(2)

0 + x0| < I do

6: if (|u(2)
1 | < |x1|) ∨ (|u(2)

1 | < I) then return u(2)

7: u(2) ← u(2) + x
8: if (|u(2)

1 | < |y1|) ∨ (|u(2)
1 | < I) then return u(2)

9: u(2) ← u(2) + y
10: return u(2)

In Steps 2-6, we reduce u1-coordinate of u(0),u(1) and u(2) with keeping the condition

of |u(a)
0 | < I, where a = 0, 1 and 2. At first, Step 3 adjusts u(0),u(1) and u(2) to reduce

u(2) by adding u(0) and u(1) with the subroutine RADIATE. The subroutine RADIATE in
Algorithm 6 transforms u(0),u(1) and u(2) to satisfy that the angle between x and y is less
than π, where x and y are any two of u(0),u(1) and u(2).

Second, we generate u(2) s.t. (u
(2)
1 ≤ u

(0)
1 ) ∨ (u

(2)
1 ≤ u

(1)
1 ) ∨ (|u(2)

1 | < I) by adding u(1)

and u(2) in Steps 4 and 5. If sign(u
(0)
1 ) = sign(u

(1)
1 ) holds, we use the subroutine REDUCE1

presented in Algorithm 4, otherwise we use REDUCE2 presented in Algorithm 5. In Step

6, we swap u(2) for u(a) s.t. |u(a)
1 | = max(|u(0)

1 |, |u
(1)
1 |), where a ∈ {0, 1}. From Step 6,

|u(2)
1 | > |u

(0)
1 | and |u

(2)
1 | > |u

(1)
1 | hold at Step 2.

In the following, we explain the subroutine REDUCE1. In Steps 1-3 of REDUCE1, we
select two bases x,y ∈ {u(0),u(1)} s.t. the elements x2 (resp. x1) is less than or equals to y2
(resp. y1). In Steps 5-7, we reduce u

(2)
1 by adding x with keeping |u(2)

0 | < I. If |u(2)
1 | < |x1|

in Step 6, then u(2) satisfies u
(2)
1 ≤ u

(0)
1 or u

(2)
1 ≤ u

(1)
1 . Moreover, if |u(2)

1 | < I holds in

Step 6, we have |u(0)
1 |, |u

(1)
1 | < I, since |u(2)

1 | is the largest in |u(0)
1 |, |u

(1)
1 |, |u

(2)
1 | at beginning

of REDUCE1, namely then Condition B1 is satisfied. Therefore, we return u(2) in Step 6.

Similarly, Steps 8-9 reduce u
(2)
1 by adding y.

In the following, we explain the subroutine REDUCE2. At first, we select two bases x,y ∈
{u(0),u(1)} s.t. sign(x1) = sign(u

(2)
1 ) in Step 1. From sign(x1) ̸= sign(y1) and sign(x1) ̸=

sign(u
(2)
1 ), we have sign(y1) = sign(u

(2)
1 ). Therefore, we are able to reduce u

(2)
1 by adding



Algorithm 5 : REDUCE2(u(0),u(1),u(2))

Input: bound of lattice region I, basis u(0),u(1),u(2) of the lattice generated by M3
q,r u

(0),u(1),u(2)

s.t. sign(u
(0)
1 ) ̸= sign(u

(1)
1 )

Output: reduced basis u(2) s.t. |u(2)
1 | < |u

(0)
1 | or |u

(2)
1 | < |u

(1)
1 |

1: if sign(u
(0)
1 ) ̸= sign(u

(2)
1 ) then x← u(0),y← u(1) else x← u(1),y← u(0)

2: while |u(2)
1 | < I do

3: u(2) ← u(2) + x
4: while |u(2)

0 | ≥ I do
5: u(2) ← u(2) + y
6: if (|u(2)

1 | < |u
(0)
1 |) ∨ (|u(2)

1 | < |u
(1)
1 |) then break

7: return u(2)

Algorithm 6 : RADIATE(u(0),u(1),u(2))

Input: basis u(0),u(1),u(2) of the lattice generated by M3
q,r

Output: basis u(0),u(1),u(2) s.t. the angle of any two of u(0),u(1),u(2) is less than π
1: if IS OPPOSITE(u(0),u(1),u(2)) is true then
2: if IS OPPOSITE(u(1),u(2),u(0)) is false then u(0) ← −u(0)

3: else
4: if IS OPPOSITE(u(1),u(2),u(0)) is true then u(1) ← −u(1) else u(2) ← −u(2)

5: end if
6: return u(0),u(1),u(2)

Algorithm 7 : IS OPPOSITE(u(0),u(1),u(2))

Input: basis u(0),u(1),u(2) of the lattice generated by M3
q,r

Output: true: if the angle between u(0) and u(a) is less than π for a = 1 and 2, false: otherwise.
1: if u

(0)
0 = 0 then

2: if sign(u
(1)
0 ) ̸= sign(u

(2)
0 ) then return true else return false

3: g = u
(0)
1 /u

(0)
0

4: y = gu
(1)
0 − u

(1)
1 , z = gu

(2)
0 − u

(2)
1

5: if sign(y) ̸= sign(z) then return true else return false

only x. In Steps 2-6, we reduce u
(2)
1 by adding x. However, we use y if |u(2)

0 | ≥ I holds

in Steps 4 and 5 to satisfy |u(2)
0 | < I again. If u(2) satisfies the condition in Step 6, the

termination condition of REDUCE2 holds. Therefore, we break while loop in Step 6 and

return u(2). Moreover, from the same reason in REDUCE1, if |u(2)
1 | < I holds in Step 2, we

also break the while loop and return u(2). Therefore, we repeat the procedures in Step 2-6

in Algorithm 3 until |u(2)
1 | < I is satisfied, then we obtain u(0),u(1) and u(2) that satisfy

Condition B1.
Finally, Step 7 of Algorithm 3 negates the bases s.t. u2-coordinate is negative, and Step

8 adjusts u(0),u(1) and u(2) to satisfy Conditions B1 and B2.

5.3 The proposed enumeration algorithm

In this section, we propose an enumeration algorithm which can exhaustively enumerate all
the points in the sieve region H3

c using the basis MFK3
q,r in the previous section.

At first, we give an order to all the points in H3
c ∩L3

q,r using the property of Theorem 3.
Let a,b be two points in H3

c ∩ L3
q,r. From Theorem 3, if the third coordinate of a is equal

to or larger than that of b, then we can write a = b+ j0u
(0) + j1u

(1) + j2u
(2) for integers

j0, j1, j2 that satisfy (j0 ≥ 0, j1 ≥ 0, j2 ≥ 0 and j0 + j1 + j2 ̸= 0) or (j0 ≤ 0, j1 ≤ 0, j2 ≤ 0



Algorithm 8 : ADJUST(u(0),u(1),u(2))

Input: basis u(0),u(1),u(2) of the lattice generated by M3
q,r

Output: basis u(0),u(1),u(2) that satisfies Conditions B1 and B2 in Theorem 3
1: for any two x,y of u(0),u(1) and u(2) do
2: z← x− y /* (z0, z1, z2)← (x0 − y0, x1 − y1, x2 − y2) */
3: if (|z0| < I) ∧ (|z1| < I) then
4: if |x2| ≥ |y2| then x = z else y = z
5: RADIATE(u(0),u(1),u(2))
6: return u(0),u(1),u(2)

Algorithm 9 : NEXTFK3(H3
c,M

FK3
q,r , p)

Input: bound of lattice region I, point p = (p0, p1, p2)
T ∈ L3

q,r ∩H3
c, M

FK3
q,r = (u(0),u(1),u(2))

Output: q = (q0, q1, q2)
T ∈ L3

q,r ∩H3
c, s.t. q2 is the smallest under the condition of q2 > p1

1: while true do
2: r← p /* (r0, r1, r2)← (p0, p1, p2) */
3: while true do
4: s← r /* (s0, s1, s2)← (r0, r1, r2) */
5: while true do
6: s← s+ u(0)

7: if s ∈ H3
c then return s

8: if I/2 ≤ s0 or I/2 ≤ s1 then break
9: r← r+ u(1)

10: if I/2 ≤ r0 or I/2 ≤ r1 then break
11: p← p+ u(2)

and j0+ j1+ j2 ̸= 0). Note that all integers j0, j1, j2 become zero simultaneously, if and only
if a = b holds. Here, we define b ≺ a, if a− b is equal to j0u

(0) + j1u
(1) + j2u

(2) for some
j0 ≥ 0, j1 ≥ 0, j2 ≥ 0. Then, H3

c ∩L3
q,r becomes a totally ordered set by order ≺, and we can

enumerate the points in H3
c ∩ L3

q,r by introducing a product order for the pair (j0, j1, j2) of

j0u
(0)+j1u

(1)+j2u
(2). Here we define the product order (j0, j1, j2) ≤ (j′0, j

′
1, j

′
2) for two pairs

(j0, j1, j2), (j
′
0, j

′
1, j

′
2) ∈ Z2

>0, if and only if j0 ≤ j′0, j1 ≤ j′1 and j2 ≤ j′2 hold. In Algorithm 9,
we show an algorithm for exhaustively enumerating all points in H3

c ∩ L3
q,r. Indeed we can

prove the following theorem.

Theorem 4. Let u(0),u(1),u(2) be the basis of MFK3
q,r . Let p = (p0, p1, p2),q = (q0, q1, q2)

be points in H3
c ∩ L3

q,r. If q2 is the smallest among all the points whose third coordinate is
equal to or larger than that of p2, then q is computed by Algorithm 9.

Proof. From Theorem 3, we know that all the points, whose third coordinate is is equal to
or larger than pw in H3

c ∩ L3
q,r, can be obtained by repeatedly adding u(0),u(1), or u(2).

Every time we add basis u(0),u(1), or u(2) to p, then the third coordinate of the resulting
point becomes equal to or larger than that of p from Condition B3. Note that only one of
p+ u(0), p+ u(1), and p+ u(2) is contained in H3

c ∩ L3
q,r. Therefore, Step 1 checks if there

exists a ∈ {0, 1, 2} s.t. p+ u(a) ∈ Hc, and we return such a point if exists. In Steps 2-6, we
deal with the case of adding more than one basis of u(0),u(1), or u(2) to point p. In this
step, we search the smallest pair (i, j, k) ∈ Z3

>0 in the sense of the above product order that
satisfies p+j0u

(0)+j1u
(1)+j2u

(2) ∈ H3
c. Such a point satisfies the assertion of the theorem.

From Theorem 5.2, we construct an enumeration algorithm for exhaustively enumerating
all the points in H3

c with MFK3
q,r by repeatedly adding u(0),u(1), or u(2).

Example 1. We show an example of the basis of the proposed algorithm. We choose an
extension field GF(pn) of size 303 bits s.t. p = 38486027, n = 12, and choose a polynomial



f1(X) = X12+X2−1. Additionally, for f1, we obtain f2 by adding p to f1 as f2(X) = f1+p.
We take special-q as q = (q, g) = (99989, X + 8368), and the other prime ideal r = (r, h) =
(89107, X + 54851). Then, we compute the basis as the HNF matrix of Mq,Mr as follows:

Mq =

99989 8368 0
0 1 8368
0 0 1

 , Mr =

89107 54851 0
0 1 54851
0 0 1

 .

We obtain the basis ofM3
q,r and the proposed basisMFK3

q,r used for the lattice sieve as follows:

M3
q,r =

89107 27083 −50795
0 1 0
0 0 1

 , MFK3
q,r =

23 −57 35
23 −10 −48
7 28 13

 .

6 Experimental results

In this section, we show some results of experiments on the number field sieve for solving the
discrete logarithm problem using the proposed lattice sieve of 3 dimensions. We focus on the
finite fields of extension degree 6 and 12, which are often used in pairing-based cryptography.

6.1 Experiment on 3-dimensional lattice sieve

In the following, we show some data of the proposed 3-dimensional lattice sieve. We imple-
mented the sieve step of the number field sieve for solving the discrete logarithm problem
over finite field GF(p12). The finite field of extension degree n = 12 is used for efficient
implementation of pairing-based cryptography using BN curves [3].

Table 1. Computational environment in our experiment in Section 6.1

CPU Intel Core i7-3770 3.40 GHz

RAM 8 GBytes

OS Linux (64 bits)

Language C++

Compiler gcc-4.7.2

Library gmp-5.0.5

Table 1 shows the computational environments of our experiment. In order to perform
many experiments in this computational resources, we choose a characteristic p = 38486027
of 26 bits. In the polynomial selection step, we choose a polynomial f1 = x12+x2−1 ∈ Z[X],
which is irreducible in GF(p) and has small coefficients. Then polynomial f2 is chosen as
f2 = f1 + p = x12 + x2 + 38486026.

In our experiment of the 3-dimensional lattice sieve generated by M3
q,r defined in Section

3.2 for the case of t = 2, we set the following parameters. We choose 10 special-qs s.t.
q = (q, g) ∈ B2 from 99871 ≤ q ≤ 99989. The bound of sieve region is I = 2k (k =
7, 8, . . . , 11), J = I/2. We generate prime ideals r = (r, h) ∈ B2 s.t. I < r ≤ 85386 and
deg h = 1. The number of such r is about 8000 for one special-q, namely we deal with about
80000 lattices generated by M3

q,r for one fixed I.
For chosen special-q, I and r, we generate the basis M3

q,r by the proposed generation
algorithm in Section 5. Table 2 shows some probabilities related to the basis M3

q,r in our
experiments. The first column of Table 2 is the number of M3

q,r we generated for each bound



Table 2. Rate of M3
q,r that satisfies Condition B4

I ♯M3
q,r B1, B2, B3, B4 B1, B2, B4 B1, B2, B3

128 84005 62395 (74%) 3724 (4%) 18765 (22%)
256 83865 61717 (73%) 322 (0%) 21918 (26%)
512 83445 55746 (66%) 2 (0%) 27681 (33%)

1024 82645 54204 (65%) 0 (0%) 28425 (34%)
2048 81185 52446 (64%) 0 (0%) 28725 (35%)

I. The second column is the number of M3
q,r that satisfies all conditions in Section 5. The

third column is the number of M3
q,r that does not satisfies only Condition B3. The fourth

column is the number of M3
q,r that does not satisfies only Condition B4. The number of the

other types of the basis is less than 2% among the total number of M3
q,r. About 74% of the

basis M3
q,r fulfill all the conditions for I = 128, namely we are able to compute all the points

in H3
c in the lattice for the basis M3

q,r. If the basis M3
q,r does not fulfill them, Condition B4

is critical for all sieve bound in the experiment.

Table 3. Rate of the points that enumerated by M3
q,r that don’t satisfies Condition B4

I rate

128 90%
256 94%
512 96%

1024 98%
2048 99%

Once the basis M3
q,r does not fulfill all the conditions in Section 5, Algorithm 9 not

always enumerate all the points in the sieve region H3
c . Table 3 shows the percentages of

the points generated by Algorithm 9 over the all points in H3
c using the same basis M3

q,r in
the previous experiment. Here we assume that the number of all points in H3

c as I2J/r. The
proposed enumeration algorithm can enumerate more than 90% of the points in the sieve
region using the basis M3

q,r.

6.2 Experiment on the number field sieve over GF(p6)

In this section, in order to confirm our 3-dimensional lattice sieve works efficiently, we
report an experiment on a sieve step of the number field sieve over GF(p6). The finite field
of extension degree r is used for efficient implementation of pairing-based cryptography
using MNT curves [15]. Zajac solved the discrete logarithm problem over GF(p6) of 240 bits
[22] (Zaj08-exp), which is the current record of JLSV06-NFS over finite fields of extension
degree 6. We perform an experiment on the proposed lattice using same parameter in the
experiment of Zaj08-exp.

Our experiment uses the computers in Table 4. We deploy the parameters in our exper-
iment as similar as possible those used in Zaj08-exp. Zajac solved the discrete logarithm
problem over the extension field whose characteristic p = 1081034284409 of 40 bits, namely
the cardinality of GF(p6) is

p6 = 1596014400197077740306072399677175692025917352715453344036177063352145041



Table 4. The data of computers that we use in the experiment in Section 6.2

CPU Intel Core i7-3770 3.40 GHz ×8 Intel Xeon E5-2430L 2.00GHz ×24
RAM 32 GBytes 32 GBytes

OS Linux (64 bits)

Language C++

Compiler gcc-4.7.2

Library gmp-5.0.5, openmpi-1.6

of 240 bits. For the extension field, he chose two polynomials

f1(X) = x6 − 2x5 + x3 − x+ 2,

f2(X) = x6 − 2x5 + x3 − x+ 1081034284411.

Additionally, he also chose smoothness bounds B1 = B2 = 6532326 and 3-dimensional sieve
region in a-space Ha s.t. −218 ≤ a0 ≤ 218, −213 ≤ a1 ≤ 213, 1 ≤ a2 ≤ 1149. In the
experiment in Zaj08-exp, he executed 3-dimensional line sieve in Ha above with elements in
factor bases (q, g) ∈ B1 ∪ B2 s.t. deg g = 1.

In our experiment, the same parameter p, n, f1, f2, B1 and B2 were implemented.
Instead the a-space, our 3-dimensional lattice uses a sieve region over c-space H3

c . Here,
we try to chose the sieve region H3

c such that the number of hit tuples we can obtain in
H3

c is larger than ♯B1 + ♯B2 + 2n = 893773. In our 3-dimensional lattice sieve, we choose
223595 special-q = (q, g) from B2 s.t. 3112117 ≤ q ≤ 6532291 and deg g = 1. We executed
our lattice sieve for 10 special-qs that is randomly chosen in 3112117 ≤ q ≤ 6532291 with
respect to H3

c whose bound of lattice region is I = 2k (k = 4, 5, . . . 10). Then, we estimated
the number of hit tuples we obtain for all special-qs in 3112117 ≤ q ≤ 6532291 with respect to
I = 2k (k = 4, 5, . . . 10). From the estimated number of hit tuples for I = 2k (k = 4, 5, . . . 10),
we chosen I = 27 since k = 7 is the least integer s.t. the estimated number of hit tuples is
larger than ♯B1 + ♯B2 + 2n = 893773.

For example, in the case of special-q = (6532291, X + 1470092) and r = (751691, X +
268635), the basis of MFK3

q,r becomes

MFK3
q,r =

 230 −6 −35
−192 235 −42
27 19 4

 .

Then an example of the hit tuple in the lattice generated byMFK3
q,r is a = (−63189, 410, 72)T,

where the norms of a are

N1 (a) = 62542949671969989956089853213

= 412 × 2371× 6869× 101863× 4700621× 4771049,

N2 (a) = 163052524927266549898884794543221597

= 7× 17× 12953× 22271× 116461× 1344457× 4643843× 6532291.

In the result, the whole running time of the lattice sieve was 50996 seconds, namely about
14 hours, and we got 1041417 hit tuples. Then, we eliminated 103842 duplicate hit tuples.
Therefore, we obtained 937575 hit tuples in contrast to 1077984 obtained in Zaj08-exp.

Table 5 shows the experimental data in both our implementation and the previous one
in Zaj08-exp. Our experiment deploys about 4 time more CPU cores than Zaj08-exp, but
the running time reduces from 3 days to 14 hours.



Table 5. Comparison of our experiment with the top record of the number field sieve over GF(p6)

Zajac [22] Ours

Year 2008 2014

CPU and ♯cores Sempron (2.01GHz) × 8
Core i7 (3.40GHz) × 8
Xeon (2.00GHz) × 24

Timing of Sieve 3 days 14 hours

Sieve 3-dim. line sieve 3-dim. lattice sieve

7 Conclusion

In this paper, we proposed the 3-dimensional lattice sieve as an extension of the Franke-
Kleinjung method that is used for the efficient implementation of the number field sieve as
an efficient algorithm for enumerating the points in 2-dimensional sieve region.

First, we gave a natural extension of the basis conditions used in the Franke-Kleinjung
method to the 3-dimensional case. We proved that the basis that satisfies the conditions is
able to exhaustively enumerate all points in the sieve region in 3-dimensional lattice. We
then proposed an enumeration algorithm that can trace all the points in 3-dimensional sieve
region if such a basis exists. In our experiment of GF(p12) of size 303 bits, the proposed
algorithm can enumerate more than 90% of all points in the sieve region of the 3-dimensional
lattices, even though the basis does not satisfy the above conditions.

Finally, we compared the running time of the proposed 3-dimensional lattice sieve with
the current record of GF(p6) of 240 bits by Zajac. In the results, sieve step using our extended
3-dimensional lattice sieve is about as efficient as that of 3-dimensional line sieve by Zajac.

In the future, we try to perform the experiments on solving the DLP using larger p
with the proposed lattice sieve, and we estimate the secure key-length used in pairing-based
cryptography.

References

1. R. Barbulescu, P. Gaudry, A. Joux and E. Thomé, ‘A quasi-polynomial algorithm for discrete
logarithm in finite fields of small characteristic’, Cryptology ePrint Archive: Report 2013/400,
(2013).

2. P.S.L.M. Barreto, S. Galbraith, C. O. Eigeartaigh, M. Scott, ‘Efficient pairing computation on
supersingular abelian varieties’, Designs, Codes and Crypt., 42 (2007) 239-271.

3. P.S.L.M. Barreto and M. Naehrig, ‘Pairing-friendly elliptic curves of prime order’, SAC 2005,
LNCS, Springer, 3897 (2006) 319-331.

4. H. Cohen, A course in computational algebraic number theory, Graduate Texts in Math.,
Springer, 138 (1993).

5. J. Franke and T. Kleinjung, ‘Continued fractions and lattice sieve’, Workshop record of SHARCS,
(2005).

6. K. Hayasaka, K. Aoki, T. Kobayashi, T. Takagi, ‘An experiment of number field sieve for discrete
logarithm problem over GF(p12)’, Buchmann Festschrift, LNCS, Springer, 8260 (2013) 108-120.

7. K. Hayasaka, K. Aoki, T. Kobayashi, T. Takagi, ‘A Verification of 3-dimensional Lattice Sieve’,
Computer Security Symposium 2014, CSS2014, 1E3-3 (2014) 135-142, . (in Japanese)

8. A. Joux, ‘A new index calculus algorithm with complexity L(1/4 + o(1)) in very small charac-
teristic’, Cryptology ePrint Archive: Report 2013/095, (2013).

9. A. Joux and R. Lercier, ‘Improvements to the general number field sieve for discrete logarithms in
prime fields. A comparison with the Gaussian integer method’, Math. Comp., 72 (2003) 953-967.

10. A. Joux, R. Lercier, N.P. Smart and F. Vercauteren, ‘The number field sieve in the medium
prime case’, CRYPTO ’06, LNCS, Springer, 4117 (2006) 326-344.



11. T. Kleinjung et al., ‘Discrete logarithms in GF(p) - 160 digits’, email to the NMBRTHRY mail-
ing list, (2007). http://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind0702&L=nmbrthry&T=0&

P=194.
12. T. Kleinjung, K. Aoki, J. Franke, A.K. Lenstra, E. Thomé, J.W. Bos, P. Gaudry, A. Kruppa,

P.L. Montgomery, D.A. Osvik, H.J.J. te Riele, A. Timofeev and P. Zimmermann, ‘Factorization
of a 768-bit RSA modulus’, CRYPTO ’10, LNCS, Springer, 6223 (2010) 333-350.

13. A.K. Lenstra and H.W. Lenstra, The development of the number field sieve, Lecture Notes in
Math., Springer, 1554 (1993).

14. A.K. Lenstra, H.W. Lenstra and L. Lovász, ‘Factoring polynomials with rational coefficients’,
Math. Ann., 261 (1982) 515-534.

15. A. Miyaji, M. Nakabayashi and S. Takano, ‘New explicit conditions of elliptic curve traces for
FR-reduction’, In IEICE Trans. on Fund., E84-A (5) (2001) 1234-1243.

16. B. Murphy, ‘Polynomial selection for the number field sieve integer factorisation algorithm’,
PhD. thesis, The Australian National University, (1999).

17. J.M. Pollard, ‘The lattice sieve’, 43-49 in [13].
18. C. Pomerance and J. Smith, ‘Reduction of huge, sparse matrices over finite fields via created

catastrophes’, Experiment. Math., 1 (1992) 89-94.
19. O. Schirokauer, ‘Discrete logarithms and local units’, Philos. Trans. Roy. Soc. London Ser. A,

345 (1993) 409-424.
20. O. Schirokauer, ‘Virtual logarithms’, J. Algorithms, 57 (2005) 140-147.
21. F. Vercauteren, ‘Optimal pairings’, IEEE Trans. on Info. Theory, 56, (2010) 455-461.
22. P. Zajac, ‘Discrete logarithm problem in degree six finite fields’, PhD thesis, Slovak University

of Technology, (2008).
23. P. Zajac, ‘On the use of the lattice sieve in the 3D NFS’, Tatra Mt. Math. Publ. 45 (2010)

161-172.


