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Abstract. The TVLA procedure using the t-test has become a popu-
lar leakage detection method. To protect against environmental fluctua-
tion in laboratory measurements, we propose a paired t-test to improve
the standard procedure. We take advantage of statistical matched-pairs
design to remove the environmental noise effect in leakage detection.
Higher order leakage detection is further improved with a moving av-
erage method. We compare the proposed test with standard t-test on
synthetic data and physical measurements. Our results show that the
proposed tests are robust to environmental noise.

1 Motivation

More than 15 years after the proposal of DPA, standardized side channel leakage
detection is still a topic of controversial discussion. While Common Criteria (CC)
testing is an established process for highly security critical applications such as
banking smart cards and passport ICs, the process is slow and costly. While
appropriate for high-security applications, CC is too expensive and too slow
to keep up with the innovation cycle of a myriad of new networked embedded
products that are currently being deployed as the Internet of Things. As a result,
an increasing part of the world we live in will be monitored and controlled by
embedded computing platforms that, without the right requirements in place,
will be vulnerable to even the most basic physical attacks such as straightforward
DPA.

A one-size-fits-most leakage detection test that is usable by non-experts and
can reliably distinguish reasonably-well protected cryptographic implementa-
tions from insecure ones could remedy this problem. Such a test would allow
industry to self-test their solutions and hopefully result in a much broader de-
ployment of appropriately protected embedded consumer devices. The TVLA
test was proposed as such a leakage detection test in [6, 9]. The TVLA test
checks if an application behaves differently under two differing inputs, e.g. one
fixed input vs. one random input. As the original DPA, it uses averaging over
a large set of observations to detect even most nimble differences in behavior,
which can potentially be exploited by an attacker.



Due to its simplicity, it is applicable to a fairly wide range of cryptographic
implementations. In fact, academics have started to adopt this test to provide ev-
idence of existing leakages or their absence [1, 3–5, 12, 14, 15, 19]. With increased
popularity, scrutiny of the TVLA test has also increased. Mather et al. [13]
studied the statistical power and computation complexity of the t-test versus
mutual information (MI) test, and found that t-test does better in the majority
of cases. Schneider and Moradi [18] for example showed how the t-test higher
order moments can be computed in a single pass. They also discussed the tests
sensitivity to the measurement setup and proposed a randomized measurement
order. Durveaux and Standaert [8] evaluate the convenience of the TVLA test
for detecting relevant points in a leakage trace. They also uncover the implica-
tions of good and bad choices of the fixed case for the fixed-vs-random version
of the TVLA test and discuss the potential of a fixed-vs-fixed scenario.

However, there are other issues besides the choice of the fixed input and
the measurement setup that can negatively impact the outcome for the t-test
based leakage detection. Environmental effects can influence the t-test in a neg-
ative way, i.e., will decrease its sensitivity. In the worst case, this means that
a leaky device may pass the test only because the environmental noise was
strong enough. This is a problem for the proposed objective of the TVLA test,
i.e. self-certification by non-professionals who are not required to have a broad
background in side channel analysis.

Our Contribution In this work, we propose the adoption of the paired t-test
for leakage detection, especially in cases where long measurement campaigns
are performed to identify nimble leakages. We discuss several practical issues of
the classic t-test used in leakage detection and show that many of them can be
avoided when using the paired t-test. To reap the benefits of the locality of the
individual differences of the paired t-test in the higher order case, we further
propose to replace the centered moments with a local approximation. These
approximated central moments are computed over a small and local moving
window, making the entire process a single-pass analysis. In summary, we show
that

– the paired t-test is more robust to environmental noise such as tempera-
ture changes and drifts often observed in longer measurement campaigns,
resulting in a faster and more reliable leakage detection.

– using moving averages instead of a central average results in much better
performance for higher order and multivariate leakage detection if common
measurement noise between the two classes of traces is present, while intro-
ducing a vanishingly small inaccuracy if no such common noise appears. The
improvement of the moving averages applies both to the paired and unpaired
t-tests.

In summary, we advocate the adoption of the paired t-test based on moving
averages as a replacement of Welch’ t-test for detecting leakages, as results are
at least on par with the prevailing methodology while showing much better
results in the presence of a common noise source.



2 Background

In the framework of [9], the potential leakage for a device under test (DUT) can
be detected by comparing two sets of measurements LA and LB on the DUT. A
popular test for the comparison is Welch’s t-test, which aims to detect the mean
differences between the two sets of measurements. The null hypothesis is that
the two samples come from the same population so that their population means
µA and µB are the same. Let L̄A and L̄B denote their sample means, s2A and s2B
denote their sample variance, nA and nB denote the number of measurements
in each set. Then the t-test statistic and its degree of freedom are given by

tu =
L̄A − L̄B√
s2A
nA

+
s2B
nB

, v =
(
s2A
nA

+
s2B
nB

)2

(
s2
A

nA
)2

nA−1 +
(
s2
B

nB
)2

nB−1

. (1)

The p-value of the t-test is calculated as the probability, under a t-distribution
with v degree of freedom, that the random variable exceeds observed statistic
|tu|. This is readily done in Matlab as 2 ∗ (1 − tcdf(·, v)) and in R as 2 ∗ (1 −
qt(·, df = v)). The null hypothesis of no leakage is rejected when the p-value is
smaller than a threshold, or equivalently when the t-test statistic |tu| exceeds a
corresponding threshold. The rejection criterion of |tu| > 4.5 is often used [18,
9]. Since Pr(|tdf=v>1000| > 4.5) < 0.00001, this threshold leads to a confidence
level > 0.99999.

For leakage detection, a specific t-test use two sets LA and LB corresponding
to different values of an intermediate variable: V = vA and V = vB . To avoid the
dependence on the intermediate value and the power model, non-specific t-test
often uses the fixed versus random setup. That is, the first set LA is collected
with a fixed plaintext xA, while the second set LB is collected with random
plaintexts xB drawn from the uniform distribution. Then if there is leakage
through an (unspecified) intermediate variable V , then

LA = V (k, xA) + rA LB = V (k, xB) + rB , (2)

where k is the secret key, rA and rB are random measurement noises with zero
means and variance σ2

A and σ2
B respectively. The non-specific t-test can detect

the leakage, with large numbers of measurements nA and nB , when the fixed
intermediate state V (k, xA) differs from the expected value of the random in-
termediate state ExB

[V (k, xB)] where the expectation is taken over the uniform
random plaintexts xB .

The power model is very general for t-test framework of [9]. The intermediate
variable can be of various sizes, including one bit or one byte intermediate state.
Particularly, the tester does not need to know the underlying power model for
the unspecified t-test. The power model in most of the paper is kept abstract
and general. The theory does not depend on any specific power model. We only
specify the exact power model in simulation studies that generated the data.
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Fig. 1. Power consumption moving averages at a key-sensitive leakage point on the
DPAv2 template traces

3 Methodology

This section introduces paired t-test and shows its superiority in a leakage model
with environmental noise. The paired t-test retains its advantage of being a
straightforward one-pass algorithm by making use of moving or local averages.
By relying on the difference of matched pairs, the method is inherently numeri-
cally stable while retaining computational efficiency and parallelizability of the
original t-test.

3.1 Paired T-Test

Welch’s t-test works well when the measurement noises rA and rB are indepen-
dent between the two sets of measurements. However, two sets of measurements
can also share common variation sources during a measurement campaign. For
example, power consumption and variance may change due to common envi-
ronmental factors such as room temperature. While these environmental factors
usually change slowly, such noise variation is more pronounced over a longer time
period. With hard to detect leakages, often hundreds of thousands to millions of
measurement traces are required for detection. These measurements usually take
many hours and the environmental fluctuation is of concern in such situations.
For example, for the DPA V2 contest, there are one million template traces
collected over 3 days and 19 hours, which show a clear temporal pattern [10].
Figure 1 (a subgraph of Figure 2 in [10]) shows the average power consump-
tion at 2373-th time point on the traces of DPAv2, using mean values over 100
non-overlapping subsequent traces.

Testing labs usually try to control the environmental factors to reduce such
temporal variation. However, such effort can be expensive and there is no guar-
antee that all noise induced by environmental factors can be removed. Instead,
we can deal with these environmental noise through statistical design. Partic-
ularly, we can adopt the matched-pairs design (Section 15.3 in [11]), where the
measurements are taken in pairs with one each from the groups A and B. Then
a paired t-test can be applied on such measurements, replacing the unpaired t-
test (1). With n such pairs of measurements, we have n difference measurements



D = LA − LB . The paired difference cancels the noise variation from the com-
mon source, making it easier to detect nonzero population difference. The null
hypothesis of µA = µB is equivalent to that the mean difference µD = 0, which
is tested by a paired t-test. Let D̄ and s2D denote the sample mean and sample
variances of the paired differences D1, ..., Dn. The paired t-test statistic is

tp =
D̄√
s2D
n

, (3)

with the degree of freedom n− 1. The null hypothesis of non-leakage is rejected
when |tp| exceeds the threshold of 4.5.

To quantify the difference between the two versions of t-test, we can compare
the paired t-test (3) and the unpaired t-test (1) here with nA = nB = n.

First, without common variation sources under model (2), V ar(D) = V ar(LA)+
V ar(LB) = σ̃2

A+σ̃2
B . Here σ̃2

A = σ2
A+V ar[V (k, xA)] and σ̃2

B = σ2
B+V ar[V (k, xB)].

Notice that D̄ = L̄A−L̄B , so for large n, the paired t-test and unpaired t-test are
equivalent with tu ≈ tp ≈ (L̄A − L̄B)/

√
(σ̃2
A + σ̃2

B)/n. The paired t-test works
even if the two group variances are unequal σ̃2

A 6= σ̃2
B . The two versions of the

t-test perform almost the same in this case.
However, the paired t-test detects leakage faster if there are common noise

variation sources. To see this, we explicitly model the common environmental
factor induced variation not covered by model (2).

LA = V (k, xA) + rA + rE LB = V (k, xB) + rB + rE , (4)

where rE is the noise caused by common environmental factors, with mean zero
and variance σE . The rA and rB here denote the random measurement noises ex-
cluding common variations so that rA and rB are independent, with zero means
and variance σ2

A and σ2
B respectively. Again we denote σ̃2

A = σ2
A+V ar[V (k, xA)]

and σ̃2
B = σ2

B + V ar[V (k, xB)]. Then tu ≈ (L̄A − L̄B)/
√

(σ̃2
A + σ̃2

B + 2σ2
E)/n

while tp ≈ (L̄A − L̄B)/
√

(σ̃2
A + σ̃2

B)/n. The paired t-test statistic |tp| has a big-
ger value than the unpaired t-test |tu|, thus identifies the leakage more efficiently.
The difference increases when the environmental noise σE increases. Hence, the
paired t-test performs as well or better than the unpaired test. However, the
matched-pairs design of the paired t-test cancels common noise found in both
pairs, making the test more robust to suboptimal measurement setups and en-
vironmental noise.

3.2 Higher Order and Multivariate Leakage Detection

The t-test can also be applied to detect higher order leakage and multivariate
leakage [9, 18]. For d-th order leakage at a single time point, the t-test compares
sample means of (LA − L̄A)d and (LB − L̄B)d. Under the matched-pairs design,
the paired t-test would simply work on the difference

D = [(LA − L̄A)d − (LB − L̄B)d] (5)



to yield the test statistic (3): tp = D̄/
√
s2D/n. Multivariate leakage combines

leakage observation at multiple time points. A d-variate leakage combines leakage
L(1), ..., L(d) at the d time points t1, ..., td respectively. The combination is done
through the centered product CP (L(1), ..., L(d)) = (L(1) − L̄(1))(L(2) − L̄(2)) ·
· · (L(d) − L̄(d)). The standard d-variate leakage detection t-test compares the

sample means of CP (L
(1)
A , ..., L

(d)
A ) and CP (L

(1)
B , ..., L

(d)
B ) with statistic (1). The

paired t-test (3) uses the difference D = [CP (L
(1)
A , ..., L

(d)
A )−CP (L

(1)
B , ..., L

(d)
B )]

.

However, these tests (including the paired t-test) do not eliminate environ-
mental noise effects on the higher order and multivariate leakage detection. The
centering terms (the subtracted L̄) in the combination function also need adjust-
ment due to environmental noises, which are not random noise but follow some
temporal patterns. To see this, we use the bivariate leakage model for first-order
masked device as an example.

The leakage measurements at the two time points t1 and t2 leak two inter-
mediate values V (1)(k, x,m) and V (2)(k, x,m) where k, x and m are the secret
key, plaintext and mask respectively. For uniformly distributed m, V (1)(k, x,m)
and V (2)(k, x,m) both follow a distribution not affected by k and x, there-
fore no first order leakage exits. Without loss of generality, we assume that
Em[V (1)(k, x,m)] = Em[V (2)(k, x,m)] = 0, and the second order leakage comes
from the product combination V (1)V (2). [17] derived the strongest leakage com-
bination function under a second order leakage model without the environmental
noises:

L(1) = c(1) + V (1)(k, x,m) + r(1), L(2) = c(2) + V (2)(k, x,m) + r(2), (6)

where r(1) and r(2) are zero-mean random pure measurement noises with variance
σ2
1 and σ2

2 respectively. Under model (6), [17] showed that centered product
leakage (L(1) − c(1))(L(2) − c(2)) is the strongest. Since c1 and c2 are unknown
in practice, they are estimated by L̄(1) = c̄(1) + V̄ (1) + r̄(1) and L̄(2) = c̄(2) +
V̄ (2)+ r̄(2). With large number of traces, L̄(1) ≈ c̄(1) and L̄(2) ≈ c̄(2) by the law of
large number. Hence (L(1) − L̄(1))(L(2) − L̄(2)) approximate the optimal leakage
(L(1)− c(1))(L(2)− c(2)) well. However, considering environment induced noises,
this is no longer the strongest leakage combination function. Let us assume that

L(1) = c(1)+V (1)(k, x,m)+r(1)+r
(1)
E , L(2) = c(2)+V (2)(k, x,m)+r(2)+r

(2)
E , (7)

where r
(1)
E and r

(2)
E are environment induced noises which has mean zero but

follow some temporal pattern rather than being random noise. The optimal

leakage then becomes (L(1) − c(1) − r(1)E )(L(2) − c(2) − r(2)E ) instead. Therefore,
we propose that the centering means L̄(1) and L̄(2) are calculated as moving
averages from traces with a window of size nw around the trace to be centered,

rather than the average over all traces. The temporal patterns for r
(1)
E and r

(2)
E ,

such as in Figure 1, are usually slow changing. Hence, for a moderate window

size, say nw = 100, the moving averages L̄(1) ≈ c(1) + r
(1)
E and L̄(2) ≈ c(2) + r

(2)
E .



When there are no environment induced noises r
(1)
E and r

(2)
E , using bigger

window size nw can improve the precision. However, comparing to centering
on averages of all traces, we can prove that centering the moving averages only
loses O(1/nw) proportion of statistical efficiency under model (6). More precisely,
denote the theoretical optimal leakage detection statistic as

∆ = (L
(1)
A − c

(1))(L
(2)
A − c

(2))− (L
(1)
B − c

(1))(L
(2)
B − c

(2)). (8)

And denote the leakage detection statistic using moving average of a window
size nw as

D = (L
(1)
A − L̄

(1)
A )(L

(2)
A − L̄

(2)
A )− (L

(1)
B − L̄

(1)
B )(L

(2)
B − L̄

(2)
B ). (9)

Then for large sample size n, the t-test statistic (3) is approximately tp(D) ≈
E(D)/

√
V ar(D)/n, and the optimal leakage detection t-test statistic is approx-

imately tp(∆) ≈ E(∆)/
√
V ar(∆)/n. A quantitative comparison of these two

statistic is given in the next Theorem.

Theorem 1 Under the second-order leakage model (6),

E(D)√
V ar(D)/n

√
V ar(∆)/n

E(∆)
= 1− η

nw
+O(

1

n2w
), (10)

where the factor η is given by

η = 1
V ar(∆) [V ar(V

(1)
A )V ar(V

(2)
A ) + V ar(V

(1)
B )V ar(V

(2)
B ) + E2(V

(1)
A V

(2)
A )

+E2(V
(1)
B V

(2)
B )− V ar(V (1)

A V
(2)
A )− V ar(V (1)

B V
(2)
B )].

The proof of Theorem 1 is provided in Appendix A.
The factor η is usually small. When the noise variances σ2

1 and σ2
2 are big

(so that the leakage is hard to detect), this factor η = O[1/(σ2
1σ

2
2)] ≈ 0. For

practical situations, often η < 1. Hence using, say, nw = 100 make the leakage

detection statistic robust to environmental noises r
(1)
E and r

(2)
E , at the price

of a very small statistical efficiency loss when no environmental noises exist.
Therefore, we recommend this paired moving-average based t-test (MA-t-test)
over the existing tests.

We can also estimate the optimal window size nw with some rough ideas of
environmental noise fluctuation. The potential harm in using too wide a window
is to introduce bias in the estimated centering quantities. Let the environmental
noise be described as rE(t) for the t = 1, 2, ..., T traces, and

∑T
t=1 rE(t) = 0.

Then the environmental noise induced bias in the moving average is bounded as
b ≤ a0n

2
w/2 where a0 is the maximum of the derivative |r′E(t)|. Let ∆∗b denote

the test statistic in equation (8) where the centering quantities c(1) and c(2) are
each biased by the amount b. Then, (see Appendix B), E(∆∗b) = E(∆) and

V ar(∆∗b)

V ar(∆)
= 1 +

b2η∗

V ar(∆)
+ o(n4w) ≤ 1 +

a20n
4
wη
∗

4V ar(∆)
+ o(n4w), (11)



bounds the harm of using a too big nw value, where η∗ is

V ar(L
(1)
A ) +V ar(L

(2)
A ) +V ar(L

(1)
B ) +V ar(L

(2)
B ) + 2E(V

(1)
A V

(2)
A ) + 2E(V

(1)
B V

(2)
B ).

Matching the equations (11) and (10), we can estimate the optimal window size
from n5w ≈

4[V ar(V
(1)
A )V ar(V

(2)
A ) + V ar(V

(1)
B )V ar(V

(2)
B ) + E2(V

(1)
A V

(2)
A ) + E2(V

(1)
B V

(2)
B )]

a20[V ar(L
(1)
A ) + V ar(L

(2)
A ) + V ar(L

(1)
B ) + V ar(L

(2)
B ) + 2E(V

(1)
A V

(2)
A ) + 2E(V

(1)
B V

(2)
B )]

.

As an example, we estimate this window size using parameters for data sets
reported in literature. For the 2373-th time point on the traces on the DPA V2
contest data shown in Figure 1, the environmental fluctuation is approximately
four periods of sinusoidal curve over one million traces with magnitude ≈ 100.
So a0 ≈ 1/400. For simplicity, we assume that both leakage time points follow a
similar power model for the shown data, so that the noise variances σ1 = σ2 ≈
300. That is, V

(i)
A = εHWi, i = 1, 2, with HWi as hamming weights related

to masks and plaintexts as in the model of [17, 7]. The with the signal-noise-

ratio around 0.1 [7], ε ≈ 30. For one byte hamming weights model, V ar(V
(1)
A ) ≈

302(2) = 1800. Hence the optimal window size here is ≈ [4002 × 4 × 18002 ×
2/(3002 × 4)]1/5 ≈ 30 traces. This optimal window size does vary with the
magnitude of the environmental fluctuation and the leakage signal-noise-ratio
which are not known to a tester as a prior. But this example can serve as a
rough benchmark, and a window size of a few dozens may be used in practice.

3.3 Computational Efficiency

The paired t-test also has computational advantages over Welch’s t-test. As
pointed out in [18], computational stability can become an issue when using raw
moments for large measurement campaigns. The paired t-test computes mean
D̄ and variance s2D of local differences D. In case there is no detectable leakage,
LA and LB have the same mean. Hence, the differences D are mean-free3. Even

computing D̄ =
1

ni

∑
di is thus numerically stable. The sample variance s2D can

be computed as s2D = D2 − (D̄)2, where only the first term D2 is not mean-
free. We used the incremental equation from [16, eq. (1.3)] to avoid numerical
problems. Moreover, by applying the incremental equation for D̄ as well, we were
able to exploit straightforward parallelism when computing D̄ and variance s2D.

The situation essentially remains the same for higher order or multivariate
analysis: The differences D are still mean-free in the no-leakage case. Through
the use of local averages, the three-pass approach is not necessary, since moving
averages are used instead of global averages (cf. eq. (9)). Computing moving

3 If D is not mean-free, a strong leakage exists. Hence, a small number of observations
suffices for leakage detection, making numerical problems irrelevant.



Table 1. Computation Accuracy between our incremental method and Two-pass al-
gorithm

1st order 2nd order 3rd order 4th order 5th order

Our method 50.0097 2.4679e+3 4.5981e+5 7.3616e+7 1.7974e+10

Two Pass 50.0097 2.4679e+3 4.5981e+5 7.3616e+7 1.7974e+10

averages is a local operation, as only nearby traces are considered. When pro-
cessing traces in large blocks of e.g. 10k traces, all data needed for local averages
is within the same file and can easily be accessed when needed, making the al-
gorithm essentially one-pass. Similarly as in [18], we also give the experimental
results using our method on 100 million simulated traces with ∼ N (100, 25).
Specifically, we compute the second parameters s2D using the difference leakages:
D = LA−LB for first order test while D = [(LA− L̄A,nw)d− (LB− L̄B,nw)d] for
d -th order tests with moving average of window size nw = 100. Table 1 shows
our method matches the two-pass algorithm which computes the mean first and
then the variance of the preprocessed traces. Note that D is not normalized using
the central moment CM2 and thus the second parameter is significantly larger
than that in [18]. In the experiments, the same numerical stability is achieved
without an extra pass, by focusing on the difference leakages.

4 Experimental Verification

To show the advantages of the new approach, the performances of the paired
t-test (3) and the unpaired t-test (1) on synthetic data are compared.

First, we generate data for first order leakage according to model (4), where
the environmental noise rE follows a sinusoidal pattern similar to Figure 1. The
sinusoidal period is set as 200, 000 traces, and the sinusoidal magnitude is set
as the pure measurement noise standard deviation σA = σB = 50. Hamming
weight (HW ) leakage is assumed in model (4). The first group A uses a fixed
plaintext input corresponds to HW = 5, while the second group B uses random
plaintexts. The paired t-test (3) and the unpaired t-test (1) are applied to the
first n = 30000, 60000, ..., 300000 pairs of traces. The experiment is repeated
1000 times, and the proportions of leakage detection (rejection by each t-test)
are plotted in Figure 2.

Without any environmental noise rE , the paired and unpaired t-tests perform
the same. Their success rate curves overlap each other. With the sinusoidal noise
rE , the unpaired t-test uses many more traces to detect the leakage, while the
paired t-test does not suffer from such performance degradation.

Notice that the environmental noise rE often changes slowly as in Figure 1.
Hence, its effect is small for easy to detect leakage, when only a few hundreds or a
few thousands of traces are needed. However, for hard to detect leakage, the effect
has to be considered. We set a high noise level σA = σB = 50 to simulate a DUT
with hard to detect first-order leakage. This allows the observable improvement
by paired t-test over the unpaired t-test.



Fig. 2. T-test comparison for 1O leakage with and without a sinusoidal drift rE .

Second, we also generate data from the 2nd-order leakage model (7). The
noise levels at the two leakage points, for both groups A and B, are set as
σ1 = σ2 = 10 which are close to the levels in the physical implementation
reported by [7]. We use the same sinusoidal environmental noise rE as before.
The first group A uses a fixed plaintext input corresponds to HW = 1, while the
second group B uses random plaintexts. The proportions of leakage detection are
plotted in Figure 3. Again, we observe a serious degradation of t-test power to

Fig. 3. T-test comparison for 2O leakage with a sinusoidal drift rE .

detect the leakage, when the environmental noise rE is present. The paired t-test
detects the leakage more often than the unpaired t-test in Figure 3. However, the
paired t-test also degrades comparing to the case without environmental noise



rE . That is due to the incorrect centering quantity for the 2O test as discussed
in Section 3.2. Using the proposed method of centering at the moving average
with window size 100, the paired MA-t-test has a performance close to the case
where all environmental noise rE is removed.

5 Practical Application

To show the advantage of the paired t-test in real measurement campaigns, we
compare the performances of the unpaired and paired t-tests when analyzing an
unprotected and an protected hardware implementation. The analysis focuses on
the non-specific fixed vs. random t-test. We apply both tests to detect the first
order leakage in the power traces acquired from an unprotected implementation
of the NSA lightweight cipher Simon [2]. More specifically, a round-based imple-
mentation of Simon128/128 was used, which encrypts a 128-bit plaintext block
with a 128-bit key in 68 rounds of operation. The second target is a masked
engine of the same cipher. It is protected using three-share Threshold Imple-
mentation (TI) scheme, which is a round based variant of the TI Simon engine
proposed in [19].

Both implementations are ported onto the SASEBO-GII board for power
trace collection. The board is clocked at 3MHz and a Tektronix oscilloscope
samples the power consumption at 100MS/s. Since Simon128/128 has 68 rounds,
one power trace has about 68× 1

3MHz × 100MS/s ≈ 2300 time samples to cover
the whole encryption and hence in the following experiments 2500 samples are
taken in each measurement. The measurement setup is a modern setup that
features a DC block and an amplifier. Note that the DC block will already take
care of slow DC drifts that can affect the sensitivity of the unpaired t-test, as
shown in Section 4. However, the DC block does not affect variations of the
peak-to-peak height within traces, which are much more relevant for DPA. As
the following experiments show, the paired t-test still shows improvement in such
advanced setups.

5.1 Solving the Test-Order Bias

In [18], a random selection between fixed and random is proposed to avoid effects
caused by states that occur in a fixed order, which we refer to as test order. For
the paired (MA-)t-test, it is preferable to have a matching number of observations
for both sets. We propose a fixed input sequence which is a repetition of ABBA
such that all the AB or BA pairs are constructed using neighboring inputs. For
example in a sequence ABBAABBA....ABBAABBA, one alternately obtains
AB and BA pairs with least variation. This ensures that all observations come in
pairs and that the pairs are temporally close, so they share their environmental
effects to a maximal possible degree. Moreover—even though the sequence is
fixed and highly regular, the predecessor and successor for each measurement are
perfectly balanced, corresponding to a 50% probability of being either from the
A or B set. This simpler setup removes the biases observed in [18] as efficiently



as the random selection method. Experimental data of this section has been
obtained using this scheme.

Note that the paired t-test can easily be applied in a random selection test or-
der as well: After the trace collection, one can simply iteratively pair the leakages
associated with the oldest fixed input and the oldest random input and then re-
move them from the sequence until no pairs can be constructed. An efficient way
to do this is to separate all leakage traces into two subsets: LA = {lA,1, ...lA,nA

}
and LB = {lB,1, ...lB,nB

} where lA,i and lB,i are the traces associated with i-th
fixed input and i-th random input respectively in a chronological order and thus
can be straightforwardly paired. Note that the cardinality of both sets are not
always the same and hence only n = min(nA, nB) AB pairs can be found. This
approach is of less interest because time delay between fixed data and random
data in a pair varies depending on the randomness of the input sequence.

5.2 First Order Analysis of an Unprotected Cipher

We first apply both paired and unpaired t-test to the unprotected engine which
has strong first order leakage that can be exploited by DPA with only hundreds
of traces. Usually the trace collection can be done quickly enough to avoid effects
of environmental fluctuation in the measurements. However, to show the benefits
of the paired t-test in this scenario, a hot air blower is used to heat up the crypto
FPGA in SASEBO-GII board while the encryptions are executed. We designed
two conditions to take the power measurements.

1. Normal Lab Environment, where measurements are performed in rapid
succession, making the measurement campaign finish within seconds.

2. Strong Environmental Fluctuation, where a hot air blower was slowly
moved towards and then away from the target FPGA to heat up and let it
cool down again;

In each condition, 1000 measurements are taken alternately for the fixed
plaintext and random plaintexts and later equally separated into two groups. In
each group, the measurements are sorted in chronological order such that the
j-th measurements of both groups are actually taken consecutively and share
common variation. As explained in Section 5.1, the two measurements are a
matched-pair and there are now 500 such pairs. Then both t-tests are applied to
the first n = 5, 6, 7, ..., 500 pairs of measurements. For each n, the t-test returns
a t-statistic vector of 2500 elements corresponding to 2500 time samples in the
power traces because it is a univariate t-test. Our interest is the time sample
that has the maximum t-statistic and thus the following results only focus on
this specific time sample.

Figure 4 shows the t-statistics at the strongest leakage point as n increases.
In Figure 4(a) where there is no environmental fluctuation, both unpaired and
paired t-test have the same performance as the t-statistic curves almost overlap.
However, in Figure 4(b) where the varying temperature changed the power traces
greatly, the paired t-test (blue solid line) shows robustness and requires less
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Fig. 4. T-test comparison for 1O leakage on unprotected Simon for a single measure-
ment campaign of up to 300 pairs of traces. The paired t-test performs as well or better
in both scenarios. However, the paired t-test is more robust to environmental noise.

traces to exceed the threshold of 4.5 while the performance of the unpaired t-
test is greatly reduced in the sense that more traces are needed to go beyond
the threshold. Figure 5 shows the detection probability of the t-tests in the same
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Fig. 5. T-test detection probability for 1O leakage. Again, the paired t-test performs
at least as well as the unpaired, while being much more robust in the presence of
environmental noise.

scenario. First, 1000 repetitions of the above experiment are performed and the
number of experiments that result in a t-statistic above 4.5 is counted. Detection
probability equals this number divided by 1000. Figure 5(a) shows the detection
probability of two tests under normal lab condition. With more than 30 pairs,
both tests can detect the first order leakage with the same probability. With
more than 60 pairs the detection probability rises to 1 for both tests which
shows the efficiency of both tests on the normal traces. Figure 5(b) shows that
paired t-test (solid line) is still robust in spite of varying environmental factors.



With less than 100 pairs, the detection probability of paired t-test is already 1
while unpaired t-test requires much more traces to achieve the same probability.

In summary, the paired t-test is more robust and efficient in detecting first
order leakage when the power traces are collected in a quickly changing environ-
ment.

5.3 Second Order Analysis on a First-Order Resistant Design

In order to validate the effectiveness of the paired t-test in a longer measure-
ment campaign, where environmental fluctuations are very likely to occur, a
first-order-leakage-resistant Simon engine protected by a three-share Threshold
Implementation scheme is used as the target. Five million power traces are col-
lected in a room without windows and without expected fluctuations in tempera-
ture over a period 5 hours. As before, one measurement campaign is performed in
a stable lab environment where the environmental conditions are kept as stable
as possible. In the other scenario, we again used the hot air blower in intervals
of several minutes to simulate stronger environmental noise. This is because the
environmental noise might not be strong during the 5-hour collection period.
However, in scenarios where hundreds of millions of measurements are needed
and taken over a period of several days, then environmental fluctuation can be
found, as in Figure 1.
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Fig. 6. T-test detection probability for 2O leakage

As before, the 5 million traces are equally divided into two groups for fixed
and random plaintext respectively. The first order t-test does not indicate any
leakage (|t| < 3), as expected. Figure 6 shows the t-statistics of the second order
t-tests as the number of traces increases in both the stable lab environment
and the simulated lab environment noise scenario. In the first experiment in a
stable environment, depicted in Figure 6(a), we compare both tests using global
average and moving average. The curve of four tests almost overlap and they



perform about the same with about three million traces needed to achieve a t-
statistic above 4.5. This shows that paired t-test works as well as unpaired one for
constant collection environment. Also, the moving average based tests perform
very similar to the global average based tests, with a minor improvement in
the relevant many-traces case. Figure 6(b) depicts the results for the experiment
with strong environmental fluctuations. The paired MA-t-test performs best and
goes beyond 4.5 faster than the unpaired one. The other two tests using global
average are still below the threshold with 5 million traces. The paired t-test
still clearly outperforms the unpaired t-test. In sum, the paired t-test based on
moving average is the most robust to fluctuation and significantly improves the
performance of higher order analysis.

6 Conclusion

Welch’s t-test has recently received a lot of attention as standard side channel
security evaluation tool. In this work we showed that noise resulting from envi-
ronmental fluctuations can negatively impact the performance of Welch’s t-test.
The resulting increased number of observations to detect a leakage are incon-
venient and can, in the worst case, result in false conclusions about a device’s
resistance. We proposed a paired t-test to improve the standard methodology
for leakage detection. The resulting matched-pairs design removes the environ-
mental noise effect in leakage detection. Furthermore, we showed that moving
averages increase the robustness against environmental noise for higher order
or multivariate analysis, while not showing any negative impact in the absence
of noise. The improvement is shown through mathematical analysis, simulation,
and on practical power measurements: both paired and unpaired t-test with and
without the moving averages approach are compared for first order and sec-
ond order analysis. Our results show that the proposed (moving average based)
paired t-test performed as well or better in all analyzed scenarios. The new
method does not increase computational complexity and is numerically more
stable than Welch’s t-test. Since our method is more robust to environmental
noise and can detect leakage faster than unpaired test in the presence of noise,
we propose the replacement of Welch’s t-test with the moving average based
paired t-test as a standard leakage detection tool.
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Appendix

A Proof of Theorem 1

We are comparing the leakage detection statistic (9)

D = (L
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(2)
A )− (L
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(2)
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(2)
B ),

with the theoretical optimal leakage detection statistic ∆ in equation (8).
Without loss of generality, let c(1) = c(2) = 0 in model (6), since these

constants are cancelled in each of the differences (L
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for j = 1, 2. Then (8) is simplified as ∆ = L
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We first reexpress (L
(1)
A − L̄

(1)
A ) as the difference between two independent

terms. We denote L̃
(1)
A = 1

nw−1
∑nw−1
i=1 L

(1)
A,i as the average of nw − 1 traces

excluding the original trace, where L
(1)
A,i (i = 1, ..., nw − 1) are independent

random variables coming from the same distribution as L
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the average of corresponding quantities over the nw − 1 traces excluding the
original trace. The we can rewrite the leakage detection statistic in (9) as
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Therefore as nw →∞, D → ∆.
Next, we show that E(D) and V ar(D) differ from their limits E(∆) and

V ar(∆) by a factor of O(1/nw) only. Let D∗ = nw

nw−1D. Then we have

E(D∗) = E(∆), (14)
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The proofs of these two equations are provided in the next two subsections.
Combining equations (12), (14) and (15), we arrived at equation (10) and

Theorem 1 is proved.

A.1 Proof of Equation (14) on Mean of D∗

We now calculate the first term in E(D).
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A.2 Proof of Equation (15) on Variance of D∗
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For the first term, the variance of the sum L
(1)
A L

(2)
A −L̃

(1)
A L

(2)
A −L

(1)
A L̃

(2)
A +L

(1)
A L

(2)
A

is the covariance of the sum with itself. For the four terms in L
(1)
A L

(2)
A −L̃

(1)
A L

(2)
A −

L
(1)
A L̃

(2)
A +L

(1)
A L

(2)
A , the covariance for most pairs of different terms are zero. For

example,

Cov(L
(1)
A L

(2)
A , L̃

(1)
A L

(2)
A ) = E(L

(1)
A L

(2)
A L̃

(1)
A L

(2)
A )− E(L

(1)
A L

(2)
A )E(L̃

(1)
A L

(2)
A )

= E(L
(1)
A L

(2)
A L

(2)
A )0− E(L

(1)
A L

(2)
A )E(L

(2)
A )0 = 0.

and Cov(L
(1)
A L

(2)
A , L̃

(1)
A L̃

(2)
A ) = 0 due to the independence between L

(1)
A L

(2)
A and

L̃
(1)
A L̃

(2)
A . The only non-zero cross-term covariance is

Cov(L̃
(1)
A L

(2)
A , L

(1)
A L̃

(2)
A ) = E(L̃

(1)
A L

(2)
A L

(1)
A L̃

(2)
A )− 0 = E(L

(1)
A L

(2)
A )E(L̃

(1)
A L̃

(2)
A )

= 1
nw−1E

2(L
(1)
A L

(2)
A ),

with the last step coming from equation (16). Therefore,
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(2)
A )]

= V ar(L
(1)
A L

(2)
A ) + 2

nw−1V ar(L
(1)
A )V ar(L

(2)
A ) + 2

nw−1E
2(L

(1)
A L

(2)
A )

+ nw−2
(nw−1)3V ar(L

(1)
A )V ar(L

(2)
A ) + 1

(nw−1)3V ar(L
(1)
A L

(2)
A )

= V ar(L
(1)
A L

(2)
A ) + 2

nw
V ar(L

(1)
A )V ar(L

(2)
A ) + 2

nw
E2(L

(1)
A L

(2)
A ) +O( 1

n2
w

)

Hence the first term in V ar(D∗) becomes

(nw−1
nw

)2V ar[(L
(1)
A − L̃

(1)
A )(L

(2)
A − L̃

(2)
A )]

= (nw−1
nw

)2V ar(L
(1)
A L

(2)
A ) + 2

nw
V ar(L

(1)
A )V ar(L

(2)
A ) + 2

nw
E2(L

(1)
A L

(2)
A ) +O( 1

n2
w

)

= V ar(L
(1)
A L

(2)
A ) + 2

nw
[V ar(L

(1)
A )V ar(L

(2)
A ) + E2(L

(1)
A L

(2)
A )− V ar(L(1)

A L
(2)
A )] +O( 1

n2
w

).

(18)



For further simplification, let σ2
1 and σ2

2 denote the variances of noises r(1) and

r(2) in the second-order leakage model (6). Then V ar(L
(1)
A ) = σ2

1 + V ar(V (1)),

V ar(L
(2)
A ) = σ2

2 + V ar(V (2)), E(L
(1)
A L

(2)
A ) = E(V (1)V (2)),

E[(L
(1)
A L

(2)
A )2] = E[(V

(1)
A + r

(1)
A )2(V

(2)
A + r

(2)
A )2]

= E[(V
(1)
A )2(V

(2)
A )2 + (r

(1)
A )2(V

(2)
A )2 + (V

(1)
A )2(r

(2)
A )2 + (r

(1)
A )2(r

(2)
A )2] + 0

= E[(V
(1)
A )2(V

(2)
A )2] + σ2

1V ar(V
(2)
A ) + σ2

2V ar(V
(1)
A ) + σ2

1σ
2
2 .

Hence

V ar[L
(1)
A L

(2)
A ] = V ar(V

(1)
A V

(2)
A ) + σ2

1V ar(V
(2)
A ) + σ2

2V ar(V
(1)
A ) + σ2

1σ
2
2 .

Combine the above five expressions,

V ar(L
(1)
A )V ar(L

(2)
A ) + E2(L

(1)
A L

(2)
A )− V ar(L(1)

A L
(2)
A )

= V ar(V (1))V ar(V (2)) + E(V (1)V (2))− V ar(V (1)
A V

(2)
A )

Combine this with (17) and (18) we have equation (15),

V ar(D∗)− [V ar(L
(1)
A L

(2)
A ) + V ar(L

(1)
B L

(2)
B )]

= 2
nw

[V ar(V
(1)
A )V ar(V

(2)
A ) + E2(V

(1)
A V

(2)
A )− V ar(V (1)

A V
(2)
A )

+V ar(V
(1)
B )V ar(V

(2)
B ) + E2(V

(1)
B V

(2)
B )− V ar(V (1)

B V
(2)
B )] +O( 1

n2
w

).

B Derivation of equation (11)

As in the previous section, we let c(1) = c(2) = 0 without loss of generality, so

that E(L
(1)
A ) = E(L

(2)
A ) = 0. Then

E[(L
(1)
A − b)(L

(2)
A − b)] = E(L

(1)
A L

(2)
A )− bE(L

(1)
A )− bE(L

(2)
A ) + b2 = E(L

(1)
A L

(2)
A ) + b2

= E(L
(1)
A L

(2)
A ) + b2.

Hence

E(∆∗b) = E[(L
(1)
A − b)(L

(2)
A − b)]− E[(L

(1)
B − b)(L

(2)
B − b)]

= E(L
(1)
A L

(2)
A ) + b2 − E(L

(1)
B L

(2)
B )− b2

= E(L
(1)
A L

(2)
A )− E(L

(1)
B L

(2)
B ) = E(∆).

(19)

Next,

V ar[(L
(1)
A − b)(L

(2)
A − b)]

= E[(L
(1)
A − b)2(L

(2)
A − b)2]− [E(L

(1)
A L

(2)
A ) + b2]2

= E[((L
(1)
A )2 − 2bL

(1)
A + b2)((L

(2)
A )2 − 2bL

2)
A + b2)]− E[(L

(1)
A L

(2)
A )2]− 2bE(L

(1)
A L

(2)
A )− b4

= V ar(L
(1)
A L

(2)
A )− 2bE[L

(1)
A L

(2)
A (L

(1)
A + L

(2)
A )] + b2E[(L

(1)
A )2 + (L

(2)
A )2 + 2L

(1)
A L

(2)
A )]

= V ar(L
(1)
A L

(2)
A ) + b2[V ar(L

(1)
A ) + V ar(L

(2)
A ) + 2E(L

(1)
A L

(2)
A )] +O(b).

Hence we get the variance

V ar(∆∗b) = V ar(∆) + b2[V ar(L
(1)
A ) + V ar(L

(2)
A ) + 2E(L

(1)
A L

(2)
A )

+V ar(L
(1)
B ) + V ar(L

(2)
B ) + 2E(L

(1)
B L

(2)
B )] +O(b).

(20)


