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Abstract. The Kalyna block cipher has recently been established as the Ukranian encryption standard in
June, 2015. It was selected in a Ukrainian National Public Cryptographic Competition running from 2007 to
2010. Kalyna supports block sizes and key lengths of 128, 256 and 512 bits. Denoting the variants of Kalyna as
Kalyna-b/k, where b denotes the block size and k denotes the keylength, the design speci�es k ∈ {b, 2b}. In this
work, we re-evaluate the security bound of some reduced round Kalyna variants, speci�cally Kalyna-128/256
and Kalyna-256/512 against key recovery attacks in the single key model. We �rst construct new 6-round
distinguishers and then use these distinguishers to demonstrate 9-round attacks on these Kalyna variants.
These attacks improve the previous best 7-round attacks on the same.
Our 9-round attack on Kalyna-128/256 has data, time and memory complexity of 2105, 2245.83 and 2226.86

respectively. For our 9-round attack on Kalyna-256/512, the data/time/memory complexities are 2217, 2477.83

and 2443.45 respectively. The time and data complexities for Kalyna-256/512 reported in this work improve
upon the previous best 7-round attack complexities on the same. The attacks presented in this work are cur-
rently the best on Kalyna. We apply multiset attack - a variant of meet-in-the-middle attack to achieve these
results.

Keywords. Block cipher, Kalyna, Key Recovery, Di�erential enumeration, Single key model

1 Introduction

The block cipher Kalyna proposed by Oliynykov et al. has been recently selected as Ukranian encryption standard
in 2015. The o�cial Kalyna speci�cation [11] de�nes three block sizes, i.e., 128-bit, 256-bit and 512-bit and three
key sizes - 128-bit, 256-bit and 512-bit where key size can be equal to or double the block length. Consequently, if
we denote a variant of Kalyna as Kalyna - b/k, where, b and k denote block size and key size respectively, then the
�ve variants of Kalyna are: Kalyna - 128/128, Kalyna - 128/256, Kalyna - 256/256, Kalyna - 256/512 and Kalyna
- 512/512. The number of rounds of these variants are - 10, 14, 14, 18 and 18 respectively. Kalyna block cipher
adopts an SPN (substitution-permutation network) structure, similar to AES [2] but with increased MDS matrix
size, a new set of four di�erent S-boxes, pre-and post-whitening modular 264 key addition and a new key scheduling
algorithm.

The o�cial version of Kalyna speci�cation (in English) available publicly does not include any security analysis
of the design. A preliminary study in [10], before this cipher was standardized, reports attack complexities for
Kalyna -128/128 against various attacks such as di�erential, linear, integral, impossible di�erential, boomerang etc.
and shows that upto 5 rounds of this variant can be broken. Similar results are claimed for other Kalyna variants as
well. The designers of Kalyna thus claim brute force security against Kalyna for rounds ≥ 6. In [1], AlTawy et al.
presented the �rst detailed key recovery attack against standardized Kalyna-128/256 and Kalyna-256/512. They
applied meet-in-the-middle (MITM) attack [6,5] to break 7-rounds of both Kalyna variants and demonstrated the
best attack on Kalyna so far.

In this work, we extend the number of rounds attacked and show the �rst 9-round key recovery attack against
Kalyna-128/256 and Kalyna-256/512. Similar to [1], our attack is inspired from the multiset attack demonstrated
by Dunkelman et al. on AES in [6]. Multiset attack is a variant of meet-in-the-middle attack presented by Demirci
et al. on AES in [4]. Demirci et al.'s attack involves constructing a set of functions which map one active byte in
the �rst round to another active byte after 4-rounds of AES. This set of functions depend on `P' parameters and
can be described using a table of 2P ordered 256-byte sequence of entries. This table is precomputed and stored,
thus allowing building a 4-round distinguisher and attacking upto 8 rounds of AES. However, Demirci's attacks
su�ered from a very high memory complexity. To reduce the memory complexity of Demirci's attacks on AES,
Dunkelman et al. in [6], proposed multiset attack which replaces the idea of storing 256 ordered byte sequences
with 256 unordered byte sequences (with multiplicity). This reduced both memory and time complexity of MITM
attack on AES by reducing the parameters to `Q' (where, Q<P). They also introduced the novel idea of di�erential



enumeration technique to signi�cantly lower the number of parameters required to construct the multiset from `Q'
to `R' (where, R<Q<P), thus further decreasing the attack complexities on AES. Derbez at al. in [5] improved
Dunkelman et al.'s attack on AES-192/256 by re�ning the di�erential enumeration technique. By using rebound-
like techniques [8], they showed that the number of reachable multisets are much lower than those counted in
Dunkelman et al.'s attack. This improvement allowed mounting of comparatively e�cient attacks on AES and also
enabled extension of number of rounds attacked. Due to structural similarities between Kalyna and AES, a similar
attack was applied to 7-rounds of Kalyna by AlTawy et al. in [1]. The multiset attack on AES-192/256 was further
improved by Li et al. in [9]. They extended the number of rounds attacked to 9 by introducing the concept of
key sieving, where dependencies between the AES round keys were exploited to �lter out the wrong states thus
reducing the number of possible multisets. Recently, in [12], Li et al. demonstrated the most e�cient multiset attack
on AES-256. By exploiting some more key sieving properties and clever MixColumn properties, they extended the
number of rounds attacked to 10. Since this line of work has produced the best results on AES and Kalyna has
not yet received signi�cant attention of the cryptanalysis community, we investigate the e�ectiveness of improved
multiset attack on Kalyna in this work.

In our attacks, we examine Kalyna-128/256 and Kalyna-256/512. We construct new 6-round distinguishers for
both the variants and use it to extend our attacks up to 9 rounds. For Kalyna-256/512, we signi�cantly reduce
the data and time complexities of the previous best 7-round attack on the same [1]. The key schedule algorithm
of Kalyna does not allow recovery of all subkeys or the master key from one subkey only unlike AES [2]. However,
it allows recovery of odd-round keys from even-round keys and vice-versa. This property will be used by us in our
attacks to reduce the attack complexities. To the best of our knowledge, our attacks are the �rst attacks on 9-round
Kalyna-128/256 and Kalyna-256/512 respectively.

Our Contribution. The main contributions of this work are as follows:

� We present the �rst 9-round key recovery attack on Kalyna-128/256 and Kalyna-256/512.
� We apply multiset attack to construct new 6-round distinguishers on each of the above mentioned Kalyna
variants.

� Our 9-round attack on Kalyna-128/256 has data/time/memory complexity of 2105, 2245.83 and 2226.86 respec-
tively.

� Our 9-round attack on Kalyna-256/512 has data/time/memory complexity of 2217, 2477.83 and 2443.45 respec-
tively. This improves upon the previous best attack [1] in terms of time and data complexity as well.

Our results are summarized in Table 1.

Table 1. Comparison of cryptanalytic attacks on round reduced variants of Kalyna. The blank entries were not reported
in [10]. (The memory complexity header represents the number of 128-bit blocks for Kalyna-128 and 256-bit blocks for
Kalyna-256 required to be stored in memory.)

Algorithm Rounds Attack Time Data Memory Reference

attacked type complexity complexity complexity

Kalyna-128/128

2 Interpolation − - - [10]

3 Linear Attack 252.8 - - [10]

4 Di�erential 255 - - [10]

4 Boomerang 2120 - - [10]

5 Impossible Di�erential 262 - 266 [10]

5 Integral 297 - 233+4 [10]

Kalyna-128/256
7 Meet-in-the-Middle 2230.2 289 2202.64 [1]

9 Meet-in-the-Middle 2245.83 2105 2226.86 This work, � 4

Kalyna-256/512
7 Meet-in-the-Middle 2502.2 2233 2170 [1]

9 Meet-in-the-middle 2477.83 2217 2443.45 This work, � 5



Organization. In � 2, we provide a brief description of Kalyna and the notations adopted throughout the work. In
� 3, we give details of our 6-round distinguisher for Kalyna 128/256 followed by � 4 where we present our 9-round
attack on the same. In � 5, we describe our 6-round distinguisher for Kalyna-256/512 and in � 6 we discuss our
9-round attack on the same.In � ??, we discuss some errors in the attack presented by Li et al. in [9]. Finally in
� 7, we summarize and conclude our work.

2 Preliminaries

In this section, we �rst describe Kalyna and then mention the key notations and de�nitions used in our cryptanalysis
technique to facilitate better understanding.

2.1 Description of Kalyna

As discussed in �1, the block cipher Kalyna-b/k has �ve variants namely - Kalyna-128/128, Kalyna-128/256, Kalyna
- 256/256, Kalyna-256/512 and Kalyna-512/512 where, b is the block size and k is the key size. The 128-bit, 256-bit
and 512-bit internal states are treated as a byte matrix of 8 × 2 size, 8 × 4 size and 8 × 8 size respectively
where, the bytes are numbered column-wise (as shown in Fig. 1). The pre-whitening and post-whitening keys are
added modulo 264 to the plaintext and ciphertext respectively columnwise. 1 Each internal round consists of 4 basic
operations (as shown in Fig. 2):

Fig. 1. (a)Byte numbering in a state of Kalyna-
128. (b) Byte numbering in a state of Kalyna-256.
(c) Byte numbering in a state of Kalyna-512
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Fig. 2. One full encryption in Kalyna-128/256. (Refer to section 2.2
for notations)

1. SubBytes (SB) - The nonlinear substitution layer uses four types of 8-bit S-boxes: S0, S1, S2 and S3. Each
S-Box is de�ned to be an a�ne transformation of the inversion function over GF(28). Each byte x of row j
(where 0 ≤ j ≤ 7) in an intermediate state s is substituted by Sj mod 4 (x).

2. Shift Rows (SR) - The linear shift rows operation performs circular right shift on each row of an internal state.
The number of shifts (δj) in each row j (where 0 ≤ j ≤ 7) is calculated by δj = b j·b512c, where b denotes the
block size. E.g., for row j = 6 and block size b = 128, the number of shifts (δj) = 1. The inverse shift rows
operation circularly left shifts the elements by δj in each row.

3. MixColumn (MC) - This linear transformation pre-multiplies each column of the state matrix by a 8× 8 MDS
matrix over GF(28). The vector (0x01, 0x01, 0x05, 0x01, 0x08, 0x06, 0x07, 0x04) forms the circulant
MDS matrix for the MixColumn operation whereas the vector (0xAD, 0x95, 0x76, 0xA8, 0x2F, 0x49,

0xD7, 0xCA) forms the circulant MDS matrix for the inverse MixColumn operation. The branch factor of
this MDS matrix is 9. The polynomial x8 + x4 + x3 + x2 + 1 (represented as 0x11D in short ) is used as the
irreducible polynomial for Galois �eld multiplication. It is to be noted that unlike AES, in the last round of
Kalyna, MixColumn operation is not omitted.

4. Add Round Key (ARK) - This step involves an exclusive-or operation with the round subkey. However, for
the pre-whitening and post-whitening keys, key addition operation involves addition modulo 264. The round
subkeys are of the same size as the intermediate state size.

1 For addition operation, little endian format is used, i.e., less signi�cant bytes have smaller indices. E.g., if the intermediate
state value is: 0xCD 0x06 0x05 0x3 0x17 0x0A 0x03 0x02 where, 0xCD is the most signi�cant byte and 0x02 is the least
signi�cant byte. The representation in the little endian format would be [ 0x02, 0x03, 0x0A, 0x17, 0x30, 0x05, 0x06,

0xCD] corresponding to bytes [0, 1, 2, 3, 4, 5, 6, 7] of a column respectively.



Key Scheduling Algorithm. The key scheduling algorithm of Kalyna �rst involves splitting of the master key K
into two parts - Kα and Kω. If the block size and key size are equal, i.e., (k = b), then Kα = Kω = K, otherwise if
(k = 2b), then Kω || Kα = K, i.e., Kα is set as b/2 least signi�cant bits of K and Kω is set as b/2 most signi�cant
bits of K. Using these two parameters, an intermediate key Kσ is generated which is then used to independently
generate even indexed round keys. Complete details of the key schedule algorithm are not relevant to the attacks
described in this work and hence are omitted here. One may refer to [11] for the same. Two properties which are
important for us are as follows:

1. Recovery of a subkey does not allow recovery of master key better than brute force.
2. The keys for round i where i is an odd number can be linearly computed from the key used in round (i − 1)

and vice- versa as follows:

Ki = Ki−1 ≪ (b/4 + 24) (1)

where, ≪ denotes circular left shift operation.

2.2 Notations and De�nitions
The following notations are followed throughout the rest of the paper.

P : Plaintext
C : Ciphertext
i : Round number i, where, 0 ≤ i ≤ 8
Kalyna-b : Kalyna with state size of b-bits
Kalyna-b/k : Kalyna with state size of b-bits and key size of k-bits
Ki : Subkey of round i
Ui : MC−1(Ki), where, MC−1 is the inverse MixColumn operation
Xi : State before SB in round i
Yi : State before SR in round i
Zi : State before MC in round i
Wi : State after MC in round i
∆s : Di�erence in a state s
si[m] : mth byte of state s in round i, where, 0 ≤ m ≤ l and l = 15 for

Kalyna-128/256 and l = 31 for Kalyna-256/512
si[p− r] : pth byte to rth byte (both inclusive) of state s in round i, where,

0 ≤ p < r ≤ l and l = 15 for Kalyna-128/256 and l = 31 for
Kalyna-256/512

In some cases we are interested in interchanging the order of the MixColumn and Add Round Key operations.
As these operations are linear, they can be swapped, by �rst xoring the intermediate state with an equivalent key
and then applying the MixColummn operation (as shown in Appendix A in Figs. 7, 8). This is exactly similar to
what one can do in AES [5]. As mentioned above, we denote the equivalent round key by Ui = MC−1(Ki).

We utilize the following de�nitions for our attacks.

De�nition 1 (δ-list). We de�ne the δ-list as an ordered list of 256 16-byte (or 32-byte) distinct elements that
are equal in 15 (or 31) bytes for Kalyna-128 (or Kalyna-256). Each of the equal bytes are called as passive bytes
whereas the one byte that takes all possible 256 values is called the active byte [2]. We denote the δ-list as (x0, x1,
x2, . . . , x255) where xj indicates the jth 128-bit (or 256-bit) member of the δ-list for Kalyna-128 (or Kalyna-256).
As mentioned in the notations, xji [m] represents the mth byte of xj in round i.

De�nition 2 (Multiset). A multiset is a set of elements in which multiple instances of the same element
can appear. A multiset of 256 bytes, where each byte can take any one of the 256 possible values, can have(
28+28−1

28

)
≈ 2506.17 di�erent values. 2

De�nition 3 (Super S-Box). The Kalyna Super S-box (denoted as SSB) can be de�ned similar to AES Super
S-box [3]. For each 8-byte key, it produces a mapping between an 8-byte input array to an 8-byte output array.
Formally, a two round Kalyna can be written as:

SB → SR→MC → ARK → SB → SR→MC → ARK
2 Count of multisets of cardinality r with elements from a set with cardinality n =

(
n+r−1

r

)



or,
SR→ SB →MC → ARK → SB︸ ︷︷ ︸→ SR→MC → ARK 3 (2)

Since, MixColumns operation operates on a column of the state, the above map (SB →MC → AK → SB) in Eq. 2
can be described as d parallel instances of SSB, where d = 2, 4 and 8 for Kalyna-128, Kalyna-256 and Kalyna-512
respectively.
Two important properties that will be used in our attacks are as follows:

Property 1a. (Kalyna S-box) For any given Kalyna S-box, say Si (where, i = 0, 1, 2 or 3) and any non-zero
input - output di�erence pair, say (∆in, ∆out ) in F256 × F256, there exists one solution in average, say y, for which
the equation, Si(y)⊕ Si(y ⊕∆in) = ∆out, holds true.

Proof. On analyzing the di�erence distribution table of the 4 S-boxes, it was observed that the number of
solutions N (∆in - ∆out) for any given ∆in - ∆out is either 0, 2, 4 or rarely 6 or 8. For a given ∆in and its 256
possible ∆out, the fequency of the solutions also vary depending on the choice of ∆in. For any random (∆in - ∆out),
the probability that on average a solution exists can be calculated as: 256−a

256 ( b
256−a × 2 + c

256−a × 4 + d
256−a × 6

+ e
256−a × 8) where a, b, c, d and e is the frequency of zeroes, twos, fours, sixes and eights respectively. Since 2b

+ 4c + 6d + 8e = 256, on average one solutions always exists.
E.g, in S2, for ∆in = 0xAF and all 256 ∆out, there are 150 zeroes, 86 twos, 18 fours and 2 six. Hence, the

average number of solutions can be calculated as: 256−150
256 ( 86

106 × 2 + 18
106 × 4 + 2

106 × 6) = 1. Similar analysis can
be done for other ∆in in S1 and all other 3 S-boxes, i.e., S0, S1 and S3.

Property 1b. (Kalyna Super S-box) For any given Kalyna Super S-box, say SSB and any non-zero input
- output di�erence pair, say (∆in, ∆out ) in F264 × F264 , the equation, SSB(z) ⊕ SSB(z ⊕∆in) = ∆out has one
solution in average.

Property 2. (Kalyna MixColumns) If the values (or the di�erences) in any eight out of its sixteen in-
put/output bytes of the Kalyna MixColumn operation are known, then the values (or the di�erences) in the other
eight bytes are uniquely determined and can be computed e�ciently. This is similar to AES MixColumn property
stated in [12].

Proof. The Kalyna Mixcolumn works on a column of 8 bytes. Thus, the inputs and outputs of Kalyna Mix-
Column operation can be related through 8 equations. Therefore, out of 16 variables (8 input and 8 output), if 8
variables are known then the other 8 variables can be uniquely determined through the 8 equations. This is because
as mentioned in [7], any sub-matrix of a MDS matrix is invertible which guarantees existence of an unique solution.

The time complexity of the attack is measured in terms of 9-round Kalyna encryptions required. The memory
complexity is measured in units of b-bit Kalyna (where, b = 128 or 256) blocks required.

3 Construction of distinguisher for 6-round Kalyna-128/256
In this section, we construct a distinguisher on the 6-inner rounds of Kalyna-128/256. Before, we proceed further,
we �rst establish the following relation for Kalyna-128/256. According to Property 2, we can form an equation using
any 11 out of 16 input-output bytes in the Kalyna MixColumn operation. For any round j, where, 0 ≤ j ≤ 8 :

0xCA · Zj [12]⊕ 0xAD · 0xZj [13]⊕ 0x49 · Zj [14]⊕ 0xD7 · Zj [15] = 0x94 ·Wj [8]⊕ 0xB4 ·Wj [9]⊕ 0x4E ·Wj [10]⊕
0x7E ·Wj [11]⊕ 0xC0 ·Wj [13]⊕ 0xDA ·Wj [14]⊕
0xC5 ·Wj [15] (3)

or,

0xCA · Zj [12]⊕ 0xAD · Zj [13]⊕ 0x49 · Zj [14]⊕ 0xD7· Zj [15] = 0x94 · (Kj [8]⊕Xj+1[8])⊕ 0xB4 · (Kj [9]⊕Xj+1[9])

⊕ 0x4E ·(Kj [10]⊕Xj+1[10])⊕ 0x7E · (Kj [11]⊕Xj+1[11])

⊕ 0xC0 ·(Kj [13]⊕Xj+1[13])⊕ 0xDA · (Kj [14]⊕Xj+1[14])

⊕ 0xC5 ·(Kj [15]⊕Xj+1[15]) (4)

3 Note that Sub Bytes and Shift Row operations in the �rst round have been interchanged as these functions commute with
each other



where, Wj = Kj ⊕Xj+1. Derivation of Eq. 3 is shown in Appendix B. Let,

Pj = 0xCA · Zj [12]⊕ 0xAD · Zj [13]⊕ 0x49 · Zj [14]⊕ 0xD7 · Zj [15] (5)

Qj = 0x94 ·Xj+1[8]⊕ 0xB4 ·Xj+1[9]⊕ 0x4E ·Xj+1[10]⊕ 0x7E ·Xj+1[11]⊕ 0xC0 ·Xj+1[13]⊕
0xDA ·Xj+1[14]⊕ 0xC5 ·Xj+1[15] (6)

Const = 0x94 ·Kj [8]⊕ 0xB4 ·Kj [9]⊕ 0x4E ·Kj [10]⊕ 0x7E ·Kj [11]⊕ 0xC0 ·Kj [13]⊕ 0xDA ·Kj [14]

⊕ 0xC5 ·Kj [15] (7)

then, Eq. 4 can be rewritten as,

Pj = Qj ⊕ Const (8)

Eq. 8 will be used to establish the distinguishing property as shown next.

3.1 Distinguishing Property for Kalyna-128/256

Given, a list of 256 distinct bytes (M0, M1, . . . , M255), a function f : {0, 1}128 7→ {0, 1}128 and a 120-bit constant
T , we de�ne a multiset v as follows :

Ci = f(T ||M i),where (0 ≤ i ≤ 255) (9)

ui = 0x94 · Ci[8]⊕ 0xB4 · Ci[9]⊕ 0x4E · Ci[10]⊕ 0x7E · Ci[11]⊕ 0xC0 · Ci[13]⊕
0xDA · Ci[14]⊕ 0xC5 · Ci[15] (10)

v = {u0 ⊕ u0, u1 ⊕ u0, . . . , u255 ⊕ u0} (11)

Note that, ( T || M0, T || M1, . . . , T || M255 ) forms a δ-list and atleast one element of v (i.e., u0 ⊕ u0 ) is
always zero.

Distinguishing Property. Let us consider F to be a family of permutations on 128-bit. Then, given any list of
256 distinct bytes (M0, M1, . . . , M255), the aim is to �nd how many multisets v (as de�ned above) are possible

when, f
$←− F and T

$←− {0, 1}120.

In case, when F = family of all permutations on 128-bit and f
$←− F. Under such setting, since in the

multiset v, we have 255 values (one element is always 0) that are chosen uniformly and independently from the set

{0, 1, . . ., 255 }, the total number of possible multisets v are atmost
(
28−1+28−1

28−1
)
≈ 2505.17.

In case, when F = 6-full rounds of Kalyna-128/256 and f
$←− F. Here, f

$←− F ⇔ K
$←− {0, 1}256 and

f = EK . Let us consider the 6 inner rounds of Kalyna-128/256 as shown in Fig. 3. Here, C in Eq. 9 is represented
by X6 and Eq. 10 is de�ned as :

ui = 0x94 ·Xi
6[8]⊕ 0xB4 ·Xi

6[9]⊕ 0x4E ·Xi
6[10]⊕ 0x7E ·Xi

6[11]⊕ 0xC0 ·Xi
6[13]⊕ 0xDA ·Xi

6[14]

⊕ 0xC5 ·Xi
6[15] (12)

It is to be noted that under this setting, for each i where, (0 ≤ i ≤ 255), Eq. 12 is same as Eq. 6 computed at
round 5, i.e., ui = Qi5. Now, we state the following Observation 1.

Observation 1. The multiset v is determined by the following 52 single byte parameters only :

• X0
1 [0 - 7] (8-bytes)

• X0
2 [0 - 15] (16-bytes)

• X0
3 [0 - 15] (16-bytes)

• X0
4 [0 - 3, 12 - 15] (8-bytes)

• X0
5 [4 - 7] (4-bytes)



Thus, the total number of possible multisets is 252×8 = 2416 since, each 52-byte value de�nes one sequence.

Proof. In round 0 (in Fig. 3), the set of di�erences {X0
0 [15] ⊕ X0

0 [15], X
1
0 [15] ⊕ X0

0 [15], . . . , X
255
0 [15] ⊕ X0

0 [15]}
(or, equivalently the set of di�erences at X0[15]) is known to the attacker as there are exactly 256 di�erences
possible. This is so, because in the plaintext we make the most signi�cant byte as the active byte. Hence, when the
pre-whitening key is added (columnwise), the carry-bit in the most signi�cant bit is ignored limiting the possible
values (and the di�erences) at X0[15] to 256 only. Since S-box is injective, exactly 256 values exist in the set
{Y 0

0 [15]⊕ Y 0
0 [15], Y

1
0 [15]⊕ Y 0

0 [15], . . . , Y
255
0 [15]⊕ Y 0

0 [15]}. As Shift Row (SR), MixColumn (MC) and Add Round
Key (ARK) are linear operations, the set of di�erences at X1[0− 7] will be known to the attacker.
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Fig. 3. 6-Round distinguisher in Kalyna-128/256 . Here, P i denotes (T || M i) and Xi
j , Y

i
j , Z

i
j , W

i
j denote intermediate

states corresponding to P i in round j. The round subkeys Kj , where, 0 ≤ j ≤ 6 are generated from the master key K.

Owing to the non-linearity of the S-box operation, the set of di�erences at Y1 [0-7] cannot be computed to move
forward. To allievate this problem, it is su�cient to guess X0

1 [0-7], i.e., values of the active bytes of the �rst state
(out of 256 states) at X1 as it allows calculating the other Xi

1[0-7] states (where, 1 ≤ i ≤ 255) and cross SB layer
in round 1. Since, SR, MC and ARK operations are linear, the set of di�erences at X2[0−15] is known. Continuing



in a similar manner as discussed above, if the attacker guesses full states X0
2 [0-15] and X0

3 [0-15], then the set
of di�erences at Z3, i.e., {Z

0
3 ⊕ Z0

3 , Z
1
3 ⊕ Z0

3 , . . ., Z
255
3 ⊕ Z0

3} can be easily computed. Now at this stage, she can
easily calculate the set of di�erences at W3 [0, 1, 2, 3, 12, 13, 14, 15] which is equal to the set of di�erences at
X4 [0, 1, 2, 3, 12, 13, 14, 15]. 4. By guessing X0

4 [0, 1, 2, 3, 12, 13, 14, 15], the attacker can cross the SB layer in
round 4 and calculate the set of di�erences at W4 [4, 5, 6, 7]. By guessing X0

5 [4, 5, 6, 7], the attacker can obtain
the set of values {Z0

5 [12 − 15], Z1
5 [12 − 15], . . . , Z255

5 [12 − 15]}. Using these, she can compute P i5 at Zi5 as P i5 =
CAx ·Zi5[12]⊕ADx ·Zi5[13]⊕ 49x ·Zi5[14]⊕D7x ·Zi5[15] (according to Eq. 5) and thus the set {P 0

5 ⊕ P 0
5 , P

0
5 ⊕ P 1

5 ,
. . . , P 255

5 ⊕ P 0
5 }. Since, according to Eq. 8, P ij ⊕ P 0

j = (Qij⊕ Const) ⊕ (Q0
j⊕ Const) = Qij ⊕ Q0

j and ui = Qi5
(mentioned above), the attacker can easily calculate the multiset v = {Q0

5 ⊕ Q0
5, Q

1
5 ⊕ Q0

5, . . ., Q
255
5 ⊕ Q0

5}. This
shows that the multiset v depends on 52 parameters and can take 2416 possible values. ut

Since, there are 2416 possible multisets, if we precompute and store these values in a hash table, then the
precomputation complexity goes higher than brute force for Kalyna-128/256. In order to reduce the number of
multisets, we apply the Di�erential Enumeration technique suggested by Dunkelman et al. in [6] and improved by
Derbez et al. in [5]. We call the improved version proposed in [5] as Re�ned Di�erential Enumeration.

Re�ned Di�erential Enumeration. The basic idea behind this technique is to choose a δ-set such that several of
the parameters mentioned in Observation 1 equal some pre-determined constants. To achieve so, we �rst construct
a 6-round truncated di�erential trail in round 0 - round 5 (as shown in Fig. 3) where, the input di�erence is non-
zero at one byte and output di�erence is non zero in 7 bytes. The probability of such a trail is 2−112 as follows:
the one byte di�erence at ∆P [15] and correspondingly at ∆X0[15] propagates to 8-byte di�erence in ∆X1[0 − 7]
and 16-byte di�erence in ∆X2[0 − 15] and further till ∆Z3[0 − 15] with probability 1. Next, the probability that
16-byte di�erence in ∆Z3[0− 15] propagates to 7-byte di�erence in ∆W3[0− 2, 12− 15] (= ∆X4[0− 2, 12− 15]) is
2−72. This 7-byte di�erence in ∆X4 propagates to 4-byte di�erence in ∆W4[4− 7] followed by 7-byte di�erence in
∆W5[8−11, 13−15] with a probability of 2−32 and 2−8 respectively. Thus, the overall probability of the di�erential
from ∆P to ∆Z5 is 2−(72+32+8) = 2−112.
In other words, we require 2112 plaintext pairs to get a right pair. Once, we get a right pair, say (P 0, P 1), we state
the following Observation 2.

Observation 2. Given a right pair (P 0, P 1) that follows the truncated di�erential trail shown in Fig. 3, the 52
parameters corresponding to P 0, mentioned in Observation 1 can take one of atmost 2224 �xed 52-byte values (out
of the total 2416 possible values), where each of these 2224 52-byte values are de�ned by each of the 2224 values of
the following 39 parameters:

• ∆Z0[7] (1-byte)
• X0

1 [0− 7] (8-bytes)
• Y 0

3 [0− 15] (16-bytes)
• Y 0

4 [0− 3, 12− 15] (8-bytes)
• Y 0

5 [5− 7] (3-bytes)
• ∆Z5[12− 14] (3-bytes)

Proof. Given a right pair (P 0, P 1), the knowledge of these 39 new parameters allows us to compute all the
di�erences shown in Fig. 3. This is so because the knowledge of ∆Z0[7] allows us to compute ∆X1[0 − 7]. Then,
if the values of X0

1 [0 − 7] are known, one can compute the corresponding X1
1 [0 − 7] and cross the S-box layer in

round 1 to get ∆X2.
From the bottom side, it can be seen that ∆W5[12] = ∆Z5[8] = ∆Z5[9] = ∆Z5[10] = ∆Z5[11] = 0. Thus,

if ∆Z5[12, 13, 14] are known, then using Property 2 (as 8 bytes are known), we can deduce ∆Z5[15] (and ∆W5

[8-11, 13-15]). Knowledge of ∆Z5[8 − 15] allows us to to compute ∆Y5[4 − 7]. Then, by guessing Y 0
5 [5 − 7], we

can determine the corresponding Y 1
5 [5− 7] and compute ∆X5[5− 7] (and ∆W4[5− 7]). Now again, we know that

∆W4[0] = ∆W4[1] = ∆W4[2] = ∆W4[3] = ∆Z4[3] = 0. Using Property 2 (as 8 bytes are known), we can deduce
∆W4[4] (and ∆Z4[0 − 2, 4 − 7]). This allows us to compute ∆X5[4] as well. Since we already know ∆Y5[4] (from
∆Z5[12] guessed previously), using Property 1a., the possible values of X5[4] and Y5[4] can be computed.

Now, knowledge of ∆Z4[0 − 7] allows us to compute ∆Y4[0 − 3, 12 − 15]. By guessing Y 0
4 [0 − 3, 12 − 15], we

can obtain ∆Y3[0− 15]. Using the value of Y 0
3 [0− 15], we can compute ∆Y2. Then using Property 1a., the possible

4 In Fig. 3, byte 3 in states W3, X4, Y4 and Z4 have not been colored grey for a purpose which will be cleared when we
reach Observation 2



values of X0
2 and Y 0

2 can be computed. At this stage, the total possible values of these 39 parameters are 239×8 =
2312.

However, for each value of this 39-byte parameter, the following key bytes - U2[0−3, 12−15],K3,K4[0−3, 12−15]
and K5[4− 7] can be deduced as follows:

1. Knowledge of X0
1 [0 − 7] allows us to compute the corresponding Z0

1 [0 − 3, 12 − 15]. Xoring these values with
X0

2 [0− 3, 12− 15] helps us in deducing U2[0− 3, 12− 15].

2. Knowledge of X0
2 allows us to compute the corresponding W 0

2 . Xoring W
0
2 with X0

3 helps us in deducing K3.

3. Knowledge of X0
3 and X0

4 [0− 3, 12− 15] (from Y 0
4 [0− 3, 12− 15]) can be used to deduce K4[0− 3, 12− 15].

4. Knowledge of X0
4 [0− 3, 12− 15] and X0

5 [4− 7] (from Y 0
5 [4− 7]) helps us in deducing K5[4− 7].

Now, according to the key schedule algorithm of Kalyna-128/256, from K3, we can compute K2 (according to
Eq. 1) which allows us to compute the corresponding U2. Thus, by comparing the computed U2[0− 3, 12− 15] with
the deduced U2[0 − 3, 12 − 15], a sieve of 8-bytes (since matching probability is 2−64) can be applied to eliminate
the wrong guesses. Similarly, again from Eq. 1, knowledge of K5[4− 7] allows us to compute K4 [12], K4 [13] and
K4 [14] as K4[12] = K5[5], K4[13] = K5[6] and K4[14] = K5[7]. This allows us a �ltering of further 3-bytes. Thus
by key sieving, the total possible guesses of 39-byte parameter reduces from 239×8 to 2(39−(8+3))×8 = 228×8 = 2224. ut

Using Observation 1 and Observation 2, we state the following third Observation 3 :

Observation 3. Given (M0, M1, . . . , M255) and f
$←− F and T

$←− {0, 1}120, such that T || M0 and T || M j ,
(where, j ∈ { 1, . . . , 255 }) is a right pair that follows the di�erential trail shown in Fig. 3, atmost 2224 multisets
v are possible.

Proof. From Observation 1, we know that each 52-byte parameter de�nes one multiset and Observation 2 restricts
the possible values of these 52-byte parameters to 2224. Thus, atmost 2224 multisets are only possible for Kalyna-
128/256. ut

As the number of multisets in case of 128-bit random permutation (= 2505.17) is much higher than 6-round Kalyna-
128/256 ( = 2224), a valid distinguisher is constructed.

4 Key Recovery Attack on 9-Round Kalyna-128/256

In this section, we use our Observation 3 to launch meet-in-the-middle attack on 9-round Kalyna-128/256 to recover
the key. The distinguisher is placed in round 0 to round 5, i.e, the set of plaintexts is considered as the δ-list with
byte 15 being the active byte and the multiset sequence being checked at X6 (as shown in Fig. 4). Three rounds
are added at the bottom of the 6-round distinguisher. The attack consists of the following three phases:

4.1 Precomputation Phase

In this phase, we build a lookup table T to store 2224 sequences to be used for comparison in the online phase. The
construction of this table requires us to create two more hash tables (T0 and T1) in the intermediate steps. The
entire procedure is as follows:

1. For each K3

� We guess ∆Z1[0− 3, 12− 15]||∆X4[0− 2, 12− 15] to compute the di�erence ∆X2 and ∆Y3 respectively. We
resolve (∆X2 - ∆Y3) using Property 1b to compute the corresponding X2||X3. We then deduce K2 from K3

and compute the corresponding value of Z1[0− 3, 12− 15]. Using the guessed value of ∆Z1[0− 3, 12− 15]
and the computed value of Z1[0 − 3, 12 − 15], we compute ∆Z0[0 − 7]. If ∆Z0[0 − 6] = 0 (which happens
with a probability of 2−56), we store the corresponding X1[0 − 7]||∆Z1[0 − 3, 12 − 15]||X2||X3||W3[12 −
14]||∆X4[0− 2, 12− 15] at index K3 in table T0. There are about 2

64 entries for each index.
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Fig. 4. 9-round attack on Kalyna-128/256. The subkey bytes guessed are shown dotted.



2. For each guess of ∆Z5[12− 14]
� We compute ∆Z5[15] using Property 2.
� We guess Y5[5−7], compute X5[5−7] and ∆X5[0−3, 5−7] where, ∆X5[0−3] = 0. Since, ∆X5[0−3, 5−7] =
∆W4[0−3, 5−7] and we know that∆Z4[3] = 0, thus we can compute∆X5[4] (=∆W4[4]) and∆Z4[0−2, 4−7]
again using Property 2. Since ∆Y5[4] is known from ∆Z5[12], we can resolve (∆X5[4]-∆Y5[4]) to get X5[4].

� We guess Y4[0 − 3, 12 − 15] and compute corresponding X4[0 − 3, 12 − 15] in the backward direction and
W4[4 − 7] in the forward direction. This allows us to calculate K5[4 − 7] and deduce the corresponding
K4[12− 14]. We use this to compute W3[12− 14].

� We store X4[0 − 3, 12 − 15]||X5[4 − 7] at index value W3[12 − 14]||∆X4[0 − 2, 12 − 15] in table T1. There
are about 232 entries for each index.

3. For each of the 2128 index of K3 in table T0, we have 264 entries of W3[12 − 14]||∆X4[0 − 2, 12 − 15] and
corresponding to each of these we have 232 entries of X4[0 − 3, 12 − 15]||X5[4 − 7] in table T1. So in all, after
merging T0 and T1, we get 2

128+64+32 = 2224 unique set of 39-byte parameters, that are required to construct
the multiset v.

4. For each of these 2224 39-byte parameters, we calculate the corresponding 52-byte parameters for all the elements
of the δ-list and compute the multiset v = {u0⊕ u0, u1⊕ u0, . . . , u255⊕ u0}. We store the multiset along with
the 52-byte parameters in the table T .

The time complexity to construct 5 T0 = 2(16+8+7)×8 × 2−2.17 = 2245.83. The time complexity to construct T1
= 2(3+3+8)×8 × 2−2.17 = 2109.83. The time complexity to merge T0 and T1 = 2128+64+32 = 2224. Finally, the time
complexity to construct T = 2224 × 28 × 2−0.58 = 2231.41.

4.2 Online Phase

In this phase we extend the di�erential trail described in Section 3, by adding 3 more rounds at the bottom (as
shown in Fig. 4). The steps of the online phase are as follows:

1. We encrypt 297 structures of 28 plaintexts each where byte 15 takes all possible values and rest of the bytes are
constants. We store the corresponding ciphertexts in the hash table.

2. For each of the 2112 (P0, P
′
0) plaintext pairs, do the following:

� We guess 2128 values of K9 and deduce the corresponding values of K8 from K9. We decrypt each of the
ciphertext pairs through 2 rounds, to get X7 and ∆X7. Then, we deduce the corresponding ∆W6 and ∆Z6.

� We �lter out the keys, which do not give zero di�erence at ∆Z6[0−4, 12−15]. 256 key guesses are expected
to remain.

� We pick one member of the pair, say P0, create the δ-list by constructing the rest of the 255 plaintexts as
Pi = P0 ⊕ i, where, 1 ≤ i ≤ 255 and get their corresponding ciphertexts.

� For each remaining 256 key guesses of K8 and K9, we guess U7[5−11], compute the corresponding Z6[5−11]
and Y6[8− 11, 13− 15] and then obtain the multiset { u0 ⊕ u0, u1 ⊕ u0, . . ., u255 ⊕ u0}.

� We check whether this multiset exists in the precomputation table T or not. If not, then we discard the
corresponding guesses.

The probability for a wrong guess to pass the test is 2224 × 2−467.6 = 2−243.6. 6 Since we try only 2112+56 =
2168 multisets, only the right subkey should verify the test.

4.3 Recovering the remaining Subkey bytes

The key schedule algorithm of Kalyna does not allow recovery of master key from any subkey better than brute-
force [11]. However, knowledge of all round keys enables encryption/decryption. We follow a similar approach as
described in [1] to recover all the round subkeys. When a match with a multiset is found using a given plaintext-
ciphertext pair, we choose one of the ciphertexts and perform the following steps:

1. We already know the corresponding K8 and K9 and U7[5-11].
2. We guess the remaining 9 bytes of U7, and deduce the corresponding 272 values of K7 and K6.

5 The normalization factor 2−2.17 is calculated by �nding the ratio number of rounds encrypted/decrypted to 9 (i.e., the
number of rounds of Kalyna considered in this paper). Similarly all other normalisation factors have been calculated.

6 Note that the probability of randomly having a match is 2−467.6 and not 2−505.17 since the number of ordered sequences
associated to a multiset is not constant [6].



3. For each 272 guesses of (K7,K6), from X7 we compute X5. We discard the key guesses for which X5[4−7] does
not match with the values ofX5[4−7] obtained from the corresponding matched multiset in the pre-computation
table.

4. For the remaining 272−32 = 240 guesses of (K9, K8, K7, K6), we guess 2
128 values of K5. We deduce X4 and

discard the key guesses for which X4[0-2, 12-15] does not match with the values obtained corresponding to the
correct multiset sequence from the precomputation table. From a total of 2128+40 = 2168 key guesses, 2112 key
guesses are expected to remain.

5. We deduce K4 from K5 for the remaining key guesses and compute X3. We compare this to the value obtained
from the precomputation table corresponding to the correct multiset sequence and discard those that do not
match. Only one value of (K9, K8, K7, K6, K5, K4) is expected to remain.

6. One value of K3 and K2 corresponding to the matching sequence is already known from the pre-computation
table. We deduce X1 for the remaining one value of (K9, K8, K7, K6, K5, K4, K3, K2).

7. We guess 2128 values of K1, deduce K0 and compute the plaintext. We compare this to the plaintext corre-
sponding to ciphertext being decrypted. We are left with only one value of (K9, K8, K7, K6, K5, K4, K3, K2,
K1, K0).

Complexities. The time complexity of the precomputation phase is dominated by step 1 and is 2248 × 2−2.17 =
2245.83 Kalyna-128/256 encryptions. The time complexity of the online phase is dominated by step 2 (part 1) and
is 2112 × 2128 × 2−2.17 = 2233.83. The time complexity of the Subkey recovery phase is dominated by step 4 which
is 2168 × 2−3.17 = 2164.83. Clearly the time complexity of the whole attack is dominated by the time complexity
of the precomputation phase, i.e., 2245.83. It was shown in [5] that each 256-byte multiset requires 512-bits space.
Hence, to store each entry in table T, we require 512-bits to store the multiset and 52× 8 = 416-bits to store the
52-byte parameters, i.e., a total of 928-bits (= 29.86). Therefore, the memory complexity of this attack is 2224 ×
29.86−7 = 2226.86 Kalyna 128-bit blocks. The data complexity of this attack is 2105 plaintexts.

5 Construction of distinguisher for 6-Round Kalyna-256/512

In this section, we construct a distinguisher for the 6-inner rounds of Kalyna-256/512. The distinguisher construction
details are similar to Kalyna-128/256 (discussed in Sec. 3) except the fact that here instead of counting multisets,
we count 256-byte ordered sequences. The reason for opting ordered sequences would be discussed in Sec. 6.

We �rst establish the following relation for Kalyna-256/512. According to Property 2, it is possible to construct
an equation using any 12 out of 16 input-output bytes in the Kalyna MixColumn operation. For any round j,
where, 0 ≤ j ≤ 8 :

Zj [8]⊕ Zj [9]⊕ Zj [12]⊕ Zj [13] = EAx ·Wj [8]⊕ 54x ·Wj [9]⊕ 7Dx ·Wj [10]⊕ C3x ·Wj [11]

⊕ E0x ·Wj [12]⊕ 5Ex ·Wj [13]⊕ 7Dx ·Wj [14]

⊕ C3x ·Wj [15] (13)

Derivation of Eq. 13 is shown in Appendix C. Similar to as shown in Section 3, since, Wj = Kj ⊕Xj+1, if

Pj = Zj [8]⊕ Zj [9]⊕ Zj [12]⊕ Zj [13] (14)

Qj = EAx ·Xj+1[8]⊕ 54x ·Xj+1[9]⊕ 7Dx ·Xj+1[10]⊕ C3x ·Xj+1[11]⊕ E0x ·Xj+1[12]

⊕ 5Ex ·Xj+1[13]⊕ 7Dx ·Xj+1[14]⊕ C3x ·Xj+1[15] (15)

Const = EAx ·Kj [8]⊕ 54x ·Kj [9]⊕ 7Dx ·Kj [10]⊕ C3x ·Kj [11]⊕ E0x ·Kj [12]⊕ 5Ex ·Kj [13]

⊕ 7Dx ·Kj [14]⊕ C3x ·Kj [15] (16)

then, Eq. 13 can be rewritten as,

Pj = Qj ⊕ Const (17)

5.1 Construction of 6-round distinguisher for Kalyna-256/512

Given a list of 256 distinct bytes (M0, M1, . . . , M255), a function f : {0, 1}256 7→ {0, 1}256 and a 248-bit constant
T, we de�ne an ordered sequence ov as follows:



Ci = f(T ||M i),where (0 ≤ i ≤ 255) (18)

oui = EAx · Ci[8]⊕ 54x · Ci[9]⊕ 7Dx · Ci[10]⊕ C3x · Ci[11]⊕ E0x · Ci[12]⊕ 5Ex · Ci[13]
⊕ 7Dx · Ci[14]⊕ C3x · Ci[15] (19)

ov = {ou0 ⊕ ou0, ou1 ⊕ ou0, . . . , ou255 ⊕ ou0} (20)

Note that, ( T || M0, T || M1, . . . , T || M255 ) forms a δ-list and the �rst element of ov (i.e., ou0 ⊕ ou0 ) is
always zero.

Distinguishing Property. Let us consider F to be a family of permutations on 256-bit. Then, given any list of
256 distinct bytes (M0, M1, . . . , M255), the aim is to �nd how many ordered sequences ov (as de�ned above) are

possible when, f
$←− F and T

$←− {0, 1}248.

In case, when F = family of all permutations on 256-bit and f
$←− F. Under such setting, since, ov is a

256-byte ordered sequence in which the �rst byte is always zero and the rest 255 bytes are chosen uniformly and
independently from the set {0, 1, . . . , 255}, the total possible values of ov are (256)255 = 22040.

In case, when F = 6-full rounds of Kalyna-256/512 and f
$←− F. Here, f

$←− F ⇔ K
$←− {0, 1}512 and

f = EK . Let us consider the �rst 6 inner rounds of Kalyna-256/512 as shown in Fig. 5. Here, C in Eq. 18 is
represented by X6 and Eq. 19 is de�ned as :

oui = EAx ·Xi
6[8]⊕ 54x ·Xi

6[9]⊕ 7Dx ·Xi
6[10]⊕ C3x ·Xi

6[11]⊕ E0x ·Xi
6[12]⊕ 5Ex ·Xi

6[13]

⊕ 7Dx ·Xi
6[14]⊕ C3x ·Xi

6[15] (21)

It is to be noted that here, for each i where, (0 ≤ i ≤ 255), Eq. 21 is same as Eq. 15 computed at round 5, i.e.,
oui = Qi5. Now, we state the following Observation 4.

Observation 4. The ordered sequence ov is determined by the following 93 single byte parameters only :

• X0
0 [31] (1-byte)

• X0
1 [16− 23] (8-bytes)

• X0
2 [0− 31] (32-bytes)

• X0
3 [0− 31] (32-bytes)

• X0
4 [2, 3, 6, 7, 8, 9, 12, 13, 18, 19, 22, 23, 24, 25, 28, 29] (16-bytes)

• X0
5 [8, 9, 28, 29] (4-bytes)

Thus, the total number of ordered sequences is 293×8 = 2744 since each 93-byte value de�nes one sequence.

Proof. In round 0 (in Fig. 5), the ordered list of di�erences at {X0
0 [31]⊕X0

0 [31], X
1
0 [31]⊕X0

0 [31], . . . , X
255
0 [31]⊕

X0
0 [31]} (or, equivalently the list of di�erences at X0[31]) is known to the attacker as the list 7 of di�erences at

X0[31] = list of di�erences at P [31], i.e., P i[31]⊕ P 0[31] = Xi
0[31]⊕X0

0 [31] for (1 ≤ i ≤ 255). This is so, because
in the plaintext, we make the most signi�cant byte as the active byte. Hence, when the pre-whitening key is added
(columnwise), the carry-bit in the most signi�cant bit is ignored, thus converting the addition operation to xor
operation. Since the value of X0

0 [31] is known, the attacker can compute the other Xi
0[31]. This allows her to cross

the SB and SR layer in round 0. Since, MixColumn (MC) and Add Round Key (ARK) are linear operations, the
list of di�erences at X1[16− 23] can be computed by the attacker.

Owing to the non-linearity of the S-box operation, the list of di�erences at Y1[16 − 23] cannot be computed
to move forward. To allievate this problem, it is su�cient to guess X0

1 [16 − 23] as it allows calculating other
Xi

1[16 − 23] states and cross SB layer in round 1. Since, SR, MC and ARK operations are linear, the list of
di�erences at X2[0 − 31] is known. Continuing in a similar manner as discussed above, if the attacker guesses full
states X0

2 [0− 31] and X0
3 [0− 31], then the list of di�erences at Z3, i.e., {Z

0
3 ⊕Z0

3 , Z
1
3 ⊕Z0

3 , . . ., Z
255
3 ⊕Z0

3} can be
easily computed.

7 From now onwards, list denotes an ordered list



This also allows her to calculate the list of di�erences at X4[2, 3, 6, 7, 8, 9, 12, 13, 18, 19, 22, 23, 24, 25, 28, 29]. By
guessing X0

4 [2, 3, 6, 7, 8, 9, 12, 13, 18, 19, 22, 23, 24, 25, 28, 29], the attacker can cross the SB layer in round 4 and cal-
culate the list of di�erences at X5[8, 9, 28, 29]. By guessing X0

5 [8, 9, 28, 29], the attacker can obtain the list of
values {Z0

5 [8, 9, 12, 13], Z
1
5 [8, 9, 12, 13], . . . , Z

255
5 [8, 9, 12, 13]}. Using these, she can compute P i5 at Zi5 using Eq. 14

and thus the list {P 0
5 ⊕P 0

5 , P
0
5 ⊕P 1

5 , . . . , P
255
5 ⊕P 0

5 }. Since, according to Eq. 17, P
i
5⊕P 0

5 = Qi5⊕Q0
5 and ou

i = Qi5
(mentioned above), the attacker can easily calculate the ordered sequence ov = {Q0

5⊕Q0
5, Q

1
5⊕Q0

5, . . ., Q
255
5 ⊕Q0

5}.
This shows that ov depends on 93 parameters and can take 2744 possible values. ut
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Fig. 5. 6-Round distinguisher in Kalyna-256/512 . Here, P i denotes (T || M i) and Xi
j , Y

i
j , Z

i
j , W

i
j denote intermediate

states corresponding to P i in round j. The round subkeys Kj , where, 0 ≤ j ≤ 6 are generated from the master key K.

Since, there are 2744 possible ordered sequences, if we precompute and store these values in a hash table, then
the precomputation complexity goes higher than brute force for Kalyna-256/512. In order to reduce the number of
ordered sequences, we apply the Re�ned Di�erential Enumeration technique as follows:



Number of admissible ordered sequences. Consider the 6-round truncated di�erential trail in round 0 - round
5 (as shown in Fig. 5) where, the input di�erence is non-zero at one byte and output di�erence is non zero in 8
bytes. The probability of such a trail is 2−224 as follows: the one byte di�erence at ∆P [31] propagates to 32-byte
di�erence in ∆Z3[0−31] with probability 1. Next, the probability that 32-byte di�erence in ∆Z3[0−31] propagates
to 16-byte di�erence in ∆X4[2, 3, 6, 7, 8, 9, 12, 13, 18, 19, 22, 23, 24, 25, 28, 29] is 2

−128. This 16-byte di�erence in ∆X4

propagates to 4-byte di�erence in ∆W4[8, 9, 28, 29] followed by 8-byte di�erence in ∆W5[8− 15] with a probability
of 2−96. Thus, the overall probability of the di�erential trail from ∆P to ∆W5 is 2−(128+96) = 2−224.

In other words, we require 2224 plaintext pairs to get a right pair. Once, we get a right pair, say (P 0, P 1), we
state the following Observation 5.

Observation 5. Given a right pair (P 0, P 1) that follows the truncated di�erential trail (∆P → ∆W5), the 93
parameters corresponding to P 0, mentioned in Observation 4 can take one of atmost 2440 �xed 93-byte values (out
of the total 2744 possible values), where each of these 2440 93-byte values are de�ned by each of the 2440 values of
the following 66 parameters:

• Y 0
0 [31] (1-byte)

• ∆Z0[23] (1-byte)
• X0

1 [16− 23] (8-bytes)
• Y 0

3 [0− 31] (32-bytes)
• Y 0

4 [2, 3, 6, 7, 8, 9, 12, 13, 18, 19, 22, 23, 24, 25, 28, 29] (16-bytes)
• Y 0

5 [8, 9, 28, 29] (4-bytes)
• ∆Z5[8, 9, 12, 13] (4-bytes)

Proof. Given a right pair (P 0, P 1), the knowledge of these 66 new parameters allows us to compute all the
di�erences shown in Fig. 5as follows. Knowledge of Y 0

0 [31] allows us to compute X0
0 [31]. Knowing ∆Z0[23] allows

one to compute the di�erence ∆X1[16 − 23]. Then, if the values of X0
1 [16 − 23] are known, one can compute the

corresponding X1
1 [16− 23] and compute ∆X2.

From the bottom side, knowing ∆Z5[8, 9, 12, 13] allows one to compute ∆Y5[8, 9, 28, 29]. Knowledge of Y 0
5

[8, 9, 28, 29] allows one to compute Y 1
5 [8, 9, 28, 29], cross the SB layer in round 5 and obtain ∆Y 0

4 [2, 3, 6, 7, 8, 9, 12,
13, 18, 19, 22, 23, 24, 25, 28, 29]. Proceeding in a similar manner, knowing Y 0

4 [2, 3, 6, 7, 8, 9, 12, 13, 18, 19, 22, 23,
24, 25, 28, 29] and Y 0

3 [0− 31] allows one to compute ∆Y 0
2 [0− 31]. Then, using Property 1a., the possible values of

X0
2 and Y 0

2 can be computed. At this stage, the total possible values of these 65 parameters are 266×8 = 2528.
However, for each value of this 66-byte parameter, the following key bytes - U2[4, 5, 14, 15, 16, 17, 26, 27], K3,

K4[2, 3, 6, 7, 8, 9, 12, 13, 18, 19, 22, 23, 24, 25, 28, 29] and K5[8, 9, 28, 29] can be deduced as follows:

1. Knowledge of X0
1 [16 − 23] allows us to compute the corresponding Z0

1 [4, 5, 14, 15, 16, 17, 26, 27]. Xoring these
values with X0

2 [4, 5, 14, 15, 16, 17, 26, 27] helps us in deducing U2[4, 5, 14, 15, 16, 17, 26, 27].
2. Knowledge of X0

2 and Y 0
3 helps us in deducing K3.

3. Knowledge of Y 0
3 and Y 0

4 [2, 3, 6, 7, 8, 9, 12, 13, 18, 19, 22, 23, 24, 25, 28, 29] can be used to deduce K4[2, 3, 6, 7, 8,
9, 12, 13, 18, 19, 22, 23, 24, 25, 28, 29].

4. Knowledge of Y 0
4 [2, 3, 6, 7, 8, 9, 12, 13, 18, 19, 22, 23, 24, 25, 28, 29] and Y 0

5 [8, 9, 28, 29] helps us in deducing K5

[8, 9, 28, 29].

Now, according to the key schedule algorithm of Kalyna-128/256 from K3, we can compute K2 (according to
Eq. 1) which allows us to compute the corresponding U2. Thus, by comparing the computed U2[4, 5, 14, 15, 16, 17,
26, 27] with the deduced U2[4, 5, 14, 15, 16, 17, 26, 27], a sieve of 8-bytes (since matching probability is 2−64) can be
applied. Similarly, knowledge of K4[2, 3, 6, 7, 8, 9, 12, 13, 18, 19, 22, 23, 24, 25, 28, 29] allows us to compute K5 [8, 28,
29] which can then be matched with the deduced K5[8, 28, 29]. This allows us a �ltering of further 3-bytes. Thus,
by key sieving, a total of 11-byte �ltering can be applied and the possible guesses of 66-byte parameter reduces
from 266×8 to 2(66−11)×8 = 255×8 = 2440. ut

Using Observation 4 and Observation 5, we state the following third Observation 6 :

Observation 6. Given (M0, M1, . . . , M255) and f
$←− F and T

$←− {0, 1}248, such that T || M0 and T || M j ,
(where, j ∈ { 1, . . . , 255 }) is a right pair that follows the di�erential trail shown in Fig. 5, atmost 2440 multisets
v are possible.



Proof. From Observation 4, we know that each 93-byte parameter de�nes one ordered sequence and Observation
5 restricts the possible values of these 93-byte parameters to 2440. Thus, atmost 2440 ordered sequences are only
possible for Kalyna-256/512. ut

As the number of ordered sequences in case of 256-bit random permutation (= 22040) is much higher than 6-round
Kalyna-256/512 ( = 2440), a valid distinguisher is therefore constructed.

6 Key Recovery Attack on 9-Round Kalyna-256/512

In this section, we use our Observation 6 to launch meet-in-the-middle attack on 9-round Kalyna-256/512 to recover
the key. The distinguisher is placed in round 0 to round 5 (as shown in Fig. 6) and three rounds are added at the
bottom of the 6-round distinguisher. The attack consists of the following three phases:

6.1 Precomputation Phase

In this phase, we build a lookup table T to store 2440 sequences to be used for comparison in the online phase. The
construction of this table requires us to create two more hash tables (T0 and T1) in the intermediate steps. The
entire procedure is as follows:

1. For each K3

� We guess∆Z1[4, 5, 14, 15, 16, 17, 26, 27] || ∆X4[2, 3, 6, 7, 8, 9, 12, 13, 18, 19, 22, 23, 24, 25, 28, 29] to compute
∆X2 and∆Y3 respectively. We resolve (∆X2 -∆Y3) using Property 1b to compute the correspondingX2||Y3.
We then deduce K2 from K3 and compute the corresponding value of Z1[4, 5, 14, 15, 16, 17, 26, 27]. Using
the guessed value of ∆Z1[4, 5, 14, 15, 16, 17, 26, 27] and the computed value of Z1[0−3, 12−15], we compute
∆Z0[16− 23]. If ∆Z0[16− 22] = 0 (which happens with a probability of 2−56), we store the corresponding
X1[16 − 23] || ∆Z1[4, 5, 14, 15, 16, 17, 26, 27] || X2 || X3 || W3[7, 8, 19] || ∆X4[2, 3, 6, 7, 8, 9, 12, 13, 18, 19,
22, 23, 24, 25, 28, 29] at index K3 in table T0. There are about 2

136 entries for each index.
2. For each guess of ∆Z5[8, 9, 12, 13] || Y5[8, 9, 28, 29], compute X5[8, 9, 28, 29], ∆W4[8, 9, 28, 29] and ∆Y4[2, 3, 6, 7,

8, 9, 12, 13, 18, 19, 22, 23, 24, 25, 28, 29]. Guess Y4[2, 3, 6, 7, 8, 9, 12, 13, 18, 19, 22, 23, 24, 25, 28, 29] to compute
X4[2, 3, 6, 7, 8, 9, 12, 13, 18, 19, 22, 23, 24, 25, 28, 29] and ∆X4[2, 3, 6, 7, 8, 9, 12, 13, 18, 19, 22, 23, 24, 25, 28, 29]
in the backward direction and W4[8, 9, 28, 29] in the forward direction. From, W4[8, 9, 28, 29] and X5[8, 9, 28, 29]
compute K5[8, 9, 28, 29]. Deduce K4[7, 8, 19] (where, K5[8] = K4[19], K5[28] = K4[7] and K5[29] = K4[8]).
Using, X4[7, 8, 19] and K4[7, 8, 19], compute W3[7, 8, 19].

3. For each entry of W3[7, 8, 19] || ∆X4[2, 3, 6, 7, 8, 9, 12, 13, 18, 19, 22, 23, 24, 25, 28, 29], we store X4[2, 3, 6, 7, 8, 9,
12, 13, 18, 19, 22, 23, 24, 25, 28, 29] || X5[8, 9, 28, 29] in a table T1. There are 240 entries per index.

4. For each of the 2256 index of K3 in table T0, we have 2136 entries of W3[7, 8, 19] || ∆X4 [2, 3, 6, 7, 8, 9, 12,
13, 18, 19, 22, 23, 24, 25, 28, 29] and corresponding to each of these we have 240 entries of X4[2, 3, 6, 7, 8, 9,
12, 13, 18, 19, 22, 23, 24, 25, 28, 29] || X5[8, 9, 28, 29] in table T1. So in all, after merging T0 and T1, we get
2256+136+40 = 2432 unique set of 65-byte parameters mentioned in Observation 5.

5. For each guess of X0[31], combine the above merged entries with X0[31] to complete the set of 66-parameters
mentioned in Observation 5. Now, there are a total of 2432+8 = 2440 entries.

6. For each of these 2440 66-byte parameters, we calculate the corresponding 93-byte parameters for all the elements
of the δ-list and compute the ordered sequence ov = {ou0 ⊕ ou0, ou1 ⊕ ou0, . . . , ou255 ⊕ ou0}. We store the
ordered sequence along with the 93-byte parameters in the table T .

The time complexity to construct T0 = 2(32+8+16)×8 × 2−2.17 = 2445.83. The time complexity to construct T1
= 2(4+4+16)×8 × 2−2.17 = 2189.83. The time complexity to merge T0 and T1 along with each guess of X0[31] =
2256+136+40+8 = 2440. Finally, the time complexity to construct T = 2440 × 28 × 2−0.58 = 2447.42. Hence, overall
time complexity is 2445.83 + 2447.42 ≈ 2447.83.

6.2 Online Phase

In this phase we extend the distinguisher in Section 5, by adding 3 more rounds at the bottom (as shown in Fig. 6).
The steps of the online phase are as follows:

1. We encrypt 2209 structures of 28 plaintexts each where byte 31 takes all possible values and rest of the bytes
are constants. We store the corresponding ciphertexts in the hash table.



Pi

SRSB

Xi
0

Zi
0

Y i
0

K0

MC

Wi
0

U0

MC

SRSB

Xi
1

Zi
1

Y i
1

K1

MC

Wi
1

U1

MC ⊕

Round 0

SRSB

Xi
2

Zi
2

Y i
2

K2

MC

Wi
2

U2

MC

SRSB

Xi
3

Zi
3

Y i
3

K3

MC

Wi
3

U3

MC ⊕

SRSB

Xi
4

Zi
4

Y i
4

K4

MC

Wi
4

U4

MC

SRSB

Xi
5

Zi
5

Y i
5

K5

MC

Wi
5

U5

MC ⊕

SRSB

Xi
6

Zi
6

Y i
6

K6

MC

Wi
6

U6

MC

SRSB

Xi
7

Zi
7

Y i
7

K7

MC

Wi
7

U7

MC ⊕

SRSB

Xi
8

Zi
8

Y i
8

K8

MC

Wi
8

U8

MC

b b b b
b b b b

b
b
b
b
b
bb

b
b
b
b
bb

b
b
b
b
bb

b
b
b
b
b

CiK9U9

MC

Round 1

Round 2

⊕

Round 3

⊕
Round 4

Round 5

Round 6

Round 7

Round 8

⊕

b b b b
b b b b

b
b
b
b
b
bb

b
b
b
b
bb

b
b
b
b
bb

b
b
b
b
b

b
b

b
b

b
b

b
b

Fig. 6. 9-round attack on Kalyna-256/512. The subkey bytes guessed are shown dotted.



2. For each of the 2224 (P0, P
′
0) plaintext pairs, do the following:

� We guess 2256 values of K9 and deduce the corresponding values of K8 from K9. We decrypt each of the
ciphertext pairs through 2 rounds, to get X7 and ∆X7. Then, we deduce the corresponding ∆W6 and ∆Z6.

� We �lter out the keys, which do not give zero di�erence at ∆Z6[0− 5, 10− 17, 20− 27, 30, 31]. This creates
a �ltering of 2−192 and hence only 264 key guesses are expected to remain.

� We pick one member of the pair, say P0, create the δ-list by constructing the rest of the 255 plaintexts as
Pi = P0 ⊕ i, where, 1 ≤ i ≤ 255 and get their corresponding ciphertexts.

� For each of the remaining 264 key guesses of K8 and K9, we guess U7[6, 7, 8, 9, 18, 19, 28, 29], compute the
corresponding Z6[6, 7, 8, 9, 18, 19, 28, 29] and Y6[8− 15] and then obtain the ordered sequence { ou0 ⊕ ou0,
ou1 ⊕ ou0, . . ., ou255 ⊕ ou0}.

� We check whether this sequence exists in the precomputation table T or not. If not, then we discard the
corresponding guesses.

Reason for counting ordered sequences instead of multisets . The probability for a wrong guess to pass
the test is 2440×2−2040 = 2−1600. Since we try only 2224+64 = 2288 ordered sequences, only the right subkey should
verify the test.

If we had opted for mutliset attack on Kalyna-256/512, the total possible admissible multisets would have been
2432 (as the parameter X0[31] would not have been required ). Therefore, the probability for a wrong guess to pass
the test would have been 2432×2−467.6 = 2−35.6 (similar to that described in Section 4). As mentioned above, since
we try 2288 multisets, we would have got mutliple candidates for the right subkey and unable to recover the secret
key.

6.3 Recovering the remaining Subkey bytes

The remaining subkeys recovery process is similar to that discussed in Section 4.3. When a match with an ordered
sequence is found using a given plaintext-ciphertext pair, we choose one of the ciphertexts and perform the following
steps:

1. We already know the corresponding K8 and K9 and U7[6, 7, 8, 9, 18, 19, 28, 29].

2. We guess the remaining 24 bytes of U7, and deduce the corresponding 2192 values of K7 and K6.

3. For each 2192 guesses of (K7,K6), from X7 we compute X5. We discard the key guesses for which X5[8, 9, 28, 29]
does not match with the values of X5[8, 9, 28, 29] obtained from the corresponding matched ordered sequence
in the pre-computation table.

4. For the remaining 2192−32 = 2160 guesses of (K9, K8, K7, K6), we guess 2
256 values of K5. We deduce X4 and

discard the key guesses for which X4[2, 3, 6, 7, 8, 9, 12, 13, 18, 19, 22, 23, 24, 25, 28, 29] does not match with the
values obtained corresponding to the correct ordered sequence from the precomputation table. From a total of
2160+256 = 2416 key guesses, 2288 key guesses are expected to remain.

5. We deduce K4 from K5 for the remaining key guesses and compute X3. We compare this to the value obtained
from the precomputation table corresponding to the correct ordered sequence and discard those that do not
match. 232 values of (K9, K8, K7, K6, K5, K4) are expected to remain.

6. One value of K3 and K2 corresponding to the matching sequence is already known from the pre-computation
table. We deduce X1 for the remaining 232 values of (K9, K8, K7, K6, K5, K4, K3, K2).

7. We guess 2256 values of K1, deduce K0 and compute X0[23] and plaintext. We compare this to X0[23] obtained
from the precomputation table and to the plaintext corresponding to ciphertext being decrypted respectively.
We are left with only 224 values of (K9, K8, K7, K6, K5, K4, K3, K2, K1, K0). We search these exhaustively
to �nd the correct set of subkeys.

Complexities. The time complexity of the precomputation phase is 2447.83 Kalyna-128/256 encryptions. The
time complexity of the online phase is dominated by step 2(part 1) and is 2224 × 2256 × 2−2.17 = 2477.83. The time
complexity of the Subkey recovery phase is dominated by step 4 which is 2160 × 2256 × 2−3.17 = 2412.83. Clearly
the time complexity of the whole attack is dominated by the time complexity of the online phase, i.e., 2477.83. It
was shown in [5] that each 256-byte multiset requires 512-bits space. Hence, to store each entry in table T, we
require 2048-bits to store the ordered sequence and 93× 8 = 744-bits to store the 52-byte parameters, i.e., a total
of 928-bits (= 211.45). Therefore, the memory complexity of this attack is 2440 × 211.45−8 = 2443.45 Kalyna 256-bit
blocks. The data complexity of this attack is 2217 plaintexts.



7 Conclusions

In this work, we utilize multiset attacks to launch key recovery attack on Kalyna-128/256 and Kalyna-256/512. We
improve the previous 7-round attack on both the variants to demonstrate the �rst 9-round attacks on the same.
Our attacks on Kalyna-256/512 even improve upon the previous 7-round attack on the same variant in terms of
time and data complexities. We obtain these results by constructing new 6-round distinguishers on Kalyna and
applying MITM attack on the rest of the rounds. Currently, this line of attack only works on Kalyna-b/2b variants
and Kalyna variants in which block size and key size are equal appear to be safe. It would be an interesting problem
to try applying multiset attacks on Kalyna-b/b. Presently, all �ve variants of Kalyna have been included in the
Ukranian standard. However, our results as well as the previous 7-round attack show that compared to Kalyna-b/2b
variants, Kalyna-b/b variants appear to be more robust.
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B Derivation of Eq. 3 de�ned in Section 3

ADx 95x 76x A8x 2Fx 49x D7x CAx
CAx ADx 95x 76x A8x 2Fx 49x D7x
D7x CAx ADx 95X 76x A8x 2Fx 49x
49x D7x CAx ADx 95x 76x A8x 2Fx
2Fx 49x D7x CAx ADx 95x 76x A8x
A8x 2Fx 49x D7x CAx ADx 95x 76x
76x A8x 2Fx 49x D7x CAx ADx 95x
95x 76x A8x 2Fx 49x D7x CAx ADx


×



Wj [8]
Wj [9]
Wj [10]
Wj [11]
Uk1
Wj [13]
Wj [14]
Wj [15]


=



Uk2
Uk3
Uk4
Uk5
Zj [12]
Zj [13]
Zj [14]
Zj [15]


Using Inverse Mix Column operation, Zj [12], Zj [13], Zj [14] and Zj [15] can be written as:

2Fx·Wj [8]⊕49x·Wj [9]⊕D7x·Wj [10]⊕CAx·Wj [11]⊕ADx·Uk1⊕95x·Wj [13]⊕76x·Wj [14]⊕A8x·Wj [15] = Zj [12] (22)

A8x·Wj [8]⊕2Fx·Wj [9]⊕49x·Wj [10]⊕D7x·Wj [11]⊕CAx·Uk1⊕ADx·Wj [13]⊕95x·Wj [14]⊕76x·Wj [15] = Zj [13] (23)

76x·Wj [8]⊕A8x·Wj [9]⊕2Fx·Wj [10]⊕49x·Wj [11]⊕D7x·Uk1⊕CAx·Wj [13]⊕ADx·Wj [14]⊕95x·Wj [15] = Zj [14] (24)

95x·Wj [8]⊕76x·Wj [9]⊕A8x·Wj [10]⊕2Fx·Wj [11]⊕49x·Uk1⊕D7x·Wj [13]⊕CAx·Wj [14]⊕ADx·Wj [15] = Zj [15] (25)

If we combine the above equations in the following way:

CAx · (Eq 22)⊕ADx · (Eq 23)⊕ 49x · (Eq 24)⊕D7x · (Eq 25) (26)

We can eliminate the unknown variable Uk1 and obtain:

94x ·Wj [8]⊕B4x ·Wj [9]⊕ 4Ex ·Wj [10]⊕ 7Ex ·Wj [11] = CAx · Zj [12]⊕ADx · Zj [13]
⊕C0x ·Wj [13]⊕DAx ·Wj [14]⊕ C5x ·Wj [15] ⊕ 49x · Zj [14]⊕D7x · Zj [15] (27)

C Derivation of Eq. 13 de�ned in Section 5

ADx 95x 76x A8x 2Fx 49x D7x CAx
CAx ADx 95x 76x A8x 2Fx 49x D7x
D7x CAx ADx 95X 76x A8x 2Fx 49x
49x D7x CAx ADx 95x 76x A8x 2Fx
2Fx 49x D7x CAx ADx 95x 76x A8x
A8x 2Fx 49x D7x CAx ADx 95x 76x
76x A8x 2Fx 49x D7x CAx ADx 95x
95x 76x A8x 2Fx 49x D7x CAx ADx


×



Wj [8]
Wj [9]
Wj [10]
Wj [11]
Wj [12]
Wj [13]
Wj [14]
Wj [15]


=



Zj [8]
Zj [9]
Uk1
Uk2
Zj [12]
Zj [13]
Uk3
Uk4


Using Inverse Mix Column operation, Zj [8], Zj [9], Zj [12] and Zj [13] can be written as:

ADx ·Wj [8]⊕95x ·Wj [9]⊕76x ·Wj [10]⊕A8x ·Wj [11]⊕2Fx ·Wj [12]⊕49x ·Wj [13]⊕D7x ·Wj [14]⊕CAx ·Wj [15] = Zj [8]



CAx ·Wj [8]⊕ADx ·Wj [9]⊕95x ·Wj [10]⊕76x ·Wj [11]⊕A8x ·Wj [12]⊕2Fx ·Wj [13]⊕49x ·Wj [14]⊕D7x ·Wj [15] = Zj [9]

25x ·Wj [8]⊕49x ·Wj [9]⊕D7x ·Wj [10]⊕CAx ·Wj [11]⊕ADx ·Wj [12]⊕95x ·Wj [13]⊕76x ·Wj [14]⊕A8x ·Wj [15] = Zj [12]

A8x ·Wj [8]⊕25x ·Wj [9]⊕49x ·Wj [10]⊕D7x ·Wj [11]⊕CAx ·Wj [12]⊕ADx ·Wj [13]⊕95x ·Wj [14]⊕76x ·Wj [15] = Zj [13]

If we xor together the above four equations, then we get

Zj [8]⊕ Zj [9]⊕ Zj [12]⊕ Zj [13] = EAx ·Wj [8]⊕ 54x ·Wj [9]⊕ 7Dx ·Wj [10]⊕ C3x ·Wj [11]⊕ E0x ·Wj [12]⊕
5Ex ·Wj [13]⊕ 7Dx ·Wj [14]⊕ C3x ·Wj [15]
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