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Abstract

Cryptographic identification protocols enable a prover to prove its identity to a
verifier. A subclass of such protocols are shared-secret challenge-response identifi-
cation protocols in which the prover and the verifier share the same secret and the
prover has to respond to a series of challenges from the verifier. When the prover
is a human, as opposed to a machine, such protocols are called human identifica-
tion protocols. To make human identification protocols usable, protocol designers
have proposed different techniques in the literature. One such technique is to
make the challenges sparse, in the sense that only a subset of the shared secret is
used to compute the response to each challenge. Coskun and Herley demonstrated
a generic attack on shared-secret challenge-response type identification protocols
which use sparse challenges. They showed that if the subset of the secret used is
too small, an eavesdropper can learn the secret after observing a small number
of challenge-response pairs. Unfortunately, from their results, it is not possible to
find the safe number of challenge-response pairs a sparse-challenge protocol can be
used for, without actually implementing the attack on the protocol and weeding
out unsafe parameter sizes. Such a task can be time-consuming and computation-
ally infeasible if the subset of the secret used is not small enough. In this work, we
show an analytical estimate of the number of challenge-response pairs required by
an eavesdropper to find the secret through the Coskun and Herley attack. Against
this number, we also give an analytical estimate of the time complexity of the
attack. Our results will help protocol designers to choose safe parameter sizes for
identification protocols that employ sparse challenges.

1 Introduction

An identification protocol is a cryptographic protocol through which a prover P verifies
its identity to a verifier V [1]. A protocol is referred to as a challenge-response type
identification protocol when P and V share the same secret, and P responds to a series
of challenges from V.1 Usually, the response is computed from a publicly known function
f of the secret s and the challenge c so that the verifier can check if the responses are
correct at its end. When the prover P is a human, the identification protocol is generally
known as a human identification protocol. The holy grail of protocol designers in the
realm of human identification protocols is to devise a function f that is simple enough

1See Section 4 for an example of such protocols.
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for a human to mentally compute yet requires the eavesdropper to observe a sizeable
number of challenge-response pairs to reconstruct the secret.

Another way to make the identification protocol practical for humans is to reduce
the size of the challenge c such that the function f is applicable to only a small fraction u
of the shared secret s. We refer to such protocols as sparse-challenge protocols. Given a
generic sparse-challenge protocol, Coskun and Herley [2] showed an attack that exploits
the observation that when u is small, candidates of the secret that are close to the secret
s (in terms of a distance metric) yield similar responses to s when f is applied on them.
In a nutshell, their attack samples a large enough subset S′ of the set of all possible
secrets S such that with high probability there is at least one element (candidate) in S′

that is a distance ξ from the target secret s. The attacker can apply the function f on
each of the candidates in S′ and the observed challenges to weed out those candidates
whose responses are further away from the observed responses.2 For more details, see [2].
We call this attack, the CH attack in short.

The CH attack demonstrates that with small values of u, say ≤ 10, sparse-challenge
identification protocols are not secure in the sense that the attack is computationally
feasible with a small number of observed challenge-response pairs m. Furthermore, the
complexity of the attack can be decreased by observing more challenge-response pairs.
However, Coskun and Herley’s work leaves open the following question: Suppose a time
complexity of 2λ is considered infeasible for some λ,3 what value of m is safe enough in
the sense that if the eavesdropper observes ≤ m challenge-response pairs, the CH attack
has complexity at least 2λ? Indeed, this question is important for protocol designers who
wish to use higher values of u (perhaps for authentication of pervasive devices if higher
values of u are considered infeasible for humans). While it is possible to implement the
CH attack to check its feasibility on a given protocol when the sizes of the protocol
parameters are small, for larger sizes and large m this may be impractical.

In this paper, we describe an analytical estimate for m that is safe against the CH
attack. Against this safe value of m we also describe a simpler estimate of the work
factor (WF) of the CH attack, compared to the analytically difficult expression obtained
by Coskun and Herley in [2], to determine the complexity of the attack. Our results can
help protocol designers in setting sizes of the protocol parameter, such that the protocol
can safely be used for m rounds (challenge-response pairs) against the CH attack with
complexity ≈ 2λ, where λ can be chosen according to what is considered infeasible.4

2 Preliminaries

Let C denote the challenge space, R the response space and S the secret space, all three
being finite sets. A member c ∈ C is called a challenge, r ∈ R a response and s ∈ S
a secret. We let log2 |S| = η. Then a secret s ∈ S is represented as a binary string
of η bits. A fraction u < η are used to compute a function f : C × S → R.5 Given
two strings x1 and x2 of equal length, the Hamming distance, denoted d(x1, x2), is the
number of positions at which x1 and x2 differ. For two secrets s1, s2 ∈ S, it follows that
0 ≤ d(s1, s2) ≤ η. If d(s1, s2) = i we say that s1 is a distance-i neighbour of s2 (and
vice versa). We let s0 ∈ S denote the target secret. Any other element s ∈ S − {s0}
is then called a candidate for the secret, or simply a candidate. Given a sequence of
challenges (c1, . . . , cm), let Γ(s) denote the string of responses f(c1, s)|| · · · ||f(cm, s), for
some s ∈ S. Where there is no ambiguity, we shall denote Γ(s) simply by Γ. The

2The notion of distance shall be made exact later.
3For instance, λ = 80.
4After m rounds, the secret can be renewed.
5The verifier in fact samples a random c ∈ C in each round such that a random u out of η bits of s

are in c, which are then used to compute f .
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response stream of the target secret s0 shall be denoted by Γ0. For integers x and y, we
use the convention that the binomial coefficient

(
x
y

)
= 0, whenever x < y. The following

two well-known results will be used later.

Theorem 1 (Central Limit Theorem [3, §8.3, p. 434]). Let X1, X2, . . . , Xm be a se-
quence of i.i.d. random variables each having mean µ and variance σ2. Then

P
[∑m

i=1Xi −mµ
σ
√
m

≤ a
]
→ Φ(a) as m→∞,

where Φ(·) denotes the cumulative distribution function of the standard normal distri-
bution.

Theorem 2 (Hoeffding’s Inequality [4, p. 217]). Let X1, X2, . . . , Xm be independent
bounded random variables such that Xi falls in the interval [ai, bi] with probability one.
Then for any t > 0,

P

[
m∑
i=0

Xi −
m∑
i=0

E[Xi] ≥ t

]
≤ exp

(
− 2t2∑m

i=0(bi − ai)2

)
,

and

P

[
m∑
i=0

Xi −
m∑
i=0

E[Xi] ≤ −t

]
≤ exp

(
− 2t2∑m

i=0(bi − ai)2

)
.

The following result will come handy

Proposition 1. For all x ∈ R, x(1− x) ≤ 1
4 .

Let X denote a Bernoulli random variable with distribution P (x), for x ∈ X. We
shall denote the probability that X = 1 as P(X = 1) = P (1) = p. Let P and Q be two
probability distributions, then the Kullback-Leibler divergence of Q from P is

D(P || Q) =
∑
x∈X

P (x) log2

P (x)

Q(x)
,

which for Bernoulli distributions P and Q is,

D(P || Q) = p log2

p

q
+ (1− p) log2

1− p
1− q

,

where we use the convention that log2
0
a = 0 for any a ≥ 0. The following useful bound

bears resemblance to a result from [5, p. 2].

Theorem 3. Let P and Q be two Bernoulli distributions with 0 < q < p < 1. Then
D(P || Q) ≤ 1

θ (p− q)2, where θ = minx{x(1− x)} for all x ∈ [q, p].

Proof.

D(P || Q) = p log2

p

q
+ (1− p) log2

1− p
1− q

= p log2

p

e

e

q
+ (1− p) log2

1− p
e

e

1− q

= p ln
p

q
+ (1− p) ln

1− p
1− q

= p

∫ p

q

1

x
dx− (1− p)

∫ p

q

1

1− x
dx

=

∫ p

q

(
p− x

x(1− x)

)
dx

≤ 1

θ

∫ p

q

(p− x)dx =
1

θ
(p− q)2.
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Finally we shall utilize Sanov’s theorem.

Theorem 4 (Sanov’s Theorem [6, §11.4, p. 362]). Let X1, X2, . . . , Xm be i.i.d. with
distribution Q and let Qm =

∏
iQ(xi). Let E be a set of distributions such that E is

the closure of its interior, then

Qm(E ∩ Pm) = Qm(E)→ 2−mD(P∗||Q) as m→∞,

where Pm is the set of all empirical probability distributions with denominator m and
P ∗ is the distribution in E that minimizes D(P || Q) for P ∈ E.

Corollary 1. Let X1, X2, . . . , Xm be i.i.d. Bernoulli random variables with distribution
Q. Then,

P

[
m∑
i=1

Xi ≥ mα

]
= Qm(E),

for 0 < α < 1, where E is the set of distributions

E =

P
∣∣∣∣∣∣
∑

x∈{0,1}

P (x) ≥ α = P (1) ≥ α

 .

Moreover, the P ∗ that minimizes D(P || Q) is Pα given by Pα(1) = α.

Proof. The proof of the first part is in [6, §11.4, p. 361]. For the second part, the
distribution P ∗ that minimizes D(P || Q) for P ∈ E is given by [6, §11.5, p. 364]

P ∗(x) =
qx(1− q)(1−x) exp(κx)

q exp(κx) + 1− q
,

where κ is chosen such that P ∗(1) = α. Setting P ∗(1) = α in the above, we get

exp(κ) =
α

1− α
1− q
q

,

which after substitution yields P ∗(x) = αx(1− α)(1−x) = Pα(x).

3 Analysis of the Coskun and Herley Attack

We shall begin this section by giving an overview of the Coskun and Herley (CH) attack.
After that we shall derive an estimate of a safe m, i.e., the allowed number of challenge-
response pairs. Finally we shall give an estimate of the work factor of the CH attack
against this safe m.

3.1 Overview of the CH Attack

We assume an eavesdropper, i.e., a passive adversary, observing challenge-response pairs
exchanged between P and V who share a target secret s0 ∈ S. Each challenge-response
pair is assumed to come from one round of the protocol. Our discussion in this section is
from the adversary’s viewpoint. Assume we have observed m challenge-response pairs,
and we wish to retrieve the target secret s0. Fix a ξ ∈ {1, . . . , η− u}. The CH attack is
as follows [2, p. 434]:
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Attack: The CH Attack

1 Sample a random subset S′ of S with 2η/
(
η
ξ

)
candidates.

2 for each candidate s′ in S′ do
3 Initialize a list with s′.
4 for i = 0, 1, . . . , ξ − 1 do
5 Compute d(Γ0,Γ) of each distance-1 neighbour s of each element in list.
6 Retain τ candidates in the list that maximise d(Γ0,Γ).
7 if d(Γ0,Γ) = m for any candidate secret in the list then
8 Output the candidate and halt.

The parameter τ is used to reduce the complexity of the attack. Coskun and Herley
use τ = 10 (which we shall also adopt for our simulations). Note that if ξ = 0 the
complexity of the attack is equivalent to brute-force, and we therefore use ξ > 0. The
reason for choosing 2η/

(
η
ξ

)
candidates is to expect at least one distance-ξ neighbour of s0

to be present. Increasing this to a factor 2η+q/
(
η
ξ

)
, where q ≥ 1 increases the probability

of this event [2]. However, q = 0 corresponds to least computational overhead, and
hence we use this in this paper. A glance at the attack reveals that a large ξ reduces
the complexity of the attack (since 2η/

(
η
ξ

)
decreases as ξ increases), while a small ξ

increases the probability of finding the secret (as there are less number of iterations,
i.e., step 4, and therefore less chance of error). For large values of ξ, we therefore need
a larger value of m to successfully find the secret. Next, we show how to estimate a
“safe” m, denoted m̂, for a given ξ. By safe we mean that if the adversary observes less
than m̂ challenge-response pairs, the success probability of the CH attack is low. After
estimating an expression for m̂, we shall derive a simpler estimate for the work factor
(WF) of the CH attack obtained by Coskun and Herley, first for a general m and then
in particular for a given value of m̂.

3.2 Estimating a Safe m

For reasons of usability, the size of the response space R in a human identification
protocol is in general small. Thus, there is a high probability |R|−1 that a candidate s
has the same response as s0 on a given challenge. Over m challenges this probability
reduces to |R|−m. Thus a fraction η

|R|m of the candidates, i.e., elements of S, agree with

the response stream Γ0 of length m. This imposes an information theoretic bound on m
beyond which we expect only the target secret s0 to satisfy the target response stream
Γ0. This bound, denoted mit, is given as η

log2 |R|
. Thus the attacker has to observe at

least mit challenge-response pairs to obtain the unique secret, independent of any attack.
Our estimation of a safe m, i.e., m̂, for the CH attack shall be meaningful only when it
is higher than mit.

Let s ∈ S be such that d(s0, s) = i. Given a uniformly random c ∈ C, let pi denote
the probability that f(c, s) = f(c, s0). Then

pi = ai + (1− ai)
1

|R|

= ai

(
1− 1

|R|

)
+

1

|R|
, (1)

where

ai
def
=

(
η−i
u

)(
η
u

) . (2)

Intuitively, ai denotes the probability that the u bits of the candidate s chosen to respond
to the challenge are the same as those of the secret s0, which is a distance i from s.
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Theorem 5. Let i < j < η, then pi ≥ pj, with equality if and only if η − i and η − j
are both less than u.

Proof. When both η− i and η− j are less than 0, then by convention
(
η−i
u

)
=
(
η−j
u

)
= 0,

and hence pi = pj = 1
|R| . When η − i ≥ u and η − j < u, then ai ≥ 1, whereas aj = 0,

from which it follows that pi > pj . We are left with the case when η − i > u and
η − j ≥ u. Since i < j < η, we have η − i > η − j which allows us to write(

η − i
u

)
=

(η − i)
(η − i− u)

· (η − i− 1)

(η − i− u− 1)
· · · (η − j + 1)

(η − j + 1− u)
·
(
η − j
u

)
> 1 · 1 · · · 1 ·

(
η − j
u

)
=

(
η − j
u

)
.

This implies that ai > aj and consequently pi > pj .

Figure 1 shows the value of pi as i ranges from 0 to η, for η = 80, u = 5 and |R| = 4.
Notice how after around i = η

2 the pi’s are closer to |R|−1 = 0.25. Now, as before let

0 10 20 30 40 50 60 70 80
i

0.0

0.2

0.4

0.6

0.8

1.0

p
i

pi

|R|−1 =0.25

Figure 1: The graph of pi as i ranges from 0 to η, for η = 80, u = 5 and |R| = 4.

s ∈ S be such that d(s, s0) = i. Then the probability that the response stream of s, i.e.,
Γ, is a distance γ from Γ0 is given by [2]

P[d(Γ0,Γ) = γ | d(s0, s) = i] = b(γ,m, pi), (3)

where b(γ,m, pi) is the probability mass function of the binomial distribution given by

b(γ,m, pi) =

(
m

γ

)
pγi (1− pi)m−γ . (4)

Let d(s0, s) = ξ, for some s ∈ S. We shall denote such an s by sξ. Given sξ, let sξ−1 and
sξ+1 denote two neighbours of sξ such that d(s0, sξ−1) = ξ − 1 and d(s0, sξ+1) = ξ + 1.
We are first interested in finding an estimate for m, the number of samples (challenge-
response pairs) required to distinguish between Γ(sξ−1) = Γξ−1 and Γ(sξ+1) = Γξ+1.
Such a value of m ensures that with high probability distance-(ξ− 1) candidates will be
retained in the CH attack as opposed to distance-(ξ + 1), which in turn will help the
attack to move iteratively closer to the target secret s0 [2]. If m is such that it is hard
to distinguish between the response streams Γξ−1 and Γξ+1 then the CH attack will not
converge to the target secret s0. Therefore this is a necessary condition for the success
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of the CH attack. We will therefore obtain an expression for a safe m, i.e., m̂, through
this step.

To do this, first define the Bernoulli random variables

X =

{
1 with probability pξ−1

0 otherwise

and,

Y =

{
1 with probability pξ+1

0 otherwise
.

Intuitively, X denotes the indicator random variable which is 1 when sξ−1 has the same
response as s0. Likewise for Y . Further define the random variable Z = X − Y . The
expected value of Z is given by

E[Z]
def
= µ = E[X]− E[Y ] = pξ−1 − pξ+1

def
= ε, (5)

and the variance (assuming X and Y to be independent) is given by

Var[Z]
def
= σ2 = (1)2Var[X] + (−1)2Var[Y ] = pξ−1(1− pξ−1) + pξ+1(1− pξ+1). (6)

Note that according to Theorem 5, ε = pξ−1 − pξ+1 > 0. This is depicted pictorially
below.

ε

pξ+1 pξ pξ−1 p0 = 1

Givenm i.i.d. random variables Zi of type Z, we are then interested in the probability

P

[
m∑
i=0

Zi ≤ 0

]
, (7)

which estimates the probability that in m challenges the response stream of sξ−1 is
at least as close to s0 as that of sξ+1. In essence, the probability in Eq. 7 is the
error probability that given the stream Γξ+1, a distinguisher erroneously decides that it
belongs to sξ−1. Being asked to give a binary decision, we can assume that the error
probability of the distinguisher is less than or equal to 1

2 . We are interested in finding a
bound on the number of samples m such that the error probability is close to 1

2 . This
implies that the distinguisher will not be able to differentiate between the two response
streams Γξ−1 and Γξ+1, and hence with high probability CH attack will fail to output
the target secret s0.

Now, we can write Eq. 7 as

P

[
m∑
i=0

Zi ≤ 0

]
= P

[
m∑
i=0

Zi −mµ ≤ −mµ

]

= P
[∑m

i=0 Zi −mµ
σ
√
m

≤ − mµ

σ
√
m

]
= P

[∑m
i=0 Zi −mµ
σ
√
m

≤ −
√
mµ

σ

]
→ Φ

(
−
√
mµ

σ

)
as m→∞, (8)
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where we have applied Theorem 1 in the last step. Fix an error probability δ. Then we
want

Φ

(
−
√
mµ

σ

)
≥ δ

⇒ −
√
m ≥ σ

µ
Φ−1(δ)

⇒ m ≤
(
σ

µ
Φ−1(δ)

)2

, (9)

where the change in the inequality sign follows since Φ−1(δ) ≤ 0 for δ ≤ 1
2 . Note that we

could also use a concentration inequality, such as Hoeffding’s inequality (Theorem 2),
to obtain

P

[
m∑
i=0

Zi ≤ 0

]
= P

[
m∑
i=0

Zi −
m∑
i=0

E[Zi] ≤ −mε

]

≤ exp

(
− 2ε2∑m

i=0 4

)
= exp

(
−ε

2m

2

)
,

where we have used the fact that ai = −1, bi = 1 and E[Zi] = µ = ε. But this serves as
an upper bound on the tail of the error probability, and will only give us a lower bound

m ≥ − 2

ε2
ln(δ), (10)

for the minimum number of samples required for a fixed upper bound on the tail of the
error probability δ. This is contrary to our purpose, which is to find a “safe” upper
bound on m such that the error probability is close to 1

2 .
We define our bound on m from Eq. 9 by fixing δ = 0.495, which gives us

m̂
def
=

(
σ

µ
Φ−1(0.495)

)2

≈ σ2

µ2
(−0.0125)2 ≈ σ2

µ2
0.00016 =

0.00016σ2

ε2
, (11)

where values of ε and σ2 are as given in Eq. 5 and Eq. 6, respectively.

3.2.1 Empirical Evaluation

Since this m̂ corresponds to a probability of error close to 1
2 , the CH attack should be

unsuccessful with (observed) m ≤ m̂. Since we rely on some simplifying assumptions to
obtain this estimate, such as the independence of X and Y , and normal approximation
through the central limit theorem, it is worthwhile to verify this estimate empirically.
To do this, we ran the subroutine of the CH attack which uses a distance-ξ neighbour of
s0 on a simulated identification protocol (as was done by Coskun and Herley [2]). More
specifically, we choose a random s ∈ S − {s0} such that d(s, s0) = ξ, and run steps 2
to 8 of Attack 1. This relieves us of having to weed through 2η/

(
η
ξ

)
candidates, which

would require considerable time. Thus, a random s ∈ S − {s0} was chosen each time
such that d(s, s0) = ξ. Each new random challenge was simulated by randomly sampling
u bits out of η of the (initially randomly chosen) target secret s0 (thus simulating the
fact that a random challenge would contain a random u bits of a secret). The response
was generated randomly from the set {0, 1, . . . , |R|− 1}. In order to make the responses
consistent in case two challenges contain the same u bits of the secret, a hash table
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was created which had the u-bit string as the key, and the response as the value. For
different sets of values of η and u, we ran the CH attack subroutine 25 times once per
each value of ξ, starting at 1, until the estimate m̂ was greater than 10, 000 challenge-
response pairs. The results are shown in Figure 2. The information theoretic lower
bound mit = η

log2 |R|
is also indicated in the plots. We can see from the plots that with

higher values of η and u, i.e., Figures 2e, 2f, 2h, 2i, 2k and 2l, the success probability
is 0 against m̂ obtained through Eq. 11. For Figure 2l, we extend the cut-off value of
m̂ to 60, 000 challenge-response pairs. As is shown, the success rate of the CH attacks
is still 0. We remark that while we have chosen δ = 0.495, any value of δ close to 0.5
should suffice. For instance, our simulations also found δ = 0.490 to be a safe choice.
Of course, δ = 0.490 gives a higher value of m̂ versus δ = 0.495 for a fixed value of ξ.
Lowering δ further, say to 0.400, is not recommended as a safe choice. Figure 3 shows
why.

3.3 Estimating the Work Factor

In this section we obtain a simple analytical estimate for the work factor (WF) of the CH
attack. Note that we are interested in finding a value of λ such that 2λ ≈WF. Therefore,
an estimate that is off by a couple of powers of 2 is sufficient for our purposes. Whenever
we shall plot WF, it will be in log2-scale. The work factor of the CH attack is given
by [2, p. 434]6

WF =
1(
η
ξ

)
2η + τηξ

η∑
i=0

(
η

i

) m∑
j=mpξ

(
m

j

)
pji (1− pi)

m−j

 , (12)

where again τ is a threshold set at 10 by Coskun and Herley, and mpξ is the boundary
chosen such that candidates with response streams that are a distance less than mpξ
from the target secret’s response stream are discarded [2]. Define

WF1 =
2η(
η
ξ

) , (13)

which we call the brute-force term as in [2]. Let

αi
def
=

m∑
j=mpξ

(
m

j

)
pji (1− pi)

m−j , (14)

and define the right hand term

WF2 =
τηξ(
η
ξ

) η∑
i=0

(
η

i

)
αi. (15)

Given a value of m̂ for a fixed value of ξ calculated through Eq. 11, one can directly
measure WF through Eq. 12. However, there are two problems with this approach.
First as m̂ grows larger, the αi’s are computationally expensive to compute. Indeed,
Coskun and Herley only showed an estimate of the work factor for u = 5 [2, p. 437].
Secondly, not much insight is possible from this rather crude expression of WF. We
therefore explore this expression further.

6To be precise, the work factor should be multiplied by m (the number of observed challenge-response
pairs). However, as in [2] we ignore this and assume that our fundamental unit of complexity is the
evaluation of the response stream Γ of a given candidate s for the secret, where the size of Γ, i.e., m,
could be a variable.
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Figure 2: The values of m̂ according to Eq. 11 and the success percentage of the CH
attack against increasing values of ξ (x-axis) and . |R| is fixed at 4. The y-axis is
log-scaled. Legend: m̂; mit; — success percentage; ×× 100% success boundary;
++ 50% success boundary.

First, we find an estimate for the αi’s. Note that in essence, αi is the proportion of
the binomial

(
η
i

)
retained. Define Bernoulli random variables

Xi =

{
1 with probability pi

0 otherwise
. (16)

Let Xi,1, Xi,2, . . . , Xi,m denote i.i.d Bernoulli random variables where each Xi,j is of
type Xi above. First fix an i > ξ, where ξ > 0. Then, from Theorem 4 and Corollary 1

10
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m̂
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100%
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Figure 3: The values of m̂ according to Eq. 11 and the success percentage of the CH
attack against increasing values of ξ when η = 80, u = 15 and δ = 0.400 in Eq. 11. Note
high success rate of the CH attack.

we have

P

 m∑
j=1

Xi,j ≥ mpξ

→ 2−mD(Pξ||Pi) as m→∞

From this we may estimate the αi ≈ 2−mD(Pξ||Pi) when i ≥ ξ and αi ≈ 1− 2−mD(Pξ||Pi)

when i < ξ (see for instance Figure 4). However, as indicated by Figure 1, for larger

mpξ mpξ−1mpξ+1

Figure 4: The portions of the binomials retained in the CH attack where: portion
retained; portion discarded. Note that αξ = 0.5, αi > 0.5 for i < ξ and αi < 0.5 for
i > ξ.

values of ξ, say ξ > η
2 , the difference in probabilities is very small for the neighbours of

sξ, and therefore our bound of αi, which is based on large deviations assumption, will
err. One way to compensate for this is to instead use the normal approximation of the

αi’s as Φ(−
√
mµXi
σXi

) for the nearby neighbours of sξ when ξ > η
2 in a manner similar to

Section 3.2, where µXi = pi and σ2
Xi

= pi(1− pi). A less messier way is to upper bound
the αi’s by 0.5 for i > ξ and lower bound by 0.5 for i < ξ, indicating that these sums are
not expected to exceed these limits (see Figure 4). This gives us the following estimate

αi ≈


max{1− 2−mD(Pξ||Pi), 0.5} if i < ξ

0.5 if i = ξ

min{0.5, 2−mD(Pξ||Pi)} if i > ξ

. (17)
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With this estimate of the αi’s we denote the corresponding estimate of WF2 by ŴF2.
Figure 5 shows the actual work factor WF2 against our estimate ŴF2. Note that ŴF2 is
expected to be a better estimate than simply approximating all the αi’s by the standard
normal estimate (not just the neighbours of αξ), since the standard normal estimate

is poor for larger deviations. To show this, we illustrate WF2 against ŴF2 and the
standard normal estimate, denoted W̃F2, in Figure 6 for η = 800. Notice how W̃F2 is
many orders of magnitude off. To get high precision values, we implemented W̃F2 using
the mpmath Python library [7] with a precision of 200 decimal places.

0 50 100 150 2000

20

40

60

80

100

(a) η = 80, u = 15, ξ = 1
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40

60

80
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(b) η = 80, u = 15, ξ = 10

0 50 100 150 2000

20

40

60

80

100

(c) η = 80, u = 15, ξ = 60

Figure 5: Actual work factor WF2 versus the estimated ŴF2 when η = 80, u = 15 and
ξ ∈ {1, 10, 60} against m in the range [1, 200]. Legend: log2 WF2; log2 ŴF2.

500 510 520 530 540 550
m

100
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300

350
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λ

log2 WF2

log2 ŴF2

log2 W̃F2

Figure 6: Work factor WF2 and its estimates for η = 800, u = 25 and ξ = 10. The λ in
the y-axis indicates power of 2. Notice how W̃F2 is off the mark.

We can now see the evolution of the estimate of the work factor ŴF against m̂ (using
δ = 0.495 in Eq. 11) as shown in Figure 7, which is obtained by replacing WF2 by ŴF2

in Eq. 12. The figure indicates that the computational complexity of the CH attack is
minimized at ξ ≈ η

2 . We now show that this is true in general for suitably large values

of u. In the process, we also obtain a simplified expression of ŴF. Fix a 0 < β < 1 such
that u = βn. We want to show that for a suitably large β (say 1

10 ), the αi’s are at least
0.5 for all i ∈ {1, . . . , ξ, . . . , η−u}. From the definition of the αi’s in Eq. 17 it is obvious
that for i ≤ ξ, αi ≥ 0.5. For i > ξ, showing that αi ≥ 0.5 is the same as showing that
2−m̂D(Pξ||Pi) ≥ 2−1 ⇒ −m̂D(Pξ || Pi) ≥ −1 ⇒ m̂D(Pξ || Pi) ≤ 1. First observe that
since pi ≥ |R|−1 > 0 for all i ∈ {0, 1, . . . , η}, and pξ < 1 for all ξ > 1, we have according
to Theorem 5, 0 < pi < pξ < 1. Then from Theorem 3 and by setting z = Φ−1(δ) in

12
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Figure 7: The total work factor ŴF for η = 80 and u = 15 against m̂ for δ = 0.495.

Eq. 11, we get

m̂D(Pξ || Pi) =
σ2z2

ε2
D(Pξ || Pi)

≤ σ2z2

(pξ−1 − pξ+1)2
1

θ
(pξ − pi)2

=
σ2z2

θ

(pξ − pi)2

(pξ−1 − pξ+1)2

≤ z2

2θ

(pξ − pi)2

(pξ−1 − pξ)2
,

where we have used the fact that σ2 ≤ 1
2 (by applying Proposition 1 on Eq. 6). Now for

i > ε

(pξ − pi)2 ≤
(
pξ −

1

|R|

)2

=

((
η−ξ
u

)(
η
u

) (
1− 1

|R|

))2

,

and

(pξ−1 − pξ)2 =

((
η−ξ+1
u

)
−
(
η−ξ
u

)(
η
u

) (
1− 1

|R|

))2

=

((
η − ξ + 1

η − ξ + 1− u
− 1

) (η−ξ
u

)(
η
u

) (
1− 1

|R|

))2

=

(
u

η − ξ + 1− u

)2
((

η−ξ
u

)(
η
u

) (
1− 1

|R|

))2

.

Substituting these values and simplifying we obtain

m̂D(Pξ || Pi) ≤
z2

2θ

(
η − ξ + 1− u

u

)2

.

Now, substituting u = βn, we get(
η − ξ + 1− u

u

)2

=
1

β2

(
1− ξ

η
+

1

η
− β

)2

≤ 1

β2
(1− β)2 (since ξ ≥ 1).

13



Also, for all i ∈ {1, . . . , η − u}, the pi that minimizes pi(1 − pi) corresponds to i = 1.
Now,

p1 =

(
η−1
u

)(
η
u

) (
1− 1

|R|

)
+

1

|R|

=
η − u
η

(
1− 1

|R|

)
+

1

|R|

= (1− β)

(
1− 1

|R|

)
+

1

|R|
(substituting u = βη)

= 1− β
(

1− 1

|R|

)
.

Let θi correspond to the θ in Theorem 3 with the associated interval [pξ, pi]. If we let
θ = mini{θi}, then

θ = p1(1− p1)

=

(
1− β

(
1− 1

|R|

))
β

(
1− 1

|R|

)
= β2

(
1

β
−
(

1− 1

|R|

))(
1− 1

|R|

)
> β2

(
1

β
− 1

)
|R| − 1

|R|
(since |R|−1 > 0)

⇒ 1

θ
<

1

β2

β

1− β
|R|
|R| − 1

≤ 2

β2

β

1− β
(since |R| ≥ 2).

Substituting these results into the expression for m̂D(Pξ || Pi) we finally obtain

m̂D(Pξ || Pi) ≤
z2

2

2

β2

β

1− β
1

β2
(1− β)2

=
z2

β4
β(1− β)

≤ 1

4

z2

β4
,

where the last inequality follows from Proposition 1. The above is less than or equal to

1 if β ≥
√
|z|
2 . Since according to Eq. 11, we chose |z| ≈ 0.0125, it follows that β ≥ 0.08

suffices as a choice.7 From this it implies that 2−m̂D(Pξ||Pi) ≥ 0.5. Therefore ŴF2 for
m̂ is at least

ŴF2 =
τηξ(
η
ξ

) η∑
i=0

(
η

i

)
αi ≥

τηξ(
η
ξ

) 1

2
2η =

τηξ(
η
ξ

) 2η−1. (18)

Note that as the binomial sum has a maximum value of 2η, the above work factor is
close to the maximum, since for m̂

ŴF2 ≤
τηξ(
η
ξ

) 2η.

7For δ = 0.490, β = 0.12 does the job.
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The above expression has a minimum at around ξ = η
2 .8 This is true since

(
η
ξ

)
= O(ηξ)

for ξ ≤ η
2 and

(
η
ξ

)
= O(ηη−ξ) for ξ > η

2 , and the terms ξ
ηξ

and ξ
ηη−ξ

have a minimum

when ξ = η
2 . Substituting WF2 with the value of ŴF2 obtained through Eq. 18 in

Eq. 12, we see that the total work factor WF is dominated by WF2 when m = m̂ (and
u ≥ βη), since

WF ≈ (2 + τηξ)(
η
ξ

) 2η−1 ≈ τηξ(
η
ξ

) 2η−1.

We summarise our findings in the following heuristic theorem.

Theorem 6. Let pi be as defined by Eq. 1 for i ∈ {0, 1, . . . , η}. Further, let m̂ =
(
σz
ε

)2
where

ε2 = (pξ−1 − pξ+1)2 and σ2 = pξ−1(1− pξ−1) + pξ+1(1− pξ+1),

and z = Φ−1(δ) for some δ ∈ (0, 12 ). Then if u ≥ βη, where β =
√
|z|
2 , the work factor

of the Coskun and Herley attack is

WF ≈ τηξ(
η
ξ

) 2η−1,

which is minimum when ξ = η
2 , for 1 ≥ ξ ≥ η − u and u ≤ η

2 . If u > η
2 the minimum is

achieved at ξ = η − u.

We reiterate that we are interested in finding λ such that 2λ ≈ WF, and hence an
estimate that is far from the true value by a few of powers of 2 is sufficient.

4 Case Study: Setting Parameter Sizes for Identifi-
cation Protocols

Suppose we a prover P and a verifier V share a secret s which is a set of k indexes out
of n. All indexes are from the set {1, . . . , n}, n being a positive integer. We denote this
set of indexes by [n]. Consider the following identification protocol between P and V:

Protocol: An Identification Protocol

1 V sends a challenge c to P which is a random subset of indexes from [n] of
cardinality l, l < n, such that each element is associated with a random weight
from Z4.

2 P initializes r1 ← 0.
3 for each index i in c do
4 if i ∈ s then
5 P updates r1 ← r1 + w, where w is the weight associated with i.

6 P computes r2 ← r1 mod 4.
7 if r2 ∈ {0, 1} then
8 P returns r ← 0 as its response.
9 else if r2 ∈ {2, 3} then

10 P returns r ← 1 as its response.
11 V accepts P if the response r is correct.

The protocol above is known as the Foxtail protocol with window [8]. In an actual
protocol, the above process is repeated a number of times per authentication session
such that the probability of randomly guessing the response (without knowing anything

8We ignore the detail of η being odd or even.
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about the secret!) is low. But for our purposes we ignore this detail, and assume
that there is one round per authentication session. The term window alludes to the
l-element challenge presented to the prover. Since a fraction of the secret s is expected
to be present in each challenge, CH attack can be applied to the protocol to find the
secret. The question arises, with a given set of values of protocol parameters (l, k, n),
how many rounds can the above protocol be used for, i.e., the value of m, so that the
CH attack has complexity of about 2λ for a fixed λ? We first estimate u as follows

u =
E[|s ∩ c|]

k
η =

E[|s ∩ c|]
k

log2

(
n

k

)
=
lk

n

1

k
log2

(
n

k

)
=

l

n
log2

(
n

k

)
, (19)

where lk
n is the expected value of the hypergeometric distribution. If we choose k and n

to be such that η = log2

(
n
k

)
≈ 80 (e.g., n = 180 and k = 18), and choose l = 40, then

we get u ≈ 0.22 × 80 ≈ 18 bits. We can now choose a δ to obtain a value of m̂ using
Theorem 6 which in turn gives us a value for λ, i.e., log2 WF. If a work factor of 225

is considered infeasible, i.e., λ = 25, then with δ = 0.495, we can use the protocol for
m ≤ 993 ≈ 1, 000 (which corresponds to ξ = 25). Choosing δ = 0.490 allows us to use
the protocol for m ≤ 3, 972 ≈ 4, 000 rounds (again corresponding to ξ = 25).

5 The CH Attack is not always Optimal

Consider the variant of the above protocol in which the weights are from Z2 and the
response is simply r ← r1 mod 2. Then we can use Gaussian elimination to find the
secret s after n observations, by constructing the n×n binary matrix H whose rows are
constructed from m = n observed challenges and using the n-element response vector
r obtained from the responses. On the other hand, the CH attack requires a much
larger number of observations m to be feasible, provided l and n are not too small. For
instance, if (l, k, n) = (40, 18, 180), as above, with m ≈ 262 > n, the work factor of
the CH attack is ≈ 258. Gaussian elimination on the other hand is a polynomial time
algorithm that would yield the secret after m ≈ n = 180 observations.

Of course, for Gaussian elimination to yield a unique solution we require the n rows
(or equivalently, columns) of H to be linearly independent. We show here that this is
likely to happen with high probability. Note that the total number of possible challenges
in this protocol are

|C| =
l∑
i=0

(
n

i

)
,

which can be arrived at by observing that there are
(
n
i

)
possible binary vectors with

Hamming weight i. From this we could use a counting argument to get the number of
possible combinations of n linearly independent vectors, by iteratively discarding any
linearly dependent choices for the vector i given i − 1 linearly independent vectors.
However, this is not straightforward, as the linear combination of any two vectors in C
might not be a vector in C (e.g., two vectors with Hamming weight l which differ in at
least one position). Asymptotic results, however, suggest that if l is large enough we are
likely to construct a full rank n× n matrix H after observing m > n challenges, where
the difference m−n is bounded from below by a constant. To be precise, we reword the
corollary from [9] as a theorem using our notation.

Theorem 7. Let m > n. If l > lnn+ω(1) and m− n ≥ ω(1), then almost every set of
m uniformly random vectors from C have n linearly independent vectors.9

9Recall that f = ω(g) means that
f(n)
g(n)

tends to infinity as n grows to infinity.
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As an example, for the case under consideration, i.e., n = 180 and l = 40, a simple
Python script using the Sage library10 returned a full rank n × n matrix H, each row
of which was randomly sampled from C, at a success rate of 0.2969 (over 10,000 repe-
titions). In contrast, l = 2 returned 0 such incidences. The fact that the success rate is
high for reasonably large values of l is not surprising. For instance, a necessary condition
for the matrix H to be linearly independent is to have no zero columns. Observe that
the probability of an element from a vector c ∈ C being zero is given by

1

2
· l
n

+ 1 ·
(

1− l

n

)
= 1− l

2n
,

which follows since either the element could be absent from the l chosen elements, or it
could be present but with weight 0. Let Bi be the probability that the ith column is
not a zero column vector, then

P(Bi) = 1−
(

1− l

2n

)n
.

Let A be the event that the matrix H has no zero column vectors, then

P(A) =

n⋂
i=1

P(Bi)

≥

(
n∑
i=1

P(Bi)

)
− n+ 1

= 1− n
(

1− l

2n

)n
which is close to 1 for sufficiently large l and n (the inequality above is the application
of Benferroni’s inequality [3, §7, p. 426]). For instance, when n = 180, l = 15 yields
P(A) > 0.91.

6 Related Work

Baignères, Junod and Vaudenay [10] show a more general result which estimates the
number of samples required by an optimal distinguish between two probability distribu-
tions (not necessarily Bernoulli) that are close to each other. Barring constant factors,
the estimate from them and the two estimates given in Eq. 9 and Eq. 10 all yield m ∼ 1

ε2 ,
which can be used as a rough guide for the number of samples required in our case.

We note that somewhat similar to our estimation of m, the work in [8, §5] attempts
to bound the safe number of rounds against counting based statistical attacks on human
identification protocols introduced by Yan et al. [11]. However, the resultant figures for
the number of safe rounds against these counting based attacks are erroneous, since they
do not treat the associated probability as an error probability, and wrongly calculate
the required samples by fixing the one-sided cumulative distribution function of the
standard normal distribution at 0.6.

Research on human identification protocols dates back to the work of Matsumoto
and Imai in [12]. Juels and Weis [13] noted parallels between humans and resource-
constrained devices, that both suffer from low computational and memory capabilities,
and proposed a variant of the Hopper and Blum (HB) human identification protocol [14]
to be used for identification of such devices. To the best of our knowledge, to date, this

10http://www.sagemath.org/
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is the only human identification protocol whose application as an identification protocol
for resource-constrained devices has been extensively studied. It is an interesting area
of research to analyze other human identification protocols, such as the sum of k mins
protocol [14], for their suitability as identification protocols for resource constrained
devices. While some of the human identification protocols in literature are based on
ad hoc design [12, 15, 16], there are others whose security is based on the hardness of
interesting mathematical problems [17, 18, 19, 20, 21]. There are also some theoretical
advances in generic attacks on human identification protocols [2, 11, 8, 22]. These results
may result in other human identification protocols being proposed for identification of
resource-constrained devices.

7 Conclusion

We have shown estimates for the number of sessions that should be allowed before
secret renewal in challenge-response type identification protocols, which use a fraction
of the secret to respond to a challenge, to be safe against the Coskun and Herley attack.
We have also shown how we can estimate the work factor of this attack against the
number of allowable sessions in a computationally efficient and protocol independent
manner. These estimates are empirically straightforward to obtain without the need to
implement the Coskun and Herley attack on a given protocol to check its complexity
against different sets of values of protocol parameters. This work can benefit protocol
designers to set parameter sizes both in the field of human identification protocols or
identification protocol for resource constrained devices in which the use of “sparse”
challenges is desirable.
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