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Abstract. Recent research for efficient algorithms for solving the dis-
crete logarithm (DL) problem on elliptic curves depends on the difficult
question of the feasibility of index calculus which would consist of split-
ting EC points into sums of points lying in a certain subspace. A natural
algebraic approach towards this goal is through solving systems of non
linear multivariate equations derived from the so called summation poly-
nomials which method have been proposed by Semaev in 2004 [12].

In this paper we consider simplified variants of this problem with splitting
in two or three parts in binary curves. We propose three algorithms with
running time of the order of 2"/ for both problems. It is not clear how
to interpret these results but they do in some sense violate the generic
group model for these curves.
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1 Motivation: Solving Semaev Systems of Equations

Efficient algorithms for solving so called Semaev equations, which can be defined
informally as systems of equations built on the basis of the summation polyno-
mials over elliptic curves [12,13] is a basic tool for cryptanalysis and a high
profile open problem in modern cryptanalysis. Even partial results are valuable
and could be exploited inside or extended into a full attack on the DL problem
on elliptic curves.

1.1 Point Splitting

Let R = (Rx, Ry) be the target point on an elliptic curve which we want to
split in a form

R=P +..P+...+P

with some ¢ points P;, ¢ = 1..t, all lying on the same elliptic curve with
(preferably) all the P; lying in some well-chose subspace.

This problem has attracted considerable attention in the last 10+ years, and
researchers have tried to encode this problem as a problem of solving a certain
system of equations known as summation polynomials, sometimes also called
Semaev polynomials, cf. [12,11,5, 8].

More recently in 2015 a particular way to re-write this problem using only
the simplest non-trivial summation polynomial S3 and with many additional
variables have been proposed by Semaev in 2015, cf. [13]. We recall this particular
way to encode the problem of splitting the point on elliptic curve. We call x;
the x coordinate of point P; in GF(2") and let u; be t — 2 auxiliary variables in
GF(2").

Sz(ur, x1,2)

S3(u1,u2, x3)

S (Ui, Wit1, Tiya)

S3(Us—3, Ut—2,T¢—1)
S3(us—2, ¢, Rx).

We have ¢ — 1 equations in GF'(2") where ¢ is the number of points in our
decomposition of R as a sum ¢ elliptic curve points. We call it Semaev-serial
system of equations as it effectively is a serial connection' of several systems of
equations of type S3 in a certain encoding (with a topology of straight line with
connections only between consecutive components).

! This sort of topology for systems of equations is very common in block cipher crypt-
analysis [1-3] and the hardness of solving these systems can be seen as a hardness
to derive ANY sort of algebraic or statistical knowledge about the middle variables,
not easily accessible for the attacker.
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1.2 Basic Point Splitting Problem

If a complex problem is efficiently solvable?, the easier one should also be solv-
able. The most basic problem which we would like to be able to solve using the
Semaev polynomials is the problem of splitting a point in two:

S3(w1, w2, Ry)
where P;, P, would lie in a well-chosen subspace and R is the target point.

In this paper we focus on binary elliptic curves. We impose no other restriction.
We will also assume than n is odd which is however a conservative choice (no
no-trivial sub-field) and which is also believed to be the hard case, much more
likely to be recommended in any sort of application (prime n would typically be
preferred).

As in other works on this topic [12,13] our preferred choice for the subspace

is G}/ 2 \which we define as follows.

Definition 1 (G1/?).
Let G, be a vector space which contains all polynomials in GF(2)[T] with degree
< n and coefficients in GF(2).

Let G,l/Z be a sub-space of all univariate binary polynomials with degree < n/2.
Furthermore, let P(T') is the irreducible polynomial used to define GF(2"). We

identify G}/Q with a sub-space of GF(2™) and we say that we have x € Gi/z C
GF(2") if its polynomial representation modulo P(T) has degree < n/2

The main goal of this paper is to solve this single point splitting problem
with 2 points in G&/? faster than in 2"/2 time.

1.3 Point Multiple Basic Splitting Problem
In this paper we also study a very closely related variant of our problem in which

we are allowed to multiply the target point by a [known] scalar as follows.

Definition 2 (Generalized Point Splitting Problem). Let R be a target
point on the elliptic curve. Find a [preferably quite small] integer K € 7Z and

X,Y € BY? c GF(2") such that
53(X7 Ya S)

with S being a suitable scalar multiple of the target point R with S = R.K.

2 A recent survey paper [6] from October 2015 says that “there is no consensus”
whether this is the case.
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2 Point Splitting in Two in Binary Curves

2.1 Summation Polynomials in Characteristic 2

Following [12, 13] In the case of binary elliptic curves E(GF(2™)) the S5 equation
is the following equation with 3 variables over GF(2"):

S3(w1, 2, 73) = (v172 + 2123 + T273)? + 17073 + B

where B is the coefficient of the elliptic curve in question in a popular nota-
tion, cf. [7,12,13].

2.2 Point Multiple Splitting in Two in Binary Curves

We recall that addition and squaring commute in GF(2") and that additions
are modulo 2. Therefore we have the following equation to solve with 2 variables
in Gi/? ¢ GF(2m).

X2Y2 4 Sy - XY =S2(X +Y)2+ B
S=K.R

2.3 Trace Function(s)

We view GF(2") as a Galois extension of GF(2), again let n be odd. We define,
for any constant F' in GF(2"™) or any polynomial F' in GF(2")[some vars] the
standard trace operator which we will split in two halves. Let n = 2k + 1.

Tr(F)=>,eqoF G = Galois group of GF(2")
Tr(F)=Y""F? n terms

Tro(F) = Zk L F2 4 P2 k41 even terms

Tri(F) = Zk : F2 k odd terms

1
Tr(F)=Tro(F)+Tri(F)

Tri(F?)=F +Tro(F)
Tri(F?) = (Tr;(F))? commutes, both ¢ =0 and 1
Tri(F+ F?)=F +Tr(F)

2.4 Re-writing Our S3 Problem

Our equation is:
X?Y2 4+ Sx - XY =S8%(X+Y)*+B.

We assume that Sx # 0 which is almost always true, and we rewrite our
equation to be solved:

X?%y?/S% + XY/Sx = (X +Y)? + B/S%
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with 2 variables in G&/? C GF (2™) and a modified target S,. We apply Trq
to both sides and use the fact that Try(F + F?) = F+Tr(F) with F = XY/Sx.
Furthermore Tr(F) € {0,1} which part is very easy to guess for the attacker
and which we denote by [+1], an optional addition of 1, to be applied [or not].

XY/Sx[+1] =Tri((X +Y)* + B/S%)
We multiply by Sx:

XY[+Sx] = Sx - Tri((X +Y)? + B/S%)

Overall we want to solve:

XY[+Sx] = Sx - Tr}(X +Y +VB/Sx)
S=K.R
with K being a certain integer and X,Y € GH? GF(2™).
It is easy to see that for any K this problem contains n bits of information
about the solution and there is n/2 4+ n/2 variables. We expect that on average
it has 1 solution® X,Y.

2.5 Our First Attack - Splitting in Two
Our attack is as follows.

1. We try many different multiples S = K.R for K =1...2"/6.

2. Each S has on average 1 solution X, Y for the strict point splitting problem.
However we are going only to look at solutions with additional properties.

3. Werepresent X,Y as univariate polynomials of degree up ton/2 in GF(2)[T].
We consider the polynomial GCD(X,Y) and we are interested in the prob-
ability that polynomials X and Y in GF(2)[T] have a common divisor M of
degree exactly? [n/6] — 1 in GF(2)[T].
It is easy to see that this probability is roughly® about 2~

4. Our goal is to solve the equation S3(X,Y,Sx) in this special case with a
shared divisor, which will show to be easier than the general point splitting.
We expect that on average there will be about one multiple S = K.R for
which this works and such M exists.

5. To summarize, the attacker tries many different K = 0...2"/6 and expects
that M|X and M|Y for some K.

6. For each guess for K, we also need to guess the value of M which is also
correct with probability 2—"/6.

n/G.

3 To simplify our analysis, we ignore the fact that solutions typically come in pairs
as the problem is symmetric, so sometimes it has 0 solutions, sometimes 2, and less
frequently it has 1 or a different small number of solutions.

4 We leave for future research to see that this assumption can be relaxed.

5 In fact it is smaller by a small constant factor. In this paper we only do a simplified
asymptotic complexity analysis, this point requires a more detailed analysis.
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7. Overall both guesses are correct with probability 2727/6 and all our assump-
tions hold.
8. For each guess of K, M we proceed as follows.

(a) We compute the polynomial M? which has approximately 2n/6 — 1 bits.

(b) If our guess is correct M?|XY. Let X = MX’ and Y = MY’. Here
XY €G)/® and M e Gy/°.

(c) We have XY [+Sx] = Sx - Tr}(X +Y ++/B/Sx) Therefore

M2X'Y'[+5x] = Sx - Tr3(M(X'+Y') +VB/Sx)

(d) Let L € GF(2™) be the left hand side of the equation above. We recall
that if our assumptions are correct, no modular reduction modulo P(T)
occurs inside the product M2X'Y’. Here X'Y' € GE/6 and M2 € GY/°.

(e) Therefore, given that M? is known, we can write 2n/6 equations on the
L; variables which will be linear or affine, depending whether or not we
decided to add the constants of [+Sx]. This is a choice made by the
attacker which will be valid with probability 1/2.

(f) Let R € GF(2") be the right hand side of the equation above. If our
assumptions are correct, we have

R=Sx -Tr?(R' +VB/Sx

with R’ = M (X' +Y"). Again, no modular reduction occurs inside R’ =
M(X'+Y"). Therefore given the known M value (from our assumption)
we can write n/6 linear equations on the R} variables.

(g) In addition we have n/2 — 1 linear equations on the R which come from
the fact that the degree of M (X’ +Y”) is at most n/2 + 1.

(h) We observe that the expression R = Sx - Tr?(R' ++/B/Sx is a linear

bijection for which the attacker knows all the coefficients. Therefore our
n/2 + n/6 linear equations on the R; translate into n/2 4+ n/6 linear
equations on the R; = L;.
Previously we have already constructed 2n/6 linear/affine equations on
the L;. These two sets of equations for each side are expected to be
distinct and overall we obtain about n/2 + n/6 + 2n/6 = n linearly
independent equations on the L;.

(i) With n equations and n variables, we recover L and R = L.

(j) Now we need to verify of the solution is consistent: We compute U =
L/M? and we compute R’ and we put V = R’'/M. Now the questions is
whether it is possible that X'Y’ = U and X’ + Y’ = V. In order to see
that we solve the quadratic equation X'(V — X') = U in GF(2").

(k) We check if degrees of X’ and V — X’ are at most 2n/6.

9. If the degrees are within bounds, we have found a solution X, Y.
10. Otherwise we re-start and try the same steps again for another case K, M.

Overall our algorithm is expected to check 22"/¢ cases K, M and one such
assumption is correct with probability 272"/, One is expected to be correct on
average. Each case is checked in polynomial time with very small memory.
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3 Point Splitting in Three in Binary Curves

After this paper was published on eprint it occurred to us that point splitting
in three is even easier. The goal is as follows. Given an arbitrary point R on a
binary elliptic curve and find a decomposition such that

R=0+ P+ (Q in the elliptic curve E(GF(2"))
deg(Ox) < n/3
deg(Px) <n/3
deg(@x) <n/3

Here is one simple method to achieve this also in time 2™/3 - poly.
First, it is easy to see that there will be very roughly 1 solution to our problem
on average®. Then we proceed as follows.

. We guess Ox with deg(Ox) = [n/3] — 1.

. We compute T'= R — O on the elliptic curve.
. Let T'x be its X coordinate.

. As before, we need to solve

{XY[+Tx) = T Tr(X +Y + VB/Tx)

> W N

but now we have stricter constraints on X,Y which make it a lot easier.
5. Again let L be the left hand side and R the right hand side, we need to find
X,Y with such that L = R and deg(X) < n/3 and deg(Y) < n/3.

R=Tx -Tr}(R +VB/Tx

with R = X +Y.

6. We have deg(XY) < 2n/3 therefore we get n/3 linear/affine equations on L
depending whether we add T'x or not [attacker’s guess on 1 extra bit).

7. We have deg(X +Y) < n/3 + 1 therefore we get 2n/3 — 1 linear equations
on R. Due to the complex affine transformation of type Tx - Tr%() etc, we
expect that these equations are disjoint from these coming from L.

8. Overall we get about n — 1 linearly independent equations on L = R.

9. We obtain 2 solutions for L and we need to verify if any of these solution is
consistent.

10. We compute U = L and we compute V = R’. Now we solve the quadratic
equation X (V — X) =U in GF(2") and verify if we have both degrees of X
and V — X below n/3.

11. This is expected to happen for about one initial choice of Ox.

Overall this algorithm is expected to check 21/3 cases Oy and find one so-
lution to our problem. Each case is checked in polynomial time with very small
memory.

5 This is in great simplification, in fact the problem is again symmetric and for each
solution we have up to 5 more derived solutions obtained by permuting the 3 points,
and sometimes there are 0 solutions
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4 Point Multiple Splitting with Two Smaller Spaces
Another result we can easily obtain is as follows:

Fact 4.0.1. Given an arbitrary point R on a binary elliptic curve we can find
in time 2"/% - poly(n) a [relatively] small multiple of this point K < 2"/3 such
that

K.R= P+ Q in the elliptic curve E(GF(2"))
deg(Px) <n/3
deg(Qx) <n/3

Justification: This can be seen as a variant or synthesis of two previous results.
One method to obtain this is to replace in Section 2.5 a search for K, M where
both K and M take 2"/® values by a search with K taking 2"/ values and
M = 1. No other changes are necessary in Section 2.5.

Another method to obtain the same result is to replace the first step in Section
3 where the attacker is trying many polynomials of low degree deg(Ox) < n/3
by Ox = K.R by for all K < 2™/3 which values Ox will no longer required to
be of low degree.
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5 Conclusion

In this paper we have introduced a new algorithm which takes as input an
arbitrary point R on a binary elliptic curve and finds a relatively small multiple
of this point K < 21/6 guch that

K.R= P+ Q in the elliptic curve E(GF(2"))
deg(Px) < n/2

deg(Q@x) <n/2
Px and Qx share a factor of degree n/6.

This problem was motivated by a more general problem of point splitting
suggested by Semaev in 2004 [12] with an idea of constructing potentially and in
the best scenario’] an index calculus algorithm for elliptic curves. In this paper
we only consider splitting in two and three and show first non-trivial attacks on
this problem. Our algorithms run in time 27%/3 . poly(n) and require negligible
memory. Until now the best known algorithm for splitting in two would be brute
force algorithm with running time of 2"/2 - poly(n).

Similarly, splitting a point in three is even easier and we present an algorithm
in time 2"/3 . poly(n) and small memory which does the following decomposition:

R=0+ P+ Q in the elliptic curve E(GF(2"))
deg(Ox) < n/3
deg(Px) <n/3
deg(Qx) <n/3
We also provide a method for splitting a multiple in two with degrees < n/3.

5.1 Binary Curves vs. Ideal Groups

A result with only 2 or 3 points may seem weak however we already obtain some
sort of violation of the ideal group model for binary curves. Very clearly we are
able to use the binary representation of the EC point for a non-trivial algorithmic
purpose with running time faster than in generic groups. This could imply that
certain cryptographic protocols using binary elliptic curves with 256 bits field size
should no longer be claimed to be provably secure in a meaningful sense based
on the generic group model. It also means that we should be more conservative
and maybe only claim a security level of about 2% for all cryptographic schemes
using binary curves. At this moment there are serious questions about how the
results of this paper should be interpreted. Currently it is a bit like breaking a
block cipher with fewer rounds than the real thing and inevitably not everybody
will agree that the current result should be called ”an attack” of any sort or
is violating a certain precise claim or assumption previously made in crypto
literature. Things will become more clear with time as complexity of splitting
EC points in 4,5 and more points is studied and we will have a better idea how
these results impact the DL problem and security of practical cryptosystems®.

" This is if splitting with sufficiently small spaces can be achieved.
8 Many of which are not proven secure w.r.t. the DL problem.
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5.2 Related Works and Future Research

The existence of yet faster truly sub-exponential algorithms for binary curves
have also been conjectured [12,13, 11, 5] however such a result has not yet been
achieved, cf. [4,6,8-10, 14]. Recent research in this space can be summarized as
follows. It seems that it is totally incorrect to believe that systems of equations
such as in Section 1.1 after a Weil descent conversion to a pure GF(2) system
of multivariate equations, would have a regularity degree which is constant and
does not depend on n. However this does not exclude that such systems of
equations could be solved efficiently by other methods, and moreover if the degree
of regularity grows with n we could still have sub-exponential complexity. At this
moment following [6] “there is no consensus” whether any of these techniques
can be made to work in sub-exponential time. In this paper our ambition was
more modest. Our current result remains exponential and suggests that if an
index calculus algorithm for binary curves can at all be constructed following
[12] it could rather have exponential complexity [but lower than with current
attacks].

Future Research: It is easy to see that the two simple algorithms we present
here can be used again to re-split points obtained from splitting, and we expect
that there exists interesting extensions and generalizations of our method for
splitting in 4 points and more. At this moment we have not yet achieved a stage
where a full index calculus algorithm with linear algebra on spaces we obtain
would be at all feasible. Our conjecture is however that there exists an algorithm
for solving the full DL problem on binary elliptic curves with running time of
order of 27/3,
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