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Abstract. We study the quantum query complexity of finding a colli-
sion for a function f whose outputs are chosen according to a distribu-
tion with min-entropy k. We prove that Ω(2k/9) quantum queries are
necessary to find a collision for function f . This is needed in some secu-
rity proofs in the quantum random oracle model (e.g. Fujisaki-Okamoto
transform).
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1 Introduction

Let D be a distribution with min-entropy k over set Y and f be a function
whose outputs are drawn according to the distribution D. In this paper, we
study the difficulty of finding a collision for unknown function f in the quantum
query model. Recall that a collision for function f consists of two distinct inputs
x1 and x2 such that f(x1) = f(x2). Classically, by application of the birthday
attack it is easy to observe that Θ(2k/2) queries are necessary and sufficient
to find a collision with constant probability. However, in quantum query model
this number of queries may be high for the reason that one quantum query may
contain the whole input-output values of the function.

Zhandry [Zha15] shows that Θ(2k/3) quantum queries are necessary and suf-
ficient to find a collision for the function f when D is a uniform distribution.
However, he leaves the non-uniform case as an open problem. One motivation for
studying the quantum collision problem for a non-uniform distribution is the in-
terest in proving the security of classical cryptographic schemes against quantum
adversaries. Hash functions are crucial cryptographic primitives that are used to
construct many encryption schemes and cryptographic schemes. They are usually
modeled as random functions and they are used inside other functions. There-
fore the output of combination of a function f and a random function H may
not be distributed uniformly and finding a collision for this non-uniformly dis-
tributed f ◦H may break the security of the scheme. For example the well-known
Fujisaki-Okamoto construction [FO99] uses a random function H to produce the
randomness for an encryption scheme f . The security relies on the fact that the
adversary can not find two inputs of the random function that lead to the same
ciphertext. This is roughly equivalent to saying that f ◦H is collision-resistant. In



fact, our result is a crucial ingredient for analyzing a variant of Fujisaki-Okamoto
construction in the quantum setting [ETU15].

We prove an Ω(2k/9) lower bound for the quantum query complexity of the
function f and leave as an open problem to verify whether or not Zhandry’s
bound applies to the function f . The proof procedure is as follows. We apply
the Leftover Hash Lemma [HILL93] to the function f to extract the number of
bits that are indistinguishable from uniformly random bits. After applying the
Leftover Hash Lemma, the output distribution of h ◦ f , where h is a universal
hash function, is indistinguishable from the uniform distribution over a set. Note
that a collision for function f is a collision for h◦f . Let A be a quantum adversary
that has quantum access to f and finds a collision for h◦f . Using the existence of
A, we show that there exists a quantum algorithm B that has quantum access to
h◦f and finds a collision for h◦f with the same probability and the same number
of queries as algorithm A. Theorem 1.1 by Zhandry [Zha12] shows that two
distribution are indistinguishable if and only if they are oracle-indistinguishable.
Therefore, h ◦ f is indistinguishable from a random function (recall that the
output of h ◦ f is indistinguishable from the uniform distribution by Leftover
Hash Lemma) and as a result any quantum algorithm B is unable to differentiate
between h ◦ f and a random function. By using an existing result for finding a
collision for a random function presented by Zhandry [Zha15, Theorem 7], we
obtain an upper bound for the probability of finding a collision for function h◦f .
Therefore, we get an upper bound for the probability of success for the quantum
collision problem applied to the function f .

The quantum collision problem has been studied in various previous works. In
the following, we mention the existing results on the number of queries that are
necessary to find a collision. An Ω(N1/3) lower bound for function f is given by
Aaronson and Shi [AS04] and Ambainis [Amb05] where f is a two-to-one function
with the same domain and co-domain and N is the domain size. Yuen [Yue14]
proves an Ω(N1/5/polylogN) lower bound for the quantum collision problem
for a random function f with same domain and co-domain. He reduces the
distinguishing between a random function and a random permutation problem to
the distinguishing between a function with r-to-one part and a function without
r-to-one part. His proof is a merger of using the r-to-one lower bound from [AS04]
and using the quantum adversary method [Amb00]. Zhandry [Zha15] improves
Yuen’s bound to the Ω(N1/3) and also removes the same size domain and co-
domain constraint. He uses the existing result from [Zha12] to prove his bound.

The sufficient number of quantum queries to find a collision is given in the
following works. A quantum algorithm that requires O(N1/3) quantum queries
and finds a collision for any two-to-one function f with overwhelming proba-
bility is given by Brassard, Hφyer and Tapp [BHT97]. Ambainis [Amb07] gives
a quantum algorithm that requires O(N2/3) queries to find two equal elements
among N given elements and therefore it is an algorithm for finding a collision
in an arbitrary function f given the promise that f has at least one collision.



Yuen [Yue14] shows that the collision-finding algorithm from [BHT97] is able
to produce a collision for a random function with same domain and co-domain
using O(N1/3) queries. Zhandry shows that O(M1/3) queries are adequate to
find a collision for a random function f : [N ] → [M ] where N = Ω(M1/2). He
uses Ambainis’s element distinctness algorithm [Amb07] as a black box in his
proof. Zhandry’s bound also implies that we can not expect a lower bound for
the query complexity of finding a collision for a non-uniform function better than
O(2k/3).

2 Preliminaries

In this section, we present some definitions and existing results that are needed

in this paper. Notation x
$←− X shows that x is chosen uniformly at random

from set X. If D is a distribution over X, then notation x← D shows that x is
chosen at random according to the distribution D. Pr[P : G] is the probability
that the predicate P holds true where free variables in P are assigned according
to the program in G. We say that the quantum algorithm A has quantum access
to the oracle O : {0, 1}n0 → {0, 1}n1 , denoted by AO, where A can submit
queries in superposition and the oracle O answers to the queries by a unitary
transformation that maps |x, y〉 to |x, y ⊕O(x)〉.

Definition 1. Let D1 and D2 be distributions on a set X. The statistical dis-
tance between D1 and D2 is

SD(D1, D2) =
1

2

∑
x∈X

∣∣Pr[D1(x)]− Pr[D2(x)]
∣∣.

Definition 2. Let D be a distribution on a set X. The min-entropy of this
distribution is defined as

H∞(D) = − log max
x∈X

Pr[D(x)].

Definition 3. We say that function f : {0, 1}n1 → {0, 1}n2 has min-entropy k
if,

− log max
y∈{0,1}n2

Pr[y = f(x) : x
$←− {0, 1}n1 ] = k.

Definition 4 (Universal Hash Function [CW79]). A family of functions
H = {h : {0, 1}n → {0, 1}m} is called a universal family if for all distinct
x, y ∈ {0, 1}n:

Pr[h(x) = h(y) : h
$←− H] ≤ 1/2m.

Lemma 1 (Leftover Hash Lemma [HILL93]). Let D be a distribution with
min-entropy k and e be a positive integer. Let h : {0, 1}m×{0, 1}n → {0, 1}k−2e
be a universal hash function. Then,

SD
((
h(y, x), y

)
,
(
z, y
))
≤ 2−e−1



where x
D←− {0, 1}n, y $←− {0, 1}m and z

$←− {0, 1}k−2e.
Lemma 2 ([Zha12]). Let D1 and D2 be efficiently sampleable distributions
over some set Y, and let X be some other set. For i = 1, 2, let DX

i be the
distributions of functions Fi from X to Y where for each x ∈ X, Fi(x) is chosen
at random according to the distribution Di. Then if A be a quantum algorithm
that makes q queries and distinguish DX

1 from DX
2 with non-negligible probability

ε, we can construct a quantum algorithm B that distinguishes samples from D1

and D2 with probability at least 3ε2

64π2q3 .

Lemma 3 (Theorem 7 [Zha15]). Let h : {0, 1}n → {0, 1}m be a random
function. Then any quantum algorithm making q number of queries to h outputs

a collision for h with probability at most C(q+2)3

2m where C is a universal constant.

3 Main Result

Let Pr[Coll(O;AO) : O ← D] be the probability of finding a collision in function
O that is drawn according to the distribution D using a quantum algorithm A
with quantum access to the function O.

Lemma 4. Let D be a distribution over {0, 1}n1 . Let f : {0, 1}n1 → {0, 1}n2

be a public function and X = {0, 1}n0 . If A is a quantum algorithm that makes
q queries to function O drawn from distribution DX and finds a collision for
f ◦O with some probability, then there exists a quantum algorithm B that makes
q queries to f ◦O and outputs a collision for f ◦O with the same probability.

Proof. Let Sy = f−1({y}) for y ∈ Im f . We define distribution Dy over Sy as

Pr[Dy(z)] :=
Pr[D(z)]∑
z∈Sy

Pr[D(z)]
.

Let D′ be the distribution of functions F from {0, 1}n0 × Im f to {0, 1}n1 where
for each x ∈ {0, 1}n0 and y ∈ Im f , F (x, y) is chosen at random in Sy according
to the distribution Dy. Let (F � g)(x) := F

(
x, g(x)

)
. We show that output of O

and output of F �(f ◦O) have the same distribution when F is chosen according
to distribution D′. For every x ∈ {0, 1}n0 and z ∈ {0, 1}n1 :

Pr[
(
F � (f ◦O)

)
(x) = z : O ← DX , F ← D′]

= Pr[F
(
x, f

(
O(x)

))
= z : O ← DX , F ← D′]

= Pr[F
(
x, f(z′)

)
= z : z′ ← D, F ← D′]

= Pr[z′′ = z : z′ ← D, z′′ ← Df(z′)]
(∗)
= Pr[z′′ = z ∧ z′ ∈ Sf(z) : z′ ← D, z′′ ← Df(z′)]
(∗∗)
= Pr[z′ ∈ Sf(z) : z′ ← D] Pr[z′′ = z : z′′ ← Df(z)]

=

( ∑
z′∈Sf(z)

Pr[D(z′)]

)
· Pr[D(z)]∑

z′∈Sf(z)
Pr[D(z′)]

= Pr[D(z)],



where (∗) holds for the reason that if z′′ = z be true, then z′ will be in the set
Sf(z) and (∗∗) uses the conditional probability. As a result:

Pr[Coll(f ◦O;AO) : O ← DX ] = Pr[Coll(f ◦O;AF�f◦O) : O ← DX , F ← D′].

Now, we construct quantum algorithm B. Algorithm B runs A and answers
to its query as follows: (i) query (f ◦ O)(x) := y, (ii) pick z ← Dy, and (iii) set
O(x) := z. That is, B runs AF�f◦O with F ← D′. Let O = f ◦O. The way that
quantum algorithm B handles quantum queries is shown in the following circuit.

|x〉
UO

UF U†F

U†
O

|x〉

|0〉 |0〉

|0〉 • |0〉

|0〉
∣∣F �O(x)

〉
Algorithm B returns the output of A after q queries. Therefore, we prove the
existence of quantum algorithm B stated in the lemma.

Theorem 1. Let D be a distribution with H∞(D) ≥ k over set {0, 1}n1 . Let
O be a function drawn from distribution DX . Then any quantum algorithm A

making q queries to O returns a collision for O with probability at most C
′(q+2)9/5

2k/5

where C ′ is a universal constant. That is,

Pr[Coll(O;AO) : O ← DX ] ≤ C ′(q + 2)9/5

2k/5
.

Let h : {0, 1}m×{0, 1}n1 → {0, 1}k−2e be a universal hash function. Lemma
1 implies that:

SD(hy(x), z) ≤ 2−e−1 (1)

where hy(x) := h(y, x), x← D, y
$←− {0, 1}m and z

$←− {0, 1}k−2e.
The upper bound can be concluded by following steps:

Pr[Coll(O;AO) : O ← DX ]

(i)

≤ Pr[Coll(hy ◦O;AO) : O ← DX ]

(ii)
= Pr[Coll(hy ◦O;Bhy◦O) : O ← DX ]

(iii)

≤ Pr[Coll(O∗;BO
∗
) : O∗

$←− ({0, 1}n1 → {0, 1}k−2e)] +
√

64π2q32−e−1/3

(iv)

≤ C(q + 2)3

(2k−2e)
+

√
64π2q3

3(2e+1)

where



(i) follows from the fact that collisions for O will also be collisions for hy ◦O,
and that hy ◦O can have other collisions;

(ii) follows from Lemma 4 that implies the existence of quantum algorithm B;
(iii) can be seen as follows: Let D1 be output distribution of hy ◦ O and D2

be uniform distribution over {0, 1}k−2e. Equation 1 implies that for every
adversary A,

|Pr [A(y) = 1 : y ← D1]− Pr [A(y) = 1 : y ← D2]| ≤ 2−e−1.

Using Lemma 2, we can conclude that∣∣∣Pr[Coll(hy ◦O;Bhy◦O) : O ← DX ]−

Pr[Coll(O∗;BO
∗
) : O∗

$←− ({0, 1}n1 → {0, 1}k−2e)]
∣∣∣ ≤√64π2q32−e−1/3;

and finally
(iv) follows from applying Lemma 3 to the random function O∗.

So far, we have the upper bound

ηe :=
22eµ

2k
+

ν

2e/2
, where µ := C(q + 2)3 and ν :=

8πq3/2√
6

.

It is minimized by choosing

e =
2

5
k +

2

5
log

ν

4µ
.

Substituting this value of e gives us

Pr[Coll(O;AO) : O ← DX ] ≤ 22/5µ1/5ν4/5

2k/5
≤ C ′(q + 2)9/5

2k/5
.

.

Corollary 1. Let f : {0, 1}n1 → {0, 1}n2 be a function with min-entropy k.
Let O : {0, 1}∗ → {0, 1}n1 be a random function. Then any quantum algorithm
A making q queries to O returns a collision for f ◦ O with probability at most

O
(
q9/5

2k/5

)
.

We apply Lemma 4 to obtain the quantum algorithm B that has access to
f ◦O and finds a collision for f ◦O with the same number of queries and the same
probability as the quantum algorithm A. Then the result follows by Theorem 1
for the reason that the output distribution of f ◦O has min-entropy k.
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