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Abstract. A Universal Circuit (UC) is a circuit that can simulate any
circuit of a maximum size, given its description as input. In this work, we
look back at Valiant’s universal circuit construction from Valiant (STOC
1976). Although it yields asymptotically optimal UC, and has implica-
tions for important problems in cryptography such as ”private function
evaluation” (PFE) and ”cryptographic program obfuscation”, somewhat
surprisingly, no implementations of the construction exist. We provide
a more approachable description, improve its constant factors, and put
forth the first complete implementation. We observe that our improved
implementation of Valiant’s UC performs better than estimated and in
fact, is almost always smaller than UC construction of Kolesnikov and
Schneider (FC 2008). The UC circuits generated by our implementation
can be used for benchmarking MPC protocols, and provide a point of
comparison for any future PFE. We also observe, for the first time, that
the same construction can be adapted to yield size optimized universal
arithmetic circuit (UAC).

Keywords: Universal Circuits, Universal Arithmetic Circuits, Secure
Computation, Private Function Evaluation, Program Obfuscation

1 Introduction

A Universal Circuit UCg is a circuit that can simulate any circuit C of maximum
size g, given the description of C as input. Universal circuits had been used in
the cryptography community for various applications. We review some of these
applications and propose new ones, that can benefit from more efficient UC
constructions and implementation.

Program Obfuscation. Universal circuits have been used in some of the recent
work related to program obfuscation[GGH+13,Zim15]. Garg et al. [GGH+13] em-
ploy UC as part of their quest to construct universal branching programs which
was used in their construction for a candidate indistinguishability obfuscation. A



more efficient UC construction improves their construction. Zimmerman[Zim15]
suggests a solution for direct program obfuscation, by proposing an approach to
obfuscate what is called a keyed program. A universal circuit can be observed as
a keyed program for any circuit family. We believe that our universal arithmetic
circuit can be used to improve their performance as our key size is quasilinear
O(g log g), compared to their quadratic complexity.

Private Function Evaluation. Private Function Evaluation is a natural appli-
cation as UC can be used to transform any MPC result to a PFE result. A
general-purpose secure computation in any setting applied to a UC provides a
PFE for the same setting. PFE based on UC has been studied in [KS08a]. This
work improves and extends their results, by providing a more efficient UC con-
struction, and suggesting an efficient universal arithmetic circuit, for improved
arithmetic circuit PFE. In [MS13], the authors propose a general framework for
private function evaluation protocol that can be instantiated with several con-
crete protocols for different settings. An extension of their work with security
against malicious adversaries is given in [MSS14]. A main advantage of their
work was that it was also applicable to arithmetic circuits with the same effi-
ciency. The significance of their result can be observed by comparing it to the
alternative approach of applying MPC to the only known universal arithmetic
circuit with worst case complexity O(g5) [Raz08]. Our efficient UAC construc-
tion based on Valiant’s UC, provide an alternative solution to this problem by
reducing the complexity from O(g5) to O(g log g).

Actively secure Non-Interactive Secure Computation (NISC) [AMPR14] ap-
plied to Valiant’s UC, provides a protocol for actively secure non-interactive
PFE, which is not possible through the framework of [MS13,MSS14]. In particu-
lar the first message of the first party in their NISC which encodes the signal bits
fed to the UC, can be seen as an obfuscation of the circuit and can be evaluated
on multiple inputs of the second party. The only drawback compared to a full
obfuscation scheme is that one more message from the first party to the second
party is needed (per evaluation) to decode the output. In applications where this
extra round of interaction is possible, this provides a more efficient alternative
to obfuscation.

While the current state of the art custom PFE provides more efficient pro-
tocols compared to UC based PFE, UC based PFE might improve and become
more feasible due to the following reasons: First, the various optimizations that
are recently proposed for MPC[KS08b,KMR14,ZRE15] are making general 2PC
more pracitcal and it is not obvious if their techniques can also be combined with
custom PFE solutions. Second, UC based PFE offers easier integration inside
secure computation implementations, since a universal circuit can be treated
similarly to any other circuit.

Practical 2PC. Another interesting application of UC is in efficient batch ex-
ecution for 2PC. [HKK+14,LR15] proposed techniques to amortize the cost of
maliciously secure Yao’s garbled circuits in batch execution for the same func-
tion. In particular, their techniques demand that one uses the same circuit in all



executions. By applying their technique to a UC, we can enable batch execution
for different circuits. It is interesting to study, at what stage, the use of batch
execution with UC circuits, yields more efficient 2PC than executing 2PC on the
original (but different) circuits and without batch execution techniques.

1.1 Our Contribution

Motivated by the above applications, we look back at the Valiant’s universal
circuit construction [Val76] from STOC 1976. Although the construction yields
universal circuits with the best known asymptotic complexity, and has been em-
ployed in several recent cryptographic constructions/protocols, some details are
unspecified, and somewhat surprisingly, no implementations of the construction
exist.

We give a complete and modular description of Valiant’s UC construction
based on our understanding. Roughly, Valiant’s UC involves finding a ”universal
graph”, in which we can embed the graph representation of circuits of a cer-
tain maximum size. The circuit implementation of the universal graph, yields
the universal circuit. We provide a top-down description of the construction
to a universal graph where we recursively pack multiple graph nodes into “su-
pernodes”. Each step is described through a lemma with complete details and
description of any missing steps from the original work [Val76]. We also demon-
strate each step by applying it to a running example. Our intention is to make
the construction more accessible to researchers, and hence facilitate efficiency
improvements and software implementations for this important combinatorial
object.

We propose a general and improved method for constructing supernodes,
borrowing techniques from [KS08a] UC. Figure 1 shows our improved supernode
for packing 4 graph nodes. Using this supernode, we obtains the most efficient
variant of our UC with 18s log s gates.
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Fig. 1. 4-way split supernode construction (k = 4).

We also observe that a simple adaption of the same ideas to arithmetic cir-
cuits, yields the first size optimized Universal Arithmetic Circuit (UAC).

Finally, we provide the first implementation of Valiant’s UC to our knowl-
edge. Our implementation employs our improved building blocks to construct the



UC and is also capable of programming the UC given an input circuit. Previ-
ously, the upper bound based on the estimated complexity was the only point of
comparison with Valiant’s UC. Our implementation provides an opportunity to
perform a more accurate comparison with UC construction of [KS08a]. Table 1
demonstrates a list of a few benchmark circuits [TS15] and their correspond-
ing UC size using Valiant’s UC and the [KS08a] UC construction. Note that
Valiant’s UC can be only applied to circuits with maximum fan-in/out of two.
The UC construction of [KS08a] is claimed to produces smaller UCs compared
to Valiant’s UC for circuits with less than 5000 gates. We observe that our im-
plementation for Valiant’s UC produce smaller UCs than what is estimated by
the theoretical complexity upper bound. In fact, our experiments identify 400
gates to be a more accurate breakpoint. This is when we only leak the size of
the original circuit and need to consider an upper bound for the size of reduced
fan-out circuit. If we leak the size of the circuit after the fan-out reduction, as our
benchmark circuits in Table 1 suggest, Valiant’s UC construction outperforms
[KS08a] UC construction for almost all circuit sizes.

Table 1. A List of circuits and their corresponding UC size using Valiant’s UC con-
struction. g denotes the number of gates for original circuit, s is the size of equivalent
circuit with fan-out two plus the number of inputs, Valiant’s UC is the size of Valiant’s
UC corresponding to each row’s circuit found through implementation, and #AND
denotes the number of AND gates in the Valiant’s UC. [KS08a] UC is the size of UC
computed using [KS08a] circuit complexity.

g s Valiant’s UC(s) #AND [KS08a] UC(g)

X switch 4 7 171 49 194

32bit comparator 300 365 41851 11257 102311

32bit adder 375 497 62231 16685 135968

64bit adder 759 985 141719 37901 329973

32bit multiplier 12374 17422 3913610 1039614 9669330

AES 33616 47663 11794323 3135833 31236200

2 Preliminaries and Notations

We denote the universal circuit which accepts circuit of maximum size g with n
inputs and m outputs by UCn,m

g .

Definition 1 (Universal Circuit). ([Weg87])A circuit UCn,m
g is called a uni-

versal circuit, if it contains n true input variables, m true output variables and
g distinguished universal gates, such that for any circuit C of size gc ≤ g, there
is a configuration for UC such that the i-th distinguished universal gate of UC
computes the same function as the i-th gate of C for 1 ≤ i ≤ gc.

Universal boolean circuits are proposed by [Val76,KS08a]. The situation is
not the same for arithmetic circuits. While depth universal arithmetic circuits



which aim to maintain the depth of original circuit, are proposed by Raz [Raz08],
to our best knowledge, there exist no size optimized universal circuit construction
for arithmetic circuits.

The nature of universal boolean circuit construction is a switching network
where the basic building blocks are switches with two inputs and outputs. For
ease of presentation we follow the notation similar to previous works [KS08a]
and demonstrate the switches as follows. We denote the switches with two input
and two output by X . They accept a selection bit as a control signal and either
act as buffer or swapper. We also denote the switches with two inputs and
one output (similar to multiplexer with two inputs), by Y. They also accept a
selection bit, which determines the input that is transfered to output. Fig. 2
demonstrates the gate level implementation of X and Y switches which require
4 and 3 gates respectively. As can be observed each require only one AND gate.
We sometime use the term gate level implementation when only binary gates are
used in the specified implementation opposed to graph representation consisting
of vertices/nodes.
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Fig. 2. Circuit implementation of Y Switch and X Switch

Edge-Universal Graphs. Valiant observed that Universal Circuits are closely
related to the notion of edge-universal graphs as defined bellow.

Definition 2 (Edge-Universal Graphs). Let DGk(s) (resp., DAGk(s)) be the
set of directed (resp., directed acyclic) graphs with s nodes and fan-in and fan-
out k. An edge-embedding % of G = (V,E) into G∗ = (V ∗, E∗) is a mapping that
maps V into V ∗ one to one, and E into directed paths in G∗ (i.e., (i, j) ∈ E
maps to a path from %(i) to %(j)) that are pairwise edge-disjoint. A graph G∗

is an edge-universal graph for DAGk(s) if it has distinguished poles p1, . . . , ps
such that every G ∈ DAGk′(s

′), with k′ ≤ k and s′ ≤ s, can be edge-embedded
into G∗ by a mapping % such that %(i) = pi for each i ∈ V . This should hold for
any labeling of G.

We use DAGk(s) to denote directed acyclic graphs of size s, and fan-in/fan-out
k. We use EUGk(s) (EUG for DAGk(s)) to denote an edge-universal graph with s
distinguished pole, in which we can edge-embed any graph G ∈ DAGk′(s

′), with
k′ ≤ k and s′ ≤ s.

When talking about complexity, we use EUGk(s) to denote the number of
vertices in EUGk(s), and use CircuitEUGk(s) to denote the size of its circuit



equivalent. Note that to go back and forth between graph and circuit imple-
mentation, we only need to substitute switches with graph nodes and the other
way around. To compute the gate complexity, we need to count Y switches as 3
gates, and X switches as 4 gates.

Matching in Bipartite Graphs Matching in bipartite graphs is an essential part of
Valiant’s UC construction. For any set S of vertices in graph G, the neighborhood
set of S in G is defined to be the set of all vertices adjacent to vertices in S and
is denoted by NG(S). For a bipartite graph G with bipartition (X,Y ), we may
wish to find a matching that saturates every vertex in X. Hall’s theorem gives
necessary and sufficient conditions for the existence of such a matching:

Theorem 1 (Hall’s Theorem). (Theorem 5.2 of [Bon76]) Let G be a bipartite
graph with bipartition (X,Y ). Then G contains a matching that saturates every
vertex in X if and only if:
|N(S)|≥ |S| for all S ⊆ X.

Theorem 2 (Corollary to Hall’s Theorem). (Corollary 5.2 of [Bon76]) If
G is a k-regular bipartite graph with k > 0, then G has a perfect matching.

3 Valiant’s UC Construction: A Full Description

In this section, we explain Valiant’s construction for Universal Circuits, providing
a more modular and clear description. Our intention is to make the construction
more accessible to researchers, and hence facilitate efficiency improvements and
software implementations for this important combinatorial object.

The construction can be naturally described in three, modular, top-bottom
steps: (i) construct a Universal Circuit given an edge-universal graph (EUG) for
graphs of fan-in/out two (a notion introduced by Valiant), (ii) construct an EUG
for graphs of fan-in/out two given an EUG for graphs of fan-in/out one. (iii)
construct an EUG for graphs of size s and fan-in/out one given an EUG for
graphs of size s/k and fan-in/out one for some constant k. The last step, can
be recursively repeated to build EUGs for arbitrary size graphs. These steps are
shown in Fig.3.

UCn,m
g EUG2(s)

s = n + g

EUG1(s) EUG1(ds/ke − 1)

Fig. 3. Top-down demonstration of Valiant universal circuit construction

We use the example circuit of figure 4 to describe how all the steps come
together to build a complete universal circuit.

Next we discuss each step separately.
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Fig. 4. Running example

3.1 From Edge-Universal Graphs to UC Circuits

Our goal is to design a Universal Circuit UCn,m
g . Valiant’s universal circuit con-

struction can be used for circuits with fan-in/fan-out limited to two which we
denote by UCn,m

g,2 . It is possible to convert any circuit with arbitrary fan-in/out
to a circuit with reduced fan-out. We first prove the following simple lemma. As
a result of this lemma, we can focus on designing an EUG for DAG2(s).

Lemma 1. Given an EUG2(s) for DAG2(s) where s = n+g with s distinguished
poles and L nodes, we can construct a universal circuit UCn,m

g,2 of size at most
9s + 4L, for circuits with fan-in/fan-out 2.

Proof. We model the circuit as a graph GC were each input wire and each gate
are represented as a node and each wire is represented by an edge in the graph.
The derived graph is a DAG2(s) with s = n + g. From the definition of EUG, it
is possible to embed any DAG2(s) such as GC into the given EUG2(s), such that
there are edge-disjoint paths between any two distinguished poles. We proceed
by constructing a circuit equivalent of EUG2(s) as follows. Each distinguished
pole can be implemented by a universal gate for 16 possible functions from
{0, 1}2 → {0, 1} i.e., (x1, x2, c1, c2, c3, c4) 7→ c1x1x2+c2x1x̄2+c3x̄1x2+c4x̄1x̄2 =
(x1 ∧ (c1 ∧ x2⊕ c2 ∧ x̄2))⊕ (x̄1 ∧ (c3 ∧ x2⊕ c4 ∧ x̄2)). Each assignment to control
signals c1c2c3c4 (concatenated for ease of presentation) corresponds to one of
the possible functions, for example 1000 simulates the AND gate and 0110 sim-
ulates the XOR gate. The universal gate for the first n distinguished poles are
programmed to implement a constant binary value equal to the corresponding
input to the circuit. Assigning 0000 and 1111 to c1c2c3c4 simulate zero and one.
The (n + i)-th distinguished pole is programmed to implement the i-th topo-
logical gate of circuit being programmed. Circuit implementation of a universal
gate requires 9 binary gates as shown in Fig.5. The cost of implementing all the
universal gates is 9(n + g) = 9s binary gates. Each of the other L nodes beside
distinguished poles can be implemented by a X or Y switch which requires a
maximum of 4L gates in total. The resulting circuit is a universal circuit for



circuits with DAG2(s) graph representation as one can find the edge-embedding
corresponding to any DAG2(s), in EUG2(s), and configure the switches to imple-
ment the edge-disjoint paths and therefore simulate the topology of the given
circuit. Universal gates ensure that each distinguished pole implements the func-
tionality of the corresponding input/gate. ut

Y

Y

x2
c1
c2

c3
c4

Y

x1

Fig. 5. Implementation of universal gate

Getting back to our example, we need to start by reducing the fan-out of
gates in the circuit to 2. For this example the circuit already meets our criteria.
Each number denotes a node in the DAG2(s). We need to find an EUG for this
graph.

3.2 Edge-Universal Graphs: From EUG for DAG1(s) to EUG for
DAGk(s)

Next we show how to construct EUG for DAGk(s) from EUG for DAG1(s). This
naturally enables us to use EUGs for DAG1(s), to construct an EUG for DAG2(s),
which is what we need in lemma 1 to construct UC for fan-in/fan-out 2 circuits.

Lemma 2 (Lemma 2.1 of [Val76]). For any DAGk(s) = (V,E), E = ∪ki=1Ei
is the union of k disjoint set Ei, such that (V,Ei) = DAG1(s).

Proof. We represent the DAGk(s) = (V,E), where V = {v1, . . . , vs} by a bi-
partite graph BGk = (V ′, E′), where V ′ = {v1, · · · , vs, v′1, · · · , v′s}, and for each
(vi, vj) ∈ E, we have (vi, v

′
j) ∈ E′. If required we add dummy edges to E′ to

make BGk a k-regular bipartite graph. Given BGk(s), as a result of corollary to
Hall’s theorem given in theorem 2, one can find a perfect matching E1, which
covers all vertices with fan-out k or fan-in k (with the dummy edges removed
from E1). We then remove the edges in the matching E1 from DAGk(s) to get
DAGk−1(s). By induction we can find {E1, · · · , Ek} whose union gives E. ut

Lemma 3. An EUG for DAG2(s) = (V,E), can be constructed from two in-
stances of EUG for DAG1(s).



Proof. Using Lemma 2 we find E1 and E2 whose union produces E. Each (V,Ei)
is a DAG1(s), therefore we can embed each in a separate EUG for DAG1(s). We
merge the distinguished poles of the two EUG1(s), inside a single distinguished
pole with each EUG1(s), providing one input to distinguished pole. This complete
the EUG2(s) construction. ut

Lemma 3 enables us to use two instances of EUG1(s) to construct EUG2(s) for
our example. We first need to apply Lemma 2 to reduce DAG2(9) representation
of our example circuit to two DAG1(9) as shown in figure 6. Then by merging the
distinguished poles of the two EUG1(9), one per each of the two graphs, and have
each EUG provide one of the inputs to each pole, we get the desired EUG2(9).
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Fig. 6. Application of Lemma 2.1 to the running example

3.3 Edge-Universal Graphs for Fan-in/out One DAGs

So far, we have showed how to reduce construction of UCn,m
g,2 to designing EUG for

DAG1(s). We now show how to recursively reduce the problem to smaller sizes,
until we get to the size for which we have an efficient EUG construction. We show
each step of recursion by reducing EUG for DAG1(s) to EUG for DAG1(s/k).
For this reduction we need an essential building block called Supernode (see
Definition 3). Informally, a supernode is a graph that enables us to look at certain
number of nodes as one. Naturally, if we pack k nodes from a DAG1(s), we end
up with a supernode with fan-in/out of k. Notice that since the nodes that are
packed together are independent, there needs to be edge-disjoint paths between
the inputs to the corresponding distinguished nodes inside the supernode. The
same thing goes for the output of distinguished nodes. It might be the case that
the input to distinguished nodes is from a previous distinguished node instead
of the supernode inputs. There shoudl be edge-disjoint paths between any input,
or output from previous distinguished nodes to any specific distinguished node.
Figure 7 the graph for packing two nodes into a supernode. The two distinguished
nodes (internal nodes) are the nodes that we intend to group together. There
is a path from any of the two inputs to the first distinguished node through
the vertex v1. The input to the second distinguished node is selected from the
input that was not routed to the first distinguished node and the output of



first distinguished node through v2. Finally, the v3 in the output enables any
permutation of distinguished nodes’ to be connected to the supernode outputs
through edge-disjoint paths.

1
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1
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v1 v2 v3

Fig. 7. 2-way split supernode construction (k = 2).

Definition 3 (Supernode). A k-way split supernode SN (k) is an edge-
universal graph with k nodes {in1, · · · , ink} marked as input, k nodes
{out1, · · · , outk} marked as output, and k distinguished nodes D = {D1, · · · , Dk},
such that any graph G = (V,E) ∈ DAG1(3k), with V = {in1, · · · , ink} ∪
{D1, · · · , Dk} ∪ {out1, · · · , outk}, and for any edge e = (v1, v2) ∈ E:

– If v1 ∈ {in1, · · · , ink} then v2 ∈ D
– If v2 ∈ {out1, · · · , outk} then v1 ∈ D
– v1 6∈ {out1, · · · , outk}
– v2 6∈ {in1, · · · , ink}

Can be edge embeded into SN (k).

We denote the number of binary gates required to implement the k-way split
supernode by CircuitSN (k).

Lemma 4. Given an EUG for DAG1(
⌈
s
k

⌉
− 1) with L nodes and a k-way su-

pernode construction with size SN (k), we construct an EUG for DAG1(s) with
at most

⌈
s
k

⌉
SN (k) + kL nodes.

Proof. We start from the first node in topological order, and group each set of
consecutive k nodes into a supernode using the given k-way split supernode. The
resulting graph with each supernode seen as a single node, is DAGk(

⌈
s
k

⌉
) as the

maximum fan-in/out increases to k. Using Lemma 2, we break DAGk(
⌈
s
k

⌉
) to

k instances of DAG1(
⌈
s
k

⌉
). In order to construct EUG on top of supernodes, we

need to deal with two distinguished nodes per each supernode, one for the input
and one for the output. This requires EUG for DAG1(2

⌈
s
k

⌉
). Instead we only

need an EUG for DAG1(
⌈
s
k

⌉
− 1) to implement this, if we have the distinguished

nodes corresponding to the output of i-th supernode and the input of (i + 1)-
th supernode be merged. Figure 11 demonstrates an example of how EUG for
DAG2(9) can be reduced to EUG for DAG1(4).

As a result of this optimization it is required to perform some adjustments
to convert DAG1(

⌈
s
k

⌉
) = (V,E) to DAG1(

⌈
s
k

⌉
− 1) = (V ′, E′). For any edge



(u, v) ∈ E, if v > u+1 we add (u, v−1) ∈ E′. If v = u+1, then no edge is added,
though the output of u-th supernode is passed through the u-th distinguished
node to the input of v-th supernode. For the case u = v, no edge is required to
be added as it corresponds to a connection inside the supernode and does not
need to be part of DAGk(

⌈
s
k

⌉
). ut

In our example, we use Lemma 4 to go from DAG1(9) to two instances of
DAG1(4). As demonstrated in figure 8, this involves packing every two consecu-
tive node inside a 2-way split supernode of figure 14 to find DAG2(5).

1 2 3 4 5 6 7 8 9

Fig. 8. From DAG1(9) to DAG2(5)

We then apply a matching algorithm to reduce DAG2(5) to two instances
of DAG1(5) = (V,E) as shown in figure 9. Finally, to find DAG1(4) of next

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

Fig. 9. From DAG2(5) to two instances of DAG1(5)

recursion as shown in figure 10, for any edge (u, v) ∈ E, if v > u + 1 we add
(u, v − 1) ∈ E′. Using the construction shown in figure 11, and have reduced
EUG1(9) to EUG1(4).

3.4 Complexity of Valiant’s Universal Circuit

We present the complexity analysis of Valiant’s universal circuit. From Lemma 1,
we need two copies of EUG1(s), where s = n+g to implement the UC. We denote
the size of Valiant’s UC with s distinguished poles by UC(s). Note that UC(s)
can handle circuits with n + g ≤ s and maximum fan-in/out two.
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Fig. 10. From DAG1(5) to DAG1(4)

1 2 3 4 5 6 7 8 9
SN (2)

1 2 3 4

1 2 3 4

DAG1(4)

DAG1(4)

Fig. 11. Reduction from EUG1(9) to EUG1(4)

UC(s) = CircuitEUG2(s)

EUG2(s) = 2EUG1(s)

At each step, we reduce the problem of EUG(s) to k instances of
EUG

(⌈
s
k

⌉
− 1
)

using Lemma 4. This reduction requires using a k-way split su-
pernode per each k consecutive nodes, except for the last supernode, which
does not need the output distinguished nodes. The reduction cost would be⌈
s
k

⌉
SN (k)− k. Following is the recursive cost function.

EUG(s) = kEUG
(⌈ s

k

⌉
− 1
)

+
⌈ s
k

⌉
SN (k)− k

The worst case complexity happens when in every recursion s = ks1+1 ≈ ks1.

EUG(s) ≤ kEUG
( s
k

)
+

s

k
SN (k)

EUG(s) ≤ SN (k)

k
s logk s→ EUG2(s) ≤ 2SN (k)s log s

k log k

UC(s) = CircuitEUG2(s) ≤ 2CircuitSN (k)s log s

k log k

4-way split supernode is the most efficient supernode suggested in [Val76],
with 19 nodes:

EUG2(s) ≤ 2× 19s log s

4 log 4
= (19/4)s log s

Each graph node can be implemented using one X switch:

UC(s) ≤ 4EUG2(s) = 19s log s



4 Extension to Universal Arithmetic Circuits

We show how the graph abstraction of Valiant’s UC, enables us to use the
same EUG construction to construct universal arithmetic circuits (UAC). We
observe that Lemma 1 is the (only) part that links the graph construction to its
circuit equivalent. Thus, we only need to provide arithmetic circuit equivalents
of Lemma 1.

Theorem 3. Given an EUG2(s) for DAG2(s) where s = n+g with s distinguished
poles and L nodes, we can construct a universal arithmetic circuit UACn,m

g,2 of size
at most O(1)s + 5L, for circuits with fan-in/fan-out 2.

Proof. The proof is similar to Lemma 1, we only need to implement EUG2(s)
with arithmetic operations instead of binary gates. The implementation of poles
is slightly different, as we also need to deal with arbitrary inputs for input gates.
We need 7 different functions: (x0, x1,−x0,−x1, x0 +x1, x0.x1, c), where c is the
arbitrary input. To select one of the seven functions we need 3 selection bits
(c2, c1, c0). Our implementation which requires O(1) arithmetic operations, is as
follows:

(c0, c1, c2, c, x0, x1)→ (1− c0) [(1− c1) (x0 + x1) + c1 ((1− c2)x0 + c2x1)]

+c0 [(1− c1)((1− c2)(x0x1) + c2(c)) + c1((1− c2)(−x0) + c2(−x1))]

Each of the other L nodes beside distinguished poles can be implemented by
a X or Y switch. The X switch functionality is defined based on arithmetic
operations (·, +, −) as follows:

(c, x0, x1)→ ((1− c)x0 + cx1, cx0 + (1− c)x1) ,

Assuming negation can be done for free, this can be done using 5 arithmetic
gates, by computing cx0, cx1, cx0 − cx1 and two additions. ut

The above construction is an efficient UAC with the same asymptotic com-
plexity as Valiant’s UC for boolean circuits giving the best size optimized UAC
to our knowledge.

5 A General Design for Supernodes

From the complexity analysis of section 3.4 it can be observed that supern-
ode complexity dictates the concrete efficiency of Valiant’s construction. Thus
any improvement to the size of supernode circuits, directly affects the constant
factors of the construction. Motivated by the importance of more compact su-
pernodes, we study a general design for k-way split supernodes. Based on this
general design, we derive improved k-way split supernodes when k = 2 and
k = 4.



5.1 k-way Split Supernode From EUG1(k)

We show how to build k-way split supernodes given an EUG for DAG1(k). From
the definition of a supernode, we need to map any permutation of inputs to
the distinguished nodes, and similarly map any permutation of distinguished
nodes to output. The most efficient circuit for such purpose is a permutation
network[Wak68]. An input to each distinguished node can also be the output of
any previous distinguished node. This can be directly solved using an EUG1(k).
We need an extra Y switch per each distinguished node (except for the first one),
to select between the input from EUG and the input from supernode inputs.
Figure 12 shows this construction.
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Fig. 12. k-way split supernode.

Complexity of k-way split supernode consists of EUG1(k), two permutation
networks with k inputs, k distinguished nodes, and k − 1, Y switches to select
from xπ(i) and the input from EUG. Following is the supernode complexity in
terms of number of nodes (SN ) and number of gates (SN g):

SN (k) = (2(k log k − k + 1) + k)X+(k−1)Y+EUG1(k) = 2k log k+1+EUG1(k)

CircuitSN (k) = 8k log k − k + 5 + CircuitEUG1(k)

This implies any supernode construction based on the above design cannot
lead to UC construction with constant factor better than 16 due to the two
permutation networks.

CircuitSN (k) > 8k log k → UC(s) >
2× 8k log k × s log s

k log k
→ UC(s) > 16s log s

5.2 Design of EUG1(k)

One may try to design EUG for different sizes by hand. While we show improve-
ments to supernode construction for small values of k (k = 2 and k = 4), we
found it to be challenging for larger values of k to design efficient EUG by hand.

With this intuition, we investigate the efficiency of instantiating supernodes
with a general construction. One may consider the recursive use of Valiant EUG



construction for smaller sizes inside supernode construction. If we assume the
constant factor of construction to be t(≈ 9), we have:

CircuitSN (k) = 8k log k − k + 5 +
t

2
k log k

Substituting this in the UC complexity gives the following, which is obviously
less efficient since t < t + 16:

CircuitSN (k) ≈
(

8 +
t

2

)
k log k

→ UC(s) =
(16 + t)k log k × s log s

k log k
= (16 + t)s log s

Our second choice is from observing EUG circuit to be essentially a universal
circuit, which is restricted to circuits with DAG1 graph representation. With
this intuition we turn back to UC construction of [KS08a]. This construction
has been claimed to produce more compact UCs for smaller circuits comparing
to Valiant. This gave hope for possible improvements by instantiating the EUG
circuit inside the supernodes by UC construction of [KS08a]. The main building
block in [KS08a] construction is what they call universal block, and can be seen
as a universal circuit with inputs and outputs organized such that inputs with
index 2i− 1, 2i are the inputs to i-th universal gate, and the i-th output comes
from i-th universal gate.

This match our requirement for EUG, except that we only require fan-in/out
one in contrast to [KS08a] construction which can handle fan-in two and arbi-
trary fan-out. We design a modified and more efficient version of their universal
block for our purpose, DAG1. Figure 13 demonstrates the modified version of
their recursive universal block construction with similar components. We out-
line the differences: In contrast to their construction, we only deal with one input
per each universal gate(distinguished node for our purpose) which reduces the
input size of Uk/2, from k to k/2. Furthermore, we avoid the use of selection
block as we do not need to deal with replication or deletion of elements. Permu-
tation networks (Pk/2) are used instead. Similarly,Mk/2 consists of k/2 parallel
Y switches.

Mk/2Uk/2 Pk/2 Uk/2

Uk

Fig. 13. EUG construction based on Uk object of [KS08a]. All lines carry k/2 wires.



Next, we analyze the complexity of our modified universal block. U(k) denotes
the size of universal block for k distinguished nodes.

U(k) = 2U

(
k

2

)
+ Perm

(
k

2

)
+M

(
k

2

)
=

log k−1∑
i=0

2i
(
Perm(

k

2i+1
)X +

k

2i+1
Y
)

U(k) =

log k−1∑
i=0

2i
((

k

2i+1
log

k

2i+1
− k

2i+1
+ 1

)
X +

(
k

2i+1

)
Y
)

U(k) =

log k−1∑
i=0

((
k

2
log k − k

2
(i + 1)− k

2
+ 2i

)
X +

(
k

2

)
Y
)

U(k) =

(
k

2
log2 k − k

2

(
log k(log k + 1)

2

)
− k log k

2
+ (k − 1)

)
X +

(
k log k

2

)
Y

U(k) =

(
k

4
log2 k − 3k log k

4
+ (k − 1)

)
X+

(
k log k

2

)
Y =

k

4
log2 k−k log k

4
+k−1

CircuitU(k) = 4

(
k

4
log2 k − 3k log k

4
+ (k − 1)

)
+ 3

(
k log k

2

)
= k log2 k − 3k log k

2
+ 4k − 4

Note that M block take the same role as our set of Y switches in Fig.12. We
have:

SN (k) = (2Perm(k) + k)X + U(k)

By substituting this in SN (k) we get:

SN (k) = (2(k log k − k + 1) + k)X + U(k) =
k

4
log2 k +

7

4
k log k + 1

CircuitSN (k) = 8k log k − 4k + 8 + CircuitU(k) = k log2 k +
13

2
k log k + 4

Having the complexity of supernode for arbitrary k, we can compute the
complexity of UC as follows:

EUG2(s) = 2SN (k)
s log s

k log k

= 2

(
k

4
log2 k +

7

4
k log k + 1

)
s log s

k log k

=

(
log k

2
+ 3.5 +

2

k log k

)
s log s



UC(s) = 2CircuitSN (k)
s log s

k log k

= 2

(
k log2 k +

13

2
k log k + 4

)
s log s

k log k

=

(
2 log k + 13 +

8

k log k

)
s log s

Now we need to find the k value that minimizes the last two equations. Both
EUG2(s) and UC(s) are minimized when k ≈ 3.143 with EUG2(s) = 4.71s log s
and UC(s) = 17.84s log s.

5.3 Improved Supernode Constructions

Next, we present our improved supernodes with smaller gate count to replace the
supernode in Fig. 2 in [Val76]. The main idea behind the improvement is taking
advantage of the arbitrary fan-out for the actual UC circuit, and also observing
that Y switches require one less gate compared to X switches. Fig. 14 demon-
strates the construction. Notice the first distinguished node’s extra fan-out with
no additional cost compared to Fig. 7, which enables us to change v2’s implemen-
tation from X switch to Y switch. Our improved 2-way split supernode consists
of 5 graph nodes, and requires a total of 19 gates for circuit implementation,
leading to:

EUG2(s) = 2EUG1(s) =
2× 5s log s

2× log 2
= 5s log s

UC(s) =
2× 19s log s

2× log 2
= 19s log s

Similarly the 4-way split supernode (Fig. 1) consists of 19 graph nodes, and
requires the total of 72 gates for circuit implementation, leading to:

EUG2(s) = 2EUG1(s) =
2× 19s log s

4× log 4
= 4.75s log s

UC(s) =
2× 72s log s

4× log 4
= 18s log s

1

2

1

2
X

1
Y

2
X

Fig. 14. 2-way split supernode construction (k = 2).



We observe that our supernode designs, are equivalent to what can be con-
structed using the modified [KS08a] given in previous section. In fact, for k = 4
we get UC(s) = 18s log s and for k = 2 we get UC(s) = 19s log s which exactly
matches above supernodes.

6 Implementation

A main motivation for studying Valiant’s UC was the lack of implementations for
it in the literature. We provide the first implementation (of our improved variant)
to our knowledge. Our implementation accepts any circuit in the format used
in [TS15] for benchmark circuits, converts it to a circuit with reduced(=2) fan-
out, and outputs the corresponding universal circuit as well as the set of control
signal wires. We also provide the programming of UC, that is given a circuit C
of certain size acceptable by a UC, we derive binary values that when assigned
to control signal wires enables the universal circuit to emulate the functionality
of C. We also provide testing functions which evaluate the original circuit, the
reduced-fanout circuit as well as the programmed universal circuit on a provided
test input. Our implementation is done in C++ under Windows, but with no
dependencies, which enables it to be compiled on other platforms. We intend to
publish the source code.

Our implementation employs our improved 2-way4 split supernode to con-
struct the universal graph recursively, and adds the circuit implementation of
each graph node to the UC as the wire index to all its inputs and outputs
are determined. Programming the UC was the more challenging part due to
some subtleties that we describe next. One of the main steps in programming
Valiant UC is finding the matching which splits DAGk to k instances of DAG1

(Lemma 2). We need to find the matching and remove it from DAGk to get
DAGk−1 and DAG1. We need to continue this to find all k instances of DAG1. To
this end, at each step we employed the Hopcroft-Karp algorithm [HK73] for the
maximum matching in unweighted bipartite graphs with complexity O(E

√
V ),

which aims for maximum number of edges in the matching. There are algorithms
with better theoretical complexity which are reported to be slower in practice.
We noticed that there is a possibility of multiple maximum matchings with some
of them not satisfying our criteria of covering all vertices with fan-in/out k. Our
solution to this was to do exactly as we have discussed in the proof of Lemma 2
and to add dummy edges to create a k-regular bipartite graph, while keeping
track of these dummy edges. This guarantees that the Hopcroft-Karp algorithm
will find the perfect matching, thus covering all vertices with fan-in/out k. We
note that except for the proof of possibility by referring to Hall’s theorem, these
details are not discussed in [Val76].

After finding DAG1s, before assigning it as a graph for the next recursion
we need to perform some adjustments. This is done according to the proof of
Lemma 4. We change the edge u → v to u → v − 1 for the graph of next

4 The implementation using our 4-way split supernode is in progress and is expected
to lead to even better results.



recursion. Essentially the i-th distinguished node in the universal graph, accepts
inputs from the i-th supernode, and provides outputs to the (i+1)-th supernode
in the previous recursion. If u = v, then we do not need to consider the edge
during the matching as it is a mapping inside the supernode and does not need
to go through to next layer.

6.1 Comparison with UC Construction of [KS08a]

The efficiency analysis in [KS08a] counts the cost of Y switches as one, and the
cost of X switches as two. In this work, we are interested in the total number of
binary gates. The detailed complexity analysis of [KS08a] to find the exact gate
complexity is given in appendix A. The total cost is:

CircuitU(g) = 3g log2 g + g log g + 5g − 5

UCKS08(g) = CircuitU(g)

+

(
n + 2g

2
log n +

5g + m

2
log g + m logm− n−m− g + 4

)
X

+ (3g − 1)Y

Note that an additional 3gY cost corresponding to g universal gates needs
to be added to the above equation. [KS08a] claims a smaller UC compared to
Valiant’s UC for circuits of size ≈ 5000 or smaller when they set n = 0.5g and
m = 0.1g. We use the same parameters and set n = 0.5g and m = 0.1g as
input and output sizes of Valiant’s UC, UCn,m

s (s = n + 2g + m = 2.6g) for our
comparisons with [KS08a]. Note that setting s as such, is an overestimate in
practice. For a given circuit, the g +m overhead of reducing the fan-out, can be
much lower and in fact can be zero in some cases. Instead of leaking the size
of original circuit with arbitrary fan-out, we can first reduce the fan-out, and
release the size of the reduced fan-out circuit.

We identify g ≈ 3700 to be the new break-point if we consider the theoretical
complexity 18s log s (s = 2.6g) based on our improved 4-way split supernode.
But, for input circuits with fan-in/fan-out two (s = n + g = 1.5g), Valiant’s UC
is strictly smaller for circuits with more than 25 gates.

The theoretical complexity is an upper bound, and we expect better com-
plexity in an actual implementation. One reason for better complexity in imple-
mentation, originates from the saving in the last supernode. Note that in the
complexity analysis we consider a full cost for all supernodes except for the last
supernode with no outputs that we subtract the cost of output distinguished
nodes. This is lower in implementation as for a k-way split, we have s = ks′+k′,
where 1 ≤ k′ ≤ k. Recall, in our worst case analysis we had k′ = 1. In implemen-
tation we only need to route the k inputs to k′ distinguished nodes which requires
a smaller circuit compared to a complete supernode. One way of implementing
such a circuit is to modify Figure 12 as follows. We use the first permutation
network (or a more optimized Truncated permutation of [KS08a] from k to k′),



then instead of EUG1(k), we only use EUG1(k′). There is no need for the last
permutation network as there are no outputs from the last supernode.

Our implementation is based on our improved 2-way split, with the theoret-
ical estimate of 19s log s. For our experiments, we generate circuits of different
sizes randomly, and provide each as an input to our implementation. Given an
input circuit, our implementation outputs the value of s and the size of the final
UC (beside the actual UC). Using the test parameters of [KS08a] for Valiant’s
UC, implies s = 2.6g. For comparison with [KS08a], we compute g = s/2.6 from
the s recovered from implementation and use it as input to the [KS08a] com-
plexity from above to compute the size of their UC. Interestingly, we find that
the actual break-point is much lower at g ≈ 400. Also note that this is in fact
still an upper bound for the break point due to two reasons. First, we used the
upper bound for number of extra gates added during the fan-out reduction. Sec-
ond, we have used the less optimized 2-way split supernode for this experiments.
The size of 4-way split is expected to be better, due to a better constant factor.
Figure 15 compares the complexity of [KS08a] versus Valiant’s UC for smaller
circuits for the purpose of demonstrating the break-points.

6.2 Experimental Results

Figure 16 show the Valiant’s UC sizes for larger circuits. Sizes for [KS08a] are
provided for comparison. Table 1 shows the size of the universal circuit for some
of the benchmark circuits provided in [TS15].

7 Future Directions

As stated earlier, by providing a detailed description and implementation, we
hope to motivate the use of this construction in the cryptographic protocols as
well as research for possible efficiency improvements. One of the main drawbacks
of Valiant’s construction is its limitation to circuits with fan-in/out two. We want
to point out that a solution to this issue has been proposed in Theorem 3.2 of
[Val76]. Furthermore, Theorem 3.3 [Val76] offers an improvement, which reduces
the constant factor behind the construction’s complexity by a constant ≈ 5/6
(by reducing a factor of 2 to 5/3). Although the possibility is shown in the proofs,
detailed steps and implementation remains as an interesting future work.
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A Circuit Complexity Analysis of [KS08a] UC
Construction

The following is the circuit complexity analysis of [KS08a]. We first compute
the cost of their building blocks, in terms of number of X and Y switches, and
then use it to compute the circuit complexity. Computing the cost in terms of
switches has two advantages for us. First, each switch can be seen as vertex in
graph representation. Second, since each switch only requires one AND gate, this
helps to learn the AND complexity, which directly translates to cryptographic
cost as XOR gate can be evaluated for free in both the Yao’s garbled circuit and
GMW protocol. Next, we discuss the complexity analysis. We refer the reader
to [KS08a] more details.

For a permutation network with u inputs and v outputs where u 6= v (which
they call expanded permutation if u < v and truncated permutation if u > v),
they propose a construction based on Waksman permutation network. We use
the g subscript to refer to circuit complexity.

For u < v:

ExpandedPerm(u, v) =
u + v

2
log u− u + 1

ExpandedPermg(u, v) = 2(u + v) log u− 4u + 4

For u > v, we need an extra Y switch to eliminate each extra input:

TruncPerm(u, v) =

(
u + v

2
log v − v + 1

)
X +(u−v)Y =

u + v

2
log v−2v+u+1

TruncPermg(u, v) = 2(u + v) log v − 7v + 3u + 4

The cost of selection blocks is as follows:

u < v : Sel(u, v) = ExpandedPerm(u, v) + (v − 1)Y + Perm(v)

https://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC
https://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC


Sel(u, v) =

(
u + v

2
log u + v log v − u− v + 2

)
X + (v − 1)Y

u > v : Sel(u, v) = TruncPerm(u, v) + (v − 1)Y + Perm(v)

Sel(u, v) =

(
u + v

2
log u + v log v − u− v + 2

)
X + (u− 1)Y

They also give a custom construction for the Sel(v/2, v) with the following com-
plexity:

Sel(v/2, v) =

(
3v

2
log

v

2
− v

2
+ 2

)
X + (v − 1)Y

using the above complexities, one can compute the cost of U(g) as follows:

U(g) =

(
3

4
g log2 g − 5

4
g log g + 2g − 2

)
X + (2g log g − g + 1)Y

U(g) =
3

4
g log2 g +

3

4
g log g + g − 1

CircuitU(g) = 3g log2 g + g log g + 5g − 5

The total cost is:

UCKS08(g) = Sel(n, 2g) + U(g) + Sel(g,m)

UCKS08(g) = CircuitU(g)

+

(
n + 2g

2
log n +

5g + m

2
log g + m logm− n−m− g + 4

)
X

+ (3g − 1)Y

Note that there is an additional 3gY cost corresponding to g universal gates
not included in the following.
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