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Abstract

In this note, using rather elementary technique and the derived formula that relates
the coefficients of a polynomial over a finite field and its derivative, we deduce many
interesting results related to derivatives of Boolean functions and derivatives of mappings
over finite fields. For instance, we easily identify several infinite classes of polynomials
which cannot possess linear structures. The same technique can be applied for deducing
a nontrivial upper bound on the degree of so-called planar mappings.

Keywords: Finite fields, Boolean functions, Derivatives, Integration, Linear structures.

1. Introduction

Let Fq denote the Galois field of order q = pn, and let the corresponding vector
space be denoted as Fn

p . For a given polynomial F (x) ∈ Fq[x] its derivative at a ∈
F∗q is defined as DaF (x) = F (x + a) − F (x), where clearly a = 0 results in a trivial
annihilation. In contrast to the standard notion of derivative, which is for instance
useful for determination of multiple roots of F and which coincides to the derivation
of polynomials over real numbers, this notion of derivatives is of great importance in
cryptography and is directly related to differential properties of the mappings used in the
substitution boxes. Indeed, when p = 2 the differential properties of F (that reflects the
resistance to differential cryptanalysis [1]) are characterized by the number of solutions
of F (x+ a) + F (x) = b for any a ∈ F∗q and b ∈ Fq. On the other hand, for fields of odd
prime characteristic p > 2, if F (x + a) − F (x) is a permutation for any nonzero a then
F is called a planar function [6, 4, 5].
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The concept of linear structures plays an important role in cryptographic appli-
cations. Certainly, for functions over finite fields (whose prime field is binary) the
substitution boxes (S-boxes) identified as a polynomial F (x) ∈ F2n [x], represented as
F (x) =

∑q−1
i=0 bix

i, should not contain linear structures a so that F (x + a) + F (x) = b
for some fixed b ∈ F2n and for all x ∈ F2n . In this case a is called b-linear structure.
A few general results are known about the form of polynomials F (x) admitting linear
structures. The same applies to the Boolean case when f : F2n → F2 which again may
be represented as f(x) =

∑2n−1
i=0 aix

i but the coefficients ai must satisfy certain condi-
tions, see Section 2. In [10], the properties of the set of differential functions defined as
DFq = {DaF (x) : F (x) ∈ Fq[x], a ∈ F∗q} was investigated. One should notice that there
exist polynomials in Fq[x] which are not derivatives of any polynomial, thus they do not
belong to DFq. The main result in [10] concerning the existence of linear structures is
that F (x) ∈ F2n [x] is a differential function (thus F (x) ∈ DFq) if and only if it has a
0-linear structure. This implies that the necessary condition to avoid linear structures
is that F (x) 6∈ DFq, for q = 2n. In [2], the authors investigated the existence of linear
structures for the mappings of the form F (x) = Tr(δxs), where F : Fpn → Fp. For
polynomials over finite fields a thorough treatment of binomials F (x) = xs + αxd was
taken in [3].

A detailed study of the cryptanlytic significance of linear structures was initiated
by Evertse [7] in which cryptanysis of DES like ciphers are discussed along with several
possible extensions. Linear structures are also considered by Nyberg and Knudsen in a
paper on provable security against a differential attack [8]. The connection between the
existence of linear structures and the differential profile of functions over finite fields is an
important area of investigation in the context of the designs of S-boxes. The relevance of
this area has increased significantly due to the recent cryptographic need of development
of S-boxes (vectorial Boolean functions) suitable for use in lightweight ciphers.

To sum up the critical technological impact of this area of research we refer to the
foreword written by Bart Preneel in the recent book by Tokareva [9] which is entirely
devoted to bent functions. Preneel writes: “Perhaps the largest impact on modern cryp-
tography to date would be generated by the study of generalizations to vector Boolean
functions that offer strong resistance against differential and linear attacks by Nyberg
and others. This work resulted in the S-box used in the Advanced Encryption Standard
(AES) that is today used in billions of devices.” Incidentally bent functions are Boolean
functions having no linear structures whose cryptographic applications include employ-
ment in the designs of CAST, Grain and HAVAL, as well as “non-cryptographic” uses in
the designs of Hadamard matrices, strongly regular graphs, Kerdock codes and CDMA
sequences.

In this article we firstly derive the relationship between the coefficients bi of F (x) =∑q−1
i=0 bix

i and the coefficients ci of its derivative G(x) = F (x+ a)− F (x) =
∑q−2

i=0 cix
i.

This connection can be efficiently used for specifying conditions regarding the existence
of linear structures for either Boolean functions or for mappings over finite fields. Though
the approach is quite elementary it leads to several important results in this direction.
For instance, it is sufficient that F (x) contains the highest polynomial degree term xq−1
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so that F does not admit linear structures, which when translated into the domain of
Boolean functions corresponds to a class of functions of highest algebraic degree. Noticing
that any n-variable Boolean function can also be represented as a univariate polynomial
f(x) =

∑q−1
i=0 bix

i ∈ F2n [x], where the coefficients bi satisfy certain conditions, we apply
the same technique to either mappings over finite fields or to Boolean mappings. While
the linear structures of monomials and binomials are quite easy to handle, in general the
existence of linear structures for arbitrary polynomials is harder to analyze. Nevertheless,
we provide a few interesting results in this direction covering also some particular cases
when F contains an arbitrary number of terms. Finally, using the same technique we
provide a nontrivial upper bound on the degree of planar mappings.

This article is organized as follows. Some basic definitions and notions are given in
Section 2. In Section 3, some general results (based on the derived connection between a
given function and its derivative) related to the existence of linear structures for polyno-
mials over finite fields and for Boolean functions are presented. In Section 4, a nontrivial
upper bound on the degree of planar mappings is derived. Some concluding remarks are
given in Section 5.

2. Preliminaries

Let F2 = {0, 1} denote the binary field of characteristic two. Furthermore, let F2n

denote the Galois field of order 2n and Fn
2 be its corresponding vector space (once the

basis is fixed). Any function from Fn
2 or F2n to F2 is called an n variable Boolean function,

and the set of all Boolean functions in n variables is denoted by Bn. The algebraic normal
form (ANF) of a Boolean function, f on Fn

2 is a multivariate polynomial in x1, . . . , xn,

f(x1, . . . , xn) =
∑
a∈Fn

2

µa

n∏
i=1

xaii , where µa ∈ F2.

The algebraic degree of f ∈ Bn, denoted by deg(f), is defined as max{wt(a) : µa 6= 0,a ∈
F2n}, where wt(a) denotes the Hamming weight of a binary vector a.

For the purpose of this paper another equivalent representation of Boolean functions
is also of interest. The univariate representation of Boolean functions f : F2n → F2 is
given as,

f(x) =
2n−1∑
i=0

aix
i, ai ∈ F2n , (1)

where the coefficients ai ∈ F2n satisfy the following (Boolean conditions): a0, a2n−1 ∈
F2 and a2i (mod 2n−1) = a2i for i = 1, . . . , 2n − 2, due to the condition f(x)2 ≡ f(x)

(mod x2
n − x). Consequently, using the univariate representation we formally do not

distinguish between F : F2n → F2n and a Boolean mapping f : F2n → F2. Also, the
polynomial degree of F (x) =

∑q−1
i=0 bix

i is the largest i for which bi 6= 0.
The derivative of f ∈ Bn at a ∈ F2n , denoted by Daf , is a Boolean function defined

by
Daf(x) = f(x+ a) + f(x), for all x ∈ F2n .
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Accordingly, an element a ∈ F∗2n is called a linear structure of f if f(x + a) + f(x) =
const. ∈ F2, for any x ∈ F2n .

3. Linear structures and derivatives

Throughout this article we write F (x) =
∑q−1

i=0 bix
i and DF,a(x) = F (x+a)−F (x) =

G(x) =
∑q−2

i=0 cix
i, where bi, ci ∈ Fq and a ∈ F∗q , for q = pn. Thus, given DF,a(x) specified

by the known coefficients ci our goal is to recover the values of bi (or possibly a set of
different polynomials {F}) so that the derivative of F at a corresponds to G(x). For
convenience, we sometimes write,

F (x) =

q−1∑
i=0

bix
i =

q−1∑
i=1

i 6=pj ;0≤j<n−1

bix
i +
(
b0 +

n−1∑
j=0

bpjx
pj
)

= F ∗(x) +A(x), (2)

where A(x) = b0 +
∑n−1

j=0 bpjx
pj denotes an affine polynomial in Fq[x]. Also, A(x) =

b0 + L(x), where L is a linearized polynomial. Furthermore, denote by Lq and Aq the
sets of all linearized and affine polynomials over Fq, respectively, where q = pn and
p > 2. Since for any G,H ∈ Fq[x] we have DG+H,a(x) = DG,a(x) + DH,a(x), then
DF,a(x) = DF ∗,a(x) +DA,a(x) = DF ∗,a(x) + L(a) due to the fact that DA,a(x) = L(a).

In general, for a given a ∈ F∗q and G(x) the coefficients bi such that

F (x+ a)− F (x) = G(x) for all x ∈ Fq,

can be easily derived. Namely, using

F (x+ a)− F (x) =

q−1∑
i=0

bi[(x+ a)i − xi] =

q−1∑
i=0

bi

[
i∑

t=0

(
i

t

)
xtai−t − xi

]
=

q−1∑
i=0

bi

[
i−1∑
t=0

(
i

t

)
ai−txt

]
=

q−2∑
t=0

[
q−1∑

i=t+1

(
i

t

)
ai−tbi

]
xt,

the following equations relating a, bi and ct is valid

ct =

q−1∑
i=t+1

(
i

t

)
ai−tbi, for t = 0, 1, . . . , q − 2. (3)

The set of equations can be written as(
1
0

)
ab1+

(
2
0

)
a2b2+ . . .+

(
q−1
0

)
aq−1bq−1 = c0(

2
1

)
ab2+ . . .+

(
q−1
1

)
aq−2bq−1 = c1

. . .
...

...(
q−2
q−3
)
abq−2+

(
q−1
q−3
)
a2bq−1 = cq−3(

q−1
q−2
)
abq−1 = cq−2.

(4)
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In particular, if q = p then all the diagonal coefficients are of the form
(

k
k−1
)
a = ka, for

k = 1, 2, . . . , p− 1, and since these are nonzero the system has a unique solution.
For q = pn and n > 1, we have

(
pu

t

)
≡ 0, for all t 6= 0, pu. Furthermore, on the

main diagonal we have the coefficients
(

k
k−1
)
a = ka ≡ 0 mod p, for all k = ps, where

s = 0, 1, . . . , qp − 1. The last p equations of the above system are of the form:(
q−p

q−p−1
)
abq−p +

(
q−p+1
q−p−1

)
a2bq−p+1 +

(
q−p+2
q−p−1

)
a3bq−p+2+ . . . +

(
q−1

q−p−1
)
apbq−1 = cq−p−1(

q−p+1
q−p

)
abq−p+1 +

(
q−p+2
q−p

)
a2bq−p+2+ . . . +

(
q−1
q−p
)
ap−1bq−1 = cq−p

. . .
...

...(
q−2
q−3
)
abq−2 +

(
q−1
q−3
)
a2bq−1 = cq−3(

q−1
q−2
)
abq−1 = cq−2

The last p − 1 equations can be uniquely solved for bq−1, . . . , bq−p+1 recursively,
but the first equation has to be a linear combination of the last p − 1 equations, as(

q−p
q−p−1

)
≡ 0 (mod p). Therefore, the coefficient cq−p−1 depends on a and on the co-

efficients cq−2, . . . , cq−p and furthermore bq−p is free due to the fact that
(

q−p
q−p−1

)
≡ 0

(mod p). This also implies that the derivative G(x) cannot be arbitrary due to this re-
striction on cq−p−1. Similarly, by considering the last 2p equations of the system, the fact
that

(
q−2p

q−2p−1
)
≡ 0 implies that bq−2p is free. Since the diagonal coefficient with bq−p is

zero, we can choose bq−p to be arbitrary but fixed and evaluate uniquely the coefficients
bq−p−1 . . . , bq−2p+1, but again cq−2p−1 will depend on a and on cq−2, . . . , cq−2p. The same
reasoning applies if we take p more equations.

In general, on the diagonal we have
(

sp
sp−1

)
≡ 0, for s = 0, 1, . . . , qp − 1, and thus the

coefficients bsp are free (can be chosen arbitrary) but the corresponding equations are
linear combinations of the equations below so the coefficient csp−1 is not arbitrary but
it is determined by this linear combination, i.e., with a and ck where k > sp− 1. Note
that the system has q/p free coefficients and therefore q(q/p) distinct solutions F (x). On
the other hand, given arbitrary G(x) there may not exist any function F (x) such that
G(x) is its derivative for some a ∈ Fq. The reason for this is that q/p coefficients in G(x)
are determined by other coefficients.

3.1. Some preliminary results using integration formula

It is of interest to investigate whether the differentiation of two polynomials whose
difference is not an affine polynomial can give rise to same derivatives for different values
of a. We firstly treat the case when the derivative a is fixed and show that for a given
derivative G(x) there is a unique polynomial (up to addition of affine polynomial) F (x).

Proposition 1. Let G(x) =
∑q−2

i=0 cix
i be a given derivative of some F (x) ∈ Fq[x] for a

fixed a ∈ F∗q. Let F ∗(x) ∈ Fq[x] be one solution to F (x + a) − F (x) = G(x) and denote
by

F(A) = {F ∗(x) +A(x) : A(x) ∈ An}.

Now for any F1(x) 6∈ F(A), we have F1(x+ a)− F1(x) 6= G(x).
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Proof. Let F ∗(x) =
∑q−1

i=0 bix
i and F1(x) =

∑q−1
i=0 b

′
ix

i 6∈ F(A). Since F1(x) 6∈ F(A)
then there exists b′i such that i 6≡ 0 (mod p) and bi 6= b′i. Let i be the largest such integer
satisfying bi 6= b′i. Then, we necessarily have bj = b′j for all i < j ≤ q−1 and by cancelling

the equal terms in the triangular system above, the condition
(

i
i−1
)
abi = ci−1 =

(
i

i−1
)
ab′i

implies bi = b′i, a contradiction. 2

In our analysis we have assumed that a is known, but if this is not the case the same
analysis can be preformed for any a ∈ F∗q thus providing (q/p − 1)q many solutions for
each a. Providing that p 6 |deg(F ), these solutions are however distinct as shown below.

Proposition 2. For a given function F (x) such that p 6 | deg(F ), the condition F (x +
a)− F (x) = F (x+ a′)− F (x) implies a = a′, unless bi = 0 for all i 6≡ 0 (mod p).

Proof. Assume deg(F ) = m. The largest nonzero coefficient of both DF,a(x) and
DF,a′(x) being cm−1, we have(

m

m− 1

)
abm = cm−1 =

(
m

m− 1

)
a′bm.

Since
(

m
m−1

)
= m 6≡ 0 it immediately follows a = a′. Now assuming that F (x+a)−F (x) =

F (x+ a′)− F (x) for a 6= a′, then bm = 0 and in general bi = 0 for all i 6≡ 0 (mod p). 2

Corollary 1. If the field is of prime order then F (x + a) − F (x) = F (x + a′) − F (x),
that is, F (x+ a) = F (x+ a′), implies a = a′.

Notice that in the case q = p the system has a unique solution for any a ∈ F∗p, thus
Corollary 1 implies that all the solutions are distinct.

Corollary 2. Let L(x) be a linearized polynomial over Fq such that L(a) = L(a′). Then
L(x+ a)−L(x) = L(x+ a′)−L(x). In particular if L(x) is a permutation over Fq then
L(x+ a)− L(x) = L(x+ a′)− L(x) if and only of a = a′.

Open Problem 1. It would be of interest to show whether for two polynomials F (x)
and F ′(x), related through F (x) 6= F ′(x) + A(x), we may have DF,a(x) = DF ′,b(x) for
some b 6= a.

In what follows we use a well-known result concerning the parity due to James W.
L. Glaisher (also referred to as Luca’s theorem).

Theorem 1. Let n and k be two non-negative integers. Then,(
n

k

)
≡

{
0 mod 2 if n is even and k is odd(bn/2c
bk/2c

)
mod 2 otherwise.

(5)

In general,
(
n
k

)
≡ 0 (mod p) as soon as ni < di for at least one i, so that(

n

k

)
6≡ 0 (mod p) if and only if k 4 n.
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3.2. Linear structures of mappings over finite fields and Boolean functions

Obviously, the easiest way of applying the above result in the context of determining
the existence of linear structures is to study sparse polynomials over finite fields. Notice
that a linear structure a ∈ F2n of F : F2n → F2n means that F (x + a) + F (x) = γ for
all x ∈ F2n and some constant element γ ∈ F2n . Furthermore, using the above notation,
it is equivalent to saying that ci = 0 for all i ∈ [1, 2n − 1] and c0 = γ. In the case of
monomials of the form F (x) = brx

r we have the following result.

Theorem 2. Let F (x) = brx
r be a non-zero monomial, where F (x) ∈ F2n [x] and 1 ≤

r ≤ 2n − 1. Then, a is a non-zero linear structure of F if and only if r = 2i for some
i ∈ [0, n− 1].

Proof. If r = 2i so that F (x) = b2ix
2i , then F (x+ a) + F (x) = b2ia

2i . Thus, any a is
a linear structure of F . Conversely, assume that a is a linear structure of F (x) = brx

r

and consider

cr−k =

(
r − k + 1

r − k

)
abr−k+1 + . . .+

(
r

r − k

)
akbr,

for some 1 ≤ k ≤ r. Since br is the only nonzero bi, we have cr−k =
(

r
r−k
)
akbr. Now

if a is a linear structure, then cr−k = 0 for all k ∈ [1, r − 1]. Consequently,
(

r
r−k
)
≡ 0

mod 2 for these values of k. Especially, for k = 1 we have
(

r
r−1
)
≡ 0 mod 2 implying

that r is even. Then, assuming r > 2, the condition that
(

r
r−2
)
≡
( r/2
r/2−1

)
≡ 0 mod 2

(corresponding to cr−2) implies that r/2 is even. Continuing this way, for any k = 2i we
necessarily have that r/2i is even. Let r =

∑n−1
j=0 rj2

j be the 2-adic representation of r
and assume that v is the largest j such rj = 1, thus rv = 1 and rj = 0 for j > v. Since
k ranges from 1 to r, taking k = 2v−1 implies that r/2v−1 is also even. It means that
2v | r and therefore r is of the form 2v. 2

A similar analysis can be performed for the case of binomials of the form F (x) =
xd + uxe, but this has already been done in [3]where it was proved that F (x) cannot
have linear structures unless F is affine.

Remark 1. For the Boolean case, when p = 2 and F,G : F2n → F2, the coefficients of
both F and G must satisfy the Boolean conditions mentioned in the introduction.

In what follows, we derive some interesting results regarding the polynomial form of
F : F2n → F2 regarding linear structures.

It is well-known that the presence of the highest degree term in the ANF of F ,
corresponding to the term x2

n−1, implies unbalancedness of F (the converse is of course
not true). This means that specifying b2n−1 = 1 the function F is unbalanced and we
show that in this particular case any such F cannot have linear structures. Assuming
that a is a nonzero linear structure of F satisfying b2n−1 = 1, then c2n−2 = 0 and (3)
gives for t = 2n − 2,

c2n−2 =

(
q − 1

q − 2

)
abq−1 = a · 1 = 0,

which then implies a = 0, a contradiction.
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Theorem 3. Let F (x) =
∑q−1

i=0 bix
i, q = 2n, where F : Fn

2 → F2 so that the coefficients
of F satisfy the Boolean conditions. If bq−1 = 1 so that F is necessarily unbalanced, since
its ANF contains the term x1x2 · · ·xn, then any such F does not admit linear structures.

The importance of this result lies in the fact that any balanced Boolean function
with good cryptographic properties apart from possibly having linear structures can
easily be transformed into (just slightly) unbalanced function which does not possess
linear structures. Moreover, the algebraic degree is then optimized.

Remark 2. It is known that if a is all-one linear structure, that is F (x+a)+F (x) = 1,
then F (which is Boolean) is necessarily balanced since the relation F (x+ a) = F (x) + 1
means that F takes an equal number of ones and zeros. Nevertheless, the unbalancedness
of F in Theorem 3, through the term x2

n−1, also excludes all-zero linear structures.

Let us proceed our investigation for the special case of potentially balanced functions
F , thus requiring that bq−1 = 0. In this case, abq−1 = cq−2 = 0 does not lead to a
contradiction. Then, computing the next few relations between bi and cj from (3) (and

constantly using
(

k
k−1
)

= k ≡ 0 mod 2, for all k = 2s where s is a positive integer) gives
for q = 2n ≥ 8 the following

cq−3 = 0 =

(
q − 2

q − 3

)
abq−2 +

(
q − 1

q − 3

)
a2bq−1 = a2bq−1 = a2 · 0

cq−4 = 0 =

(
q − 3

q − 4

)
abq−3 +

(
q − 2

q − 4

)
a2bq−2 +

(
q − 1

q − 4

)
a3bq−1

=

(
q − 3

q − 4

)
abq−3 +

(
q − 2

q − 4

)
a2bq−2.

The first equation gives us no condition on bq−2, it can be chosen arbitrary (since
(
q−2
q−3
)
≡

0) though if F is Boolean we must also have b2q/2−1 = bq−2. The second equation depends

on the parity of
(
q−3
q−4
)

and
(
q−2
q−4
)
. Now, obviously

(
q−3
q−4
)

= q − 3 ≡ 1 mod 2, whereas(
q−2
q−4
)
≡
(q/2−1
q/2−2

)
= q/2 − 1 ≡ 1 mod 2. This implies that the second equation above

yields bq−3 = abq−2. In particular, since bi ∈ F2 then assuming that either bq−2 = 1 or
bq−3 = 1 we necessarily have that a = 1.

The expression for cq−5 given by

cq−5 = 0 =

(
q − 4

q − 5

)
abq−4 +

(
q − 3

q − 5

)
a2bq−3 +

(
q − 2

q − 5

)
a3bq−2 +

(
q − 1

q − 5

)
a4bq−1,

requires again the analysis of the coefficients
(
q−3
q−5
)

and
(
q−2
q−5
)
. Clearly

(
q−2
q−5
)
≡ 0 mod 2,

since q − 2 is even and q − 5 is odd. Similarly,
(
q−3
q−5
)
≡
(q/2−2
q/2−3

)
= q/2 − 2 ≡ 0 mod 2.

Thus, since also
(
q−4
q−5
)
≡ 0 mod 2, implies that bq−4 is arbitrary and at the same time
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b2q/2−2 = bq−4. Similarly, computing

cq−6 = 0 =

(
q − 5

q − 6

)
abq−5 +

(
q − 4

q − 6

)
a2bq−4 +

(
q − 3

q − 6

)
a3bq−3 +

(
q − 2

q − 6

)
a4bq−2

+

(
q − 1

q − 6

)
a5bq−1 = abq−5 + a4bq−2.

implies that bq−5 = a3bq−2 and also bq−9 = (a3bq−2)
2 using b22i = bi.

Thus, in order to deduce stronger conditions on the coefficients we need to assume
further restrictions on the form of F . Indeed, by requesting that bq−2 = 0 we necessarily
have bq−3 = bq−5 = 0. Then, checking the expression for cq−7 which is given by,

cq−7 = 0 =

(
q − 6

q − 7

)
abq−6 +

(
q − 5

q − 7

)
a2bq−5 +

(
q − 4

q − 7

)
a3bq−4 +

(
q − 3

q − 7

)
a4bq−3

+

(
q − 2

q − 7

)
a5bq−2 +

(
q − 1

q − 7

)
a6bq−1 =

(
q − 4

q − 7

)
a3bq−4 = a3bq−4,

taking into account that bq−1 = bq−2 = bq−3 = bq−5 = 0 and that
(
q−6
q−7
)
≡ 0 mod 2.

But, since bq−4 is arbitrary then assuming it is non-zero leads to a contradiction cq−7 =
a3bq−4 6= 0. Therefore, assuming that bq−1 = bq−2 = bq−3 = bq−5 = 0 and bq−4 6= 0
implies that such an F : F2n → F2 cannot have linear structures. Notice that the
same reasoning is also valid for F : Fn

2 → Fn
2 since the Boolean conditions are actually

irrelevant in the above derivation.

Theorem 4. Let F (x) =
∑q−1

i=0 bix
i, q = 2n, where F : F2n → F2n. If bq−1 = bq−2 =

bq−3 = bq−5 = 0 and bq−4 6= 0, then F cannot have linear structure. Furthermore,
if the coefficients of F satisfy the Boolean conditions the same condition implies that
F : F2n → Fn

2 does not have linear structures.

Remark 3. The above result appears to be rather peculiar in the context of linear struc-
tures. There is no obvious reason why the above condition ensures the non-existence of
linear structures. Certainly, there are other possibilities of specifying the coefficients bi
(for instance without forcing that bq−2 = 0) for the same purpose, though we do not
explore this further.

Example 1. Let q = 24 and assume that b15 = b14 = b13 = b11 = 0 and b12 6= 0. Then,
F (x) =

∑15
i=0 bix

i, bi ∈ F24, does not posses linear structures for arbitrary choice of
b0, . . . , b11. If the remaining coefficients satisfy the Boolean conditions then F : F24 → F2

does not admit linear structures.

A similar analysis also implies the following result.

Theorem 5. Let F (x) =
∑2n−1

i=0 bix
i, such that bi = 0 for i > d and bd 6= 0, for some

d ∈ [1, 2n − 1]. Then,
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(i) If d is odd and d > 1, then F has no linear structures.

(ii) If d is even such that 4 6 |d and bd−1 = 0, then F has no linear structures.

(iii) If d is even such that 4 | d and bd−1 = 1, then F cannot have linear structures.

Proof. (i) The case when d = 2n − 1 follows from Theorem 3, regardless whether bq−2
is zero or not. Thus, let d < 2n− 1, where d is odd and bd 6= 0. Since ci = 0 for i > d− 1
let us consider

cd−1 =

(
d

d− 1

)
abd = dabd 6= 0,

because d 6≡ 0. Since cd−1 6= 0 and d− 1 > 0, F does not have linear structures.
(ii) If bd−1 = 0 and d is even such that 4 6 |d, then

cd−2 =

(
d− 1

d− 2

)
abd−1 +

(
d

d− 2

)
a2bd = a2bd 6= 0,

and F cannot have linear structures.
(iii) If bd−1 = 1 and d is even such that 4 | d, then

cd−2 =

(
d− 1

d− 2

)
abd−1 +

(
d

d− 2

)
a2bd = abd−1 = a,

thus F cannot have linear structures in this case. 2

Notice that the above result covers a large class of polynomials, having arbitrary number
of terms, without linear structures. For instance, the main result in [3] was to establish
the fact that binomials F (x) = xe +αxd cannot have linear structures unless F is affine.
The result in Theorem 5 and a further simple analysis would lead to the same conclusion
as already stated in [3].

4. Upper bounds on degree of planar mappings

In this section we will apply formulas for the integration of the polynomials to the
planar mappings and consequently we deduce a nontrivial upper bound on the polynomial
degree of these mappings. Assume p is odd and that F (x) =

∑q−1
i=0 bix

i is a planar
polynomial, thus p > 2. Then, for all a ∈ F∗q , the polynomial G(x) = F (x+ a)−F (x) =∑q−2

i=1 cix
i is a permutation, where the connection between the coefficients ci and bi has

been established in the previous section.

Theorem 6. Let F (x) =
∑q−1

i=0 bix
i be a planar polynomial over Fq, where the prime

field of Fq is of odd characteristic. Then, the polynomial degree of F is less than q− 1−
p+1
2 .

Proof. For F (x) =
∑q−1

i=0 bix
i, if G(x) = F (x+a)−F (x) =

∑q−2
i=1 cix

i is a permutation,
then by Hermite’s criterion Gn(x) (mod xq − x) has the coefficients with xq−1 equal to
zero, for all n = 1, 2, . . . , q − 2. The case n = 1 implies cq−1 = 0.
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Consider now n = 2. Squaring G(x) we have that the coefficient d with xq−1 equals to
d = c1cq−2+c2cq−3+. . .+c2q−1

2

+. . .+cq−2c1 =
∑q−2

t=1 ctcq−1−t. Using ct =
∑q−1

i=t+1

(
i
t

)
ai−tbi

and substituting in d we obtain

d =

q−2∑
t=1

(
q−1∑

i=t+1

bi

(
i

t

)
ai−t

) q−1∑
j=q−t

bj

(
j

q − 1− t

)
aj−q+1+t

 .

Let us use a new variable s = i+ j+1−q. If j = q− t then s = i+1− t and for j = q−1
we have that s = i. Therefore,

d =

q−2∑
t=1

q−1∑
i=t+1

i∑
s=i+1−t

(
i

t

)(
s+ q − 1− i
q − 1− t

)
bibs+q−1−ia

s.

By changing the order of summation we obtain

d =

q−2∑
t=1

q−1∑
s=2

min{s+t−1,q−1}∑
i=max{s,t+1}

(
i

t

)(
s+ q − 1− i
q − 1− t

)
bibs+q−1−i

 as =

q−1∑
s=2

q−2∑
t=1

min{s+t−1,q−1}∑
i=max{s,t+1}

(
i

t

)(
s+ q − 1− i
q − 1− t

)
bibs+q−1−i

 as.

We have that d = 0, for all a ∈ F∗q . Note that this is a polynomial in a, which is
identically equal to zero for all a ∈ F∗q and its degree is q − 1. Thus, all the coefficients
with as, for s = 2, 3, . . . , q − 1, are equal to zero.

The coefficient with aq−1, i.e., for s = q − 1, equals to

q−2∑
t=1

(
q − 1

t

)(
q − 1

q − 1− t

)
b2q−1,

since i = q − 1. The binomial formula implies

2(q−1)∑
t=0

(
2(q − 1)

t

)
yt = (y+1)2(q−1) = (y+1)q−1(y+1)q−1 =

q−1∑
i=0

(
q − 1

i

)
yi·

q−1∑
j=0

(
q − 1

j

)
yj .

Equalling the coefficient with yq−1 we obtain the equality(
2(q − 1)

q − 1

)
=

q−1∑
i=0

(
q − 1

i

)(
q − 1

q − 1− i

)
.

Using this identity we obtain a simpler expression for the coefficient with aq−1 (note that
the summation in the formula for the coefficient starts with 1)

11



((2(q − 1)

q − 1

)
− 1
)
b2q−1 =

(2(q − 1) . . . q

(q − 1)!
− 1
)
b2q−1 = −2b2q−1.

Since this coefficient is equal to zero we have bq−1 = 0.
Assume now that bq−1 = . . . = bq−u = 0, with u < p. Let us evaluate the coefficient

with aq−1−2u. Since s = q−1−2u, max{q−1−2u, t+1} = q−1−2u, for t ≤ q−2−2u and
similarly max{q−1−2u, t+1} = t+1, for t > q−2−2u. Also, min{q−1−2u+t−1, q−1} =
q− 1 if t ≥ 2u+ 1 and min{q− 1− 2u+ t− 1, q− 1} = q− 1− 2u+ t− 1, for t < 2u+ 1.
The coefficient with aq−1−2u is

q−2∑
t=1

min{s+t−1,q−1}∑
i=max{s,t+1}

(
i

t

)(
s+ q − 1− i
q − 1− t

)
bib2(q−1)−2u−i =

2u∑
t=1

q−1−2u+t−1∑
i=q−1−2u

(
i

t

)(
2(q − 1)− 2u− i

q − 1− t

)
bib2(q−1)−2u−i+

q−2−2u∑
t=2u+1

q−1∑
i=q−1−2u

(
i

t

)(
2(q − 1)− 2u− i

q − 1− t

)
bib2(q−1)−2u−i+

q−2∑
t=q−1−2u

q−1∑
i=t+1

(
i

t

)(
2(q − 1)− 2u− i

q − 1− t

)
bib2(q−1)−2u−i.

Consider now the sum in the middle. If i = q−1−2u, q−1−2u+1, . . . , q−1−2u+(u−1) =
q− 2−u then b2(q−1)−2u−i equals to bq−1 = bq−2 = . . . = bq−u = 0. If i = q−u, . . . , q− 1
then bi = 0 by assumption. For i = q − 1 − u we have that bib2(q−1)−2u−i = b2q−1−u.
Therefore, the inner sum equals to

q−2−2u∑
t=2u+1

(
q − 1− u

t

)(
q − 1− u
q − 1− t

)
b2q−1−u.

Consider now the first sum. Here, q − 2 ≥ i ≥ q − 2 − 2u. Similarly, the product
bib2(q−1)−2u−i 6= 0 only if i = q − 1 − u ≤ q − 1 − 2u + t − 1. There are nonzero terms
only for t ≥ u+ 1 and first sum equals to the

2u∑
t=u+1

(
q − 1− u

t

)(
q − 1− u
q − 1− t

)
b2q−1−u.

Finally, let us consider the third sum. Here, i takes values q−2u, q−2u+1, . . . , q−1. As
already mentioned, bib2(q−1)−2u−i = 0 for all values of i except for i = q − 1− u ≥ t+ 1
and thus t ≤ q − u− 2. Therefore, the third sum equals to

q−u−2∑
t=q−1−2u

(
q − 1− u

t

)(
q − 1− u
q − 1− t

)
b2q−1−u.
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The coefficient now is

q−u−2∑
t=u+1

(
i

t

)(
q − 1− u
q − 1− t

)
b2q−1−u = b2q−1−u

q−1−u−1∑
t=u+1

(
q − 1− u

t

)(
q − 1− u
q − 1− t

)
.

In order to simplify this expression consider

2(q−1)−2u∑
t=0

(
2(q − 1)− 2u

t

)
yt = (y + 1)2(q−1)−2u = (y + 1)q−1−u(y + 1)q−1−u =

q−1−u∑
i=0

(
q − 1− u

i

)
yi

q−1−u∑
j=0

(
q − 1− u

j

)
yj .

Equalling the coefficient with yq−1 on both sides (j = q − 1− i) we obtain equality

q−1−u∑
i=u

(
q − 1− u

i

)(
q − 1− u
q − 1− i

)
=

(
2(q − 1)− 2u

q − 1

)
.

Now we have that
q−1−u−1∑
t=u+1

(
q − 1− u

t

)(
q − 1− u
q − 1− t

)
=

(
2(q − 1)− 2u

q − 1

)
−
(
q − 1− u

u

)(
q − 1− u
q − 1− u

)
−
(
q − 1− u
q − 1− u

)(
q − 1− u

u

)
=

(2(q − 1)− 2u) · · · q · · · (q − 2u)

(q − 1)!
−2

(
q − 1− u
q − 1− u

)(
q − 1− u

u

)
≡ −2

(
q − 1− u

u

)
(mod p).

Therefore, the coefficient is now

−2b2q−1−u

(
q − 1− u

u

)
.

Note that(
q − 1− u

u

)
=

(q − 1− u)(q − 1− u− 1) · · · (q − 2u)

u!
6= 0 (mod p)

if q − 2u > q − p, i.e., for u < p
2 . Therefore, if u < p

2 we can conclude that bq−1−u = 0.
Inductively, we have that

bq−1 = bq−2 = . . . = bq− p+1
2

= 0

for planar polynomials. 2

If q = p in the previous proof, successively considering s = q − 1, s = q − 2, we can
show that bi = 0 for all i > q−1

2 . Applying the same idea to (G(x))3, . . ., (G(x))p−2 it
can be shown that the only planar polynomials over a prime field are quadratic, which
is a well-known and established fact.
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Corollary 3. Assume that f(x) =
∑q−1

i=0 bix
i is a planar polynomial. If there exists

1 ≤ s ≤ n− 1 where q = pn such that q − p+1
2 ≤ kp

s mod (q − 1) ≤ q − 1 then bk = 0.

Proof. If f(x) is planar then f(xp
s
) is also planar where the coefficient with xkp

s

mod (xq − x) = xkp
s mod (q−1) is bk. Since the degree of f is less than q − p+1

2 we have

that bk = 0 if kps mod (q − 1) ≥ q − p+1
2 . 2

5. Conclusions

In this article we have derived the relation between the derivatives and the original
polynomial. These results are then proved useful for establishing various results related
to the existence of linear structures and in particular a nontrivial upper bound on the
degree of planar mappings has been deduced.
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