
New Approaches for Secure Outsourcing Algorithm for

Modular Exponentiations

Xi-Jun Lin ∗, Lin Sun †, Haipeng Qu ‡and Xiaoshuai Zhang §

January 19, 2016

Abstract: Outsourcing paradigm is one of the most attractive benefits of cloud com-
puting, where computation workloads can be outsourced to cloud servers by the resource-
constrained devices, such as RFID tags. With this paradigm, cloud users can avoid setting
up their own infrastructures. As a result, some new challenges, such as security and checka-
bility, are inevitably introduced. In this paper, we address the problem of secure outsourcing
algorithm for modular exponentiations in the one-malicious version of two untrusted pro-
gram model. We show that our proposed algorithm is more efficient than the state-of-the-art
algorithms. On the other hand, we point out in this paper that the first outsource-secure al-
gorithm for simultaneous modular exponentiations proposed recently is insecure, where the
sensitive information can be leaked to the malicious servers. As a result, we propose a new
and more efficient algorithm for simultaneous modular exponentiations. We also propose
the constructions for outsource-secure Cramer-Shoup encryptions and Schnorr signatures
which are also more efficient than the state-of-the-art algorithms.

Key words: secure outsourcing algorithm; modular exponentiations; one-malicious
model

1 Introduction

Cloud computing is a new computing paradigm which primarily relies on technologies
such as utility computing, Service Oriented Architecture, etc. It enables IT resources and
capacities to be provided as services over the Internet. Outsourcing paradigm is one of
the most attractive benefits of cloud computing, where computation workloads can be
outsourced to cloud servers by the resource-constrained devices, such as RFID tags. With
this paradigm, cloud users can avoid setting up their own infrastructures. As a result, some
new challenges and security concerns [32, 35] are inevitably introduced, which are shown as
follows.

• Security: First of all, the cloud servers are semi-trusted, while the outsourced com-
putations may contain some sensitive information which should not be leaked to the

∗X.J.Lin is with the Department of Computer Science and Technology, Ocean University of China. Qing-
dao 266100, P.R.China. email: linxj77@163.com

†L.Sun is with the College of Liberal Arts, Qingdao University. Qingdao 266071, P.R.China.
‡H.Qu is with the Department of Computer Science and Technology, Ocean University of China. Qingdao

266100, P.R.China.
§X.Zhang is with the Department of Computer Science and Technology, Ocean University of China.

Qingdao 266100, P.R.China.

1

servers. Hence, as for the secrecy of the outsourcing computations, it is required that
the servers should not learn anything about what it is actually computing (including
the secret inputs and the outputs).

• Checkability: Some invalid results may be returned from the cloud servers due to
some software bugs. Therefore, the outsourcers should be able to verify any failures
caused by the cloud servers misbehaves. It is clear that the verification must be far
more efficient than the outsourced computation itself.

1.1 Related Work

The impossibility of secure outsourcing an exponential computation while locally doing
only polynomial time work was proved in [2]. In the computer theory community, how
to securely outsource different kinds of expensive scientific computations, such as matrix
multiplications and quadrature [3], receives considerable attentions. However, the disguise
technique used in [3] allows leakage of sensitive information. In [4, 10], how to securely out-
source sequence comparisons were studied. The problem of secure outsourcing for widely
applicable linear algebra computations was addressed by Benjamin and Atallah [7]. How-
ever, homomorphic encryptions which are expensive operations have to be required. With
the contribution of so-called weak secret hiding assumption, Atallah and Frikken [1] pro-
posed improved protocols for addressing this problem. Recently, Wang et al. [36] presented
efficient approaches for secure outsourcing of linear programming computations.

On the other hand, the problem of securely outsourcing computations receives more
and more attentions in the cryptographic community. The first idea with respect to secure
outsourcing expensive computations was introduced in the so-called “wallets with observers”
by Chaumand Pedersen [17]. Then, Hohenberger and Lysyanskaya [28] presented the first
security model for outsourcing cryptographic computations, and the first outsource-secure
algorithm for modular exponentiations was also proposed based on two previous approaches
of precomputation [13, 21, 30, 33] and server-aided computation [5, 23, 29, 37].

In recent years, how to securely outsource expensive computations to the cloud servers
becomes the hot topic of research in the cryptography community due to the advancement
of cloud computing. The first algorithm for secure delegation of elliptic-curve pairings based
on an untrusted server model was presented in [19]. However, a disadvantage of the algo-
rithm is that some other expensive operations (scalar multiplications and exponentiations)
have to be carried out by the outsourcer although any server misbehave can be detected
with probability 1. The concept of ringers to solve the problem of verifying computation
completion for the “inversion of one-way function” class of outsourcing computations was
introduced in [26] based on the assumption that the servers are not trusted by the out-
sourcers. The other trust problem of retrieving payments were studied in [9, 15, 16, 34].
The notion of verifiable computation to solve the problem of verifiably outsourcing the com-
putation of an arbitrary functions was first formalized by Gennaro et al. [22], which was
followed by a plenty of researches [8, 11, 12, 24, 25]. Moreover, a protocol which allows
the outsourcer to efficiently check the outputs of the computations with a computationally
sound, non-interactive proof was proposed in [22]. From the idea of [22], the first practical
verifiable computation scheme for high degree polynomial functions was proposed in [6].
And new approaches were presented by Green et al. [27] for constructing efficient and se-
cure outsourcing attribute-based encryption (ABE), which was followed by Parno et al. [31]
to show a construction of a multi-function verifiable computation scheme.

2

Recently, Chen et al. [18] presented a new outsource-secure algorithm for modular ex-
ponentiations in the one-malicious version of two untrusted program model. Compared
with the state-of-the-art algorithm [28], their algorithm is more efficient, and the check-
ability is also superior. Moreover, they presented the first outsource-secure algorithm for
simultaneous modular exponentiations.

1.2 Our Contribution

In this paper, we also address the problem of secure outsourcing algorithm for modular
exponentiations in the one-malicious version of two untrusted program model. We show that
our proposed algorithm Exp is more efficient than the state-of-the-art algorithms [18, 28].

Another contribution of this paper is that we point out that the first outsource-secure
algorithm for simultaneous modular exponentiations proposed in [18] is insecure. The sen-
sitive information can be leaked to the malicious servers. As a result, we propose a new
outsource-secure algorithm SExp for simultaneous modular exponentiations. Compared
with the algorithm of outsourcing only one modular exponentiation in [28] and the algo-
rithm in [18], our algorithm is surprisingly more efficient.

Similar to [18, 28], we also propose the constructions for outsource-secure Cramer-Shoup
encryptions and Schnorr signatures. The difference is that the approach used in our proposal
is by combining Exp and SExp which can achieve higher efficiency.

1.3 Organization

The rest of the paper is organized as follows: Some security definitions for outsourcing
computation are given in Section 2. The proposed new outsource-secure algorithm for
modular exponentiations and its security proof are presented in Section 3. In Section 4, we
first present the cryptanalysis of the algorithm for simultaneous modular exponentiations
proposed in [18], and then propose our algorithm. The proposed outsource-secure Cramer-
Shoup encryptions and Schnorr signatures are given in Section 5, which is followed by the
last section to conclude our work.

2 Preliminaries

2.1 Definition of Outsource-Security

Roughly speaking, T securely outsources some work to U , and (T,U) is an outsource-
secure implementation of a cryptographic algorithm Alg if 1) T and U implement Alg, i.e.,
Alg = TU and 2) suppose that T is given oracle access to an adversary U ′ (instead of U)
that records all of its computation over time and tries to act maliciously, U ′ cannot learn
anything interesting about the input and output of TU ′

. The formal definitions for secure
outsourcing of a cryptographic algorithm [28] is shown as follows.

Definition 1 (Algorithm with Outsource-I/O) An algorithm Alg obeys the outsource
input/output specification if it takes five inputs, and produces three outputs. The first three
inputs are generated by an honest party, and are classified by how much the adversary A =
(E,U ′) knows about them, where E is the adversarial environment that submits adversarially
chosen inputs to Alg, and U ′ is the adversarial software operating in place of oracle U . The

3

first input is called the honest, secret input, which is unknown to both E and U ′; the second
is called the honest, protected input, which may be known by E, but is protected from U ′;
and the third is called the honest, unprotected input, which may be known by both E and
U . In addition, there are two adversarially-chosen inputs generated by the environment
E: the adversarial, protected input, which is known to E, but protected from U ′; and the
adversarial, unprotected input, which may be known by E and U . Similarly, the first output
called secret is unknown to both E and U ′; the second is protected, which may be known to
E, but not U ′; and the third is unprotected, which may be known by both parties of A.

The following definition of outsource-security proposed in [28] ensures that the malicious
environment E cannot gain any knowledge of the secret inputs and outputs of TU , even if
T uses the malicious software U ′ written by E.

Definition 2 (Outsource-Security) Let Alg be an algorithm with outsource I/O. A pair
of algorithms (T,U) is said to be an outsource-secure implementation of Alg if:

1. Correctness: TU is a correct implementation of Alg.

2. Security: For all probabilistic polynomial-time adversaries A = (E,U ′), there exist
probabilistic expected polynomial-time simulators (S1, S2) such that the following pairs
of random variables are computationally indistinguishable.

• Pair One. EV IEWreal ∼ EV IEWideal:

– The view that the adversarial environment E obtains by participating in the
following real process:

EV IEW i
real = {(istatei, xihs, xihp, xihu)

← I(1k, istatei−1);
(estatei, ji, xiap, x

i
au, stop

i)

← E(1k, EV IEW i−1
real, x

i
hp, x

i
hu);

(tstatei, ustatei, yis, y
i
p, y

i
u)

← TU ′(ustatei−1)(tstatei−1, xj
i

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au) :

(estatei, yip, y
i
u)}

EV IEWreal ∼ EV IEW i
real if stop

i = TRUE.
The real process proceeds in rounds. In round i, the honest (secret, protected,
and unprotected) inputs (xihs, x

i
hp, x

i
hu) are picked using an honest, stateful

process I to which the environment E does not have access. Then E, based
on its view from the last round, chooses

(a) the value of its estatei variable as a way of remembering what it did next
time it is invoked;

(b) which previously generated honest inputs (xihs, x
i
hp, x

i
hu) to give to TU ′

(note that E can specify the index ji of these inputs, but not their values);

(c) the adversarial, protected input xiap;

(d) the adversarial, unprotected input xiau;

(e) the Boolean variable stopi that determines whether round i is the last
round in this process.

4

Next, the algorithm TU ′
is run on the inputs (tstatei−1, xj

i

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au),

where tstatei−1 is T ’s previously saved state, and produces a new state tstatei

for T , as well as the secret yis, protected y
i
p and unprotected yiu outputs. The

oracle U ′ is given its previously saved state, ustatei−1, as input, and the cur-
rent state of U ′ is saved in the variable ustatei. The view of the real process
in round i consists of estatei, and the values yip and yiu. The overall view
of E in the real process is just its view in the last round (i.e., i for which
stopi = TRUE.).

– The ideal process:

EV IEW i
ideal = {(istatei, xihs, xihp, xihu)

← I(1k, istatei−1);
(estatei, ji, xiap, x

i
au, stop

i)

← E(1k, EV IEW i−1
ideal, x

i
hp, x

i
hu);

(astatei, yis, y
i
p, y

i
u)

← Alg(astatei−1, xj
i

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au);

(sstatei, ustatei, Y i
p , Y

i
u, replace

i)

← SU ′(ustatei−1)(sstatei−1, · · · , xj
i

hp, x
ji

hu, x
i
ap, x

i
au, y

i
p, y

i
u);

(zip, z
i
u) = replacei(Y i

p , Y
i
u) + (1− replacei)(yip, yiu) :

(estatei, zip, z
i
u)}

EV IEWideal = EV IEW i
ideal if stop

i = TRUE:
The ideal process also proceeds in rounds. In the ideal process, we have
a stateful simulator S1 who, shielded from the secret input xihs, but given
the non-secret outputs that Alg produces when run all the inputs for round
i, decides to either output the values (yip, y

i
u) generated by Alg, or replace

them with some other values (Y i
p , Y

i
u). Note that this is captured by having

the indicator variable replacei be a bit that determines whether yip will be
replaced with Y i

p . In doing so, it is allowed to query oracle U ′; moreover, U ′

saves its state as in the real experiment.

• Pair Two. UV IEWreal ∼ UV IEWideal:

– The view that the untrusted software U ′ obtains by participating in the real
process described in Pair One. UV IEWreal = ustatei if stopi = TRUE.

– The ideal process:

UV IEW i
ideal = {(istatei, xihs, xihp, xihu)

← I(1k, istatei−1);
(estatei, ji, xiap, x

i
au, stop

i)

← E(1k, estatei−1, xihp, x
i
hu, y

i
p, y

i
u);

(astatei, yis, y
i
p, y

i
u)

← Alg(astatei−1, xj
i

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au);

(sstatei, ustatei)← S
U ′(ustatei−1)
2 (sstatei−1, xj

i

hu, x
i
au)

: (ustatei)}

UV IEWideal = UV IEW i
ideal if stop

i = TRUE:

5

In the ideal process, we have a stateful simulator S2 who, equipped with only
the unprotected inputs (xihu, x

i
au), queries U

′. As before, U ′ may maintain
state.

Definition 3 (α-Efficient, Secure Outsourcing) A pair of algorithms (T,U) is said to
be an α-efficient implementation of Alg if 1) TU is a correct implementation of Alg and 2)
∀ inputs x, the running time of T is no more than an α-multiplicative factor of the running
time of Alg.

Definition 4 (β-Checkable, Secure Outsourcing) A pair of algorithms (T,U) is said
to be a β-checkable implementation of Alg if 1) TU is a correct implementation of Alg and
2) ∀ inputs x, if U ′ deviates from its advertised functionality during the execution of TU ′

(x),
T will detect the error with probability no less than β.

Definition 5 ((α, β)-Outsource-Security) A pair of algorithms (T,U) is said to be an
(α, β)-outsource-secure implementation of Alg if it is both α-efficient and β-checkable.

As mentioned in [18, 28], a secure outourcing algorithm may not provide 100 percent
checkability (β). However, it is very practical that a user may run the outsourcing algorithm
many times with the same servers. In this case, the probability of being caught will be high
if a server cheats frequently. It is clear that a larger β is always better. However, there is
a tradeoff between the efficiency (α) and chackability (β).

2.2 One-Malicious Model

In the two untrusted program model for outsourcing exponentiations modulo a prime
proposed by Hohenberger and Lysyanskaya [28], the adversarial environment E writes the
code for two (potentially different) softwares U ′ = (U ′

1, U
′
2). E gives this software to T ,

advertising a functionality that U ′
1 and U ′

2 may or may not accurately compute. Note that
T controls the channel among E, U1 and U2. That is, all communication between any two
of E, U ′

1 and U ′
2 must pass through T . In this case, A = (E,U ′

1, U
′
2) denotes the adversary

attacking T . Moreover, it is assumed that at most one of U ′
1 and U ′

2 deviates from its
advertised functionality on a non-negligible fraction of the inputs, while we do not know
which one. The security means that there is a simulator S for both. This is named as the
one malicious version of two untrusted program model (i.e., “one-malicious model” for the
simplicity). As mentioned in [18], one-malicious model can be viewed as a special case of
refereed delegation of computation model [14] when the number of servers n = 2.

3 New and Secure Outsourcing Algorithm of Modular Ex-
ponentiations

In [18, 28], to speed up the computations a subroutine Rand is used, the inputs for which
are a prime p, a generator g ∈ Z∗

p, and possibly some other values. For each invocation

Rand outputs a random, independent pair of the form (b, gb), where b ∈ Zq and q|p− 1.

Two approaches can be used to implement the functionality of Rand. One is the so-
called table-lookup method, i.e., a table of random, independent pairs, which is loaded
into the memory of T , is generated in advance by a trusted entity. For each invocation of

6

Rand, T just retrieves a new pair from the table. The other is to apply the well-known
preprocessing algorithms, such as the EBPV generator [30]. The EBPV generator, secure
against adaptive adversaries, runs in time O(log2n) for an n-bit exponent. It is conjectured
that with a sufficiently large subset of truly random (k, gk) pairs the output distribution of
the EBPV generator is statistically close to the uniform distribution. Hence, it should be
noted that the output of the Rand can never be controlled by T .

3.1 The Proposed Algorithm for Outsource-Secure Exponentiation Mod-
ulo a Prime

Here, we present a new secure outsourcing algorithm Exp for exponentiation modulo
a prime in the one-malicious model. In Exp, T outsources its modular exponentiation
computations to U1 and U2 by invoking Rand. The security requirement is that the adver-
sary A cannot know any useful information about the inputs and outputs of Exp. Similar
to [18, 28], Ui(x, y)→ yx also denotes that Ui takes as inputs (x, y) and outputs yx (mod p),
where i = 1, 2.

Let p, q be two large primes and q|p− 1. The input of Exp is a ∈ Z∗
q , and u ∈ Z∗

p such
that uq = 1 (mod p) (for an arbitrary base u and an arbitrary power a). The output of
Exp is ua (mod p). Note that a may be secret or (honest/adversarial) protected and u
may be (honest/adversarial) protected.

Our trick is a more efficient solution to firstly randomize u and then logically split a into
random looking pieces. The proposed algorithm Exp(a, u) is given as follows:

1. Run Rand thrice to create three blinding pairs (α, gα), (β, gβ) and (γ, gγ). We denote
v = gα, µ = gβ and λ = gγ .

2. The first step is to randomize u with v and µ as follows:{
w1 = vu

w2 = µu
(1)

3. The second step is to logically split a into two random looking pieces l = γ+aβ
β−α and

k = a− l. Clearly, l and k satisfy the following equations{
l + k = a

αl + βk = −γ
(2)

4. Next, pick four random numbers d, e ∈ Z∗
q and f, h ∈ Z∗

p.

5. Query U1 in random order as

U1(l, w1)→ wl
1;

U1(d, f)→ fd;

U1(e, h)→ he.

Similarly, query U2 in random order as

U2(k,w2)→ wk
2 ;

U2(d, f)→ fd;

7

U2(e, h)→ he.

6. Finally, check that both U1 and U2 produce the correct outputs, i.e., U1(d, f) =
U2(d, f) and U1(e, h) = U2(e, h). If not, output “error”; otherwise, output λw

l
1w

k
2 .

Clearly, λwl
1w

k
2 = gγ(gαu)l(gβu)k = gγgαl+βkul+k = gγg−γua = ua.

Note that in the one-malicious model, the above two test queries (i.e., U1(d, f) = U2(d, f)
and U1(e, h) = U2(e, h)) imply both U1 and U2 produce the correct outputs. Similar to [18],
Exp can be trivially extended to outsource-secure scalar multiplications on elliptic curves,
whose details are omitted here.

3.2 Security Proof

Theorem 1 In the one-malicious model, the algorithms (T,U1, U2) are an outsource-secure
implementation of Exp, where the input (a, u) may be honest, secret; or honest, protected;
or adversarial, protected.

Proof. The correctness property is straight-forward, and we only focus on security.
The proof is very similar to [18, 28]. Let A = (E,U ′

1, U
′
2) be a probabilistic polynomial

time adversary that interacts with a probabilistic polynomial time algorithm T in the one-
malicious model.

Firstly, we prove Pair One EV IEWreal ∼ EV IEWideal (The external adversary, E,
learns nothing.):

If the input (a, u) is anything other than honest, secret, then the simulation is trivial:
the simulator S1 just behaves the same way as in the real execution.

If (a, u) is an honest, secret input, S1 behaves as follows: Upon receiving the input on
round i, S1 ignores it, and instead makes three random queries of the form (αj ∈ Zq, βj ∈ Z∗

p)

to both U ′
1 and U ′

2. S1 randomly tests two outputs from each program (i.e., β
αj

j). If an

error is detected, S1 saves all states and outputs Y i
p = “error′′, Y i

u = ϕ, replacei = 1. If
no error is detected, S1 checks the remaining two outputs. If all checks pass, S1 outputs
Y i
p = ϕ, Y i

u = ϕ, replacei = 0; otherwise, S1 picks a random number r ∈ Z∗
p and outputs

Y i
p = r, Y i

u = ϕ, replacei = 1. In either case, S1 saves the appropriate states.

The input distributions to (U ′
1, U

′
2) in the real and ideal experiments are computationally

indistinguishable. In the ideal experiment, the inputs are chosen uniformly at random. In
the real experiment, each part of all three queries that T makes to any one program is
independently re-randomized and thus computationally indistinguishable from random. If
(U ′

1, U
′
2) behave honestly in the i-th round, then EV IEW i

real ∼ EV IEW i
ideal (this is because

T (U ′
1,U

′
2) perfectly executes Exp in the real experiment and S1 chooses not to replace the

output of Exp in the ideal experiment). If one of (U ′
1, U

′
2) gives an incorrect output in the i-

th round, then it will be detected by both T and S1 with probability 2
3 , resulting in an output

of “error”; otherwise, the output of Exp will be successfully corrupted (with probability
1
3). In the real experiment, the three outputs generated by (U ′

1, U
′
2) are multiplied together

along with a random value, thus a corrupted output of Exp will look incorrect, but random
to E. In the ideal experiment, S1 also simulates with a random value r ∈ Z∗

p. Thus,
EV IEW i

real ∼ EV IEW i
ideal even when one of (U ′

1, U
′
2) behaves dishonestly in the i-th

round. By the hybrid argument, we conclude that EV IEWreal ∼ EV IEWideal.

Secondly, we prove Pair Two UV IEWreal ∼ UV IEWideal (The untrusted software,
(U ′

1, U
′
2), learns nothing.):

8

The simulator S2 always behaves as follows: Upon receiving the input on the i-th round,
S2 ignores it, and instead makes three random queries of the form (αj ∈ Z∗q, βj ∈ Z∗

p) to
both U ′

1 and U
′
2. Then S2 saves its states and the states of (U ′

1, U
′
2). E can easily distinguish

between these real and ideal experiments (note that the output in the ideal experiment is
never corrupted). However, E cannot communicate this information to (U ′

1, U
′
2). This

is because in the i-th round of the real experiment, T always re-randomizes its inputs
to (U ′

1, U
′
2). In the ideal experiment, S2 always creates random, independent queries for

(U ′
1, U

′
2). Thus, for each round i we have UV IEW i

real ∼ UV IEW i
ideal. By the hybrid

argument, we conclude that UV IEWreal ∼ UV IEWideal. 2

Theorem 2 In the one-malicious model, the algorithms (T, (U1, U2)) are an (O(log
2n
n , 23)-

outsource-secure implementation of Exp.

Proof. It takes the proposed algorithm Exp roughly 1.5n MM to compute ua by the
square-and-multiply method for an arbitrary base to an arbitrary power. Moreover, Exp
makes 3 calls to Rand plus 6 modular multiplication (MM) and 1 modular inverse (MInv)
in order to compute ua (we omit other operations such as modular additions). Also, Exp
takes O(log2n) or O(1) MM using the EBPV generator or table-lookup method for Rand,

respectively, where n is the bit of the a. Thus, the algorithms (T, (U1, U2)) are an O(log
2n
n)-

efficient implementation of Exp.

On the other hand, U1 (resp. U2) cannot distinguish the two test queries from the three
real queries T makes. If U1 (resp. U2) fails during any execution of Exp, it will be detected
with probability 2

3 . 2

3.3 Efficiency

Here, we compare our proposal with the state-of-the-art algorithms [18, 28]. Let MM
denote a modular multiplication, MInv denote a modular inverse, Invoke(Rand) denote
an invocation of Rand, and Invoke(U1) and Invoke(U2) denote the invocation of U1 and U2

respectively. Other operations such as modular additions are omitted. The comparison of
the efficiency and the checkability is presented in Table 1.

Compared with the other two algorithms, our proposal is more efficient, which requires
only 6 MM, 1 MInv, 3 invocation of Rand, and 3 invocation of U1 and U2 for each modular
exponentiation. As the basic operation in most cryptographic protocols, millions of the
modular exponentiations may be performed by the cloud server every day. Thus, our
proposal can save huge of such computational resources.

Table 1: Efficiency Comparison
Algorithm [28] Algorithm [18] Ours

MM 9 7 6

MInv 5 3 1

Invoke(Rand) 6 5 3

Invoke(U1) 4 3 3

Invoke(U2) 4 3 3

Checkability 1
2

2
3

2
3

9

4 New and Secure Outsource Algorithm of Simultaneous Mod-
ular Exponentiations

The simultaneous modular exponentiations ua1u
b
2 (mod p) plays an important role in

many cryptographic primitives. Chen et al. first introduced the problem of outsource-
secure algorithm SExp of simultaneous modular exponentiations [18]. However, we point
out that their algorithm is insecure. And then we propose a new outsource-secure algorithm
of simultaneous modular exponentiations.

4.1 Cryptanalysis of Chen et al.’s Algorithm

Here, we recall Chen et al.’s outsource-secure algorithm of simultaneous modular expo-
nentiations, and then show our cryptanalysis.

Let p, q be two large primes and q|p− 1. Given two arbitrary bases u1, u2 ∈ Z∗
p and two

arbitrary powers a, b ∈ Z∗
q such that the order of u1 and u2 is q. The output of SExp is

ua1u
b
2 (mod p).

1. Run Rand twice to create two blinding pairs (α, gα) and (β, gβ). We denote v = gα

and µ = gβ.

2. The first logical divisions are

ua1u
b
2 = (vw1)

a(vw2)
b = gβgγwa

1w
b
2,

where w1 = u1/v, w2 = u2/v, and γ = (a+ b)α− β.
The second logical divisions are

ua1u
b
2 = gβgγwa

1w
b
2 = gβgγwk

1w
l
1w

t
2w

s
2,

where l = a− k and s = b− t.

3. Next, run Rand to obtain three pairs (t1, g
t1), (t2, g

t2) and (t3, g
t3).

4. Query U1 in random order as

U1(t2/t1, g
t1)→ gt2 ;

U1(γ/t3, g
t3)→ gγ ;

U1(k,w1)→ wk
1 ;

U1(t, w2)→ wt
2.

Similarly, query U2 in random order as

U2(t2/t1, g
t1)→ gt2 ;

U2(γ/t3, g
t3)→ gγ ;

U2(l, w1)→ wl
1;

U2(s, w2)→ ws
2.

5. Finally, check that both U1 and U2 produce the correct outputs, i.e., g
t2 = U1(t2/t1, g

t1) =
U2(t2/t1, g

t1) and U1(γ/t3, g
t3) = U2(γ/t3, g

t3). If not, output “error”; otherwise, com-
pute ua1u

b
2 = µgγwk

1w
l
1w

t
2w

s
2.

10

In the original paper, Chen et al. claimed that the above algorithm is secure under
one-malicious model.

Cryptanalysis

We stress here again that the security of the outsourcing computation requires that U ′
1

and U ′
2 should not learn anything about what it is actually computing (including the secret

inputs and the outputs). On the other hand, it is allowed that E and U ′
1 (or U ′

2) develop
a joint strategy in advance [28] (once they begin interacting with T , they no longer have a
direct communication channel).

The weakness of the algorithm [18] is due to w1 and w2. Note that given u1 and u2, for
any w1 and w2, w1/w2 is always equal to u1/u2. Since w1, w2 are inputs for both U ′

1 and
U ′
2, we assume without loss of generality that U ′

1 is malicious.

Suppose that E is a malicious software vendor. Let u1 and u2 be partial public keys of
its competing software vendor. E then computes

ϕ = u1/u2, ψ = u2/u1,

which are embedded into U ′
1. In fact, when SExp is invoked, U ′

1 has the ability to recognize
these public keys of the competing software vendor.

Given (a, b, u1, u2) T will invoke SExp for computing ua1u
b
2. Let (ci, di) be the inputs to

U ′
1 in the i-th round. We know that for all invocations of U ′

1, there must exist two numbers
di and dj (i ̸= j) such that di = w1, dj = w2 or di = w2, dj = w1, that is, di/dj = ϕ or
di/dj = ψ.

Hence, when U ′
1(ci, di) is invoked, U ′

1 can compute δ = di/dj for each dj where j < i
(note that U ′

1 can record all inputs from T). And then it checks whether or not δ = ϕ or
δ = ψ holds. If it is the case, U ′

1 knows that it is performing the work with the public key
of the competing software vendor.

Similarly, E can embed a list of public keys of its competing software vendors. Then,
the information with respect to all these vendors will be leaked to the malicious software,
which contradicts to the basic security requirement for the outsourcing computation.

4.2 The Proposed Algorithm

Now, we propose a new outsource-secure algorithm of simultaneous modular exponenti-
ations. Compared with Chen et al.’s algorithm [18], the security is assured. Moreover, our
proposal is more efficient. More in details, our proposal SExp is as follows.

1. Run Rand thrice to create three blinding pairs (α, gα), (β, gβ) and (γ, gγ). We denote
v = gα, µ = gβ and λ = gγ .

2. The first logical divisions are
ua1u

b
2 = g−πwa

1w
b
2,

where w1 = u1v, w2 = u2µ, and π = aα+ bβ.

The second logical divisions are

ua1u
b
2 = g−πwa

1w
b
2 = gγgxwk

1w
l
1w

t
2w

s
2 = λgxwk

1w
l
1w

t
2w

s
2,

11

where x = q − π − γ, l = a− k and s = b− t.

3. Next, pick two random numbers d ∈ Z∗
q and f ∈ Z∗

p, and run Rand to obtain a pair
(t1, g

t1).

4. Query U1 in random order as

U1(x/t1, g
t1)→ gx;

U1(d, f)→ fd;

U1(k,w1)→ wk
1 ;

U1(t, w2)→ wt
2.

Similarly, query U2 in random order as

U2(x/t1, g
t1)→ gx;

U2(d, f)→ fd;

U2(l, w1)→ wl
1;

U2(s, w2)→ ws
2.

5. Finally, check that both U1 and U2 produce the correct outputs, i.e., U1(x/t1, g
t1) =

U2(x/t1, g
t1) and U1(d, f) = U2(d, f). If not, output “error”; otherwise, compute

ua1u
b
2 = λgxwk

1w
l
1w

t
2w

s
2.

Similar to Theorem 1 and 2, we can easily prove the following theorem:

Theorem 3 In the one-malicious model, the algorithms (T, (U1, U2)) are an O(log
2n
n), 12)-

outsource-secure implementation of SExp.

4.3 Efficiency

Note that SExp requires only 10 MM, 1 MInv, 4 invocation of Rand, and 4 invocation
of U1 and U2 for each modular exponentiation. Table 2 presents the comparison of the
efficiency and the checkability with Hohenberger-Lysyanskaya’s algorithm of outsourcing
one modular exponentiation (Surprisingly, our proposal is even more efficient) and Chen et
al.’s algorithm.

Table 2: Efficiency Comparison
Algorithm [28] Algorithm [18] Ours

MM 9 10 10

MInv 5 4 1

Invoke(Rand) 6 5 4

Invoke(U1) 4 4 4

Invoke(U2) 4 4 4

Checkability 1
2

1
2

1
2

12

5 Secure Outsourcing Algorithms for Encryption and Signa-
tures

In this section, we propose two secure outsourcing algorithms for Cramer-Shoup encryp-
tion scheme [20] and Schnorr signature scheme [33].

5.1 Outsource-Secure Cramer-Shoup Encryptions

The proposed outsource-secure Cramer-Shoup encryption scheme CS1b consists of the
following efficient algorithms:

• System Parameters Generation: Let G be an abelian group of a large prime order q.
Let g be a generator of G. Define a cryptographic secure hash function H : G3 → Zq.
The system parameters are SP = {G, q, g,H}.

• Key Generation: On input 1l, run the key generation algorithm to obtain the se-
cret/public key pair (SK,PK), here SK = (w, x, y, z) ∈R Z∗

q×Z3
q , PK = (W,X, Y, Z) =

(gw, gx, gy, gz).

• Encryption: On input the public key PK and a messagem ∈ G, the outsourcer T runs
the subroutines Rand, Exp and SExp, and generates the ciphertext C as follows:

1. T runs Rand to obtain a pair (k, r = gk).

2. T firstly runs Exp to obtain Exp(k,W)→ s, Exp(k, Z)→ t and then computes
e = mt, and h = H(r, s, e).

3. T runs SExp to obtain SExp(k, kh,X, Y)→ XkY kh = γ.

4. T outputs the ciphertext C = (r, s, e, γ).

• Decryption: On input the secret key SK, and the ciphertext C = (r, s, e, γ), the
outsourcer T ′ runs the subroutine Exp and computes the message m as follows:

1. T ′ computes h = H(r, s, e).

2. T ′ runs Exp to obtain Exp(w, r)→ ψ1 and Exp(x+ yh, r)→ ψ2.

3. If and only if s = ψ1 and γ = ψ2, T
′ runs Exp to obtain Exp(q − z, r)→ t and

then computes m = et.

Compared with [18], we use both Exp and SExp as subroutines, and the efficiency is
improved greatly which is shown in Table 3. Note that the checkability in Encryption is
lower than [18]. The solution is to make two additional test queires in SExp, which will
improve the checkability to 2

3 . Clearly, our proposal is still more efficient even in this case.

5.2 Outsource-Secure Schnorr Signatures

The proposed outsource-secure Schnorr signature scheme consists of the following effi-
cient algorithms:

• System Parameters Generation: Let p and q be two large primes that satisfy q|p− 1.
Let g be an element in Zp such that gq = 1 (mod p). Define a cryptographic secure
hash function H : {0, 1}∗ → Zp. The system parameters are SP = {p, q, g,H}.

13

Table 3: Efficiency Comparison
Algorithm [18] Ours
(Enc/Dec) (Enc/Dec)

MM 30/23 24/20

MInv 12/10 3/3

Invoke(Rand) 21/15 11/9

Invoke(U1) 12/9 10/9

Invoke(U2) 12/9 10/9

Checkability 2
3 / 2

3
3
5 / 2

3

• Key Generation: On input 1l, run the key generation algorithm to obtain the sign-
ing/verification key pair (x, y), here y = g−x (mod p).

• Signature Generation: On input the singing key x and a message m, the outsourcer
T runs the subroutine Rand, and generates the signature as follows:

1. T runs Rand to obtain a pair (k, r = gk).

2. T computes e = H(m∥r) and s = k + xe (mod q).

3. T outputs the signature σ = (e, s).

• Signature Verification: On input the verification key y, the message m, and the signa-
ture σ = (e, s), the outsourcer T ′ runs the subroutine SExp, and verifies the signature
as follows:

1. T ′ runs SExp to obtain SExp(s, e, g, y)→ gsye = r′.

2. T ′ computes e′ = H(m∥r′).
3. T ′ outputs 1 if and only if e′ = e.

The efficiency comparison is given in Table 4. Similarly, to improve the checkability to
2
3 two additional test queires can be made in SExp. Clearly, our proposal is still more
efficient even in this case.

Table 4: Efficiency Comparison of Signature Verification
Algorithm [28] Algorithm [18] Ours

MM 19 15 6

MInv 10 6 1

Invoke(Rand) 12 10 3

Invoke(U1) 8 6 3

Invoke(U2) 8 6 3

Checkability 1
2

2
3

1
2

6 Conclusion

In this paper,we propose two outsource-secure and efficient algorithms for modular expo-
nentiations and simultaneous modular exponentiations. Compared with the state-of-the-art

14

algorithms [18, 28], the proposed algorithm is more efficient. Also, we point out that the al-
gorithm for simultaneous modular exponentiations in [18] is insecure. Moreover, we propose
the constructions for outsource-secure Cramer-Shoup encryptions and Schnorr signatures.

References

[1] M.J. Atallah and K.B. Frikken, “Securely Outsourcing Linear Algebra Computations,”
in Proc. 5th ACM Symp. Inf.,Comput.Commun. Secur., 2010, pp. 48-59.

[2] M. Abadi, J. Feigenbaum, and J. Kilian, “On Hiding Information from an Oracle,” in
Proc. 19th Annu. ACM Symp. Theory Comput., 1987, pp. 195-203.

[3] M.J. Atallah, K.N. Pantazopoulos, J.R. Rice, and E.H. Spafford, “Secure Outsourcing
of Scientific Computations,” Adv. Comput., vol. 54, pp. 215-272, 2002.

[4] M.J. Atallah and J. Li, “Secure Outsourcing of Sequence Comparisons,” Int’l J. Inf.
Secur., vol. 4, no. 4, pp. 277-287, Oct. 2005.

[5] D. Beaver, J. Feigenbaum, J. Kilian, and P. Rogaway, “Locally Random Reductions:
Improvements and Applications,” J. Cryptol., vol. 10, no. 1, pp. 17-36, Dec. 1997.

[6] S. Benabbas, R. Gennaro, and Y. Vahlis, “Verifiable Delegation of Computation Over
Large Datasets,” in Proc. Crypto, 2011, vol. LNCS 6841, pp. 111-131.

[7] D. Benjamin and M.J. Atallah, “Private and Cheating-Free Outsourcing of Algebraic
Computations,” in Proc. 6th Annu. Conf. Privacy, Secur. Trust, 2008, pp. 240-245.

[8] M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson, “Multi-Prover Interactive
Proofs: How to Remove Intractability Assumptions,” in Proc. ACM Symp. Theory
Comput., 1988, pp. 113-131.

[9] M. Blanton, “Improved Conditional E-Payments,” in Proc. ACNS, 2008, vol. LNCS
5037, pp. 188-206.

[10] M. Blanton, M.J. Atallah, K.B. Frikken, and Q. Malluhi, “Secure and Efficient Out-
sourcing of Sequence Comparisons,” in Proc. ESORICS, 2012, vol. LNCS 7459, pp.
505-522.

[11] M. Blum, M. Luby, and R. Rubinfeld, “Program Result Checking Against Adaptive
Programs and in Cryptographic Settings,” Proc. DIMACS Series Discrete Math. Theo-
retical Comput. Sci., 1991, pp. 107-118.

[12] M. Blum, M. Luby, and R. Rubinfeld, “Self-Testing/Correcting with Applications to
Numerical Problems,” J. Comput. Syst. Sci., vol. 47, no. 3, pp. 549-595, Dec. 1993.

[13] V. Boyko, M. Peinado, and R. Venkatesan, “Speeding Up Discrete Log and Factoring
Based Schemes via Precomputations,” in Proc. Eurocrypt, 1998, vol. LNCS 1403, pp.
221-232.

[14] R. Canetti, B. Riva, and G. Rothblum, “Practical Delegation of Computation using
Multiple Servers,” in Proc. 18th ACM Conf. Comput. Commun. Secur., 2011, pp. 445-
454.

15

[15] B. Carbunar and M. Tripunitara, “Conditioal Payments for Computing Markets,” in
Proc. CANS, 2008, vol. LNCS 5339, pp. 317-331.

[16] B. Carbunar and M. Tripunitara, “Fair Payments for Outsourced Computations,” in
Proc. SECON, 2010, pp. 529-537.

[17] D. Chaum and T. Pedersen, “Wallet Databases with Observers,” in Proc. Crypto 1992,
1993, vol. LNCS 740, pp. 89-105.

[18] X. Chen, J. Li, J. Ma, Q. Tang and W. Lou, “New algorithms for secure outsourcing
of modular exponentiations,” Parallel and Distributed Systems, IEEE Transactions on,
2014, 25(9). pp. 2386-2396.

[19] B. Chevallier-Mames, J. Coron, N. McCullagh, D. Naccache, and M. Scott, “Secure
Delegation of Elliptic-Curve Pairing,” in Proc. CARDIS, 2010, vol. LNCS 6035, pp.
24-35.

[20] R. Cramer and V. Shoup, “Design and Analysis of Practical Public-Key Encryption
Schemes Secure Against Adaptive Chosen Ciphertext Attack,” SIAMJ. Comput., vol.
33,no. 1,pp. 167-226, 2004.

[21] S. Even, O. Goldreich, and S. Micali, “On-Line/Off-Line Digital Signatures,” J. Cryp-
tol., vol. 9, no. 1, pp. 35-67, 1996.

[22] R. Gennaro, C. Gentry, and B. Parno, “Non-Interactive Verifiable Computing: Out-
sourcing Computation to Untrusted Workers,” in Proc. Crypto, 2010, vol. LNCS 6223,
pp. 465-482.

[23] M. Girault and D. Lefranc, “Server-Aided Verification: Theory and Practice,” in Proc.
ASIACRYPT, 2005, vol. LNCS 3788, pp. 605-623.

[24] S. Goldwasser, Y.T. Kalai, and G.N. Rothblum, “Delegating Computation: Interactive
Proofs for Muggles,” in Proc. ACM Symp. Theory Comput., 2008, pp. 113-122.

[25] S. Goldwasser, S. Micali, and C. Rackoff, “The Knowledge Complexity of Interactive
Proof-Systems,” SIAM J. Comput., vol. 18, no. 1, pp. 186-208, Feb. 1989.

[26] P. Golle and I. Mironov, “Uncheatable Distributed Computations,” in Proc. CT-RSA,
2001, vol. LNCS 2020, pp. 425-440.

[27] M. Green, S. Hohenberger, and B. Waters, “Outsourcing the Decryption of ABE Ci-
phertexts,” in Proc. 20th USENIX Conf. Secur., 2011.

[28] S. Hohenberger and A. Lysyanskaya, “How to Securely Outsource Cryptographic Com-
putations,” in Proc. TCC, 2005, vol. LNCS 3378, pp. 264-282, Springer-Verlag: New
York, NY, USA.

[29] T. Matsumoto, K. Kato, and H. Imai, “Speeding up Secret Computations with Insecure
Auxiliary Devices,” in Proc. Crypto, 1988, vol. LNCS 403, pp. 497-506.

[30] P.Q. Nguyen, I.E. Shparlinski, and J. Stern, “Distribution of Modular Sums and the
Security of Server-Aided Exponentiation,” in Proc. Workshop Comput. Number Theory
Crypt., 1999, pp. 1-16.

16

[31] B. Parno, M. Raykova, and V. Vaikuntanathan, “How to Delegate and Verify in Public:
Verifiable Computation from Attribute-Based Encryption,” in Proc. TCC, 2012, vol.
LNCS 7194, pp. 422-439.

[32] K. Ren, C. Wang, and Q. Wang, “Security Challenges for the Public Cloud,” IEEE
Internet Comput., vol. 16, no. 1, pp. 69-73. 2012.

[33] C.P. Schnorr, “Efficient Signature Generation for Smart Cards,” J. Cryptol., vol. 4,
no. 3, pp. 161-174, 1991.

[34] L. Shi, B. Carbunar, and R. Sion, “Conditional E-Cash,” in Proc. FC, 2007, vol. LNCS
4886, pp. 15-28.

[35] C. Wang, N. Cao, K. Ren, and W. Lou, “Enabling Secure and Efficient Ranked Key-
word Search Over Outsourced Cloud Data,” IEEE Trans. Parallel Distrib. Syst., vol.
23,no. 8, pp.1467-1479, Aug. 2012.

[36] C. Wang, K. Ren, and J. Wang, “Secure and Practical Outsourcing of Linear Program-
ming in Cloud Computing,” in Proc. 30th IEEE Int’l Conf. Comput. Commun., 2011,
pp. 820-828.

[37] W. Wu, Y. Mu, W. Susilo, and X. Huang, “Server-Aided Verification Signatures: Def-
initions and New Constructions,” in Proc. ProvSec, 2008, vol. LNCS 5324, pp. 141-155.

17

