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Abstract. We present techniques and protocols for the preprocessing of secure multiparty computation
(MPC), focusing on the so-called SPDZ MPC scheme and its derivatives. These MPC schemes consist of
a so-called preprocessing or offline phase, where correlated randomness is generated that is independent
of the inputs and the evaluated function, and an online phase, where such correlated randomness is
consumed to securely and efficiently evaluate circuits. In the recent years, it has been shown that such
protocols turn out to be very efficient in practice.

While much research has been conducted towards optimizing the online phase of the MPC protocols,
there seems to have been less focus on the offline phase of such protocols. With this work, we want to
close this gap and give a toolbox of techniques that aim at optimizing the preprocessing. We support
both instantiations over small fields and large rings using somewhat homomorphic encryption and the
Paillier cryptosystem, respectively. In the case of small fields, we show how the preprocessing overhead
can basically be made independent of the field characteristic and present a more efficient (amortized)
zero-knowledge proof of plaintext knowledge. In the case of large rings, we present a protocol based on
the Paillier cryptosystem which has a lower message complexity than previous protocols and employs
more efficient zero-knowledge proofs and decryption which, to the best of our knowledge, were not
presented in previous work.

Keywords: Efficient Multiparty Computation, Preprocessing, Homomorphic Encryption, Paillier Encryp-
tion

1 Introduction

During the recent years, secure two- and multiparty computation [24,35] has evolved from a merely academic
research topic into a practical technique for secure function evaluation (see e.g. [6] as an example). Multiparty
computation (MPC) aims at solving the following problem: How can a set of parties P1, ..., Pn, where each
party Pi has a secret input value xi, compute a function y = f(x1, ..., xn) on their values while not revealing
any other information than the output y? Such function could e.g. perform a statistical analysis on the inputs
or an online auction or election. Ideally, all these parties would give their secret to a trusted third party
(which is incorruptible), that evaluates the function f and reveals the result y to each participant. Such a
solution in particular guarantees two properties:

Privacy: Even if malicious parties collude, as long as they cannot corrupt the trusted third party they
cannot gain any information except y and what they can derive from it using their inputs.
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Correctness: After each party sent their input, there is no way how malicious parties can interfere with
the computation of the trusted third party in such a way as to force it to output a specific result y′ to
the parties that are honest.

MPC replaces such a trusted third party with an interactive protocol among the n parties, while still
guaranteeing the above properties. In recent years, it has been shown that even if n− 1 of the n parties can
be corrupted, the efficiency of secure computation can be dramatically improved by splitting the protocol
into different phases: During a preprocessing or offline phase, correlated randomness is generated. This
computation is both independent of f and the inputs xi and can therefore be carried out any time before the
actual function evaluation takes place. This way, a lot of the heavy computation that relies e.g. on public-key
primitives (which we need to handle dishonest majority) will be done beforehand and need not be performed
in the later online phase, where one can rely on cheap, information-theoretic primitives.

In the past years, this approach led to a number of very efficient MPC protocols such as [31,19,16,18,27]
to just name a few. In this work, we will primarily focus on variants of the so-called SPDZ protocol [19,16]
and their preprocessing phases. They are secure against up to n−1 static corruptions, which will also be our
adversarial model. For the preprocessing, they rely on very efficient lattice-based homomorphic cryptosystems
that allow to perform both additions and multiplications on the encrypted ciphertexts and can pack a large
vector of plaintexts into one ciphertext4. Unfortunately, the current implementations of the preprocessing
has several (non-obvious) drawbacks in terms of efficiency which we try to address in this work:

Incorrect decryption. The complexity of the preprocessing phase naturally depends upon the size of the
ring R over which the computation takes place: in the case where R = Z/pZ the overhead is inversely
proportional to p. The main reason is that implementing the functionality Ffaulty

KeyGenDec efficiently without the
errors is difficult so that the version with faulty distributed decryption is used in practice. Since the output
from the preprocessing depends in part on decryption results, it must be checked for correctness. This is done
by sacrificing some part of the computed data to check the remainder. Such an approach only guarantees
correctness with probability 1/p. Hence, especially for small fields, one has to repeat that procedure multiple
times which introduces noticeable overhead.

Zero-Knowledge proofs. For each ciphertext, one has to prove plaintext knowledge in order ensure that the
ciphertext is freshly generated. In implementations it has turned out that the overhead coming from these
proofs dominates the message complexity and runtime.

Computation over the integers. If the goal in the end is to do secure computation over the integers, R must
be chosen very large to avoid overflow. Here, one could instead investigate the case where R = Z/NZ with
a preprocessing scheme using Paillier encryption (where N is an RSA number).

1.1 Results and techniques

In this work, the following results will be shown:

(1) We present a novel way of checking the correctness of shared multiplication triples for SHE schemes. In
particular, we need to sacrifice only a constant fraction of the data to do the checking, where existing
methods need to sacrifice a fraction Θ(1− 1/κ) for error probability 2−κ.

(2) We redesign the zero-knowledge proof used in [16] and show that one can reduce the number of auxiliary
ciphertexts generated for each ciphertext we want to prove knowledge of.

(3) We show how the linearly homomorphic encryption scheme due to Paillier [34,15] can be used more
efficiently to produce multiplication triples by representing the data as polynomials and thereby reducing
the amount of complex zero-knowledge proofs. Moreover, we also present more efficient zero-knowledge
proofs for, e.g., plaintext knowledge, that only require players to work modulo N even if the ciphertexts
are defined modulo N2. Though the technique may already be known, it does not seem to appear in

4 For more details, see Section 2.2.
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previous published work. Additionally, we present a simpler and more efficient distributed decryption
method for the Paillier instantiation that is used in our preprocessing.

Before we start to formally present our work, let us have a look at the techniques which we use to achieve
our results.

Verifying multiplicative relations. Our goal is (intuitively) to produce encrypted vectors x,y, z such that
x � y = z. Unfortunately, the SPDZ preprocessing can only guarantee that x � y = z +∆ where ∆ can
be chosen by the adversary. To counter this, we encode the plaintexts in such a way that we can check the
result later: we will let x,y be codewords of a linear code C. This works particularly well because the SPDZ
preprocessing encrypts vectors i.e. it has a plaintext space R = Z`p where ` is the number of instances that
each ciphertext contains. We multiply x and y coordinate-wise, so this yields a codeword in a related code
(namely its so-called Schur transform C∗ of C). Assume that we can, as explained above, efficiently multiply
and decrypt, but decryption may be faulty and each party obtains potentially faulty shares of the product.
Now we check if z is indeed codeword in the Schur transform. This can be done almost exclusively using
linear operations, which are performed without interaction.

Checking whether the result is a codeword is not sufficient, but if z is in the code and not equal to the
codeword x�y, then an adversary would have to have cheated in a large number of positions (the minimum
distance of the code). Thus, given the resulting vector z is a codeword, one checks a small number of random
positions of the vector to see if it contains the product of corresponding positions in x and y. During each
check we have a constant probability of catching the adversary, and this quickly amplifies to our desired
security levels. The only assumption that we have to make on the underlying field is that appropriate codes
with good distance can be defined.

More efficient proofs of plaintext knowledge. To explain our contribution, we need to be more specific about
the zero-knowledge proofs of plaintext knowledge (ZKPoPK) suggested in earlier work. First, these are
designed for lattice-type cryptosystems that are homomorphic over a finite field, say the field Fp with p
elements for a prime p. Now, the basic step in the protocol is that a player Pr chooses a random message
m, encrypts it and gives a ZKPoPK to convince the other players that the ciphertext is well-formed and
that he knows the plaintext and randomness. If Pr is honest, then he will choose m randomly in an interval
of size p centered around 0. However, in all known ZKPoPKs it will be the case that if Pr is corrupt, we
cannot guarantee that the message m known to Pr will be in this interval. The best we can do is to force Pr

to choose m in a somewhat bigger interval. If this interval has size p · s we will say that the ZKPoPK has
soundness slack s. One would like the soundness slack to be as close to 1 as possible, since this allows us to
choose smaller parameters for the underlying cryptosystem and hence improve efficiency.

Protocols are usually designed to prove plaintext knowledge for several input ciphertexts at once and
if the prover needs to generate T auxiliary ciphertexts for t input ciphertexts we say that the ciphertext
overhead of the protocol is T/t. One would of course like this overhead to be as small as possible. We achieve
an improvement by extending the proof technique of [16,32]:

(1) We first run a very simple ZKPoPK on each ciphertext with constant soundness error probability. While
this will not ensure that all ciphertexts are honestly generated, one can show that almost all of them are
good, except with negligible probability.

(2) In a second step, we randomly assign all ciphertexts into squares of width
√
t, compute the row and

column sums and prove plaintext knowledge of each such row and column sum. From the previous step,
we are guaranteed that most of the ciphertexts are well formed, and can now explain the remaining
plaintexts as the difference of the row or column sum and the plaintexts of the good ciphertexts.

This allows us to reduce the fraction T/t by a factor of 2 for realistic instances (in comparison to the
proof technique of [16]) while keeping the soundness slack s as small as in [16]. Our technique might be of
independent interest.
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Paillier-based preprocessing for SPDZ. Paillier’s encryption scheme is only linearly homomorphic, which
means that it does not allow to perform multiplications of the plaintexts of two or more ciphertexts directly
- it only supports additions but not multiplications. On the other hand, it has an efficient and reliable
decryption routine which is what we will make use of. Computing products of encryptions using linearly
homomorphic encryption schemes is a well-known technique and can be done using the following protocol
Π (we denote an encrypted value x as 〈〈x〉〉):

(1) P1 sends some encryption 〈〈x1〉〉, 〈〈y1〉〉 to P2 while P2 sends 〈〈x2〉〉, 〈〈y2〉〉 to P1. They want to compute
uniformly random values z1, z2 where P1 holds z1 and P2 z2 with the constraint that (x1+x2) ·(y1+y2) =
z1 + z2.

(2) P2 sends an encryption 〈〈z′2〉〉 = y′2 · 〈〈x1 + x2〉〉+ 〈〈−a2〉〉 to P1 and proves (among other things) that this
y′2 is the same as the plaintext inside 〈〈y2〉〉 (where 〈〈a2〉〉 is an auxiliary, uniformly random value).

(3) P1 sends 〈〈z′1〉〉 = y′1 · 〈〈x1 + x2〉〉+ 〈〈−a1〉〉 to P2 and proves a similar statement.
(4) Both use the distributed decryption to safely decrypt the value z′1 + z′2, which does not reveal any

information about the product because a1, a2 were appropriately uniformly at random.
(5) P1 sets z1 = z′1 + z′2 + a1 as her share, while P2 chooses z2 = a2.

We consider the setting where many of these multiplications must be performed. Here our approach is,
instead of sampling all xi, yi independently, to let these be evaluations of a polynomial (that is implicitly
defined), and then multiply the factors unreliably : instead of giving a zero-knowledge proof that y′2 = y2, we
only need to prove that P2 knows some y′2, a2, which reduces the complexity of the proof. This means that
the result is only correct if all parties honestly follow the multiplication protocol.

The products computed using unreliable multiplication now all lie on a polynomial as well, and using
Lagrange interpolation one can evaluate the polynomial in arbitrary points. This can be used to efficiently
(and almost locally) check if all products are correct. We want to remark that this approach is asymptoti-
cally as efficient as existing techniques, but relies on zero-knowledge proofs with lower message complexity.
Moreover, decrypting random values allows for a more efficient decryption routine. It is an interesting open
question how these approaches compare in practice.

1.2 Related work

In independent work, Frederiksen et al. showed how to preprocess data for the SPDZ MPC scheme using
oblivious transfer [22]. Their approach can make use of efficient OT-extension, but does only allow fields of
characteristic 2. While this has some practical applications, it does not generalize (efficiently) to arbitrary
fields. On the contrary, our techniques are particularly efficient for other use-cases when binary fields cannot
be used to compute the desired function efficiently. Therefore, both results complement each other.

Our technique for checking multiplicative relations is related to the work in [3] for secret shared values in
honest majority protocols and in [13] for committed values in 2-party protocols. To the best of our knowledge,
this type of technique has not been used before for dishonest majority MPC.

Paillier encryption. The Paillier encryption scheme has been used in MPC preprocessing before such as
in [4]. Moreover it was also employed in various MPC schemes such as [12,6,17] to just name a few. The
instantiation of the scheme that we use is from [15], and we modify it to use a certain generator which allows
for our efficient proofs and decryption.

Proofs for lattice-based encryption schemes. In its simplest case, zero-knowledge proofs for lattice-based
encryption schemes can be constructed using Σ-protocols. Such proofs do only achieve soundness error 1/2
and must therefore be repeated κ times (for κ being the statistical security parameter) to achieve soundness
error negligible in κ. Additional care must also be taken to prevent leakage of the plaintext, which normally
incurs a 2κ factor in the soundness slack. Lyubashevsky [30,29] introduced the use of the Fiat-Shamir heuristic
together with rejection sampling in the context of such encryption schemes, which allows to drastically reduce
the bounds on the plaintexts.

4



The work by Damg̊ard et al. [19] allows to further reduce the amortized cost of ZK proofs, where the
authors show how to prove knowledge of κ plaintexts in parallel using O(κ) auxiliary ciphertexts. As a draw-
back, the technique introduces an additional 2O(κ) overhead on the proven bounds. In contrast, subsequent
work [16] allowed much tighter bounds at the expense of a larger ciphertext overhead of the protocol. In com-
parison to all of the above works (which do also apply to arbitrary LWE encryption schemes), Benhamouda
et al. [5] introduced a new technique in the context of Ring-LWE encryption schemes. They expand the
size of the challenge space from 2 to 2 ·W where W is the ring dimension, and show that for their fixed
set of challenge polynomials an inverse of small norm always exists. This allows them to obtain proofs with
soundness 1/(2 ·W ) while proving plaintext bounds Õ(W 2σ) where σ is the standard deviation of the noise.
On the downside, they do not actually achieve a proof of plaintext knowledge, but only of a value related to
the plaintext.5 A different approach was taken by Ling et al. in [28]. They use a technique due to Stern and
achieve knowledge error 2/3.

2 Preliminaries

Throughout this work, we assume that a secure point-to-point channels between the parties exist and that
a broadcast channel is available. We make commitments abstractly available using the functionality FCommit

and assume the existence of a random oracle, which will be accessible using the coin-flipping functionality
FRand.

Functionality FRand

Let R be a ring such that there exists a PPT TM to efficiently sample values r ∈ R uniformly at random.

Random sample: Upon receiving (rand, R) from all parties, it samples a uniform r ∈ R and outputs (rand, r) to
all parties.

Fig. 1. FRand: Functionality to sample randomness.

We use � for the coordinate-wise multiplication of vectors, (g, h) = d to denote that d is the greatest
common divisor of g, h and let [r] be defined as the set [r] := {1, . . . , r}. We will denote vectors in bold lower-
case letters such as b whereas matrices are bold upper-case letters like M . [[m]], 〈〈m〉〉 denote encryptions of
a message m (for the SHE and Paillier encryption, respectively) where the randomness is left implicit. To
ease readability, we provide an overview of the most important variables and notation in Table 1.

Functionality FCommit

Commit: On input (commit, v, r, i, j, idv) by Pi, where both v and r are either in R or ⊥, and idv is a unique
identifier, it stores (v, r, i, j, idv) on a list and outputs (i, idv) to Pj .

Open: On input (open, i, j, idv) by Pi, the functionality outputs (v, r, i, j, idv) to Pj . If (no open, i, idv) is given
by the adversary, and Pi ∈ P̂, the functionality outputs (⊥,⊥, i, j, idv) to Pj .

Fig. 2. FCommit: Ideal functionality for commitments.

2.1 The SPDZ Multiparty Computation Protocol

We start out with a short primer on the MPC protocol from [19], which we will mostly refer to as SPDZ.
This we use not just as motivation for our results, but also to make the reader familiar with the notation.

5 In LWE, one would (generally) like to prove existence of a short vector s such that As = c where c is the
ciphertext and A is some public matrix. What [5] roughly achieve to prove is that there exists an s′ such that
2c = 2As′ mod q. The vector s′ is not guaranteed to be divisible by 2 over Z.
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Notation What it means Notation What it means

W Ring dimension of SHE scheme Pi Player i
d Dimension of noise vector in SHE A Adversary
ρ Bound on honestly generated noise Z Environment
τ Bound on plaintext vector size n Number of parties

p Plaintext modulus P̂ Set of bad parties
BP , BR Bounds proven by ZK Proofs Pr Prover
Enc,Dec Encryption/Decryption C Challenger
λ, κ Computational/statistical security parameter Ve Verifier
N Paillier modulus α MAC key for 〈·〉-representations
〈·〉 Value secret shared as in SPDZ [[m]], 〈〈m〉〉 Encryption of m using SHE/Paillier

Table 1. Notation as used in this work.

SPDZ evaluates an arithmetic circuit C over a ring R on a gate-level, where there are addition and
multiplication gates. Each value c ∈ R of the computation (which is assigned to a wire in the process of the
evaluation) is MACed using a uniformly random MAC secret MAC key α as α ·c and both of these values are
then sum-shared among all parties. This MAC key α is fixed for all such shared values, and α is additionally
sum-shared among the parties, where party Pi holds share αi such that α =

∑n
i=1 αi.

Definition 1. Let r, s, e ∈ R, then the 〈r〉-representation of r is defined as

〈r〉 :=
(
(r1, . . . , rn), (γ(r)1, . . . , γ(r)n)

)
where r =

∑n
i=1 ri and α·r =

∑n
i=1 γ(r)i. Each player Pi will hold his shares ri, γ(r)i of such a representation.

We define

〈r〉+ 〈s〉 :=
(
(r1 + s1, . . . , rn + sn), (γ(r)1 + γ(s)1, . . . , γ(r)n + γ(s)n)

)
e · 〈r〉 :=

(
(e · r1, . . . , e · rn), (e · γ(r)1, . . . , e · γ(r)n)

)
e+ 〈r〉 :=

(
(r1 + e, r2, . . . , rn) , (γ(r)1 + e · α1, . . . , γ(r)n + e · αn)

)
This representation is closed under linear operations:

Remark 1. Let r, s, e ∈ R. We say that 〈r〉 =̂ 〈s〉 if both 〈r〉, 〈s〉 reconstruct to the same value. Then it holds
that

〈r〉+ 〈s〉 =̂ 〈r + s〉 and e · 〈r〉 =̂ 〈e · r〉 and e+ 〈r〉 =̂ 〈e+ r〉

In order to multiply two representations, we rely on a technique due to Beaver [2]: Let 〈r〉, 〈s〉 be two
values where we want to calculate a representation 〈t〉 such that t = r · s. Assume the availability of a triple6

(〈a〉, 〈b〉, 〈c〉) such that a, b are uniformly random and c = a · b. To obtain 〈t〉, one can use the procedure
as depicted in Fig. 3. Correctness and privacy of this procedure were established before, e.g. in [19]. This

Procedure Mult

Multiply(〈r〉, 〈s〉, 〈a〉, 〈b〉, 〈c〉):
(1) The players calculate 〈γ〉 = 〈r〉 − 〈a〉, 〈δ〉 = 〈s〉 − 〈b〉.
(2) The players publicly reconstruct γ, δ.
(3) Each player locally calculates 〈t〉 = 〈c〉+ δ〈a〉+ γ〈b〉+ γδ.
(4) Return 〈t〉 as the representation of the product.

Fig. 3. Mult: Procedure to generate the product of two 〈·〉-shared values.

6 We will also refer to those triples as multiplication triples throughout this paper.
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already allows to compute on shared values, and inputting information into such a computation can also
easily be achieved using standard techniques7. Checking that a value was indeed reconstructed correctly will
be done using ΠMacCheck which allows to check the MAC of the opened value without revealing the key α.

Protocol ΠMacCheck

CheckOutput(v1, . . . , vt, R):
(1) The parties sample a vector r ∈ Rt using FRand.
(2) Each Pi computes v =

∑t
i=1 r[i] · vi and γi =

∑t
j=1 r[j] · γ(vj).

(3) Each Pi computes σi = γi − αi · v and commits to σi using FCommit as c′i.
(4) Each c′i is opened towards all players using FCommit.
(5) Output σ =

∑n
i=1 σi.

Fig. 4. ΠMacCheck: Protocol to check validity of MACs.

This checking procedure will fail to detect an incorrect reconstruction with probability at most 2/p over
fields of characteristic p, and similarly with probability 2/q over rings Z/NZ where q is the smallest prime
factor of N . This is captured by the following lemma which we will need at multiple points in this work:

Lemma 1. Assume that ΠMacCheck is executed over the field Z/pZ. The protocol ΠMacCheck is correct and
sound: It returns σ = 0 if all the values vi and their corresponding MACs γ(vi) are correctly computed
and outputs σ 6= 0 except with probability 2/p in the case where at least one value or MAC is not correctly
computed.

Proof. See e.g. [16].

The online phase of the SPDZ protocol can be realized from the linear properties of 〈·〉 as well as
ΠMacCheck,Mult. In order to run the protocol, it is necessary to have both random values 〈r〉 for the inputs
as well as triples (〈a〉, 〈b〉, 〈c〉) for Mult. Both of these, as well as the sharing of the MAC key α, come from
a preprocessing phase as depicted in Fig. 5.

2.2 Somewhat Homomorphic Encryption

In [19,16] the preprocessing functionality, i.e. FOffline, is realized using a protocol based on Somewhat Ho-
momorphic Encryption(SHE). In the following, we will give a quick definition of what we mean by an SHE
scheme.

Let M = F` = Z`p be the direct product of ` F-instances, where ’+’ and ’·’ are the ring operations in

M implied by the direct product. Moreover, consider A ≈ ZW for some integer W ∈ N+ as an intermediate
space. For A, we define the || · ||∞-norm in the usual way. Encryption will work as a map from A to some
additive abelian group B that has the additive operation � and an operation � that is not necessarily
closed, but commutative and distributive. The operations of A will also be denoted as ’+’,’·’. Addition will
be component-wise, whereas there is no restriction on how the multiplication is realized.

In order to map m ∈M to an element a ∈ A and back, there exist the two functions

ι :M→A and η : A →M

where ι is injective. The ring operations from M must carry over to a certain degree:

(1) ∀m ∈M : η(ι(m)) = m
(2) ∀m1,m2 ∈M : η(ι(m1) + ι(m2)) = m1 +m2

(3) ∀m1,m2 ∈M : η(ι(m1) · ι(m2)) = m1 ·m2

(4) ∀a ∈ A : η(a) = η(a mod p)
(5) ∀m ∈M : ||ι(m)||∞ ≤ τ with τ = p/2
7 Open a random value 〈r〉 to a party that wants to input x. That party then broadcasts x−r and the parties jointly

compute (x− r) + 〈r〉 = 〈x〉.
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Functionality FOffline

This functionality generates a shared MAC key α and 〈·〉-representations and multiplication triples.

Initialize: On input (Init, R) from all players, the functionality stores a description of the ring R. A chooses the
set of parties P̂ ⊂ P he corrupts.

(1) For all Pi ∈ P̂, A inputs αi ∈ R, while for all Pi 6∈ P̂, the functionality chooses αi
$← R.

(2) Set the key α =
∑n
i=1 αi and send αi to Pi 6∈ P̂.

SpdzRep(r1, . . . , rn, α,∆γ,r,m): This macro will be run to create 〈·〉-representations.
(1) Define r =

∑n
i=1 ri.

(2) For Pi ∈ P̂, A inputs γ(r)i ∈ Rm, and for Pi 6∈ P̂, the functionality chooses γ(r)i
$← Rm except for γ(r)j ,

with j being the smallest index not in P̂.
(3) Set γ(r) = α · r +∆γ,r and γ(r)j = γ(r)−

∑n
j 6=i=1 γ(r)i. For every honest party Pi, send γ(r)i to Pi.

(4) Define 〈r〉 = (r1, . . . , rn, γ(r)1, . . . , γ(r)n). Return 〈r〉.

Input: On input (Input, nI) from all parties, the functionality does the following:

(1) For Pi 6∈ P̂, the functionality samples ri
$← RnI .

(2) For Pi ∈ P̂, A inputs ri,∆γ,r ∈ RnI .
(3) Define r =

∑n
j=1 rj . Run the macro 〈r〉 ← SpdzRep(r1, . . . , rn, α,∆γ,r, nI).

(4) Return 〈r〉.

Triples: On input (Triple, nM ) from all parties, the functionality does the following:

(1) For Pi ∈ P̂, A inputs ai, bi, ci,∆γ,a,∆γ,b,∆γ,c ∈ RnM . For Pi 6∈ P̂, the functionality samples ai, bi
$← RnM .

(2) Define a =
∑n
j=1 aj , b =

∑n
j=1 bj .

(3) Let Pj 6∈ P̂ be the smallest index of an honest player. For all Pi 6∈ P̂, i 6= j choose ci
$← RnM . For Pj let

cj = a� b−
∑
i∈[n],i 6=j ci. Send ai, bi, ci to each honest Pi.

(4) Run the macros

〈a〉 ← SpdzRep(a1, . . . ,an, α,∆γ,a, nM ),

〈b〉 ← SpdzRep(b1, . . . , bn, α,∆γ,b, nM ),

〈c〉 ← SpdzRep(c1, . . . , cn, α,∆γ,c, nM ).

(5) Return (〈a〉, 〈b〉, 〈c〉).

Fig. 5. FOffline: Functionality FOffline for the preprocessing of SPDZ.

Algorithms. Assume that M,A,B are defined as above for a fixed parameter set. To sample noise for the
ciphertexts, we define the efficient polynomial time algorithm Dd

ρ, which outputs vectors r ∈ Zd such that

Pr[||r||∞ ≥ ρ | r ← Dd
ρ] < negl(λ). We let C be the set of arithmetic Single Instruction Multiple Data

(SIMD) circuits over F`. The SIMD property implies that there exists a function f ∈ F[X1, . . . , Xn(f)] such

that f̂ ∈ C evaluates the function f ` times on inputs in Fn(f) in parallel.
For the specified algebraic structures, define the probabilistic polynomial-time algorithms KG,Enc,Dec

that represent the cryptosystem H as follows:

KG : This algorithm samples a public-key/private-key pair (pk, sk).

Encpk(x, r) : Let x ∈ A and r ∈ Zd then this algorithm creates a g ∈ B deterministically. Enc must be
additively homomorphic for at least a small number t of correctly formed ciphertexts on both plaintexts
and randomness: Let x1, . . . ,xt ∈ image(ι), r1, . . . , rt ← Dd

ρ. Then it holds that

Encpk(x1 + · · ·+ xt, r1 + · · ·+ rt) = Encpk(x1, r1) � . . .� Encpk(xt, rt)

Decsk(g) : For g ∈ B this algorithm will return an m ∈M∪ {⊥}.
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Correctness. Let n(f), f ∈ C be the number of input values of f and let f̂ be the embedding of f into B
where ’+’ is replaced by �, ’·’ by � and the constant c ∈ F by Encpk(ι(c·1),0). For data vectors x1, . . . ,xn(f),
let f(x1, . . . ,xn(f)) be the SIMD application of f to this data.

Definition 2 (Correctness). H = (KG,Enc,Dec) is called (BP , BR, C)-correct if

Pr

Decsk(c) 6= f
(
η(x1), . . . , η(xn(f))

) (pk, sk)← KG(1λ) ∧ f ∈ C ∧ c← f̂(c1, . . . , cn(f))∧[
(xi, ri) ∈ A× (Zd) ∧ ci ← Encpk(xi, ri)∧
η(xi) ∈M∧ ||xi||∞ ≤ BP ∧ ||ri||∞ ≤ BR

]
i∈[n(f)]

 ≤ negl(λ)

For SPDZ one would additionally require that the encryption scheme has a distributed decryption and key
generation procedure, but we do not specify these here since we will not make use of these functionalities.
With this at hand, we can define our cryptosystem as follows:

Definition 3 (Somewhat Homomorphic Cryptosystem). Let C contain formulas of the form(∑n
i=1 xi

)
·
(∑n

i=1 yi
)

+
∑n
i=1 zi for n ∈ N. Let H = (KG,Enc,Dec) be an IND-CPA secure cryptosystem.

H is called somewhat homomorphic if it is (BP , BR, C)-correct for fixed BP , BR.

One can easily see that e.g. the Ring-LWE-based BGV scheme [8] or the BGH extension of LWE-based BGV
[7] have the required features. The more recent matrix-based cryptosystems like the GSW scheme [23,9] do
unfortunately have no SIMD property and are in practice outperformed by the above schemes.

2.3 Zero-Knowledge Proofs of Plaintext Knowledge for SHE

Two different flavors of amortized zero-knowledge proofs were used before in the context of the above
cryptosystem H and preprocessing for MPC. The first technique was described in [19] and follows an idea
due to [11,4]. Another approach was introduced in [16] and uses a LEGO-like [32] argument.

The proofs will have statistical security parameter κ. We prove plaintext knowledge of the set SP =
{c1, . . . , ct} of ciphertexts. More formally, one shows that the following relation holds:

RHPoPK =

 (a,w)

a = (c1, . . . , ct, pk) ∧w = (x1, r1, . . . ,xt, rt)∧[
ci = Encpk(xi, ri) ∧ η(xi) ∈M∧
||xi||∞ ≤ BP ∧ ||ri||∞ ≤ BR

]
i∈[t]


In this work, we will use an approach that is an optimization of the proof technique from [16]. The protocol

uses a larger number of auxiliary ciphertexts, but the gap between (τ, ρ) and BP , BR is polynomial (whereas
[19] has a soundness slack that is exponential in κ). In order to prove plaintext knowledge, one uses a set SA
of T auxiliary ciphertexts where t divides T . This set is obtained using the procedure CutAndChoose, where
first 2T auxiliary ciphertexts are generated by Pr, among which T are opened. These T opened ciphertexts
are chosen uniformly at random and Ve checks that they are all formed correctly. The remaining, T unopened
auxiliary ciphertexts are now the set SA and only a small subset of the remaining ciphertexts may not be well
formed. Ve then randomly assigns the T auxiliary ciphertexts into t buckets, and by a standard argument
the probability that all ciphertexts in each bucket are not generated correctly is negligible. Pr in turn, for
bucket i and ci ∈ SP , opens the sum ci + aj for all j in bucket i and Ve checks correctness.

This proof requires to generate 2T/t auxiliary ciphertext per proven plaintext. In particular for a practical
number of ciphertexts (think t ≈ 40) this makes implementations quite slow (due to the demand in RAM).

2.4 (Reed-Solomon) codes

Let p, k,m ∈ N+,m > k and p be a prime. Consider the two vector spaces Fkp,Fmp and a monomorphism

C : Fkp → Fmp together as a code, i.e. c = C(x) as an encoding of x in Fmp . We assume that it is efficiently
decidable whether c′ ∈ C (error detection), where

c′ ∈ C ⇔ ∃x′ ∈ Fkp : C(x′) = c′,

9



Procedure CutAndChoose

CutAndChoose(T,BP , BR):
(1) Pr calls the RO with seeds f1, . . . , f2T . From the output, it generates si,yi deterministically as follows:

(1.1) Choose si uniformly at random with ||si||∞ ≤ BR.
(1.2) Let mi ∈ M be a random element and set yi = ι(mi) + ui where ui is generated such that each

entry is a uniformly random multiple of p subject to the constraint that ||yi||∞ ≤ BP .
(2) For i ∈ [2T ] Pr computes ai = Encpk(yi, si) and sends a1, . . . ,a2T to Ve.
(3) Pr, Ve sample a set V ⊂ [2T ] of size T using FRand.
(4) For all i ∈ V , Pr sends fi to Ve who verifies that they induce the ciphertexts ai as generated in Step (2)

and that ||yi||∞ ≤ BP and ||si||∞ ≤ BR. If one of the checks does not hold, then Ve aborts.
(5) Let [2T ] \ V = {i1, . . . , iT }. Output (ai1 ,yi1 , si1 , . . . ,aiT ,yiT , siT ).

Fig. 6. CutAndChoose: Procedure for generating auxiliary ciphertexts using cut and choose.

and the Hamming distance d of two codewords x,y ∈ C should be large (meaning that the difference of
any two distinct codewords should be non-zero in as many positions as possible). Such a code is called an
[m, k, d] code.

If, for every message x ∈ Fkp the message x reappears directly in C(x) then the code is called systematic.
Without loss of generality, one can assume that the first m positions of a codeword are equal to the encoded
message in that case. The mapping of C can be represented as multiplication with a matrix G (called the
generator matrix ), and one can write the encoding procedure as C : x 7→ Gx where G ∈ Fm×kp . Similarly,

we assume the existence of a check matrix H ∈ F(m−k)×m
p where Hx = 0⇔ x ∈ C.

For a [m, k, d] code C, define the Schur transform (as in [18]) as C∗ = span({x � y | x,y ∈ C}). C∗
is itself a code where the message length k′ cannot be smaller than k. On the contrary, C∗ has a smaller
minimum distance d′ ≤ d. The actual values k′, d′ depend on the properties of the code C.

An example for a code with small loss d− d′ with respect to the Schur transform (as we shall see later)
is the Reed-Solomon code, where the encoding C works as follows: for a, b ∈ N+ define the matrix

Va(z1, . . . , zb) :=

1 z1 z
2
1 . . . z

a
1

...
...

...
. . .

...
1 zb z

2
b . . . z

a
b

 .

Fix pairwise distinct and non-zero z1, . . . , zk ∈ Fp and define the matrices A1 = Vk(z1, . . . , zk)−1 and
A2 = Vm(z1, . . . , zk). Define the encoding as

C : Fkp → Fmp
x 7→ A2A1x.

This encoding can be made efficient since the matrices are decomposable for certain values z1, . . . , zk using
the Fast Fourier Transform (FFT). Decoding can be done in a similar fashion, be we do not discuss it here.

The intuition behind the encoding procedure is as follows: the k values uniquely define a polynomial f of
degree at most k − 1, whose coefficients can be computed using A1 (as an inverse FFT). One evaluates the
polynomial in the remaining m− k positions using A2. The minimum distance d is exactly m− k+ 1, since
two polynomials of degree at most k − 1 are equal if they agree in at least k positions. Now, by letting A2

be another FFT matrix, the point-wise multiplication of codewords from C yields a codeword in C∗ which
is a polynomial of degree at most 2(k−1) and the code C∗ therefore has minimum distance d′ = m−2k+ 1.

2.5 The Paillier cryptosystem

We use the Paillier encryption scheme P = (KG,Enc,Dec) as defined in [34,15] (with some practical restric-
tions). Let N = p · q be the product of two odd, τ -bit safe primes with (N,φ(N)) = 1 (we choose τ such
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that the scheme has λ bit security). We define Paillier encryption of a message x ∈ Z/NZ with randomness
r ∈ Z/NZ∗ is defined as

〈〈x〉〉 := P.Encpk(x, r) = rN · (N + 1)x mod N2.

Knowing the factorization of N allows decryption of ciphertext c ∈ Z/N2Z∗, e.g., by determining the
randomness used,

r = cN
−1 mod φ(N) mod N .

The decryption P.Dec then proceeds as

x =
((
c · r−N mod N2

)
− 1
)
/N mod N .

The key generation algorithm P.KG samples an RSA modulus N = p · q, lets the public key be pk = (N)
and the secret key be sk = (p, q, f = N−1 mod ϕ(N)). The encryption scheme is additively homomorphic
and IND-CPA secure assuming the Composite Residuosity problem CR[N ] is hard (see [34] for details).

Functionality FP
KeyGenDec

Key Generation:
(1) On input (Keygen, τ, κ) by all parties, compute (N, sk)← P.KG(1λ).

(2) Sample sk2, . . . , skn
$← Z/2κNZ and choose sk1 ∈ Z/2κNZ such that sk =

∑
i ski mod ϕ(N).

(3) Output (N, ski) to party Pi.

Distributed Decryption:
(1) When receiving (Decrypt, c) from all players, check whether there exists a shared key pair (N, sk). If not,

return ⊥.
(2) We now let the parties decide how to decrypt:

– Upon receiving (Rand) from all players, send (x, r)← P.Decsk(c) to A. Upon receiving x∗ ∈ {(x, r),⊥}
from A, send (Result, x∗) to all players.

– Upon receiving (NoRand) from all players, send (x, ?)← P.Decsk(c) to A. Upon receiving x∗ ∈ {x,⊥}
from A, send (Result, x∗) to all players.

Fig. 7. FP
KeyGenDec: Functionality that provides shared keys and decrypts ciphertexts for Paillier encryption.

For the purpose of using this encryption scheme in an interactive protocol, assume the existence of a
functionality FP

KeyGenDec as in Fig. 7. As mentioned in the introduction, we later implement the Distributed

Decryption based on a functionality FP
KeyGen that only contains the Key Generation part of FP

KeyGenDec
8. Our Distributed Decryption follows directly from the decryption formula given above where one does
completely recover the randomness used during encryption. This is not always desirable and the functionality
therefore provides an option whether this should be done or not. Observe that in this work, we will only use
decryption that reveals the randomness and provide the other option only for completeness.

3 More efficient Preprocessing from Somewhat Homomorphic Encryption

In this section, we present an improved preprocessing protocol for SPDZ over fields. Towards achieving this,
we overhaul the triple generation in a way that allows more efficient checks of correctness. This check uses
the original SPDZ preprocessing as a black box (see Fig. 8) plus the aforementioned codes which we will
describe in more detail. The triple check introduces some computational overhead on top of Ffaulty

Offline , but we
show how this overhead can be reduced.

8 A protocol for such a key sampling can be implemented using an arbitrary MPC scheme.
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3.1 The offline phase of SPDZ

We already mentioned in Section 2.2 that the preprocessing of [19] uses a SHE scheme for the preprocessing.
Unfortunately, this scheme H only has a potentially faulty distributed decryption procedure. Therefore, the
actual output of the preprocessing rather looks like that depicted in Fig. 8.

Functionality Ffaulty
Offline

This functionality generates a shared MAC key α and (potentially faulty) 〈·〉-representations.

Initialize: On input (Init,F, C) from all players, store a description of F and of the code C.

(1) For all Pi ∈ P̂, A inputs αi ∈ F, while for all i 6∈ P̂, choose αi
$← F.

(2) Set the key α =
∑n
i=1 αi and send αi to Pi 6∈ P̂.

Triples: On input (Triple) from all parties, the functionality does the following to generate triples:

(1) For Pi 6∈ P̂, sample ai, bi
$← C.

(2) For Pi ∈ P̂, A inputs ai, bi, ci, δ,∆γ,a,∆γ,b,∆γ,c ∈ Fm. If ai, bi 6∈ C then stop.
(3) Define a =

∑n
j=1 aj , b =

∑n
j=1 bj .

(4) Let Pj 6∈ P̂ be the smallest index of an honest player. For all Pi 6∈ P̂, i 6= j choose ci
$← Fm. For Pj let

cj = a� b+ δ −
∑
i∈[n],i 6=j ci. Send ai, bi, ci to each honest Pi.

(5) Run the macros

〈a〉 ← SpdzRep(a1, . . . ,an, α,∆γ,a,m),

〈b〉 ← SpdzRep(b1, . . . , bn, α,∆γ,b,m),

〈c〉 ← SpdzRep(c1, . . . , cn, α,∆γ,c,m).

(6) Return (〈a〉, 〈b〉, 〈c〉).

Fig. 8. Ffaulty
Offline : Functionality that generates potentially faulty triples.

The main difference between Ffaulty
Offline and FOffline is that the former functionality may potentially output

faulty data, which then means that the computation in the online phase will not yield a correct result. We
want to stress that the original SPDZ protocol does not output potential codewords, but it can easily be
modified to do so by adjusting the zero-knowledge proofs.

3.2 The preprocessing protocol

Let C be some [m, k, d] Reed-Solomon code and C∗ be its [m, k′, d′] Schur transform. We assume the existence
of a functionality that samples faulty correlated randomness, as depicted in Fig. 8. It generates random
codewords as the shares of factors a, b of multiplication triples and also enforces that malicious parties
choose such codewords as their shares. The functionality then computes a product and shares it among all
parties, subject to the constraint that A can arbitrarily modify the sum and the shares of malicious parties.
Fig. 8 can be implemented using a SHE scheme as was shown in [19]. As a twist, the zero-knowledge proofs
must be slightly extended to show that the vectors inside the ciphertexts contain codewords from C. Based on
this available functionality, we show that one can implement FOffline as depicted in Fig. 5 using our protocol
ΠOffline. FOffline is similar to Ffaulty

Offline but additionally ensures that all multiplication triples are correct.
The main idea of this protocol follows the outline as presented in the introduction:

(1) Check that the output vector c is a codeword of C∗. If so, then the error vector δ is also a codeword,
meaning that either it is 0 or it has weight at least d′.

(2) Open a fraction of the triples to check whether they are indeed correct. If so, then δ must be the all-zero
vector with high probability.
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3.3 Fast and amortized checks

In the protocol presented in Fig. 10, we check each potential code vector separately. Let H ∈ Fl×m be the
check matrix of the Schur transform of the code. Multiplication with a check matrix H can be done in
O(m2) steps. If this must be carried out for a number of e.g. m vectors the cost is O(m3) operations, when
done trivially. Consider all the l input vectors a1, . . . ,al concatenated as a matrix A = (a1|a2| . . . |al). If
all vectors are drawn from the code, then HA = 0.

Procedure MatrixMultiplicationCheck

Input the matrices H,A.

(1) Compute the matrices GH and AG>.

(2) For j ∈ [m′] select a pair (xj , yj)
$← {1, . . . ,m′}2.

(3) For j ∈ [m′], compute zj as the inner product of the xjth row of GH and the yjth column of AG>.
(4) If all zi are 0 return accept, otherwise reject.

Fig. 9. MatrixMultiplicationCheck: Procedure to check whether a matrix product is zero.

Now consider another generator matrix G ∈ Fm′×l for a Reed-Solomon code of message dimension l,
where we denote the redundancy as d ∈ O(m) again (we can easily assume that m′ ∈ O(m)). Multiplication
of each of the matricesH,A withG can be done in time m′2 ·log(m′) using the FFT, and one can precompute
GH before the actual computation takes place. GHAG> is a zero matrix if A only consists of codewords.
On the other hand, consider GHA: if one row is not a codeword, then it will be encoded to a vector with
weight at least d due to the distance of the code. Multiplying with G> will then yield a matrix where at

least d2 entries are non-zero. Since both m′, d ∈ O(m), the fraction d2

m′2 is constant. One can compute both
GH and AG> in time m′2 · log(m′) using the FFT, and then choose rows/columns from both product
matrices for which one then computes the inner product. In case that at least one ai is not a codeword, the
computed inner product will be non-zero with constant probability. Repeating this experiment Ω(m′) times
yields 0 in all cases only with probability negligible in m′ if A cheated. We refer to [18] for more details on
this technique.

4 Security of the Preprocessing from Somewhat Homomorphic Encryption

To prove the security of our construction from the previous section, we use the following fact:

Lemma 2. Let C be an [m, k, d] code and x ∈ C \ {0}. Choose elements t times from [m] uniformly at
random - denote this choice as the set S ⊆ [m]. Define Ex to be the event that x[S] = 0. Then

Pr[Ex] <

(
m− d
m

)t
.

The statement follows because the codeword must be non-zero for at least d positions, hence the probability
that we hit one of the (at least) d non-zero elements is m−d

m for each experiment. By repeating this experiment
t times independently one obtains the bound.

Theorem 1. Let C be a [m, k, d] linear block code, such that its Schur transform forms a [m, k′, d′] linear
block code C∗. Moreover, let t = O(κ), t < k− 1 and d′ = O(m) where d′ < m. Then there exists a simulator
SOffline such that SOffline � FOffline is statistically indistinguishable from ΠOffline in the Ffaulty

Offline ,FCommit,FRand-
hybrid model with broadcast channel where, for n players, up to n− 1 can act maliciously.

For the sake of simplicity, we present our protocol for the case where running one instance of ΠMacCheck is
sufficient (and where we hence only need one MAC). Both the 〈·〉-representation and ΠMacCheck easily extend
to the case where there are multiple MAC keys, and so does our protocol.
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Protocol ΠOffline

Let H be the check matrix of C∗ and t ∈ N+, t < k − 1 be the upper bound on the number of opened triples. We
assume that both C,C∗ are in systematic form.

Initialize:
(1) All parties send (Init,F, C) to Ffaulty

Offline to receive their shares αi of α.

Triples:
(1) All parties send (Triple) to Ffaulty

Offline and obtain (〈a〉, 〈b〉, 〈c〉).
(2) Let ci be Pi’s share of 〈c〉. Each party locally computes σi = Hci and commits to σi using FCommit.
(3) Each party Pi opens its commitments to σi towards all parties. Check if 0 =

∑
i σi. If not, abort.

(4) Let A = [m]. The parties do the following t times in a loop:

(4.1) Sample the random value r
$← FRand(m). Set A = A \ {r}.

(4.2) Each party Pi commits to its shares ai[r], bi[r], ci[r] using FCommit.
(4.3) Each party opens its commitments towards all other parties.
(4.4) Each party checks that (

∑
i ai[r]) · (

∑
i bi[r]) =

∑
i ci[r]. If not, then they abort.

(5) Let U = [m] \A, where U = {u1, . . . , ul}. Compute

d← ΠMacCheck(σ,a[u1], b[u1], c[u1], . . . ,a[ul], b[ul], c[ul]).

If d 6= 0 then abort.
(6) Let O ⊂ A be the smallest k − t− 1 indices of A. The parties output (〈a[O]〉, 〈b[O]〉, 〈c[O]〉).

Fig. 10. ΠOffline: Protocol that checks the correctness of triples.

Simulator SOffline

SimulateInitialize:
(1) We start our own instance Π of the protocol ΠOffline which A is communicating with, and also local instances

of FCommit and FRand.
(2) Send (Init,F, C) on behalf of the simulated honest parties to Ffaulty

Offline and obtain the shares αj . Since we
simulate Ffaulty

Offline , save the αj for Pj ∈ P̂.
(3) Send (Init,F) in the name of the dishonest parties to FOffline.
(4) For each dishonest party Pi, send the intercepted share αi to FOffline.

SimulateTriples:
(1) Set the flag cheated = ⊥.
(2) Send (Triple) to Ffaulty

Offline in the name of the honest players Pj .
(3) Intercept ai, bi ∈ Fm from each dishonest party Pi. If either of these vectors is not in C, then stop here.
(4) Wait for A to input δ,∆γ,a,∆γ,b,∆γ,c ∈ Fm and ci ∈ Fm for each dishonest Pi.
(5) Wait for the output aj , bj , cj ,γ(a)j ,γ(b)j ,γ(c)j ∈ Fm that the honest parties Pj obtain in Π from Ffaulty

Offline .
(6) Commit to the correct value σj = Hcj for each honest Pj in Step (2).
(7) Let {σi}i∈P̂ be the commitments A sent to FCommit. If

∑
i∈P̂ σi 6= H(

∑
i∈P̂ ci) then set cheated = >.

(8) Do Step (3) as in the protocol. Abort if the protocol aborts.
(9) Do Step (4) with its t iterations. In every iteration, if the sum of the values ai, bi, ci that the dishonest

parties send differs from those they sent to Ffaulty
Offline , then set cheated = >.

(10) Do Step (5) as in the protocol. Abort if Π aborts, if δ 6= 0, if a dishonest party sends a value inconsistent
with those it has or if cheated = >.

(11) Send (Triple, k − t− 1) to FOffline in the name of all dishonest parties.
(12) Compute the set O as in Π. Send the adversarially chosen ai[O], bi[O], ci[O] for each dishonest Pi to

FOffline.
(13) For every call of SpdzRep, send the same values to FOffline that Pi sent to Ffaulty

Offline for the same call.

Fig. 11. SOffline: Simulator for the protocol ΠOffline.
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Proof. In order to prove the theorem, we use the simulator as described in Fig. 11. The simulator will run a
local copy of the protocol, together with local copies of Ffaulty

Offline , FCommit,FRand

Correctness. We first observe that the protocol ΠOffline is correct in the sense that, if all parties follow it
without deviations, they obtain outputs as in FOffline. This trivially follows from the fact that Ffaulty

Offline and
FOffline only deviate in δ, which would never be set if all parties behave honestly. The introduced redundancy
due to the code C is fully discarded, hence the output of the protocol will consist of correct and randomly
distributed multiplication triples. Since the MAC shares of the dishonest parties are the same in Ffaulty

Offline and
FOffline they are consistent with the honest parties’ outputs.

Simulatability. Neither in Ffaulty
Offline nor in FOffline the dishonest parties will ever receive output. Moreover,

in the simulation we follow exactly the protocol for the simulated honest parties and stop whenever the
protocol would stop. In addition, we also abort if the protocol would not abort, but the adversary provided
a value δ 6= 0 or if the dishonest parties sent inconsistent values. We now argue that the probability that
the protocol does not abort while the simulator does abort is negligible.

In the case of cheated = > or if the dishonest parties send inconsistent values in ΠMacCheck, this follows
from Lemma 1. Therefore, let us assume that cheated = ⊥, but δ 6= 0. Observe that

Pr[Π aborts | δ 6= 0] ≤ Pr[SOffline aborts | δ 6= 0].

SOffline is constructed such that Pr[SOffline aborts | δ 6= 0] = 1. On the other hand, we can either catch the
adversary if δ 6∈ C∗ or if it is indeed a codeword, but not the correct one:

Pr[Π aborts | δ 6= 0] = Pr[Π aborts | δ 6∈ C∗] · Pr[δ 6∈ C∗]
Pr[δ 6= 0]

+ Pr[Π aborts | (δ ∈ C∗ ∧ δ 6= 0)] · Pr[δ ∈ C∗ ∧ δ 6= 0]

Pr[δ 6= 0]
.

Since cheated = ⊥ both Step (2) and Step (4) are carried out correctly except with negligible probability
i.e. the dishonest parties provided correct values.

If δ 6∈ C∗, then
∑n
i=1 σi 6= 0 due to the fact that H is a check matrix. Hence we have that

Pr[Π aborts | δ 6∈ C∗] = 1− negl(κ).

On the other hand, we can use Lemma 2 to give a lower bound on the second term, which is

Pr[Π aborts | (δ ∈ C∗ ∧ δ 6= 0)] > 1−
(
m− d′

m

)t
− negl(κ).

Letting t, d′ be chosen as mentioned in the theorem, the statement follows. ut

A reformulation of Lemma 2

Here we give an alternative to Lemma 2. It performs slightly worse when using actual numbers, but is more
natural as we always check a constant fraction of the positions whereas Lemma 2 uses t values sampled
uniformly at random from [m].

Lemma 3. Let C be an [m, k, d] code and x ∈ C \{0}. Moreover, let S ⊂ [m] be chosen uniformly at random
such that |S| = t and define Ex to be the event that x[S] = 0. Then

Pr[Ex] <

(
m− d
m− t

)t
.

Moreover, for practical applications one should use the sharper bound

Pr[Ex] <

(
2m− 2d− t+ 1

2m− 2t+ 2

)t
.
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Let us first define the function

# : C → N

x 7→
m∑
i=1

(1− δx[i]0),

where δij is the Kronecker Delta function. This function computes the Hamming weight of the vector x.

Proof. For an arbitrary x, the event Ex occurs with probability

Pr[Ex] =
m−#(x)

m
· m−#(x)− 1

m− 1
· · · m−#(x)− t+ 1

m− t+ 1

=

t−1∏
i=0

m−#(x)− i
m− i

.

Now the code has a minimal distance d, hence #(x) ≥ d. We can therefore give an upper bound on Pr[Ex]
as

Pr[Ex] ≤
t−1∏
i=0

m− d− i
m− i

<
(m− d)t

(m− t+ 1)t

<

(
m− d
m− t

)t
,

(1)

which proves the first claim. To give a somewhat tighter bound, observe that we can look at the product in
Equation (1) as a geometric mean. We can find an upper bound using the arithmetic mean as

t−1∏
i=0

m− d− i
m− i

≤
(

1

t

t−1∑
i=0

m− d− i
m− i

)t
. (2)

Now observe that the sum in Equation (2) can be upper-bounded again as

t−1∑
i=0

m− d− i
m− i

=

∑t−1
j=0

(
(m− d− j)

(∏t−1
i=0,i6=j (m− i)

))
∏t−1
i=0 (m− i)

<

∑t−1
j=0

(
(m− d− j)

(∏t−2
i=0 (m− i)

))
∏t−1
i=0 (m− i)

=

(∏t−2
i=0 (m− i)

)∑t−1
j=0 (m− d− j)∏t−1

i=0 (m− i)

=

∑t−1
i=0 (m− d− i)
m− t+ 1

=
2mt− 2dt− t2 + t

2m− 2t+ 2
.

Putting things together, this yields

Pr[Ex] <

(
2m− 2d− t+ 1

2m− 2t+ 2

)t
.

ut
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5 Amortized Zero-Knowledge proofs for Lattice-based Encryption

In the following, we present an amortized ZKPoPK which extends the idea of [16]. The proven upper bounds
on the output ciphertexts will be worse than [16], but only by a factor t. On the other hand, we will be able
to reduce the number of auxiliary ciphertexts by a factor9 of ≈ 2.

The overall strategy of the proof is as follows:

(1) Sample a number of auxiliary ciphertexts 2T , then open a (random) half in a cut-and-choose process.
(2) For b1 rounds, open the sum of a ciphertext ci and a random auxiliary ciphertext.
(3) Then for b2 rounds, randomly put the t ciphertexts into a matrix of width and height

√
t. Compute all

row and column sums and prove plaintext knowledge of them.

The rationale behind this strategy is that, after the cut-and-choose, most of the T auxiliary ciphertexts are
generated correctly (except with small probability). Hence most of the sums that are opened in the second
step allow extraction and only a small number of the t ciphertexts could not be extracted after b1 rounds.
The third step works best for a very small number of remaining bad ciphertexts (up to around

√
t/2), but

then allows extraction in a small number of repetitions. The proof can be found in Fig. 12 and Fig. 13

Protocol ΠNewZK (Part 1)

The prover inputs x1, r1, . . . ,xt, rt and proves RHPoPK for given c1, . . . , ct. Let b1, b2, c ∈ N. For the sake of
simplicity, we assume that

√
t ∈ N. Honestly generated ci will have ||xi||∞ ≤ τ and ||ri||∞ ≤ ρ. Let v =

(W + d) · δ · T ·
√
t.

(1) Let w ← 1 be a counter. Set T = t · b1 + c · b2 · 2 ·
√
t.

(2) (a1,y1, s1, . . . ,aT ,yT , sT )← CutAndChoose(T, v · τ, v · ρ).
(3) Pr, Ve jointly sample a uniformly random partitions V1, . . . , Vb1+b2 ⊂ [T ] using FRand, such that

|Vi| =

{
t if i ∈ {1, . . . , b1}
2 · c ·

√
t if i ∈ {b1 + 1, . . . , b1 + b2}

(4) For z ∈ [b1] do the following:
(4.1) Rename Vz = {v1, . . . , vt}. Pr computes αi = xi + yvi , βi = ri + svi .
(4.2) Pr checks that ||αi||∞ ≤ (v − 1) · τ and ||βi||∞ ≤ (v − 1) · ρ. If not, then Pr sends ⊥ and starts again.
(4.3) Pr sends (αi,βi)i∈[t] to Ve.
(4.4) Ve checks that Encpk(αi,βi) = ci � avi and ||αi||∞, ||βi||∞ follow the above bounds.
(4.5) If a check does not hold: if w < M , increment w by 1 and go to Step (2). If w = M then Ve rejects.

Fig. 12. ΠNewZK: Asymptotically efficient ZKPoPK.

5.1 The problem of soundness

Whereas the first two steps of our proof are mathematically simple to analyze, the third step seems somewhat
more cumbersome. In Fig. 14, we give a graphical description of how the extractor in the soundness argument
should work if one abstracts the problem as an instance of a bins and balls-game.

In a more formal way, we can describe Fig. 14 as an algorithm:

matrixGame(M ,m, n) :

(1) If M ∈ Zm×n2 then continue, otherwise abort.

9 This is particularly critical because in implementations, one would try to keep all ciphertexts in the RAM (which
was a particular problem in [16]).
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Protocol ΠNewZK (Part 2)

(5) Pr, Ve together sample b2 permutations W1, . . . ,Wb2 of [t] using FRand. For z ∈ [b2] do the following:
(5.1) Let u = 2 ·

√
t and Wz = {w1, . . . , wt}. For i ∈ [

√
t] we define

x′i =

√
t∑

k=1

xw
(i−1)

√
t+k

and x′i+
√
t =

√
t∑

k=1

xw
(k−1)

√
t+i

and r′i, c
′
i accordingly.

(5.2) For i ∈ [u], k ∈ [c] and Vb1+z = {v1, . . . , vu·c} Pr computes αki = x′i + yv
(i−1)

√
t+k

and similarly βki =

r′i + sv
(i−1)

√
t+k

.

(5.3) Pr checks that ||αki ||∞ ≤ (v −
√
t) · τ and ||βki ||∞ ≤ (v −

√
t) · ρ. If not, then he sends ⊥ to Ve and starts

again.
(5.4) Pr sends (αki ,β

k
i ) to Ve.

(5.5) Ve checks that Encpk(αki ,β
k
i ) = c′i�av(i−1)

√
t+k

and if ||αki ||∞, ||βki ||∞ have the bounds from the previous
step.

(5.6) If a check does not hold: if w < M , increment w by 1 and go to Step (2). If w = M then Ve rejects.
(6) Ve accepts.

Fig. 13. ΠNewZK: Asymptotically efficient ZKPoPK, continued.

(2) Let r be the number of ones that are alone in a column of M . Remove all such r ones to form the
matrix M ′.

(3) Let s be the number of ones that are alone in a row of M ′.
(4) Output (r, s).

This one can rephrase into an expression that will turn out helpful in the security proof.

Problem 1 Let m,n, k ∈ N+, k ≤ m · n, c ∈ R+ and

Mm,n,k = {A ∈ Zm×n2 | A has exactly k ones}

Compute

Pr

[
r + s ≥ bk/cc

∣∣∣∣ M $←−Mm,n,k ∧ (r, s)← matrixGame(M ,m, n)

]
We do not have a formula in closed form to compute the probabilities in the above problem. But a

brute-force approach does also not seem plausible: we observe that

|Mm,n,k| =
(
m · n
k

)
is the total number of ways of arranging k balls on an m×n grid. Sampling all such matrices and computing
the output of matrixGame for each of them for larger values of m,n, k is computationally intractable. In
Appendix A, we describe how to solve the problem efficiently for k < 40 which is sufficient for our application.
Based on this, Table 2 contains some parameter recommendations for the protocol based on our analysis.

We want to point out that we use matrixGame in two different ways in our analysis: if a plaintext is
extracted in one round of an instance of Problem 1, then we call such a ciphertext strongly extracted. If one
only extracts ciphertexts that, already in M from the problem are either alone in a row or column (that is,
we do not consider rows that, only after Step (2) of matrixGame, have exactly one element), then we call such
ciphertexts weakly extracted. Using strong extraction allows to lower the number of rounds and auxiliary
ciphertexts in the protocol, but increases the bound on the size of the extracted ciphertexts by a factor

√
t.

Theorem 2. Let H = (KG,Enc,Dec) be a somewhat homomorphic cryptosystem with δ > 1, T > κ and
v = (W + d) · δ · T ·

√
t, then the protocol ΠNewZK is a honest-verifier zero-knowledge proof of plaintext

knowledge for the relation RHPoPK where
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remove

vertically

horizontally

remove

Fig. 14. Two-dimensional elimination process (strong extraction)

κ t b1 b2 c strong extraction? T/t T/t in [16]

40 32 3 1 5 no 9.75 16
40 64 3 1 4 no 8 14
40 64 2 1 6 yes 7 14
40 100 2 1 6 yes 6.4 14
40 256 2 2 4 yes 6 12

Table 2. Example parameter sets for the proof ΠNewZK

BP = 2 · v · τ ·
√
t , BR = 2 · v · ρ ·

√
t for weakly extracted ciphertexts.

BP = 2 · v · τ · t , BR = 2 · v · ρ · t for strongly extracted ciphertexts.

Before proving the above theorem, we want to make a few remarks. First of all, the first of the b1
rounds of Step (4) can be avoided if one is ok with random plaintexts. In such a case, one would sample t
plaintext/ciphertext pairs using CutAndChoose instead. A side effect of this proof technique is that by setting
t very large and b1 = 0 one can end up in a situation where T < t i.e. one performs less individual proofs than
there are ciphertexts. Unfortunately, this behavior only occurs for very large values of t and is therefore of
no practical relevance. We also want to mention that ΠNewZK can be used in the implementation of Ffaulty

Offline .
To achieve this, one must sample all the plaintexts of the (auxiliary) ciphertexts as codewords and check
that all opened sums and all opened plaintexts from the cut-and-choose phase are from the code C. Since
all steps in the soundness argument that are used to extract plaintexts only perform linear operations, this
then works out of the box.

Proof (of Theorem 2). This proof is split in two halves: as mentioned above, the soundness of the proof relies
on the solution of Problem 1 which is discussed in more detail in Appendix A.

Completeness. Assume that Pr follows the protocol correctly and hence c1, . . . , ct were generated according
to the correct distributions. Due to the linearity of Encpk(·, ·), the protocol only aborts if one of the coefficients

of αji ,β
j
i becomes too large and therefore leaks information (which is when it is restarted). Let us focus on

the case where this happens: the probability that a coefficient of any of the αji ,β
j
i in both Step (4) or Step (5)

lies outside of the correct bounds is at most 1/((W + d) · δ · T ). There are W + d such coefficients and T
sums that are computed in total, hence the probability that Pr must send ⊥ is 1/δ. For M such rounds, the
chance that Pr fails to prove correct values is (1/δ)M .
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Honest-Verifier Zero-Knowledge. Consider the following algorithm:

(1) Let w ← 1 be a counter.
(2) Choose the subset V ⊂ [2T ] uniformly at random of size T . Choose the b1 + b2 subsets V1, . . . , Vb1+b2 ⊂

[2T ] \ V as in Step (3) in ΠNewZK at random according to their size constraints. Moreover, choose the b2
random permutations W1, . . . ,Wb2 of [t] as in Step (5) of the protocol.

(3) Compute all the x′i, r
′
i, c
′
i as in Step (5.1) of ΠNewZK.

(4) For each of the T sumsαji , choose forαji each coefficient uniformly at random from the interval [−v·τ, v·τ ].

Moreover, choose for each of the T sums βji each coefficient uniformly at random from [−v · ρ, v · ρ].
(5) For each of the i ∈ [2T ] from CutAndChoose we do the following:

– If i ∈ V then sample yi, si as in Step (1) of CutAndChoose. Then compute ai ← Encpk(yi, si).

– If i 6∈ V then set avi ← Encpk(αji ,β
j
i ) � ci if i ∈ {V1, . . . , Vb1} or (with an obvious reindexing based

on Wz, Vb1+z for z ∈ [b2]) compute ai ← Encpk(αji ,β
j
i ) � c

′
j if i ∈ {Vb1+1, . . . , Vb1+b2}.

(6) For i ∈ V output ai,yi, si and its PRF seeds. For i 6∈ V output ai.
(7) For each j ∈ [b1] if it holds that ∀i ∈ Vj the plaintexts and randomness are small enough, i.e.

||αji ||∞ ≤ (v − 1) · τ and ||βji ||∞ ≤ (v − 1) · ρ

then output αji ,β
j
i else output ⊥ and increase w by one. If ⊥ was returned: stop if w = M , otherwise

go to Step (2).
(8) For each j ∈ {b1, . . . , b1 + b2} if it holds that ∀i ∈ Vj the plaintexts and randomness are small enough,

i.e.
||αji ||∞ ≤ (v −

√
t) · τ and ||βji ||∞ ≤ (v −

√
t) · ρ

then output αji ,β
j
i else output ⊥ and increase w by one. If ⊥ was returned: stop if w = M , otherwise

go to Step (2).

The above algorithm outputs transcripts that are perfectly indistinguishable from transcripts generated by
ΠNewZK. This can be seen as follows:

– All the Vi,Wi and V are chosen as in the protocol, and for all i ∈ V the ciphertexts ai are generated as
in the protocol.

– For each honest choice of xi, by adding a uniform vector yi from the given interval the probability that
xi+yi exceeds the bound is the same, which also holds for ri and si. Hence the probability of outputting
⊥ is the same as in ΠNewZK.

– Let i ∈ [2T ] \ V . For each αji ,β
j
i in ΠNewZK, if it is given as output to Ve by an honest Pr then it holds

that ∀xi∃!yi : xi+yi = αji and similarly for x′i, ri, r
′
i, si. Therefore, the probability of outputting αji ,β

j
i

in ΠNewZK is independent of xi, ri and one can safely choose them in the simulation at random.

Soundness. To establish the bound on the plaintext and randomness size, we first observe that a plaintext
can either be extracted in one of the b1 iterations of Step (4) or in the b2 rounds of Step (5).

Extraction in Step (4): Assume that the sum of a ciphertext and an extractable auxiliary ciphertext
cj + ai was opened during an iteration of Step (4). Using yi, si, for each such cj one can extract the xj , rj
from αji ,β

j
i . Since ||αji ||∞, ||yi||∞ ≤ v · τ it must hold that ||xj ||∞ ≤ 2 · v · τ . By the same argument, the

extracted randomness rj has coefficients of size at most 2 · v · ρ.
In order to obtain the yi, si that are necessary in the above reasoning we observe that each auxiliary

ciphertext ai was generated in Step (1) of CutAndChoose. It is therefore computed from an expanded seed
fi which was fed into the random oracle. One can extract the RO queries that Pr makes, and in particular
the fi seeds (more precisely, one can extract T − κ of them except with probability 2−κ).

Extraction in Step (5): For the sake of simplicity, let b2 = 1. In the case of weak extraction, each plaintext
in question can be computed as a sum of an auxiliary ciphertext (of norm v ·τ) and at most

√
t−1 plaintexts
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from Step (4), which yields a total bound of 2 · v · τ ·
√
t. The bound on the randomness can be established

the same way. For strong extraction, we first observe that the process now exactly follows matrixGame as
defined above. The plaintexts extracted during Step (2) of matrixGame will once again have norm at most
2 · v · τ ·

√
t by the same argument as before. In Step (3), it might happen that all the

√
t− 1 plaintexts that

one uses in the extraction were only just computed in Step (2) of matrixGame. Therefore, the bound on the
plaintexts extracted during Step (3) can be as high as 2 · v · τ · t which proves the claim. Once again, the
norm on the randomness follows accordingly. For arbitrary b2, the above argument also holds because we
then just extract all plaintexts at once in one of the b2 rounds, given this is in fact possible.

It remains to show for which choice of parameters b1, b2, c the above procedure works except with negligible
probability. This is a mere computational problem and will be answered in Appendix A.2. ut

6 Preprocessing from Paillier Encryption

In this section we present a novel approach to produce multiplication triples using Paillier’s cryptosystem. In
comparison to previous work which uses heavy zero-knowledge machinery to prove that multiplications are
done correctly, we choose a somewhat different approach that is related to the preprocessing protocol from
the previous section. Moreover, we present two zero-knowledge proofs which are used in the protocol (they
require to send fewer bits per proof instance in comparison to previous work) and a distributed decryption
technique that differs from existing work.

6.1 Proving statements about Paillier ciphertexts

First, consider a regular proof of plaintext knowledge. For Paillier encryption, one would prove the following
relation:

RPPoPK =
{

(a,w)
∣∣ a = (c, pk) ∧ w = (x, r) ∧ x ∈ Z/NZ ∧ r ∈ Z/NZ∗ ∧ c = Encpk(x, r)

}
Throughout the protocol, the parties must compute products with ciphertexts, where we want to establish
that a party knows which value it multiplied in. This can be captured as follows:

RPoM =

{
(a,w)

a = (z, ẑ, pk) ∧ w = (b, c, r) ∧ b, c ∈ Z/NZ∧
r ∈ Z/NZ∗ ∧ ẑ = zb · Encpk(c, r) mod N2

}
In the following, we present honest-verifier perfect zero-knowledge proofs for both RPPoPK, RPoM between
a prover Pr and verifier Ve. In order to use them in the preprocessing protocol, one can either make them
non-interactive using the Fiat-Shamir [20] transformation in the Random Oracle Model, or use a secure
coin-flip protocol to sample the challenge e. Since during a protocol instance, many proofs are executed in
parallel, one can use the same challenge for all instances and so the complexity of doing the coin-flip is not
a significant cost. For practical implementations, one can choose the random value e from a smaller interval
like e.g. [0, 2κ]. This also yields negligible cheating probability10.

Proof of knowledge

Lemma 4. The protocol ΠP
PoPK is an an interactive honest-verifier proof for the relation RPPoPK.

In the proof it is used that Enc is the bijection

Enc : Z/NZ∗ × Z/NZ → Z/N2Z∗

(x, r) 7→ rN (N + 1)x.

This follows directly from [34] and ordZ/N2Z∗(N + 1) = N .

Proof.

10 For the soundness of the proof, we rely on the fact that (e− e′, N) = 1 which indeed is always true if e, e′ �
√
N

and N is a safe RSA modulus.
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Protocol ΠP
PoPK

(1) Pr samples s
$← Z/NZ∗ and sends t = sN mod N to Ve.

(2) Ve samples e
$← Z/NZ and sends it to Pr.

(3) Pr sends k = s · re mod N to Ve.
(4) Ve accepts if kN = ce · t mod N and otherwise rejects.

Fig. 15. ΠP
PoPK: Protocol to prove knowledge of plaintexts of Paillier encryptions.

Correctness. Let c = Encpk(x, r) ∈ Z/N2Z∗, and observe that c = rN mod N . If both parties follow the
protocol, then

kN = (s · re)N mod N

= sN · (rN )e mod N

= t · ce mod N,

which proves correctness.

Soundness. Assume that Ve obtains two protocol transcripts (t, e, k), (t, e′, k′) such that e 6= e′ mod N and
e > e′. Then it additionally must hold that k 6= k′ mod N : for the sake of contradiction, assume that k = k′,
then (k/k′)N = 1 = ce−e

′
mod N where c = rN mod N , so we can write 1 = ce−e

′
= rN ·(e−e

′) mod N with
(N,ϕ(N)) = 1. Both e, e′ are chosen uniformly at random from Z/NZ and with overwhelming probability
e − e′ 6= 1 which means that ord(r)|(e − e′). So e − e′ is either a factor of ϕ(N) (remember that N is a
safe RSA prime) or it is a multiple of ϕ(N), both of which allows to break the CR[N ] assumption. We can
therefore assume that k 6= k′.

We obtain
kN = ce · t mod N and k′N = ce

′
· t mod N. (3)

By dividing the first by the second equation in Equation (3) we yield

(k/k′)N = ce−e
′

mod N.

Now we observe that, with high probability, (e− e′, N) = 1 (otherwise we could efficiently break the security
of the underlying encryption scheme). Using the extended euclidean algorithm, there exist values α, β ∈ Z
such that αN + β(e − e′) = 1. One can use the randomness v = (c mod N)α · (k/k′)β mod N to decrypt c
and obtain the plaintext pair (u, v). This must be the correct plaintext, because Enc is a bijection and

vN = (c)αN · (k/k′)βN mod N

= (c)αN · (c)β(e−e
′) mod N

= c mod N.

Honest-Verifier Zero-Knowledge. The simulator works as follows

(1) Sample k
$← Z/NZ∗, e $← Z/NZ uniformly at random.

(2) Set t = kN · c−e mod N .
(3) Output (t, e, k).

The algorithm terminates because (c mod N) ∈ Z/NZ∗ and hence c−e mod N is well defined. One can easily
verify that this is a correct transcript for ΠP

PoPK. Since the setup of the encryption scheme comes from a
CRS, we have that N−1 mod ϕ(N) is well defined and

φ : Z/NZ∗ → Z/NZ∗

x 7→ xN mod N
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is bijective. Hence, for t coming from the simulation, an Nth root s must exist in Z/NZ∗. In the protocol,
we choose s uniformly at random whereas we do this for k in the simulator. Since (for a fixed k, e) raising to
the Nth power or computing the Nth root is a bijection, the distributions are perfectly indistinguishable.

Protocol ΠP
PoM

(1) Pr samples t, u
$← Z/NZ, v $← Z/NZ∗. He then sends f = zt · Encpk(u, v) mod N2 to Ve.

(2) Ve chooses a uniformly random e
$← Z/NZ and sends it to Pr.

(3) Pr computes g = t+ e · b mod N,h = u+ e · c mod N, i = v · re mod N and and sends (g, h, i) to Ve.
(4) Ve accepts if zg · Encpk(h, i) = ẑe · f mod N2, and rejects otherwise.

Fig. 16. ΠP
PoM: Protocol to prove linear relation on ciphertexts.

Linear relations

Lemma 5. The protocol ΠP
PoM is an an interactive honest-verifier proof for the relation RPoM.

Proof.

Correctness. Let ẑ = zb · Encpk(c, r) mod N2, then the elements are in the right group i.e. z, ẑ ∈ Z/N2Z∗ as
required. Choose g, h, i as in the protocol, and observe that

zg · Encpk(h, i) = zt · ze·b · Encpk(h, i) mod N2

= zt · ze·b · Encpk(u, v) · Encpk(e · c, re) mod N2

= f · ze·b · Encpk(c, r)e mod N2

= f · ẑe mod N2.

Soundness. Assume that Ve obtains two protocol transcripts (f, e, (g, h, i)),
(f, e′, (g′, h′, i′)) such that e 6= e′ mod N . We require that (g, h, i) 6= (g′, h′, i′) (1-2 of the coordinates might
agree) which is true if Pr were honest as it could otherwise break the security assumption in a similar way
as in the proof of Lemma 4.

We obtain
zg · Encpk(h, i) = ẑe · f mod N2 and zg

′
· Encpk(h′, i′) = ẑe

′
· f mod N2.

If we divide the first by the second equation, we yield

zg−g
′
· Encpk(h− h′, i · i′−1) = ẑe−e

′
mod N2.

Because e 6= e′ mod N we can compute the multiplicative inverse and raise both sides to that power. Let
ω = (e− e′)−1 mod N then

z(g−g
′)·ω · Encpk(h− h′, i · i′−1)ω = ẑ1+tN mod N2

for some t ∈ Z that we can compute. Now divide both sides by ẑtN , then

ĉ = (N + 1)ω·(h−h
′)
(
(i · i′−1) · ω

)N · z(g−g′)ω · ẑ−tN mod N2

= (N + 1)ω·(h−h
′)
(
(i · i′−1) · ω · ẑ−t

)N · z(g−g′)ω mod N2.

By setting b = (g − g′) · ω mod N , r = (i · i′−1) · ω · ẑ−t mod N and c = ω · (h − h′) mod N we obtain a
witness for RPoM.
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Honest-Verifier Zero-Knowledge. To simulate ΠP
PoM, we use the following algorithm:

(1) Sample e
$← Z/NZ uniformly at random.

(2) Sample g, h
$← Z/NZ, i

$← Z/NZ∗ uniformly at random.
(3) Compute f ← zg · Encpk(h, i)/ẑ−e.
(4) Output (f, e, (g, h, i)).

Observe that the algorithm terminates, because ẑ−e mod N2 is well defined. Moreover, the algorithm outputs
a transcript that is correct. Let (f, e, (g, h, i)) be a transcript generated by the simulator, then e is chosen as
in the protocol. Moreover, we choose g, h, i from the same distribution that they have in the protocol, and
the bijection property uniquely determines f (as argued already in the previous lemma).

6.2 Distributed decryption

Let us start with the idea behind the distributed decryption key and the decryption protocol that recovers
the randomness completely (and why this is a good idea): for n parties P1, . . . , Pn, assume that there exists

a sum sharing sk1, . . . , skn such that sk2, . . . , skn
$← Z/2κNZ and sk1 ∈ Z/2κNZ such that sk1 = sk −

(
∑n
i=2 ski) mod ϕ(N) (this is the output for the shared secret key that FP

KeyGenDec generates). To decrypt a

ciphertext c, each party can now simply broadcast cski mod N . Each party then multiplies together all the
obtained values and uses the regular decryption procedure to recover x.

Protocol ΠP
Dec

Let c be a ciphertext. Each Pi holds a share ski of sk.

(1) Each Pi locally computes ti = cski mod N and then broadcasts it.
(2) Each Pi locally computes

r =

n∏
j=1

ti mod N,

as well as
x =

((
c · r−N mod N2

)
− 1
)
/N mod N .

(3) Each Pi checks that c = Encpk(x, r). If yes then output (x, r) else output ⊥.

Fig. 17. ΠP
Dec: Protocol to decrypt a Paillier ciphertext c by recovering its randomness.

The protocol ΠP
Dec from Fig. 17 follows the above sketch. This, in fact, is only a good idea if the original

randomness in c was chosen uniformly at random as we will see in the simulator.

Distributed decryption that does not recover the randomness. The above protocol ΠP
Dec is already

good enough for our application, since the ciphertexts and their randomness that we decrypt will always be
uniformly random. For other applications, it may be necessary to hide the randomness during the decryption,
hence we now show how to extend our approach to yield this property. Since we still want to rely on our above
decryption routine we will have to cheat a little: instead of decrypting c directly we decrypt some ĉ that is a
rerandomization of c, but with uniform randomness. Therefore, each party provides a fresh encryption of 0
and proves in zero-knowledge that it indeed is such a ciphertext. Unfortunately this is not enough, at least if
we want to use a proof where the simulator does not have the ski shares of the honest parties. For technical
reasons, we have an additional round where each Pi commits to zi i.e. its contribution to the rerandomization
in advance.

In order to prove that a ciphertext decrypts to 0, we can use the proof from [15] which is depicted in
Fig. 18. The proven statement is the same as in RPPoPK just with x = 0.
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Protocol ΠP
ZKZero

Pr proves the relation RPPoPK for x = 0.

(1) Pr samples s
$← Z/N2Z∗ and sends t = sN mod N2 to Ve.

(2) Ve samples e
$← Z/NZ and sends it to Pr.

(3) Pr sends k = s · re mod N2 to Ve.
(4) Ve accepts if kN = ce · t mod N2 and otherwise rejects.

Fig. 18. ΠP
ZKZero: Protocol to prove that a Paillier ciphertext contains 0.

Lemma 6. The protocol ΠP
ZKZero is an interactive honest-verifier proof for the relation RPPoPK with x = 0.

Proof. See [15, Lemma 2].

Interestingly, the protocols ΠP
PoPK and ΠP

ZKZero are very, except that the former uses values mod N
whereas the latter uses mod N2 instead. However, under the hood, both protocols prove quite different
statements:

– ΠP
PoPK considers c mod N , where (N + 1)xrN mod N = rN mod N , i.e. the modular reduction removes

the message part from the ciphertext. Based on this, we then prove existence of an r, which must be the
same as in Z/N2Z∗.

– ΠP
ZKZero instead considers c in the original group Z/N2Z∗ and proves knowledge of an Nth root of c

where the root is from Z/NZ∗. Hence c must have the form c = rN mod N2 for some r i.e. x = 0.

The protocol ΠP
DecAlt is given in Fig. 19 and follows directly the steps outlined above.

Protocol ΠP
DecAlt

Let c be a ciphertext. Each Pi holds a share ski of sk.

(1) Each Pi samples ri
$← Z/NZ∗ and computes zi ← Encpk(0, ri).

(2) Each Pi uses FCommit to commit to zi to all parties.
(3) Each Pi opens the commitment from the previous step as zi to all parties and proves knowledge of ri using

ΠP
ZKZero to all parties. If a proof fails or a commitment was not opened correctly, abort.

(4) Set ĉ = c ·
∏
i∈[n] zi.

(5) Each Pi locally computes ti = ĉski mod N and then broadcasts it.
(6) Each Pi locally computes

r =

n∏
j=1

ti mod N,

as well as
x =

((
ĉ · r−N mod N2

)
− 1
)
/N mod N .

(7) Each Pi checks that ĉ = Encpk(x, r). If yes then output x else output ⊥.

Fig. 19. ΠP
DecAlt: Protocol to decrypt a Paillier ciphertext c without recovering the original randomness.

Theorem 3. The protocols ΠP
Dec, ΠP

DecAlt implement FP
KeyGenDec in the FP

KeyGen, FRand, FCommit-hybrid model
with broadcast with security against a static adversary corrupting up to n− 1 parties maliciously.

Proof. In a nutshell, the proof uses that we are in the FP
KeyGen-hybrid model, which means that the simulator

has the key shares ski of the dishonest parties. It samples and fixes random key shares for all but one of

25



Simulator SP
Dec

Let J = P \ P̂ be the honest parties. For simplicity, assume P1 ∈ J .

(1) Send (Decrypt, c) to FP
KeyGenDec. If this simulator runs for the first time, sample uniformly random sk′i

$← Z/2κNZ
for each i ∈ J \ {1}.

(2) Send (Rand) to to FP
KeyGenDec and obtain (x, r).

(3) For each Pi ∈ J \ {1} send ti = csk′i mod N . For P1, set α = 1−
∑
i∈J\{1} sk

′
i −
∑
j∈P̂ skj and send t1 = rα.

(4) Wait for the tj for the dishonest Pj ∈ P̂ and set β =
∑
j∈P̂ skj . If

rN·β mod N =
∏
j∈P̂

tj

then send (x, r) to FP
KeyGenDec, otherwise send ⊥.

Fig. 20. SP
Dec: Simulator for the protocol ΠP

Dec.

the simulated honest parties, and adjusts the value sent by this party according to the decrypted value. The
distributions of ΠP

Dec and SPDec differ in the potential abort in Step (3) of the protocol or in the distribution
of the simulated ti.

Consider accepting transcripts for ΠP
Dec. Let s =

∏
j∈P̂ tj mod N then

(cN )Σi∈J ski · (cN )β = r = (cN )Σi∈J ski · s mod N,

and equality follows because Z/NZ∗ is a group. Therefore, if the dishonest parties send a different s in the
protocol then it will abort which is the same as in SPDec. Therefore, given A the abort happens in identical
cases in the real and ideal world. Now consider the ti values in the simulation, then for all but t1 these are
sampled as in ΠP

Dec. But by the exact same argument as above, there is exactly one t1 such that the equation
holds, which is the one chosen by the simulator. Since the simulator fixes its sk′i for the simulated honest
parties in the first run, the computed ti are consistent over multiple protocol runs.

The proof for ΠP
DecAlt follows along the same lines, but the simulator does not have the randomness r.

To send the correct values in Step (3), the simulator chooses some randomness r′
$← Z/NZ∗ uniformly at

random which will be the randomness of ĉ. Using the committed values, the simulator can then simulate a
z1 ciphertext as z1 = Encpk(x, r′)/(c ·

∏n
i=2 zi).

In the practical protocols we will again make the HVZK protocols secure against arbitrary adversaries by
converting them into NIZKs using the Fiat-Shamir transform.

6.3 The preprocessing protocol

The preprocessing protocol ΠP
Offline, on a high level, runs in the following phases:

(1) In a first step, every party encrypts uniformly random values.
(2) Take k+ 2 values which define a polynomial A of degree k+ 1 uniquely (when considered as evaluations

in the points 1, . . . , k + 2). Interpolate this polynomial A in the next k + 2 points locally, encrypt these
points and prove that the encrypted values are indeed points that lie on A. Then the same is done for a
polynomial B.

(3) An unreliable point-wise multiplication of A,B is performed. The resulting polynomial C is evaluated in
a random point β, and it is checked whether the multiplicative relation holds. This is enough to check
correctness of all triples due to the size of N .

(4) The points of C that we obtained from the last step are currently only available as ciphertexts. Reshare
them among all parties as random shares.
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Protocol ΠP
Offline (Part 1)

A protocol to perform preprocessing for the SPDZ protocol using Paillier encryption.

Initialize: On input (Init,Z/NZ) the parties do the following:

(1) Each Pi chooses αi
$← Z/NZ, broadcasts a fresh encryption 〈〈αi〉〉 and proves knowledge of plaintext of

〈〈αi〉〉 using ΠP
PoPK.

(2) The parties compute 〈〈α〉〉 =
∏n
i=1〈〈αi〉〉.

(3) Each Pi stores 〈〈α〉〉 as the encrypted MAC key and its share αi of the MAC key.

Triples: On input (Triple, k) the parties do the following:

(1) For j ∈ [k + 2] each Pi samples Ai(j), Bi(j)
$← Z/NZ , computes 〈〈Ai(j)〉〉, 〈〈Bi(j)〉〉 and broadcasts it

together with proofs of ΠP
PoPK.

(2) For j ∈ [k + 2] every party Pi defines the polynomials Ai(·), Bi(·) using Ai(j), Bi(j) as evaluations. Each
party computes and broadcasts (〈〈Ai(l)〉〉, 〈〈Bi(l)〉〉)l=k+3,...,2k+2 together with proofs of plaintext knowledge
using ΠP

PoPK.
(3) The parties locally compute

〈〈A(l)〉〉 =

n∏
i=1

〈〈Ai(l)〉〉 and 〈〈B(l)〉〉 =

n∏
i=1

〈〈Bi(l)〉〉.

(4) The parties sample β
$← FRand(Z/(N − 2k − 3)Z) + 2k + 3 so that β ∈ Z/NZ \ {0, . . . , 2k + 2}.

(5) DefineA>(β) to be the valueA(β) computed using Lagrange interpolation and the valuesA(1), . . . , A(k+2)
and similarly A⊥(β) to be A(β) computed using A(1), . . . ., A(2k + 2). Every Pi locally computes

〈〈A†(β)〉〉 = 〈〈A>(β)〉〉/〈〈A⊥(β)〉〉 and 〈〈B†(β)〉〉 = 〈〈B>(β)〉〉/〈〈B⊥(β)〉〉.

(6) The parties decrypt 〈〈A†(β)〉〉, 〈〈B†(β)〉〉 and check whether A†(β) = B†(β) = 0 mod N . Otherwise they
abort.

Fig. 21. ΠP
Offline: Protocol to generate correct random triples out of random single values from Paillier encryption,

Part 1.

(5) For all of the shares of A,B,C that were generated in the protocol, products with the MAC key α are
computed. Correctness of the multiplication with α is checked and if the check is passed, the MACs are
reshared among the parties in the same way as the points of C.

The protocol ΠP
Offline can be found in Fig. 21, Fig. 22 and Fig. 23.

7 Security of the Preprocessing from Paillier Encryption

Similarly as in ΠOffline we implicitly define polynomials, multiply them and evaluate the product in a random
point. The following remark helps us to establish later that one such evaluation in a random point is in fact
enough to prove that the polynomials were correctly multiplied.

Remark 2. LetN = p·q being an RSA modulus with p < q and f, g ∈ (Z/NZ)[X], f 6= g with max{deg(f),deg(g)} =

d. Let moreover x
$← Z/NZ. Then

Pr[(f − g)(x) = 0 mod N ] <
2 · d
p
.

Proof. The polynomial f − g is non-zero modulo N , hence non-zero modulo p or q (or both). Moreover,

(f − g)(x) = 0 mod N ⇔ (f − g)(x) = 0 mod p ∧ (f − g)(x) = 0 mod q.
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Protocol ΠP
Offline (Part 2)

Triples:

(7) For j ∈ [2k + 2] each Pi chooses ri,j
$← Z/NZ∗, computes encryptions

〈〈ĉi,j〉〉 ← 〈〈A(j)〉〉Bi(j)Encpk(0, ri,j)

broadcasts the 〈〈ĉi,j〉〉 and proves the relation using ΠP
PoM.

(8) For j ∈ [2k+2] each Pi chooses c̃i,j
$← Z/NZ, computes 〈〈c̃i,j〉〉 and broadcasts (〈〈c̃i,j〉〉)j∈{0,...,2k+3} together

with proofs of ΠP
PoPK.

(9) For j ∈ [2k + 2] the parties locally compute

〈〈ĉj〉〉 =
∏n

i=1
〈〈ĉi,j〉〉/

∏n

i=1
〈〈c̃i,j〉〉,

and publicly decrypt ĉj .
(10) For j ∈ [2k + 2] each party sets

〈〈Ci(j)〉〉 :=

{
〈〈c̃1,j〉〉 · 〈〈ĉj〉〉 if i = 1

〈〈c̃i,j〉〉 else
,

as well as 〈〈C(j)〉〉 =
∏n
i=1 〈〈Ci(j)〉〉 and its share of C(j) as

Ci(j) :=

{
c̃1,j + ĉj if i = 1

c̃i,j else
.

(11) The parties sample β
$← FRand(Z/(N − k − 1)Z) + k + 1 so that β ∈ Z/NZ \ {0, . . . , k}.

(12) The parties compute 〈〈A(β)〉〉, 〈〈B(β)〉〉, 〈〈C(β)〉〉 locally using Lagrange interpolation and then decrypt
these values.

(13) If A(β) ·B(β) 6= C(β) mod N then abort.
(14) Each Pi chooses si ∈ Z/NZ, computes 〈〈si〉〉 and broadcasts 〈〈si〉〉 together with a proof of ΠP

PoPK. Let
s =

∑
i si.

(15) We define the following abbreviation:

ti,j :=


si for j = 0

Ai(j) for j = 1, . . . , k

Bi(j) for j = k + 1, . . . , 2k

Ci(j) for j = 2k + 1, . . . , 3k

and tj :=


s for j = 0

A(j) for j = 1, . . . , k

B(j) for j = k + 1, . . . , 2k

C(j) for j = 2k + 1, . . . , 3k

Fig. 22. ΠP
Offline: Protocol to generate correct random triples out of random single values from Paillier encryption,

Part 2.

If f − g 6= 0 mod p then it will be zero in at most d− 1 positions by the fundamental law of algebra. Since
x is uniformly random modN , it is also uniformly random modp and therefore

Pr [(f − g)(x) = 0 mod p | f − g 6= 0 mod p] <
d

p
.

The same reasoning goes for the case modq where d/q < d/p. Hence whenever f − g is 0 either modulo p
or q then the above bound holds. By a union bound, this then applies to the case where f − g is non-zero
modulo both p, q. ut

We make use of the above remark three times in our protocol. First in Step (6), where we use it to establish
that the polynomial defined has only degree k. Second, we also use it in Step (13) to check that the triples
are indeed multiplicative and also in Step (21) implicitly to establish that all MACs are correct (we can
consider multiplication with the MAC α as multiplication with the constant polynomial α).
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Protocol ΠP
Offline (Part 3)

Triples:

(16) For each j ∈ [3k] ∪ {0} each Pi chooses ri,j
$← Z/NZ∗ and computes

〈〈ti,j · α〉〉 ← 〈〈α〉〉ti,j · Encpk(0, ri,j),

then broadcasts (〈〈ti,j · α〉〉) and proves the relation using ΠP
PoM.

(17) For each j = [3k] ∪ {0} P1, . . . , Pn compute

〈〈tj · α〉〉 =
∏n

i=1
〈〈ti,j · α〉〉.

(18) The parties sample β
$← FRand(Z/NZ).

(19) All parties compute

〈〈v〉〉 =
∏3k

j=0
〈〈tj〉〉β

j

and 〈〈v′〉〉 =
∏3k

j=0
〈〈tj · α〉〉β

j

.

(20) The parties jointly decrypt 〈〈v〉〉 to v and check that the decryption was correct.
(21) The parties jointly decrypt

〈〈M〉〉 = 〈〈α〉〉v/〈〈v′〉〉
and verify that M = 0, otherwise they abort. All parties verify correctness of decryption.

(22) For each j ∈ [3k] each Pi chooses mi,j
$← Z/NZ, computes 〈〈mi,j〉〉 and broadcasts 〈〈mi,j〉〉 together with

proofs of ΠP
PoPK.

(23) For each j ∈ [3k] the parties compute

〈〈Oj〉〉 = 〈〈tj · α〉〉/
∏n

i=1
〈〈mi,j〉〉

and publicly decrypt 〈〈Oj〉〉. All parties verify correctness of decryption.
(24) For each j ∈ [3k], each Pi determines its share γ(tj)i, of the MAC γ(tj) of tj as

γ(tj)i :=

{
Oj +mi,j for i = 1

mi,j for 1 < i ≤ n

(25) Each party Pi uses ti,j , γ(tj)i as its shares of 〈tj〉.

Fig. 23. ΠP
Offline: Protocol to generate correct random triples out of random single values from Paillier encryption,

Part 3.

Theorem 4. The protocol ΠP
Offline securely implements the functionality FOffline using a random oracle and a

broadcast channel in the FP
KeyGenDec hybrid model with security against any malicious static PPT adversary

controlling at most n− 1 parties if the CR[N ]-problem is hard.

Our security proof uses, on a high level, the following idea: we allow the simulator to decrypt the cipher-
texts that it obtains from the dishonest parties. This itself is not UC secure, but assume that there exists an
environment Z that can distinguish the transcript from such a simulator from a protocol transcript. Then
we can use such an Z as a subroutine to break the IND-CPA security. Such a subroutine can rewind Z and
thereby avoid decryption altogether, so it does not rely on having the secret key from the setup.

The functionality FOffline that our protocol implements is weaker than what ΠP
Offline achieves, because it

does not allow the adversary to introduce errors into the MACs (which is in fact possible in ΠOffline and
hence allowed in FOffline).

Proof (Proof of Theorem 4.). For the proof, we use the simulator SPOffline as depicted in Fig. 24. This simulator
uses decryption since it has the secret key for the encryption scheme. For the sake of contradiction, assume
that there exists an environment Z that can distinguish between protocol transcripts of ΠP

Offline and simulated
transcripts of SPOffline with non-negligible probability σ in polynomial time. Now, we show how to use the
distinguisher to break the IND-CPA property of the encryption scheme.
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Simulator SP
Offline

In this simulator, we make the assumption that the secret key is known. Let P̂ be the malicious parties. Let k be
the number of triples.

SimulateInitialize:
(1) For each simulated honest party Pi ∈ P \ P̂, provide a fresh encryption of the random value ri

$← Z/NZ
which is sent to the dishonest parties as ci = 〈〈ri〉〉. Then prove plaintext knowledge using ΠP

PoPK. Set the
flag cheated = ⊥.

(2) Decrypt the ciphertexts ci that are obtained from the malicious parties Pi ∈ P̂. Send (Init,Z/NZ) and the
plaintexts in the name of the malicious parties to FOffline.

(3) Locally compute 〈〈α〉〉 =
∏n
i=1 〈〈ci〉〉 and α =

∏n
i=1 ci.

SimulateTriples:
(1) Perform Step (1) as in the protocol. Decrypt the ciphertexts of Pi ∈ P̂ after Step (1). Then compute the

polynomials Ai(·), Bi(·) as defined in Step (2).
(2) Perform Step (2) as in the protocol. Decrypt the ciphertexts of Pi ∈ P̂ after Step (2) as A′i(l), B

′
i(l). Now

set cheated as

cheated =

{
⊥ if ∀i, l : Ai(l) = A′i(l) mod N and Bi(l) = B′i(l) mod N

> else
.

(3) Perform Steps (3)− (6) as in the protocol. Abort if cheated = >.
(4) Perform Step (7) as in the protocol. Decrypt the ciphertexts of Pi ∈ P̂ as ĉ′i,j . Set cheated as

cheated =

{
⊥ if ∀i, j : ĉ′i,j = A(j) ·Bi(j)
> else

.

(5) Perform Steps (8)− (13) as in the protocol. Abort in Step (13) if cheated = >.
(6) Send (Triple, k) to FOffline. Let Ai[j] = Ai(j),Ci[j] = Ci(j),Ci[j] = Ci(j) from the protocol. Then send

Ai,Bi,Ci to FOffline for each Pi ∈ P̂ and also ∆γ(A) = ∆γ(B) = ∆γ(C) = 0.
(7) Perform Steps (14) − (16) as in the protocol, and decrypt all values obtained from players controlled by

A. If in one of the ciphertexts 〈〈ti,j ·α〉〉 of the dishonest parties is not of the form α · ti,j for the respective
encrypted value 〈〈ti,j〉〉 then set cheated = >, otherwise cheated = ⊥.

(8) Perform Steps (17)− (21) as in the protocol. In Step (21) abort if cheated = >.
(9) Perform Steps (22)− (25) as in the protocol.

(10) Set γ(t)[j] = γ(tj)i from the protocol. For each Pi ∈ P̂ send γ(A)i,γ(B)i,γ(C)i to FOffline during the
macro SpdzRep.

Fig. 24. SP
Offline: Simulator for the protocol ΠP

Offline.

Let Ππ be the distribution of a real protocol execution, and Πsim be the distribution that SPOffline outputs.
We first define ΠReal,ZK to be the distribution of a real protocol execution where the zero-knowledge proofs
are replaced with simulations of the proofs. The simulations of the proofs are perfectly indistinguishable

from real proofs, and therefore Ππ

p
≈ ΠReal,ZK . Defining ΠSim,ZK for Πsim in the same way, it also holds

that Πsim

p
≈ ΠSim,ZK .

In a next step, we replace the checks for correctness of statements as they are done in the protocol ΠP
Offline,

with checks as in SPOffline. That is, instead of choosing a random element, then evaluating the polynomial at
that position, and then decrypting the result and comparing, we abort if the statement is not true. Formally,
we do the following

(1) In Step (6) of ΠP
Offline, abort under the same conditions as in SPOffline in Step (3).

(2) In Step (13) of ΠP
Offline, abort under the same conditions as in SPOffline in Step (5).

(3) In Step (21) of ΠP
Offline, abort under the same conditions as in SPOffline in Step (8).
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Let us denote the resulting distribution as ΠReal,ZK,Correct, AΠ be the event that a check in the protocol
fails and AS be the event that the check fails in SPOffline. We first observe that, if the statement is true, the
check will never fail. Thereby, AΠ ⊆ AS . Conversely, by letting the degree of the polynomials be polynomial
in the security parameter κ and by Remark 2, we conclude that Pr[AS ] − Pr[AΠ ] < negl(κ) and thereby

ΠReal,ZK,Correct
s
≈ ΠReal,ZK .

Consider an environment Z that can distinguish between Ππ and Πsim. Since Z runs in polynomial time
and by the above reasoning, it will distinguish ΠReal,ZK,Correct and ΠSim,ZK with essentially the same
advantage σ. Run the following algorithm B with Z as a subroutine, which is used to generate all the
interactions of the malicious parties. On a high level, B will run both ΠP

Offline,SPOffline synchronously and
combine the messages to Z from both instances so that they are consistent with exactly one of them.

(1) Obtain the public key pk from the challenger C. Start simulation for FP
KeyGenDec and the random oracle.

We simulate FP
KeyGenDec as follows:

(1.1) If FP
KeyGenDec is queried to generate a key by all parties, then first sample n uniformly random values

r1, . . . , rn from the same domain as in FP
KeyGenDec. Then output (pk, ri) to each party Pi.

(1.2) If FP
KeyGenDec is queried to decrypt a ciphertext c, then we instead send c,m′ to A where m′ is chosen

by this modified algorithm. We will later describe how each such m′ is chosen.
(2) Send m0 = 0,m1 = 1 to C and obtain the challenge cq. Set c0 = cq, c1 = 〈〈1〉〉/cq.
(3) Simulate how messages would be generated in the real protocol and in the simulator. Whenever a

simulated honest party would send an encrypted message, there are now two choices m0 for the message
as in the protocol and m1 as in the simulated case. We send the encrypted value cm0

0 · cm1
1 · 〈〈0〉〉 instead,

unless stated otherwise below.
(4) For every zero-knowledge proof to be given, use the simulator of the proof and the programmable random

oracle to simulate the proof.
(5) For every encrypted value that an adversarial party sends, extract the input from the zero-knowledge

proofs by rewinding Z.
(6) To simulate the decryption in FP

KeyGenDec, we will provide the decrypted message m′ as follows:

(6.1) If we decrypt in Step (6), (13), (21) in ΠP
Offline or Step (3), (5), (8) in SPOffline then we output 0 for

FP
KeyGenDec if cheated = ⊥ or a random non-zero11 number if cheated = >.

(6.2) In Step (8), let Pi be an honest party. For all other honest parties, generate encryptions as described

above. For Pi, sample a random δj
$← Z/NZ and compute 〈〈c̃i,j〉〉 = cx0

0 c
x1
1 · 〈〈0〉〉, where

x0 =
∑
r∈[n]

ĉr,j − δj −
∑

Pr∈P\P̂∪{Pi}

c̃r,j and

x1 =
∑
r∈[n]

ĉ′r,j − δj −
∑

Pr∈P\P̂∪{Pi}

c̃′r,j .

The values ĉr,j , c̃r,j come from the real protocol and ĉ′r,j , c̃
′
r,j from the modified SPOffline. Then in

Step (9), output ĉj = δj −
∑
i∈P̂ c̃i,j .

(6.3) In Step (22), let Pi be an honest party. For all other honest parties, generate encryptions as described

above. For Pi, sample a random δj
$← Z/NZ and compute 〈〈mi,j〉〉 = cx0

0 c
x1
1 · 〈〈0〉〉, where

x0 = tj · α− δj −
∑

Pr∈P\P̂∪{Pi}

mr,j and

x1 = t′j · α′ − δj −
∑

Pr∈P\P̂∪{Pi}

m′r,j .

The values tj · α,mr,j come from the real protocol and t′j · α′,m′r,j from the modified SPOffline. Then
in Step (23), output Oj = δj −

∑
i∈P̂mi,j .

11 We can also just abort since the adversary has cheated.
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(6.4) In Step (14), first choose a random value β and set FRand to output β in Step (18). Let Pi be an honest
party. For all other honest parties, generate encryptions as described above for 〈〈sr〉〉, Pr ∈ P\ P̂∪{Pi}
in Step (14). For Pi, sample a random δ

$← Z/NZ and compute 〈〈si〉〉 = cx0
0 c

x1
1 · 〈〈0〉〉, where

x0 = δ −
∑

Pr∈P\P̂∪{Pi}

sr −
3k∑
j=1

∑
Pr∈P

tr,j · βj and

x1 = δ −
∑

Pr∈P\P̂∪{Pi}

s′r −
3k∑
j=1

∑
Pr∈P

t′r,j · βj .

The values sr, tr,j come from the real protocol and s′r, t
′
r,j from the modified SPOffline. Then in Step (20),

output the value δ +
∑
i∈P̂ si for the decryption of 〈〈v〉〉.

(7) Finally, after obtaining the guess bg from Z, send bg to C.

The correctness of Steps (6.2), (6.3), (6.4) follows by combining the values in both cases with the equations
in the protocol, which is left out here.

Let C choose to encrypt cq = 〈〈0〉〉 with probability ρ and hence cq = 〈〈1〉〉 with probability 1 − ρ.
If cq = 〈〈0〉〉, then the distribution of B is exactly the same as ΠReal,ZK,Correct, which will happen with
probability ρ. If, on the other hand, cq = 〈〈1〉〉, then the distribution will be ΠSim,ZK which will happen
with probability 1 − ρ. Since Z can distinguish both ΠReal,ZK,Correct, ΠSim,ZK with advantage at least σ,
the output to C will be correct with non-negligible advantage at least σ, contradicting that the encryption
scheme is IND-CPA secure. ut
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A Concluding the Proof of Theorem 2

In this appendix, we will provide the material necessary to conclude the proof of Theorem 2. To do so,
we will first show how to solve matrixGame instances efficiently. Our algorithmic approach allows for k to
be as large as ≈ 40, while the runtime of the solver is mostly independent of m,n. After establishing a
high-level intuition of a potential algorithm, we conclude the proof of the theorem which crucially relies on
the quantities our algorithm outputs.

A.1 Computing matrixGame efficiently

First, let us describe how computing the problem can be simplified by putting it into a normal form. This
is depicted in Fig. 25.

sort

columns

sort

rows

2 1 3 0 1 2 0 1 1 2 2 3

0

1

2

2

2

2

1

2

2

2

2

0

Fig. 25. Normal Form, Part 1

Here, we reorder the rows such that for rows i, j and row sums ri, rj it must hold that i < j ⇒ ri ≤ rj
(note that if ri = rj then we leave their order relative to each other untouched). A similar permutation
is then applied to the columns with column sums ci. It must hold that

∑
ri =

∑
ci = k, hence we can

conversely start by sampling all such possible sequences (ri)i∈[n], (ci)i∈[m] (that are monotone, have non-zero
coefficients and add up to k), then consider how many variations of the k balls fit such a pair of sequences,
and multiply it with the number of possible row and column permutations that are described above.12. To
obtain the number of row permutations R we have to consider that for each such permutation π rows of
equal weight keep relative order, i.e. i < j, ri = rj ⇒ π(i) < π(j). Now define rai = |{t | rt = i}|, then the
number of permutations equals the multinomial coefficient

R =

(
n

ra0 , r
a
1 , . . . , r

a
k

)
Similarly, one can obtain the number of column permutations C. Using R,C, (ri)i∈[n], (ci)i∈[m] and the
number of solutions for each possible pair (ri)i∈[n], (ci)i∈[m] one can cover the whole solution space while
only enumerating a small subspace.

A first attempt - Lattice enumeration. In a first solution attempt, we will show how the problem
reduces to a special case of lattice point enumeration. This can best be seen by an example: let n = 3,m = 2.
At each point (i, j) of the grid, there is either a ball or not. Hence we can model each such point as a variable
xi,j ∈ {0, 1}, which looks as follows:

r1 x1,1 x1,2
r2 x2,1 x2,2
r3 x3,1 x3,2

c1 c2

12 One can additionally prune the search tree by the following observation: if a column contains ci elements, then
there must be at least ci nonzero rows. More formally, max{ci} ≤

∑
ri 6=0 1 and max{ri} ≤

∑
ci 6=0 1.
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It must hold that ri =
∑
j xi,j , ci =

∑
j xj,i. We can write this in homogeneous form as

−r1 +x1,1 +x1,2 = 0
−r2 +x2,1 +x2,2 = 0
−r3 +x3,1 +x3,2 = 0

−c1 +x1,1 +x2,1 +x3,1 = 0
−c2 +x1,2 +x2,2 +x3,2 = 0

Finding solutions to the above system of equations is equivalent to finding all x ∈ kerT \ {0},x ∈
{0, 1}7,x[1] = 1, where

T =


−r1 1 1 0 0 0 0
−r2 0 0 1 1 0 0
−r3 0 0 0 0 1 1
−c1 1 0 1 0 1 0
−c2 0 1 0 1 0 1


which can be solved by enumerating all vectors of norm l∞ = 1 from the lattice Λ(kerT ). Obtaining a basis
B of Λ(kerT ) is computationally cheap. This basis can then be LLL-reduced ([26]) and the short vectors be
enumerated with the algorithm from [21] due to Fincke and Pohst13. A drawback of the above approach is
that all short vectors are enumerated, which includes those that have −1, 0, 1-coefficients which we do not
consider. For large dimensions, the fraction of vectors that have only 0, 1-coefficients is negligible and the
above lattice-based approach infeasible. In addition, even the number of such binary vectors can already be
exponential14, so enumerating the whole kernel will not lead to an efficient solution. We also want to mention
that using the Gaussian heuristic to approximate | kerT | does not work.

Directly solving the problem. We will now describe a different approach to compute the number of
binary solutions to the system of equations as described above. To algorithmically tackle the problem, we
use a mixture of dynamic programming, additional normal forms and tricks for efficient computation of
binomial/multinomial coefficients.

(1) We first observe that the problem is recursive, which we depict in Fig. 26. What is shown there is that,
for each assignment of balls to a certain column, to find all solutions with this assignment in that specific
column one has to find all remaining assignments for the other columns which reduces to solving the
exact same problem, but for a smaller number of balls. One can hence precompute a table of solutions for
a smaller number of balls and thereby drastically prune the recursion tree. This approach is somewhat
similar to a dynamic programming solution (we avoid using actual dynamic programming as such a
solver would compute too many configurations that will never be reached).

0 0 1 1 2 2 0 0 1 1 2 2 0 0 1 1 2

0

0

1

1

2

2

0

0

1

1

1

1

0

0

1

1

2

2

Initial instance Assigning values Smaller instance

Fig. 26. Recursive elimination

13 See [25] for a good explanation of the algorithm.
14 Think about the case where m = n, ri = ci = 1. Then there are mn possible solutions.
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(2) Moreover, certain assignments of balls to a column can imply solving the same subproblem multiple
times, as depicted in Fig. 27. After eliminating the rightmost column, the computational subproblem
that has to be solved is the same in all three cases. Hence it is efficient to consider each such assignment
only once and multiply it with a correction factor.

0 0 1 1 2 2
2
2
1
1
0
0

0 0 1 1 2 2
2
2
1
1
0
0

0 0 1 1 2 2
2
2
1
1
0
0

Grey area = same number of possible assignments

Fig. 27. Equivalent assignments

(3) We need to evaluate a large number of binomial and multinomial coefficients to solve the above problem.
To do this efficiently, observe that multiplication and division for large factorial numbers can be done
efficiently as follows:
Let x ∈ N be the largest value whose factorial we have to compute. Let pl11 · · · · · plnn = x! such that
i 6= j ⇒ pi 6= pj and ∀i ∈ [n] : li ≥ 1, pi ∈ P i.e. be the prime factorization of x!. We observe that for

each 1 ≤ y ≤ x we can write y! as y! = p
l′1
1 · · · · · p

l′n
n for different l′1, . . . , l

′
n. In particular, it holds that

x! · y! = p
l1+l

′
1

1 · · · · · pln+l
′
n

n and x!/y! = p
l1−l′1
1 · · · · · pln−l

′
n

n

where all of the exponents are non-negative. Hence in this representation one can efficiently compute
multinomial coefficients. Conversion into the above form and back to integers can be efficiently precom-
puted (as long as an upper bound on x is known).

A.2 Proof of Theorem 2, continued

Let T > κ. To argue soundness, we have to show that an extractor will fail to obtain all xi, ri with probability
at most 2−κ. We denote the event where the extractor fails as AExErr. Moreover, we denote with Si the
event that i bad ciphertexts survived the initial cut-and-choose and with Ci that the adversary initially chose
i bad ciphertexts. We can write

Pr[AExErr] ≤ max
i

Pr[AExErr | Si,Ci] · Pr[Si | Ci] · Pr[Ci]

= max
i

Pr[AExErr | Si,Ci] · 2−i · Pr[Ci]

= max
i

Pr[AExErr | Si] · 2−i

because Si ⊃ Ci. Since, for i > κ we have that Pr[AExErr|Si,Ci] · 2−i < 2−κ we can ignore all i > κ and
simply focus on the case i ∈ [1, κ]. In the following, we will describe how to upper-bound Pr[AExErr | Si] for
any such i.

For the extractor not being able to extract a certain plaintext xj , rj it is necessary that, for all sums that
were opened in ΠNewZK and that include cj , either another ciphertext ck that was not extracted yet is part of
the sum or a sum including cj ,ak was opened where ak is one of the i non-extractable auxiliary ciphertexts.
We denote with Vi,k the event that, in set Vi ⊂ T there are k bad auxiliary ciphertexts. Moreover, let U1,k be
the event that k ciphertexts could not be extracted after Step (4), U2,k be the event that not all k ciphertexts
end up alone in a sum x′, r′ in Step (5.1) (for all b2 repetitions) and Fi,k be the event that, in Step (5.1) for
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z = i, for some of the u sums xj all the α1
j , . . . ,α

c
j will be paired up with one of the k bad ciphertexts. We

can now model Pr[AExErr | Sb] as

Pr[AExErr | Sb] ≤ Pr

[ i1+···+iℵ=b⋃
i1,···ℵ∈N+

⋃
x∈[κ]

(
V1,i1 , . . . ,Vℵ,iℵ ,U1,x,

(
U2,x ∪ F1,ib1+1

∪ · · · ∪ Fb2,ℵ
))]

≤
i1+···+iℵ=b∑
i1,···ℵ∈N+

∑
x∈[κ]

Pr

[(
V1,i1 , . . . ,Vℵ,iℵ ,U1,x,

(
U2,x ∪ F1,ib1+1

∪ · · · ∪ Fb2,ℵ
))]

≤
i1+···+iℵ=b∑
i1,···ℵ∈N+

∑
x∈[κ]

(
Pr
[
V1,i1 , . . . ,Vℵ,iℵ ,U1,x,U2,x

]
+

Pr
[
V1,i1 , . . . ,Vℵ,iℵ ,U1,x,

(
F1,ib1+1

∪ · · · ∪ Fb2,ℵ
)])

where ℵ = b1 + b2. Using the chain rule, we can write

Pr
[
V1,i1 , . . . ,Vℵ,iℵ ,U1,x,U2,x

]
= Pr

[
U2,x | V1,i1 , . . . ,Vℵ,iℵ ,U1,x

]
·

Pr
[
U1,x | V1,i1 , . . . ,Vℵ,iℵ

]
·

Pr
[
Vℵ,iℵ | V1,i1 , . . . ,Vℵ−1,iℵ−1

]
· · ·Pr

[
V1,i1

]
An easy calculation using the hypergeometric distribution shows that

Pr
[
Vℵ,iℵ | V1,i1 , . . . ,Vℵ−1,iℵ−1

]
· · ·Pr

[
V1,i1

]
=

∏
k∈[ℵ−1]∪{0}

(b−∑k−1
j=0 ij
ik

)
·
(T−∑k−1

j=0 |Vj |−(b−
∑k−1

j=0 ij)

|Vk|−ik

)
(T−∑k−1

j=0 |Vj |
|Vk|

)
The value Pr

[
U1,x | V1,i1 , . . . ,Vℵ,iℵ

]
can best be computed by modeling each of the b1 rounds of Step (4)

as a step in a Markov process. That is, for each ij one can compute the probability distribution that 0, 1, . . . , ij
of the original ciphertexts which have not been extracted yet end up in a sum with an auxiliary ciphertext
where the extractor does not have the PRF keys. This can easily be computationally solved. A bound on
Pr
[(
F1,ib1+1

∪ · · · ∪ Fb2,ℵ
)
| V1,i1 , . . . ,Vℵ,iℵ ,U1,x

]
follows from [33] as

Pr
[(
F1,ib1+1

∪ · · · ∪ Fb2,ℵ
)
| V1,i1 , . . . ,Vℵ,iℵ ,U1,x

]
≤

b2∑
j=1

0 if ij < c

2 ·
√
t ·
( ij

2
√
tc

)c
Finally, using Problem 1 we observe that

Pr
[
U2,x

∣∣ V1,i1 , . . . ,Vℵ,iℵ ,U1,x

]
=(

1− Pr
[
r + s = x |M $←−M√t,√t,x ∧ (r, s)← matrixGame(M ,

√
t,
√
t)
])b2

in the case of strong extraction (for weak extraction, adjust the definition of matrixGame accordingly). We
then solve all of the above quantities computationally to compute Pr[AExErr | Sb].
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B Universal Composability - A Short Introduction

For completeness, we include a short introduction into the UC framework [10] which follows the outline
of [14]. For all turing machines mentioned here, we assume that λ, κ are an implicit input and polynomial
runtime is defined as being polynomial in both of these parameters.

Parties and adversaries. We assume that there are n parties P1, . . . , Pn that want to participate in a dis-
tributed computation, and these parties are probabilistic polynomial time (PPT) interactive Turing Machines
(iTMs). An adversary A is an iTM which gains certain influence over a subset P̂ ⊂ {P1, . . . , Pn}. The size of
this subset and the capabilities that A has is described by the adversarial model. In this work, we consider
security against static, active adversaries that control up to n− 1 parties.

Static in this context means that, at the beginning of a protocol run, A defines a set P̂ of at most n− 1
parties he intends to corrupt, but he cannot change his choice adaptively throughout the protocol run. This
information is not given to the honest parties though, i.e. each Pi 6∈ P̂ does not know which other parties
they can trust or not.

Active adversaries have full control over P̂. They can choose the inputs to the computation, read all
information these parties obtain and change messages arbitrarily.

Functionalities. One models the capabilities of a protocol and potential runtime-leakage in a so-called ideal
world using a functionality (functionalities are denoted with F). Such a functionality is a PPT iTM that
P1, . . . , Pn and A can communicate with. It resembles an idealized version of a protocol and specifies the goal
in terms of information that A could obtain, the computation that is done and the values that the honest
parties should obtain.

Protocols. In the real world, we state the actual protocol as a collection of PPT iTMs P1, . . . , Pn which
communicate according to a given pattern, plus some eventually available resources. A protocol is denoted
with a Π or, if it is a small subroutine, as a procedure (no special symbol).

In a protocol it is defined which party at which point sends which message to which other party or
resource or which computation it performs locally. Resources (such as e.g. other protocols) are abstractly
made available as ideal functionalities of them, which are iTMs themselves. Herein lies the strength of UC
– if we prove a protocol to be secure in a hybrid setting (where the resources are ideal functionalities),
and prove security for subprotocols implementing these functionalities separately, then the general protocol
instantiated with the subprotocols will be secure as well.

Defining security. In order to prove security of a protocol, one has to provide a simulator (denoted by S)
that will interact with the ideal functionality in the ideal world. This simulator is a PPT iTM interacting
with A and the dishonest parties (this is one fixed S for each A that is constrained by a fixed adversarial
model). This simulator mimics some P̃i in place of the Pi 6∈ P̂ and functionalities available during runtime.
At the same time S replaces the dishonest parties towards the ideal functionality F with which the actual
honest parties Pi communicate.

Now let there be a PPT iTM Z (the environment) which provides inputs to all parties P1, . . . , Pn as well
as A (and obtains output from all of them). For the security game, sample a bit b uniformly at random. If
b = 0 then one runs an experiment where Z interacts in the real world (A, Π), whereas we let Z talk in the
ideal world defined by (A, S,F) if b = 1. After the execution of either the ideal world or real world setting,
Z outputs a bit b′ which is a guess of Z about the setting Z currently is in. Depending on the distance of
the distributions of the random variables b, b′ we call a protocol computationally secure(if distinguishing
the distribution reduces to solving a problem conjectured to be computationally hard in λ), statistically
secure (if the distributions are statistically indistinguishable in κ) or perfectly secure(if the distributions are
identical).
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