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Abstract

Recent research in the field of lattice-based cryptography, especially on the topic of the
ring-based primitive ring-LWE, provided efficient and practical ring-based cryptographic
schemes, which can compete with more traditional number-theoretic ones. In the case
of ring-LWE these cryptographic schemes operated mainly in power-of-two cyclotomics,
which vastly restricted the variety of possible applications. Due to the toolkit for ring-
LWE of Lyubashevsky, Peikert and Regev, there are now cryptographic schemes that
operate in arbitrary cyclotomics, with no loss in their underlying hardness guarantees,
and only little loss computational efficiency.

Next to some further refinements and explanations of the theory and additional imple-
mentation notes, we provide an implementation of the toolkit of Lyubashevsky, Peikert
and Regev written in C++. This includes a complete framework with fast and modu-
lar algorithms that can be used to build cryptographic schemes around ring-LWE. Our
framework is easy to use, open source and has only little third party dependencies. For
demonstration purposes we implemented two public-key cryptographic schemes using our
framework. The complete source code is available at https://github.com/CMMayer/
Toolkit-for-Ring-LWE.git.

Introduction

The rise of quantum computers is one of the biggest challenges Internet security will be facing
in the near future. It has already been shown in theory that a quantum computer can compute
prime factorizations and discrete logarithms efficiently, using Shor’s algorithm [Sho97]. This
implies that every cryptographic system which is based on these classical problems (e.g.
RSA) is no longer secure in the presence of a quantum computer. The research on practicable
quantum computers makes great progress - look for example at the D-Wave systems - and
the daily usage of such computers might become real in around ten years. Therefore, time is
running in order to provide new secure cryptosystems for quantum computers.

Over the last fifteen years there has been a broad spectrum of research concerning post-
quantum cryptography [BBD09]. One of the most promising approaches is the lattice-based
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cryptography. A well known basic lattice problem is the “Shortest Vector Problem” (SVP),
which asks for a shortest vector in a given lattice. A closely related problem is the approximate
version GapSVPγ , which asks only for an approximation of the length of the shortest vector
to within a certain approximation factor γ. Although the shortest vector problem is known
to be NP-hard under randomized reductions [MG02], the complexity of GapSVPγ is not yet
very explicit. The complexity is known for certain values of γ, but we still lack a complete
classification. However, it is conjectured that there is no quantum polynomial time algorithm
that approximates GapSVPγ to within any polynomial factor γ. In [Reg09] Oded Regev first
introduced the “Learning with Errors” (LWE) problem for lattices, which enjoys a quantum
reduction to GapSVPγ (That is, an efficient algorithm for LWE would imply an efficient
quantum algorithm for GapSVPγ) and therefore, based on the above conjecture, can be seen
as a hard quantum problem. In the LWE problem we are given a list of arbitrary length,
providing elements bi ∈ Zp such that 〈s, ai〉 + ei = bi mod p, where s ∈ Znp is a fixed secret,
the ai are chosen independently and uniformly from Znp and the error terms ei are sampled
from a specific distribution over Zp. The goal is to find s. In [Reg09] Regev also provides a
cryptographic scheme based on LWE, which is only one amongst many. Unfortunately, most
of the cryptographic schemes based on LWE tend to be not efficient enough for practical
applications. The key sizes are at least quadratic in the primary security parameter, which
needs to be in the several hundreds to fulfill the security constraints. To overcome this
problem, Lyubashevsky, Peikert and Regev developed a ring version of LWE (ring-LWE)
in [LPR13a], which works with ideal lattices in cyclotomic number fields and can be used for
cryptosystems whose key sizes are only linear in the primary security parameter.

Let ζm = exp(2πi/m) ∈ C for some positive integer m. In particular, ζm is a primitive
m-th root of unity, i.e., m is the smallest integer such that ζmm = 1 and every complex root of
the polynomial Xm−1 can be represented by a power of ζm. The m-th cyclotomic polynomial
is given by

Φm(X) ··=
∏

1≤k≤m
gcd(k,m)=1

(X − ζkm) ∈ Z[X].

The degree of Φm(X) is n = ϕ(m), where ϕ(·) denotes Euler’s totient function, i.e., ϕ(m)
is the count of number 1 ≤ k ≤ m that are coprime to m. Considering the polynomials
with integer coefficients Z[X] modulo the cyclotomic polynomial Φm(X) yields the quotient
ring Z[X]/(Φm(X)). This quotient can be seen as a Z-vector space with the power basis
{1 + Φm(X), X + Φm(X), . . . , Xn−1 + Φm(X)}.

The main part of the ring-LWE problem takes place in the m-th cyclotomic ring R =
Z[X]/(Φm(X)). Roughly speaking, ring-LWE tries to find a secret s ∈ Rq = R/qR =
Zq[X]/(Φm(X)), given arbitrarily many pairs (ai, bi = ai · s+ ei mod qR) ∈ Rq ×Rq, where
q is some integer modulus, ai are independent and uniformly random elements in Rq, and the
error terms ei ∈ R are sampled from a specific probability distribution. It is particularly nice
to work in R, if the input m is a power of two, i.e., m = 2k for some integer k ≥ 1. Two main
reasons for that are, on the one hand, that deg(Φm(X)) = ϕ(m) = n is also a power of two
and, on the other hand, that Φm(X) = Xn + 1 is maximally sparse. In particular, the latter
fact provides fast O(n log n) algorithms for polynomial arithmetic modulo Φm(X), which is
essential for the practical use of ring-LWE.

For the most cryptographic schemes based on ring-LWE, the parameterm for the cyclotomic
ring Z[X]/(Φm(X)) is the main security parameter. Clearly, powers of two are sparsely
distributed among the natural numbers. If we would restrict ourselves to working only with
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inputs m that are powers of two, then we would face a simple problem. When a certain power
of two is not sufficient for our security constraints, the next bigger power of two might be way
to large, causing also the key sizes in the cryptosystem to be unnecessarily big. Furthermore,
some applications like (fully) homomorphic encryption [Gen09] even need arbitrary m to work
correctly. Therefore, it is advisable and necessary to consider arbitrary positive integers for
m.

When working in the ring R = Z[X]/(Φm(X)) we represent elements via the coordinates
with respect to the power basis {1 +Φm(X), X +Φm(X), . . . , Xn−1 +Φm(X)}. The (general
not theoretical) complexity of polynomial arithmetic modulo Φm(X) strongly depends on
the form of Φm(X). If m is a powers of two we know that Φm(X) is maximally sparse and
polynomial arithmetic modulo Φm(X) can be done nicely in O(n log n) time. However, in
general, the m-th cyclotomic polynomial for arbitrary m might have many monomials with
large coefficients. Theoretically, polynomial arithmetic modulo Φm(X) can still be done in
O(n log n), but the generic algorithms are rather complex and hard to implement, with big
hidden constants in the O(·) notation. Therefore, it is not convenient to work with this
representation in arbitrary cyclotomic rings R.

In [LPR13b], Lyubashevsky, Peikert and Regev developed a toolkit for ring-LWE in arbi-
trary cyclotomic number fields and rings, which uses a different representation independent
from the cyclotomic polynomial Φm(X). In fact, elements in R are never considered as poly-
nomials. The m-th cyclotomic number field K = Q(ζm) can be seen as a Q-vector space

with the power basis {1, ζm, . . . , ζϕ(m)−1
m }. Taking this basis as a Z-basis yields the cyclo-

tomic ring R = Z[ζm] ∼= Z[X]/(Φm(X)), which coincides with the ring of integers OK in K.
Besides the power basis, [LPR13b] considers several Q-bases for K, which are also Z-bases
for R. Elements in K are represented by coordinate vectors in these bases. Furthermore, K
is embedded into Cn via the canonical embedding, a classical concept from algebraic number
theory. Both representations provide fast algorithms, not only for arithmetical tasks, but also
for other operations needed in ring-LWE based cryptography, like discretization and decod-
ing or sampling of discrete and discretized Gaussians. Overall, the toolkit provides efficient
algorithms that can be used to implement a variety of cryptographic schemes in arbitrary
cyclotomics, with only a little loss in efficiency compared to power-of-two cyclotomics.

Most recently Crockett and Peikert published a work for their Λ ◦ λ project [CP15], which
is a general-purpose library for lattice-based and ring cryptography written in the functional
language Haskell. It provides in particular an implementation of the toolkit [LPR13b]. The
paper was first received at the ePrint archive at November 23, so our implementation and
[CP15] were developed simultaneously.

Contribution. The main contribution of this work is an implementation of the toolkit
[LPR13b] for ring-LWE based cryptography in arbitrary cyclotomic number fields. The source
code is available at https://github.com/CMMayer/Toolkit-for-Ring-LWE.git.
The original paper provides algorithms for ring-LWE in an abstract mathematical manner
without any specific instructions for an implementation. We took these abstract algorithms
and translated them for an implementation. The outcome is a program in C++ that provides
all the presented features from the paper and can be used to implement further cryptographic
schemes based on the ring-LWE problem. In particular, we implemented both cryptosys-
tems presented in Section 2.1, which can also be seen as small examples for the usage of our
implementation.
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Our program consists of two main classes representing the m-th cyclotomic number field
K = Q(ζm) and elements living in K. The elements are represented by integral coordinate
vectors with respect to a specific basis. Depending on this basis, an element can belong to
several ideals of K. To be more precise, we consider the ring of integers R in K, powers of
the dual ideal (R∨)k ⊂ K for k ≥ 1, and the quotients Rq = R/qR and (R∨q )k = (R∨/qR∨)k.
Furthermore, the implementation provides a variety of algorithms for cryptographic tasks, all
working only on the coordinate vector. Among other, these include addition and multipli-
cation of the ideal elements, conversion between the representation of elements in different
bases, sampling of Gaussians in R and R∨, discretization of elements in K, and a decoding
procedure for error terms, which is needed in decryption.

In order to make this a self standing work, we present and review the toolkit from [LPR13b]
again in Chapter 2. Some features are only explained roughly and can not be implemented
straightaway. Therefore, in Chapter 3 we explain these features in more detail, but still in
an implementation independent manner. Our program is only one possibility to realize the
toolkit.

The original paper provides some analytical tools which are mainly used for correctness
and hardness proofs of the presented cryptographic schemes. We omit these analytical tools
and focus only on the content that is relevant for an implementation. Therefore, we will often
refer to [LPR13b] for further details and explanations.

We emphasize that it was not our goal to provide a fully optimized and at most efficient
implementation of the toolkit. The algorithms stay in their theoretical complexity classes,
but might have large constants. As far as we know, our implementation is the first published
implementation of this toolkit written in C++. Therefore, we focused on usability and under-
standability of our program, which trades off with performance. That is, we used non-native
data types from the C++ standard library (STL), which greatly help the readability of the
source code but also produce a slight overhead. Further, we omitted any parallelization,
which is an important factor for efficiency in some algorithms, because it is highly vulnerable
to errors and unexpected behavior. Also, we wanted to keep our implementation as a stan-
dalone project, in other words, tried to keep third party dependencies at a low level. In fact,
our program uses two libraries other than the STL, namely the “Number Theory Library”
(NTL) [Sho15] and the “Boost Library” [DA15]. The NTL is mainly used for modulo arith-
metic over the integers and the Boost library for matrix representation and operations, e.g.,
matrix inversion. The rest is implemented from scratch, which includes in particular some
fast Fourier transformation algorithms (FFTs). These FFT algorithms match the used data
types for our program and some are slightly specialized versions. However, it might be useful
to replace them eventually by some state-of-the-art algorithm. All in all, there is a lot to
optimize in our program, but it is easy to use and provides a working implementation, which
can be used for further developments.

The last chapter of this work, Chapter 4, can be seen as sort of a documentation for our
implementation. All implemented classes and algorithms are presented and explained, but
not in full detail. The declarations are given by code snippets from the header files. The
source code itself is not quoted and our explanations do not refer to any specific positions in
the source code. Therefore, it is advisable and maybe necessary to have the source code and
this work, in order to fully understand the implementation.
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Requirements. This work assumes that the reader has a descend knowledge in algebra,
especially in field theory and the related Galois theory. Furthermore, a basic knowledge in
probability theory is advisable. The presented toolkit uses several concepts from algebraic
number theory, mainly specialized on the case of cyclotomic number fields. All necessary
notions and facts are briefly introduced in Chapter 1. However, it might be helpful to have
some background in algebraic number theory.

Organization. This work is organized as follows. Chapter 1 starts with some notations and
conventions we use throughout the work. The rest of the chapter provides the necessary
background in several subjects. Section 1.2 introduces the Kronecker product for matrices.
Next, the notion of lattices and the decoding and discretization algorithms are presented in
Section 1.3. Finally, Section 1.4 deals with algebraic number theory and cyclotomic number
fields. This includes some lesser-known concepts, like tensorial decomposition in prime power
cyclotomics and the dual ideal in algebraic number fields.

Chapter 2 introduces the concepts of the toolkit [LPR13b]. We review all parts that are
important for an implementation. First, we give some motivation in Section 2.1 and show
how the toolkit can be used. Next, we develop the necessary features and operations. This
is divided into two parts. First, we deal with the ideal R = Z[ζm] in Section 2.2, and in the
following with its dual ideal R∨ in Section 2.3. We close this chapter with Section 2.4, which
gives a review of the discretization algorithm in the field Q(ζm).

Subsequently, Chapter 3 provides further implementation notes for some of the features
from Chapter 2. The opening Section 3.1 introduces an algorithm for a more efficient matrix-
vector-multiplication for Kronecker decomposed matrices. Section 3.2 explains how FFT
algorithms can be used to multiply vectors with prime-indexed DFT and CRT matrices.
Next, we describe in Section 3.3 the methods for addition and multiplication in Q(ζm) from
Chapter 2 in more detail. Thereby, the goal is to provide easy implementations for these
methods. Subsequent, Section 3.4 explains an efficient algorithm for decoding in R∨. Finally,
Section 3.5 deals with some pre-computations for an implementation.

The last chapter, Chapter 4 describes the implementation of the toolkit. Thereby, the
Sections 4.1, 4.2 and 4.3 deals with some algorithms, which are not directly related to the
toolkit. This includes the algorithm for the application of Kronecker decompositions from
Section 3.1, Rader and Cooley-Tukey FFT algorithms and some further tasks from algebra
and general mathematics. Next, we describe the class structure of our program in Section 4.4.
The particular classes are described in the following Sections 4.5, 4.6 and 4.7.

Acknowledgments. I would like to thank Prof. Johannes Buchmann and my supervisors
Florian Göpfert and Thomas Wunderer for the idea of this thesis as well as the outstanding
supervision throughout the whole working period. Further, I thank all proofreaders and my
fellow students for helpful discussions.
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1 Preliminaries

We start with some notations and conventions we use throughout this work.

1.1 Notations and Conventions

• Let m be some positive integer. Then [m] denotes the set {0, . . . ,m− 1}.

• If D is any domain and S and T are finite index sets, we denote by DS the set of all
vectors over D indexed by S, and by DS×T the set of all matrices with rows indexed by
S and columns indexed by T .

• For any index set S we denote by IS the identity matrix with rows and columns indexed
by S.

• If we represent an element by its coordinate vector with respect to some basis, this
coordinate vector is usually a bold letter, e.g., a.

• By a�b we denote the component-wise multiplication of two equally dimensional vectors
a and b.

• Bases of lattices in vector spaces are usually denoted by a upper case letter, e.g., B
and refer to both, the set of basis vectors and the matrix whose columns are the basis
vectors.

• If an ideal or a module in some algebraic number field has a basis, this basis is usually
viewed as a vector of basis elements and denoted by the vector notation, e.g., ~p =
(p0, . . . , pn−1).

• If V is some inner product space, we denote the inner product on V by 〈·, ·〉V . If it is
clear which space V we mean, we drop the subscript V .

• For an any positive integer m, Z∗m denotes the set of all units in Zm

• Euler’s totient function is denoted by ϕ(·). That is, for a positive integer m, ϕ(m) is
the number of units in Zm, i.e., ϕ(m) = |Z∗m|.

• For a complex number z ∈ C, z means the complex conjugation of z.

• If M is a complex matrix, then M∗ means the conjugate transpose M
T

.

• Let PD be some probability distribution over some domain D. Then x ← PD means
that x ∈ D is a sample from the distribution PD.

• We denote by NF,r (DF,r) the continuous (discrete) Gaussian distribution over some
domain F with standard deviation r and mean zero.
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1 Preliminaries

• We call an algorithm efficient if it runs in polynomial complexity in some input param-
eter n.

1.2 The Kronecker Product

Definition 1.2.1 (Kronecker product). Let R be an arbitrary ring and A ∈ R[n]×[m] and
B ∈ R[s]×[t] be two matrices. The Kronecker product (or tensor product) of A and B is defined
as

A⊗B ··=

 A0,0B · · · A0,m−1B
...

...
An−1,0B · · · An−1,m−1B

 .
Remark 1.2.2. By definition, the index set of M = A⊗B is given by ([n]× [s])× ([m]× [t])
as each entry of M is given by

M(i0,i1),(j0,j1) ··= Ai0,j0 ·Bi1,j1 .

For two integers n0 and n1 we can identify the set [n0]× [n1] with [n0n1] using the bijective
correspondence (i0, i1) ↔ i = i0n1 + i1. Consequently, A ⊗ B can be seen as a [ns] × [mt]
matrix.

Next we state some useful basic properties of the Kronecker product. For a more complete
list and proofs we refer to [HJ91, Chapter 4].

Proposition 1.2.3. The Kronecker product has the following properties.

(i) For any scalar λ we have

(λA)⊗B = A⊗ (λB) = λ(A⊗B).

(ii) It is associative, i.e., for matrices A,B and C we have

A⊗ (B ⊗ C) = (A⊗B)⊗ C.

(iii) It is right and left distributive, i.e., for suitable dimensional matrices A,B and C we
have

(A+B)⊗ C = (A⊗ C) + (B ⊗ C)

and
A⊗ (B + C) = (A⊗B) + (A⊗ C).

(iv) The Kronecker product fulfills the mixed-product property, i.e., for matrices A,B,C
and D with suitable dimensions we have

(A⊗B)(C ⊗D) = AC ⊗BD.

(v) It commutes with transposition and complex conjugation, i.e.,

(A⊗B)T = (AT ⊗BT )

and
(A⊗B)∗ = (A∗ ⊗B∗).
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1 Preliminaries

(vi) For non-singular matrices we have

(A⊗B)−1 = (A−1 ⊗B−1).

Proof. A proof can be found in e.g. [HJ91].

Remark 1.2.4. Taking matrices with dimensions n× 1 and m× 1 or 1×n and 1×m in the
above definition, we see that the Kronecker product is also defined for row and column vectors.
In this case, an easy computation shows that the Kronecker product has a mixed-product
property for vectors as well, where multiplication of two vectors is given by component-wise
multiplication. That is, for a,b ∈ Rn and a′,b′ ∈ Rm we have

(a� b)⊗ (a′ � b′) = (a⊗ a′)� (b⊗ b′),

where � is component-wise multiplication.

Assume we have a square matrix A of dimension n which is of the form A =
⊗m

l=1Al where
the Al are square matrices with suitable smaller dimensions nl. Using the mixed-product
property as defined above we can rewrite this tensor product as

A =
m∏
l=1

(In1 ⊗ . . .⊗ Inl−1
⊗Al ⊗ Inl+1

⊗ . . .⊗ Inm).

Here In means the n dimensional identity matrix. This decomposition of A helps us to develop
efficient algorithms for the application of A to a vector, which can be parallelized and only
need to apply the smaller matrices Al (see Section 3.1).

1.3 Lattices

Lattices are discrete additive subgroups in vector spaces. They are important for us, since
the embeddings of all rings and ideals we consider are actual lattices in Cn. We give a short
introduction with some basic facts that we need. Most of our statements are left without a
proof. For further information we refer to [Mil14, Chapter 4], or any other classical textbook
on algebraic number theory and lattices.

Definition 1.3.1. Let K = R or C and V a K-vector space of dimension n. Further let
Λ ⊂ V be an additive subgroup of the form

Λ = v1Z + . . .+ vmZ,

where the v1, . . . , vm are linearly independent vectors in V . We call Λ a lattice with basis
{v1, . . . , vm}. Λ is called a full-rank lattice if m = n, i.e., when {v1, . . . , vm} is a basis of V .

Notation 1.3.2. We often denote the basis {v1, . . . , vm} by an upper case letter, e.g., B and
refer with Λ = L(B) to the lattice generated by B. Further it is often convenient to refer
with B also to the matrix, whose columns are the basis vectors vi.

10
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Throughout this work we are only concerned with full-rank lattices, so the bases have always
full dimension. Two bases B and B′ generate the same lattice if and only if there exists a
unimodular matrix U (i.e., an integral matrix with determinant ±1) such that BU = B′.
Further, we define the determinant of a lattice L(B) by |det(B)|, which is independent of the
choice of B. The minimum distance λ1(Λ) of a lattice Λ is defined as the smallest euclidean
length for nonzero lattice vectors, i.e., λ1(Λ) ··= min0 6=x∈Λ ‖x‖2.

Another important notion is the dual lattice Λ∨ of a lattice Λ ⊂ V . Thereby, the dual
lattice is defined as

Λ∨ ··= {y ∈ V |∀x ∈ Λ, 〈x, y〉 ∈ Z} .

Let the lattice Λ = L(B) be given by a basis B = {bi}i=1,...,m. Then we define the dual basis
D = {di}i=1,...,m as the unique basis that satisfies span(B) = span(D) and BTD = I. The
latter condition is equivalent to saying 〈bi, dj〉 = δij , where δij is the Kronecker delta. The
dual basis D is indeed a basis for the dual lattice Λ∨ as the following proposition shows.

Proposition 1.3.3. Let V be an n-dimensional vector space, Λ = L(B) ⊂ V be an m-
dimensional lattice and D be the dual basis of B. Then Λ∨ = L(D).

Proof. Let x ∈ Λ be an arbitrary lattice vector and write it as
∑m

i=1 aibi for suitable ai ∈ Z.
Then for every 1 ≤ j ≤ m we have,

〈x, dj〉 =
m∑
i=1

ai 〈bi, dj〉 = aj ∈ Z.

Thus, D ⊂ L(B)∨ by definition of the dual lattice. Furthermore, it follows easily from the
definition that L(B)∨ is closed under addition and scalar multiplication with scalars from Z.
Hence we have L(D) ⊂ L(B)∨.

Now, for the other direction, take any y ∈ L(B)∨. Since y ∈ span(B) = span(D) we can
write y =

∑m
i=1 aidi for some ai ∈ R. But again, we have for all 1 ≤ j ≤ m that

〈y, bj〉 =
m∑
i=1

ai 〈di, bj〉 = aj

As 〈y, bj〉 ∈ Z we got also aj ∈ Z and y ∈ L(D). This completes the proof.

For full-rank lattices the dual basis is given by
(
BT
)−1

which leads to two easy facts.
Firstly, the passage to the dual is self inverse, i.e., (Λ∨)∨ = Λ. A basis for (Λ∨)∨ is given
by (((BT )−1)T )−1 = B which shows this fact. Secondly, we have det(Λ∨) = det(Λ)−1. By
definition of the determinant, it holds that

det(Λ∨) = |det((BT ))−1| = | 1

det(BT )
| = | 1

det(B)
| = det(Λ)−1.

These two facts also apply for general lattices. Another property we have, is that for lattices
Λ and Λ̄, the equivalence

Λ ⊂ Λ̄⇔ Λ∨ ⊃ Λ̄∨

holds. For proofs and more information concerning the dual lattice see [Reg04] and [Con09].

11
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The special case we are interested in is that, where the vector space V is some Cn. In this
case we slightly change the definition of the dual lattice to

Λ∨ ··=

{
y ∈ Cn

∣∣∣∣∣∀x ∈ Λ, 〈x, y〉 =
∑
i

xiyi ∈ Z

}
.

Consequently, the dual basis is characterized by
〈
bi, dj

〉
= δij . All facts stated above still hold

for these “conjugate” dual lattices. We do this small change, because we will later deal with
ideals in rings of algebraic integers which embed to lattices in Cn. Moreover, we will define a
dual ideal which, as it turns out, embeds exactly to the dual lattice as we defined it now (see
Section 1.4.4).

1.3.1 Decoding in Lattices

In the following we present a certain algorithmic task working on lattices that we will often
need in our applications. Let V ⊆ Cn be some R vector space, Λ ⊂ V a fixed lattice and x ∈ V
be an unknown short vector. Given the input t = x mod Λ, the algorithm should recover x.
Amongst several possible solutions for this task, we choose a slight extension of the “rounding
off” algorithm originally due to Babai (see [Bab86]). We refer to it as a decoding algorithm,
since in applications, it will play the main role when decrypting (decoding) elements. The
algorithm works as follows. Let {vi} be a fixed set of n linearly independent vectors in the
dual lattice Λ∨ and denote the dual basis of {vi} by {bi}. Since span({vi}) ⊂ Λ∨, the lattice
Λ′ generated by the dual basis {bi} is a superlattice of Λ. Thus, given t = x mod Λ, we
can express t mod Λ′ in the basis {bi} as

∑n
i=1 cibi for suitable ci ∈ R/Z. To be more

precise, by the definition of the dual basis, the coefficients are given by ci = 〈t, vi〉 mod 1.
Then, we output

∑
i JciKbi, where JcK ∈ R for c ∈ R/Z denotes the unique representative

c ∈ (c+ Z) ∩ [−1/2, 1/2).

Claim 1.3.4. With the above settings, the “rounding off” algorithm on input x mod Λ outputs
x, if and only if, all the coefficients ai = 〈x, vi〉 ∈ R in the linear combination x =

∑n
i=1 aibi

are in [−1/2, 1/2).

Remark 1.3.5. By the Cauchy-Schwarz inequality we have that

|ai| = |〈x, vi〉| ≤ ‖x‖2 · ‖vi‖2 = ‖x‖2 · ‖vi‖2.

Thus, if M = maxi=1,...,n ‖vi‖2 is the maximum length of the elements vi, each coefficient ai is
bounded by M · ‖x‖2. Together with Claim 1.3.4 this implies that the length of the unknown
vectors x we can successfully decode depends inversely on the maximum length of the vectors
vi from the dual lattice Λ∨.

1.3.2 Discretization in Lattices

Discretization is an algorithmic task working on lattices. Let V be some R vector space and
Λ = L(B) ⊂ V a lattice represented by a basis B = {bi}i=1,...,n. Given a point x ∈ V ,
and a point c ∈ V representing a lattice coset c+ Λ, we want to compute a discretized point
y ∈ c+Λ, written y ← bxec+Λ, such that the length of y−x is small. This is done by sampling
a short offset vector f ∈ c′+ Λ = (c−x) + Λ and output y = x+ f . There are several ways of
sampling the vector f . We call a procedure for sampling f valid , if it is efficient and depends

12
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only on the desired coset c′ + Λ and not on any particular representative. For our purposes
we will only use the “coordinate-wise randomized rounding” method which is a valid method.

The “coordinate-wise randomized rounding” is a simple and efficient way of sampling f .
First, we represent the coset representative c′ in the basis B as c′ =

∑n
i=1 aibi mod Λ for

some coefficients ai ∈ [0, 1). Then, we choose fi randomly and independently from {ai−1, ai}
such that the expectation of fi is zero. That is, if p ··= P [fi = ai] is the probability that
fi = ai, then p · ai + (1− p) · (ai − 1) has to be zero. Hence, we have p = 1− ai. Now define
f ··=

∑
i fibi ∈ c′ + Λ. Since the values ai are independent from the representative c′, the

validity of this method follows immediately.

1.4 Algebraic Number Theory

In this section we give a short introduction to the topics of algebraic number theory we will
need throughout this work. In particular, we will focus on cyclotomic number fields as these
are the only fields we use later on. For a more detailed and complete treatment of this topic,
see e.g. [Lan94] or any other introductory book on the subject. For more insight, in particular
on cyclotomic fields, see [Was82].

1.4.1 Cyclotomic Number Fields

Definition 1.4.1. Let K be any finite field extension over Q. Then we call K an algebraic
number field. Further let m be any positive integer and ζm an element of multiplicative order
m, i.e., a primitive m-th root of unity. Then the algebraic number field K = Q(ζm), obtained
by adjoining ζm to Q, is called the m-th cyclotomic number field .

Remark 1.4.2. Formally speaking, ζm is some abstract element in an algebraic closure of
Q. However, one can show that every algebraic closure of Q can be embedded into C. Thus,
ζm can also be viewed as some particular value in C, which is often the better way to think
of ζm in terms of intuition and understanding.

The minimal polynomial of ζm is the m-th cyclotomic polynomial

Φm(X) =
∏
i∈Z∗m

(X − ωim) ∈ Z[X],

where ωm is any primitive m-th root of unity in C, e.g., ωm = exp(2π
√
−1/m). This

yields a natural isomorphism between K and Q[X]/(Φm(X)), given by ζm 7→ X. The
degree of Φm(X) is n = |Z∗m| = ϕ(m), where ϕ is the Euler totient function. Thus, we
can view K as an n-dimensional vector space over Q. A canonical basis is given by the
power basis (ζjm)j∈[n] = (1, ζm, . . . , ζ

n−1
m ) ∈ K [n], which corresponds to the monomial basis

(1, X, . . . ,Xn−1) of Q[X]/(Φm(X)).
A common way to represent an element a ∈ K ∼= Q[X]/(Φm(X)) is to take the coor-

dinate vector, in the monomial basis, of the polynomial pa ∈ Q[X]/(Φm(X)) correspond-
ing to a. Depending on the form of the minimal polynomial Φm(X), modulo reduction
in Q[X]/(Φm(X)) might become rather complex. For m being a prime or a prime power
the minimal polynomial looks “nice” and has small coefficients, i.e., for primes p we have
Φp(X) = 1 + X + X2 + · · · + Xp−1 and for prime powers m we have Φm(X) = Φp(X

m/p).

13
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However, for arbitrary m, generally speaking, the range of the coefficient grow with the num-
ber of prime divisors of m. For example, Φ6(X) = X2 −X + 1, Φ3·5·7(X) has 33 monomials
with coefficients −2,−1 and 1 and Φ3·5·7·11·13(X) has coefficients of magnitude up to 22. This
behavior causes some operations, like addition and multiplication, to be inefficient for a wide
choice of integers m. Fortunately, this will never be a concern for us, because we choose a
different approach to represent elements in K, which is independent of the minimal polyno-
mial. Still we want to reduce our considerations to the case of prime power cyclotomics. This
is done via the tensor product.

Definition 1.4.3. Let K and L be two algebraic number fields. For arbitrary a ∈ K and
b ∈ L we say that a⊗Q b is a pure tensors. The tensor product of the fields K ⊗Q L is defined
as the set of all Q-linear combinations of pure tensors a⊗Q b for a ∈ K and b ∈ L. Thereby,
addition and scalar multiplication are defined as follows. For pure tensors (a1 ⊗Q b1) and
(a2 ⊗Q b2) the sum is defined as the element

(a1 ⊗Q b1) + (a2 ⊗Q b2)

and can not be further simplified. In the special cases b1 = b2 or a1 = a2 we define

(a1 ⊗Q b) + (a2 ⊗Q b) = (a1 + a2)⊗Q b,

(a⊗Q b1) + (a⊗Q b2) = a⊗Q (b1 + b2).

For any scalar λ ∈ Q and a pure tensor (a⊗Q b) we define scalar multiplication by

λ(a⊗Q b) = (λa)⊗Q b = a⊗Q (λb).

Using the mixed-product property we can also define a multiplication on K ⊗Q L via

(a1 ⊗Q b1)(a2 ⊗Q b2) = (a1a2)⊗Q (b1b2).

With these definitions it is also possible to view ⊗Q as a Q-bilinear form

⊗Q : K × L→ K ⊗Q L

(a, b) 7→ a⊗Q b

which satisfies the mixed-product property.

In the following, if it is clear what we mean, we will drop the index Q of ⊗Q for the sake of
simplicity.

Note that K⊗L is not always a field, because it may lack multiplicative inverses. However,
it will always be an algebra. In the case of cyclotomic number fields, the tensor product is
again a field. Indeed we have the following results.

Proposition 1.4.4. Let m be any positive integer with the prime power factorization m =∏s
l=0ml. Then ζm =

∏s
l=0 ζml and

Q(ζm) = Q

(
s∏
l=0

ζml

)
= Q(ζm0 , . . . , ζms) =

s∏
l=0

Q(ζml).

Proof. A proof can be found in e.g. [Lan94].
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Proposition 1.4.5. Let m be any positive integer with the prime power factorization m =∏s
l=0ml. Then K = Q(ζm) =

∏s
l=0 Q(ζml) is isomorphic as a field to the tensor product⊗s

l=0 Q(ζml) via the correspondence

s∏
l=0

al ↔

(
s⊗
l=0

al

)
,

where al ∈ Q(ζml).

Proof. From Proposition 1.4.4 we know that each a ∈ K can be uniquely rewritten to a
product

∏s
l=0 al, for suitable al ∈ Q(ζml). Hence, in order to prove this result, one must only

check that the given map is indeed a isomorphism of fields. It is clearly bijective and the
homomorphic properties are checked by straightforward computations.

Suppose we have two cyclotomic fields K and L and let ~a = (a0, . . . , an−1) and ~b =
(b0, . . . , bm−1) be the respective power bases. Any tensor c⊗d ∈ K⊗L might be rewritten to

c⊗ d =

∑
i∈[n]

ciai

⊗
∑
j∈[m]

djbj

 ,

where (ci)i∈[n] and (dj)j∈[m] are the respective coefficients of the representations of c and d in
the respective bases. By bilinearity of ⊗, this can be further transformed into∑

i∈[n]

ciai

⊗
∑
j∈[m]

djbj

 =
∑
i∈[n]

∑
j∈[m]

cidj(ai ⊗ bj).

The latter is a unique representation of c ⊗ d implying that the set of tensors ai ⊗ bj for
i ∈ [n] , j ∈ [m] is a basis of K ⊗ L.

The tensor product can also be defined more general for arbitrary R-modules and R-
algebras where R is some commutative ring with one. Then, the tensor product consists of
R-linear combinations and ⊗R is R-bilinear. In the case of R-modules, the mixed-product
property is omitted since there exists no multiplication for arbitrary module elements. In this
setting the tensor product is itself again a R-module or R-algebra respectively. Also, if there
exist some R-bases for the modules or algebras, then we get a basis for the respective tensor
product in the same way as above in the cyclotomic field case. We need this more general
definition for the special case, where R = Z, since we will consider several Z-modules and
their tensor product later in this work.

1.4.2 Embeddings and Geometry

In the following, let K = Q(ζm) be the m-th cyclotomic number field for some positive
integer m. From Galois theory we know that K has exactly |K/Q| = n = ϕ(m) distinct
Q-homomorphism {σi}i∈Z∗m from K to C that fix every element of Q. We call the σi also
embeddings, since they are injective. To be more precise, let ωm be any fixed primitive m-th
root of unity in C. Then for each i ∈ Z∗m there is an embedding σi defined by σi(ζm) = ωim.1

Note that ωm−im = ω−im = ωim, so the embeddings come in complex conjugated pairs σi = σm−i.

1In all our implementations, ωm will always be the “first” primitive root of unity on the unit circle in C, i.e.,
ωm = exp(2πi/m).
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Definition 1.4.6 (Canonical Embedding). Let K = Q(ζm) for some positive integer m.
Further, for i ∈ Z∗m let σi : K → C be the n = ϕ(m) distinct Q-homomorphisms from K to
C. Then we define the canonical embedding σ : K → CZ∗m by

σ(a) ··= (σi(a))i∈Z∗m .

The fact that the Q-homomorphisms σi come in complex conjugated pairs gives motivation
to define a certain subspace of CZ∗m , which has also a complex conjugated paired structure.

Definition 1.4.7. For any integer m define the subspace H ⊂ CZ∗m as

H ··=
{

x ∈ CZ∗m |xi = xm−i,∀i ∈ Z∗m
}
.

Remark 1.4.8. As a subspace H inherits the standard inner product and the `2 and `∞
norms of CZ∗m . Concretely, we have ‖x‖2 =

∑
i (|xi|)1/2 =

√
〈x,x〉 and ‖x‖∞ = maxi|xi| for

all x ∈ H. Furthermore, H is isomorphic to R[n] as an inner product space. This can be seen

via the Z∗m × [n] unitary basis matrix B = 1√
2

(
I
√
−1J

J −
√
−1I

)
of H, where I is the identity

matrix and J is the reversed identity matrix, both of dimension n/2 (note that the result of
Euler’s totient function is always even, in particular, n = ϕ(m) is even).

The space H turns into a ring, if we equip it with component-wise addition and multipli-
cation. The canonical embedding σ now maps into H and is a ring homomorphism. Indeed
for arbitrary a, b ∈ K we have

σ(a+ b) = (σi(a+ b))i∈Z∗m = (σi(a) + σi(b))i∈Z∗m = (σi(a))i∈Z∗m + (σi(b))i∈Z∗m = σ(a) + σ(b)

and

σ(a · b) = (σi(a · b))i∈Z∗m = (σi(a) · σi(b))i∈Z∗m = (σi(a))i∈Z∗m � (σi(b))i∈Z∗m = σ(a)� σ(b)

where � means component-wise multiplication. Further, since all σi are injective, the canon-
ical embedding σ is also injective.

Through the canonical embedding we can endow K with a canonical geometry. For a ∈ K
we define the `2 norm as ‖a‖2 = ‖σ(a)‖2 =

∑
i∈Z∗m (|σi(a)|)1/2 and the `∞ norm as ‖a‖∞ =

maxi∈Z∗m |σi(a)|. Since multiplication in H is component-wise we have that for any a, b ∈ K

‖a · b‖ ≤ ‖a‖∞ · ‖b‖,

where ‖ · ‖ is either the `2 or `∞ norm. This means that we have a bound on how much
an element expands any other by multiplication. For example, multiplying with any power
ζ = ζkm of ζm does not expand the element at all. As σi(ζ) = σi(ζ

k
m) = σi(ζm)k = ωikm is still

a root of unity in C, we have ‖ζ‖∞ = 1 and ‖ζ‖2 =
√
n.

Two important mappings from field theory are the trace and the norm. They are defined
as follows.

Definition 1.4.9. Let K = Q(ζm) for some positive integer m. Further, for i ∈ Z∗m let
σi : K → C be the n = ϕ(m) distinct Q-homomorphisms from K to C. Then we define the
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trace Tr = TrK/Q : K → Q of K/Q as the sum off all existing Q-homomorphisms from K to
C, i.e.,

TrK/Q(a) =
∑
i∈Z∗m

σi(a).

The norm N = NK/Q : K → Q is defined as the product of all embeddings σi, i.e.,

NK/Q(a) =
∏
i∈Z∗m

σi(a).

Remark 1.4.10. The fact that the trace and the norm map into Q although all embeddings
map into C is not a trivial one. It needs a decent proof, which we omit at this point.

The trace is a Q-linear map, since all embeddings σi are Q-linear: Tr(a+ b) = Tr(a)+Tr(b)
and Tr(λ · a) = λ · Tr(a) for all a, b ∈ K and λ ∈ Q. For a product in K we have

Tr(a · b) =
∑
i∈Z∗m

(σi(a) · σi(b)) =
〈
σ(a), σ(b)

〉
C
, (1.1)

so via Tr(a, b) ··= Tr(a·b) we can define a symmetric bilinear form that equals the inner product
of the embedding and the complex conjugate embedding of a and b respectively. Since all
embeddings are multiplicative, the norm is also multiplicative, i.e., N(a · b) = N(a) ·N(b).

When viewing K = Q(ζm) as the tensor product
⊗s

l=0Kl as in Proposition 1.4.5, where
m =

∏s
l=0ml is the prime power factorization of m and Kl = Q(ζml), we can also view the

embedding σ of K as the tensor (Kronecker) product of the canonical embeddings σ(l) of Kl.
Here we define σ for the tensor product K via the natural isomorphism from Proposition 1.4.5.
Then, for a tensor

⊗s
l=0 al for al ∈ Kl we have

σ

(
s⊗
l=0

al

)
= σ

(
s∏
l=0

al

)
=

s∏
l=0

σ(al) =
s⊙
l=0

(σi(al))i∈Z∗m .

Now via the definition of the Kronecker product and the Chinese remainder theorem, which
implies that Z∗m ∼=

∏s
l=0 Z∗ml , we get

s⊙
l=0

(σi(al))i∈Z∗m =
s⊗
l=0

(σj(al))j∈Z∗ml
=

s⊗
l=0

σ(l)(al).

Together, we get the relation

σ

(
s⊗
l=0

al

)
=

s⊗
l=0

σ(l)(al). (1.2)

Here
⊙

again means coordinate-wise multiplication. A nice implication of this fact is the
decomposition of the trace. Let 1 ∈ R[n] be the all ones vector. Then we have

TrK/Q

(
s⊗
l=0

al

)
=

〈
σ

(
s⊗
l=0

al

)
,1

〉
=

〈
s⊗
l=0

σ(l)(al),1

〉

=
s∏
l=0

〈
σ(l)(al),1

〉
=

s∏
l=0

TrKl/Q(al).

(1.3)
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In later applications we will sample Gaussians from the continuous Gaussian distribution
Nr over K for some standard deviation r. This is done via sampling from Nr over H and
a pull back to K with the canonical embedding σ. Actually, the pull back of a continuous
Gaussian from H will live in the field tensor product KR = K ⊗ R. Here tensoring with R is
essentially an expansion of the scalar field from Q to R. This means that taking any Q-basis of
K and treating it as a R-basis yields a field isomorphic to KR. Also, the fact that we are now
allowed to take arbitrary elements from R as coefficients in basis representations of elements
in KR implies that the natural continuation σ : KR → H is surjective, hence an isomorphism.
Alternatively, one can argue that KR is isomorphic to R[n] as well as H, so they have the same
cardinality. The embedding σ : KR → H is still injective and a ring homomorphism, since all
continuations σi : KR → C for i ∈ Z∗m are injective R-homomorphisms. Consequently, σ has
to be surjective and therefore an isomorphism.

1.4.3 Ring of Integers and its Ideals

Definition 1.4.11. Let K be an arbitrary algebraic number field. We denote with R ⊂ K
the set of all algebraic integers in K. This set is a subring of K and is called the ring of
integers of K (often also denoted as OK).

One can show that the trace and the norm of an algebraic integer in K is again an algebraic
integer in the image Q. Thus, we have the induced maps Tr,N : R→ Z.

Let K be the m-th cyclotomic number field Q(ζm) for some positive integer m. Then the
ring of integers is given by R = Z[ζm] ∼= Z[X]/Φm(X). R has the power basis {ζjm}j∈[n],
where n = ϕ(m), as a Z-basis. Recall that we often view K as the tensor product K =⊗s

l=0Kl, where Kl = Q(ζml) and m0, . . . ,ms are the distinct prime power divisors of m (cf.
Proposition 1.4.5). Similarly, we can view R as the tensor product R =

⊗s
l=0Rl for the rings

of algebraic integers Rl in Kl.
Next we introduce the notion of ideals in rings. One can think of ideals in arbitrary rings R

as some sort of counterpart to primes and numbers in Z. Just as there are prime numbers in
Z, there are prime ideals in R. Furthermore, one can define arithmetic operations on ideals,
similarly to usual arithmetic in Z. In particular, if R is a ring of integers (or more general a
Dedekind ring), this correspondence gets even stronger. In this case there is a unique prime
ideal factorization for ideals.

Definition 1.4.12. Let R be a commutative ring with one and I ⊆ R be any non-trivial
subgroup that is closed under multiplication with R, i.e., 0 ∈ I, a − b ∈ I and r · a ∈ I for
all a, b ∈ I and r ∈ R. Then I is called an ideal in R.2

Remark 1.4.13. For a given subset X ⊆ R we can define an ideal I by the set

I ··=

{∑
i∈I

rixi

∣∣∣∣∣ I ⊂ N finite, ri ∈ R, xi ∈ X

}
.

We say that I is the ideal generated by X and write I = 〈X〉.

Definition 1.4.14. Let R be a commutative ring with one. Any ideal I ⊆ R, which is
generated by a single element u ∈ R is called principle. Next to I = 〈u〉 we also write
I = uR.
2Many authors define ideals including the trivial subgroup {0}. We decided to not define {0} as an ideal,

since many of the result concerning ideals we use, do only hold if the trivial ideal is excluded.
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A generator of a principle ideal I = 〈u〉 is in general not unique. Indeed, if e ∈ R is a unit,
then I = 〈u〉 = 〈eu〉. So, the generator u is only unique up to multiplication with units in R.

Now we return to the special case where K = Q(ζm) is the m-th cyclotomic number field
and the ring R is the ring of integers R ⊂ K. Here we distinguish two kinds of ideals.

Definition 1.4.15. Let K = Q(ζm) be the m-th cyclotomic number field and R ⊂ K its ring
of integers. Any ideal I ⊆ R is called integral .

An integral ideal I in R is always finitely generated. In fact, one can show that there exist
two elements which generate I. Another theorem from number theory states that there is a
Z-basis of I of size n = ϕ(m) for each ideal I in R. For example, if I = 〈u〉 and B is any
Z-basis of R, then uB is a Z-basis for I.

Definition 1.4.16. Let K = Q(ζm) be the m-th cyclotomic number field and R ⊂ K its ring
of integers. A fractional ideal I ⊆ K is a finitely generated R-submodule in K.

The name fractional ideal might be misleading, since fractional ideals are in general no
ideals. However, for each fractional ideal I in K there exists some element d ∈ R such that
dI ⊆ R is an integral ideal. A fractional ideal I is called principal, if there is some element
u ∈ K such that I = uR. Note that any integral ideal is also a fractional ideal. A key
fact from algebraic number theory is that any fractional ideal I embeds under the canonical
embedding σ as a full-rank lattice σ(I) in H. We call σ(I) an ideal lattice. For convenience,
we often identify the ideal I with its embedded lattice σ(I) and define in this way the usual
lattice quantities for fractional ideals.

The notion of addition and multiplication can be adapted for fractional ideals. We define
the sum I+J of two fractional ideals as the set of all a+ b for a ∈ I, b ∈ J , and the product
IJ as the fractional ideal generated by all ab for a ∈ I, b ∈ J , i.e., the set of all finite sums of
all ab. The set of all fractional ideals in K is an abelian group under multiplication. Thereby,
we define the neutral element by 〈1〉 = R and the inverse as I−1 ··= {x ∈ K |xI ⊆ R}.

Before we continue with the norm for fractional ideals we introduce another important
invariant for algebraic number fields K. The (absolute) discriminant ∆K ··= det(σ(R))2 of
K is defined as the squared determinant of the lattice σ(R). If K = Q(ζm) is the m-th
cyclotomic number field, the discriminant is given by

∆K =

 m∏
prime p|m

p1/(p−1)


n

≤ nn, (1.4)

where n = ϕ(m). This inequality is tight, if and only if, m is a power of two.
The notion of the field norm NK/Q is generalized to ideals in R by defining the norm of

any integral ideal I ⊆ R as N(I) = |R/I|, the index of I as a subgroup in R. This is a
generalization in the sense that N(〈u〉) = |N(u)| for any u ∈ R and N(IJ ) = N(I)N(J ) for
integral ideals I,J ⊆ R. For a fractional ideal I ⊆ K and an element d ∈ R such that
dI ⊆ R, we define the norm as N(I) = N(dI)/|N(d)|. Note that the norm is always finite.
One can show that the norm of a fractional ideal I and the determinant of the lattice σ(I)
are related by

det(σ(I)) = N(I) · det(σ(R)).

Together with the definition of the discriminant this implies that

det(σ(I)) = N(I) ·
√

∆K . (1.5)
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Lemma 1.4.17. Let K = Q(ζm) be the m-th cyclotomic number field for some positive integer
m. Denote by n = ϕ(m) the degree of K/Q. For any fractional ideal I in K the following
inequality holds,

√
n ·N1/n(I) ≤ λ1(I) ≤

√
n ·N1/n(I) ·

√
∆

1/n
K .

Proof. First, we prove the lower bound. Let xmin denote an element I where the minimum
distance is taken, i.e., ‖xmin‖2 = λ1(I). For every nonzero element a ∈ I we have |N(a)| ≥
N(I). Therefore, the inequality

√
n ·N1/n(I) ≤

√
n · |N1/n(xmin)|

holds. By definition of the Norm, the right hand side of the above inequality is equal to

√
n ·

∏
i∈Z∗m

|σi(xmin)|

1/n

.

As this product contains n factors, the n-th root of it is the arithmetic mean of the elements
|σi(xmin)|. By the well known arithmetic-geometric-mean-inequality the above term can be
further estimated to

√
n ·

∏
i∈Z∗m

|σi(xmin)|

1/n

≤
√
n · 1

n

∑
i∈Z∗m

|σi(xmin)| =
√
n

n
‖xmin‖1.

Using the Cauchy-Schwarz inequality one can show that ‖x‖1 ≤
√
n‖x‖2 for any x ∈ I (in

fact, this is a common fact for norms in Rn), so that

√
n

n
‖xmin‖1 ≤ ‖xmin‖2 = λ1(I).

For the upper bound we make use of Minkowski’s theorem, which states that a symmetric
convex set S with volume vol(S) > 2n det(I) must contain at least one element x ∈ I \ 0.3

Consider first the `∞ norm ‖x‖∞ = maxi|xi|. Let α ··= min06=x∈I ‖x‖∞ and suppose that
α > det(I)1/n. Consider the hypercube C ··= {x ∈ K |‖x‖∞ < α} and notice that C is
symmetric, convex and has th volume vol(C) = (2α)n > 2n det(I). Hence, by Minkowski’s
theorem, C contains a nonzero element x. But, by definition of C, we have ‖x‖∞ < α,
contradicting the minimality of α. Consequently, α cannot be smaller than det(I)1/n and we
have

‖x‖∞ ≤ det(I)1/n

for at least one x ∈ I. Since the `∞ and the `2 norm are related by a factor
√
n, i.e.,

‖x‖2 ≤
√
n‖x‖2∞, this implies

‖x‖2 ≤
√
n · det(I)1/n.

Now we conclude the proof by observing that Equation (1.5) just states the missing equality
det(I) = N(I) ·

√
∆K .

3For more details on Minskowski’s theorem, especially in relation with the minimum distance of lattices
see [Mic14].
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Just like we have a unique prime factorization for numbers in Z, we have a prime ideal
factorization for integral ideals in R. Any integral ideal p ( R is called prime if whenever
ab ∈ p then a ∈ p or b ∈ p. Now, one can show that each integral ideal I ⊆ R has a unique
factorization into powers of prime ideals, i.e., I = pk11 · . . . · pkrr for prime ideals p1, . . . , pr
and positive integers k1, . . . , kr. This prime ideal factorization can be extended to fractional
ideals I ⊆ K similarly as we can extend the prime factorization from Z to Q. This means,
that each fractional ideal I ⊆ K has a unique factorization of prime ideals

I = pk11 · . . . · p
kr
r ,

where this time k1, . . . , kr are arbitrary integers (in particular, negative integers are allowed).
Recall that we defined the inverse of some fractional ideal I as I−1 ··= {x ∈ K |xI ⊆ R}.

Another property of integral ideals in R is that any ideal p ∈ R is prime if and only if it is
maximal . That is, p has only R itself as a proper superideal of R, which in turn implies that
the quotient R/p is a finite field. Finally, we call two ideals I,J ⊆ R coprime if I + J = R.

1.4.4 Duality

In Section 1.3 we defined the dual lattice for lattices in a vector space V . The dual lattice
consists of elements in V whose inner products with elements in the initial lattice are integral.
Furthermore, we mentioned in Section 1.4.3 that fractional ideals embed as lattices under
the canonical embedding and in Section 1.4.2 that the bilinear form induced by the trace
corresponds to the inner product in Cn. Following this correspondence, we can define the
notion of a dual ideal for fractional ideals in cyclotomic fields. We will see that dual ideals
are closely related to dual lattices. For more details and further remarks we refer to [Con09].

For the rest of this section let K = Q(ζm) be the m-th cyclotomic number field for some
positive integer m and R ⊂ K be its ring of integers. Further let m =

∏s
l=0ml be the prime

power factorization of m and n = ϕ(m).

Definition 1.4.18 (Dual Ideal). Let I ⊆ K be a fractional ideal in K. Then the dual ideal
I∨ is defined as

I∨ ··= {a ∈ K |Tr(aI) ⊂ Z} .

The dual ideal has a similar behavior to the dual lattice. The passage to the dual ideal
is self inverse, i.e., (I∨)∨ = I. Analogously to the dual basis for lattices, the dual basis
B∨ = {b∨j }j∈[n] for any Q-basis B = {bj}j∈[n] of K is characterized by Tr(bi · b∨j ) = δij . We
have that (B∨)∨ = B and if B is a Z-basis for any fractional ideal I, then B∨ is a Z-basis for
the dual ideal I∨. In particular, I∨ is again a fractional ideal. A quick computation using
Equation (1.1) shows that the dual ideal I∨ actually embeds to the dual lattice σ(I)∨, i.e.,
σ(I∨) = σ(I)∨.

When viewing K as the tensor product K =
⊗s

l=0Kl as in Proposition 1.4.5, so Kl =
Q(ζml), linearity and the tensorial decomposition of the trace as in Equation (1.3) imply
that (

⊗s
l=0Bl)

∨ =
⊗s

l=0B
∨
l for any Q-bases Bl of Kl. In other words, the passage to

the dual commutes with the tensor product. For fractional ideals Il in Kl this means that
(
⊗s

l=0 Il)∨ =
⊗s

l=0 I∨l .
For integral ideals I ⊆ R we always have Tr(I) ⊂ Z. Together with the fact that RI = I,

this implies R ⊂ I∨. In particular, we have R ⊂ R∨. Moreover, the dual ideal R∨ yields a
nice relation between I∨ and I−1 for arbitrary fractional ideals I, namely I∨ = I−1 · R∨.
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The factor R∨ is often called the codifferent and plays an important role in ring-LWE and
its applications. Since R∨ embeds to the dual lattice of σ(R) we have that det(σ(R∨)) =
det(σ(R))−1. Together with Equation (1.5) we get

N(R∨) = det(σ(R∨)) · det(σ(R))−1 = det(σ(R))−2 = ∆−1
K . (1.6)

In the following we want to show that the codifferent is actually a principal ideal and that
(R∨)−1 ⊂ R is an integral ideal. We start with a useful Lemma.

Lemma 1.4.19. Let m be a prime power of some prime p and j an integer. Further let
m′ = m/p. Then we can characterize the trace of the j-th power of ζm as

Tr(ζjm) =


ϕ(p) ·m′, if j = 0 mod m,
−m′, if j = 0 mod m′, j 6= 0 mod m,
0, otherwise.

Proof. In the first case we have j = 0 mod m, thus ζjm = 1. Then, Tr(ζjm) = |K/Q| =
ϕ(m) = ϕ(p) ·m′.

Otherwise, let d = gcd(j,m) and m̃ = m/d. Then we have the field extensions

K ⊃ Q(ζm̃) ⊃ Q.

In this case, we know for all a ∈ K that TrK/Q(a) = [K : Q(ζm̃)] ·TrQ(ζm̃)/Q(a). Since m = pk

is a prime power, we have ϕ(m) = (p− 1)pk−1. Now d can itself be only a prime power, say
d = ps for some 0 ≤ s ≤ (k − 1). Then m̃ = pk−s and we can write

ϕ(m) = (p− 1)pk−s−1ps = ϕ(pk−s) · ps = ϕ(m̃) · d.

Moreover, we know that [K : Q] = ϕ(m) and [Q(ζm̃)] = ϕ(m̃) which yields [K : Q(ζm̃)] = d.

If we rewrite ζm = ζ
m̃/m
m̃ = ζ

1/d
m̃ , we have

Tr(ζjm) = d · TrQ(ζm̃)/Q(ζ
j/d
m̃ ).

But, d is the greatest common divisor of j and m, which implies that m/d = m̃ and j/d

are coprime. Hence ζ
j/d
m̃ is a primitive m̃-th root of unity and the ϕ(m̃) distinct embed-

dings {σi}i∈Z∗m̃ of Q(ζm̃)/Q permute the primitive m̃-th roots of unity in C. Consequently,

TrQ(ζm̃)/Q(ζ
j/d
m̃ ) is given by the sum of all primitive m̃-th roots of unity. If j = 0 mod m′ and

j 6= 0 mod m this sum is exactly −1, since d = m′ and m̃ = p is prime. Otherwise, the sum
is zero, as required.

Next we show that in the case of prime powers the dual ideal R∨ is principal with a simple
generator.

Lemma 1.4.20. Let m be a prime power of some prime p and m′ = m/p. Further define
g ··= 1− ζp ∈ R = Z[ζm]. Then we have

(i) R∨ = 〈g/m〉,

(ii) p/g ∈ R,

(iii) 〈g〉 and 〈p′〉 are coprime for every prime p′ 6= p.
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Proof. Ad (i): First we check that g/m is indeed an element of R∨. That is the case, if
Tr(ζjm · g/m) is in Z for each j ∈ [ϕ(m)]. It is sufficient to check this only for powers of ζm,
since {ζjm}j∈[ϕ(m)] is a basis of R and the trace is linear. By definition of g and linearity of
the trace we have

Tr(ζjm · g/m) =
1

m
Tr(ζjm · (1− ζp)) =

1

m
Tr(ζjm − ζjm · ζm/pm ) =

1

m

(
Tr(ζjm)− Tr(ζj+m

′
m )

)
.

By the previous Lemma, the above expression is zero for all j 6= 0. In the case j = 0 we have
j = 0 mod m and j +m′ = m′ = 0 mod m′ but m′ 6= 0 mod m. Thus, the traces evaluate
to

1

m

(
Tr(ζjm)− Tr(ζj+m

′
m )

)
=

1

m
(ϕ(p) ·m′ +m′) =

(ϕ(p) + 1)m′

m
=
pm′

m
= 1.

Now, in order to show that R∨ = 〈g/m〉, it suffices to prove that N(R∨) = N(g/m). We
already proved that g/m ∈ R∨ and thus 〈g/m〉 ⊂ R∨. Since R∨ is a fractional ideal, there
is an element α ∈ R such that αR∨ ⊂ R. But, for the same element α it also holds that
α 〈g/m〉 ⊂ αR∨ ⊂ R. The norms of these fractional ideals are defined as

N(R∨) =
N(αR∨)

|N(α)|
and N(〈g/m〉) =

N(α 〈g/m〉)
|N(α)|

.

If N(R∨) = N(g/m) = N(〈g/m〉) it follows that N(αR∨) = N(α 〈g/m〉). This means that
[R/αR∨] = [R/α 〈g/m〉] and from group theory we know that

[R/α 〈g/m〉] = [R/αR∨] · [αR∨/α 〈g/m〉],

which then leaves no choice other than [αR∨/α 〈g/m〉] = 1. This in turn implies R∨ = 〈g/m〉.
From Equation (1.6) we know that N(R∨) = ∆−1

K . The latter is due to Equation (1.4) given
by

∆−1
K =

(
p1/(p−1)

m

)ϕ(m)

=
pϕ(m)/ϕ(p)

mϕ(m)
.

Note that ϕ(m)/ϕ(p) = m′ = m/p, so we have N(R∨) = pm/p/mϕ(m). Concerning the element
g/m we have N(m) = mϕ(m) and N(g) = N(1− ζp) = NQ(ζp)/Q(1− ζp)[K:Q(ζp)]. With a similar
argument as in the proof of Lemma 1.4.19, we see that [K : Q(ζp)] = m′ = m/p. Let {τi}i∈Z∗p
be the (p− 1) distinct embedding of Q(ζp). Then we have

NQ(ζp)/Q(1− ζp) =
∏
i∈Z∗p

τi(1− ζp) =
∏
i∈Z∗p

1− τi(ζp).

The terms τi(ζp) just traverse through the complex primitive p-th roots of unity, so that the
latter expression is just Φp(1). In fact, the p-th cyclotomic polynomial at one evaluates to p.
Consequently, we have N(g) = pm/p, thus N(g/m) = pm/p/mϕ(m) = N(R∨).

Ad(ii): A nice fact about cyclotomic fields for primes p is that the equation

1 + ζp + ζ2
p + . . .+ ζp−1

p = 0

holds. Using this we can verify

p = (1− ζp)
(
(p− 1) + (p− 2)ζp + . . .+ ζp−2

p

)
,
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implying that p/g ∈ R.
Ad(iii): Note that the norm of g is a power of p. Hence, for any prime integer p′ 6= p we

have 〈g〉 ⊂ 〈g〉+ 〈p′〉 , 〈p′〉 ⊂ 〈g〉+ 〈p′〉 and the norm N(〈g〉+ 〈p′〉) divides both p and p′. Thus,
N(〈g〉+ 〈p′〉) = 1 is the only possibility, implying 〈g〉+ 〈p′〉 = R.

Definition 1.4.21. Let m be an arbitrary positive integer. For R = Z[ζm], we define g ··=∏
p (1− ζp) ∈ R, where p runs over all odd primes dividing m. Further, define t ··= m̂/g ∈ R,

where m̂ ··= m/2 if m is even, m̂ = m otherwise.

With this definition and the above lemma we can describe R∨ also for arbitrary m very
precisely.

Corollary 1.4.22. With the above definition and notation we have R∨ = 〈g/m̂〉 =
〈
t−1
〉
.

Furthermore, 〈g〉 is coprime with 〈p′〉 for each prime integer p′, except those odd primes
dividing m.

Proof. Let m =
∏s
l=0ml be the prime power factorization of m, where ml is a power of some

prime pl. Consider R via the ring isomorphism R =
⊗s

l=0Rl, where Rl = Z[ζml ]. Then we
can express g as g = (m̂/m)(

⊗s
l=0 gl), where gl = (1−ζpl). Note that the factor m̂/m is either

1 or 1/2 depending on m being odd or not. In the case where m is even it thus eliminates the
extra term (1− ζ2) = 2. Now, together with Lemma 1.4.20 we have(

s⊗
l=0

Rl

)∨
=

s⊗
l=0

R∨l =

s⊗
l=0

(gl/ml)Rl = (g/m̂) ·

(
s⊗
l=0

Rl

)
,

which proves the first claim.
To prove the second part, note that p′ is coprime to all odd primes dividing m and the

norm of g is a product of powers of these primes. Thus, the proof is analogously to the proof
of Lemma 1.4.20 (iii).

1.4.5 Prime Splitting and Chinese Remainder Theorem

A central topic in algebraic number theory is the splitting of primes in an algebraic number
field K and its ring of integers R. That means, if we have a prime p in Z, how does the prime
ideal factorization of 〈p〉 ⊂ R looks like. The following theorem, which we leave without a
proof, gives us some insight about that.

Theorem 1.4.23. Let m be any positive integer and write m =
∏
p p

kp for primes p, where

kp ≥ 0. Further let m′p ··= m/pkp and let fp be the smallest integer such that

pfp = 1 mod m′p,

i.e., fp is the multiplicative order of p in Z∗m′p. Then p splits into

〈p〉 = (p1 · . . . · pr)ϕ(pkp ),

where p1, . . . , pr are distinct prime ideals in R each of norm pfp and r = ϕ(m′p)/fp.
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For later purposes we are interested in the special case, where K = Q(ζm) and q is a prime
integer such that q = 1 mod m. Then kq = 0, fq = 1 and m′q = m. Hence, r = ϕ(m) = n
and q splits into n distinct prime ideals qi all of norm q. Furthermore, since

q = 1 mod m⇔ (q − 1) = 0 mod m,

m divides q− 1 = ϕ(q) which is the order of Z∗q . Now, from group theory we know that there
are ϕ(m) = n elements of order m in Z∗q , i.e., n distinct primitive roots of unity ωm. These
roots of unity are permuted by the action of the group Z∗m. So, if we fix one root ωm, the
remaining n−1 roots are given by ωim for i ∈ Z∗m. Then algebraic number theory tells us that
the prime ideal factors of 〈q〉 are given by qi = 〈q〉+

〈
ζm − ωim

〉
. This again implies that the

quotient ring R/qi is isomorphic to Zq as a field via the map ζm 7→ ωim.
The Chinese remainder theorem states that for k distinct, pairwise coprime ideals {pi}i∈[k]

in R, the natural ring homomorphism from R/
∏
i∈[k] pi to

∏
i∈[k] (R/pi) is in fact an isomor-

phism. In order to define a special Zq-basis for the quotient Rq = R/qR we will need the
following specialization.

Lemma 1.4.24. Let q = 1 mod m be a prime number. Further, consider ωm ∈ Zq and
ideals qi as above. Then the natural ring homomorphism R/ 〈q〉 →

∏
i∈Z∗m (R/qi) ∼= Znq is an

isomorphism.

1.5 Ring-LWE

We close the preliminaries with a short introduction to the ring variant of the “Learning with
Errors” problem (ring-LWE). The LWE problem was first introduced by Regev [Reg09] in
2005 and works on Znp for some integers p and n. Suppose we have a list of equations

〈s, a1〉+ e1 = b1 mod p

〈s, a2〉+ e2 = b2 mod p

〈s, a3〉+ e3 = b3 mod p

...

where s ∈ Znp is a secret element, the ai are chosen independently and uniformly from Znp
and bi ∈ Zp. The small errors ei are sampled from a specific probability distribution χ over
Zp. Now we denote the problem of finding s given a list of elements bi of arbitrary length by
LWEp,χ. Next, we explain how this problem can be translated to rings. Thereby, we follow
the presentation of [LPR13a] and [LPR13b].

Definition 1.5.1 (Ring-LWE Distribution). Let K = Q(ζm) be the m-th cyclotomic number
field for some positive integer m. Further let R ⊂ K be the ring of integers in K and R∨ its
dual ideal. Let ψ be a probability distribution over KR and s ∈ R∨q = R∨/qR∨ (or just R∨) a
“secret”, where q is a prime such that q = 1 mod m. We often refer to ψ as a ring-LWE error
distribution. A sample from the ring-LWE distribution As,ψ over Rq× (KR/qR

∨) is generated
by choosing a ← Rq uniformly at random, e ← ψ from the distribution ψ and defining the
sample by

(a, b = a · s+ e mod qR∨).
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Remark 1.5.2. Usually the ring-LWE error distribution ψ will be some continuous Gaus-
sian distribution Nr for a standard deviation r. We can view a single dimensional Gaussian
distribution over KR as an n-dimensional Gaussian distribution over H ∼= R[n], where each
entry is a single dimensional Gaussian distribution with standard deviation r. We call a mul-
tivariate Gaussian distribution spherical, if each dimension has the same standard deviation.
Throughout the toolkit and our applications we will always regard only spherical Gaussians.

Now we can define the search variant of LWE over the ring R.

Definition 1.5.3 (Search Variant of Ring-LWE). Let K,R,R∨ and q be as in Definition 1.5.1.
For a ring-LWE error distribution ψ over KR and a secret s ∈ R∨q we define the ring-LWE
problem in R as follows. Assume we have access to arbitrarily many independent samples from
the ring-LWE distribution As,ψ, the goal is to find s. We denote this problem by R-LWEq,ψ.

We can also define a decision variant of ring-LWE which is provably equivalent to R-LWEq,ψ.

Definition 1.5.4 (Decision Variant of Ring-LWE). Let K,R,R∨ and q be as in Defini-
tion 1.5.1. For a ring-LWE error distribution ψ over KR and a uniformly random secret
s ∈ R∨q we define the decision variant of the ring-LWE problem in R as follows. Let l ≥ 1
be an arbitrary integer. Given l independent samples from the ring-LWE distribution As,ψ
and l uniformly random and independent samples from Rq × (KR × qR∨), the goal is to dis-
tinguish with non-negligible advantage between these samples. We denote this problem by
R-DLWEq,ψ

Another classical problem is the shortest vector problem (SVP), which asks for the shortest
vector in some given lattice L(B) for some known basis B. It can be shown that the shortest
vector problem is NP-hard, see e.g. [MG02]. Now, Lyubashevsky, Peikert and Regev show
in [LPR13a] that there is a reduction from SVP to ring-LWE. We cite only an informal
statement. For details see [LPR13a].

Theorem 1.5.5 (Informal). Assume it is hard for polynomial-time quantum algorithms to
approximate the shortest vector problem (SVP) on ideal lattices in K = Q(ζm) to within
a fixed poly(m) factor. Then any poly(m) number of samples drawn from the ring-LWE
distribution are pseudorandom (i.e., indistinguishable from uniformly random samples) for
any polynomial-time (even quantum) attacker.

In our applications in Section 2.1 we use a different variant of ring-LWE. Instead of an
error distribution ψ over KR we use a discretized version, i.e., a distribution χ over R∨. For
such a distribution we define the ring-LWE distribution As,χ as in Definition 1.5.1, where
this time the element b is in R∨q instead of (KR/qR

∨). Therefore, the distribution As,χ
is over Rq × R∨q . We can define the problems R-LWEq,χ and R-DLWEs,χ similar as in
Definitions 1.5.3 and 1.5.4. Then, we use independent samples from As,χ and independent
and uniform samples from Rq ×R∨q .

Similarly, we can ask the secret s to be sampled from a discrete distribution χ over R∨q
instead of being uniformly at random. In this way, we have more control over s, since we
can choose distributions which produce elements with specific properties. For example, in our
applications we use a discretization of the continuous error distribution ψ, which produces
small elements. To be more precise, let p be coprime to q and b·e be a valid discretization to
(cosets of) pR∨ (cf. Section 1.3.2). Then we set χ = bp · ψew+pR∨ , where w is an arbitrary
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element, which can vary from sample to sample. In the distribution χ, we first choose a
sample from ψ, scale it by p, and finally discretize it to w + pR∨.

The following lemmas show that, if we set χ = bp·ψew+pR∨ as above, the ring-LWE problem
together with the above modifications is as hard as the original one.

Lemma 1.5.6 (Lemma 2.23. from [LPR13b]). Let m be an arbitrary positive integer and
K = Q(ζm) the m-th cyclotomic number field. Further let R ⊂ K be the ring of integers in
K and R∨ its dual ideal. Denote by b·e a valid discretization to (cosets of) pR∨, where p is
coprime to q and q = 1 mod m is prime. There exists an efficient transformation that on
input w ∈ R∨p and a pair (a′, b′) ∈ Rq × (KR/qR

∨), outputs a pair (a, b) ∈ Rq × R∨q , where
a ··= pa′ mod qR and b ··= bpb′ew+pR∨ mod qR∨. The transformation fulfills the following
guarantees:

(i) If the input pair is uniformly distributed, then so is the output pair.

(ii) If the input pair is distributed according to the ring-LWE distribution As,ψ, for some
(unknown) s ∈ R∨ and an error distribution ψ over KR, then the output pair is dis-
tributed according to As,χ, where χ = bp · ψew+pR∨.

Proof. For a proof see [LPR13b].

Lemma 1.5.7 (Lemma 2.24. from [LPR13b]). We use the notation from Lemma 1.5.6. Let
w ∈ R∨p be an arbitrary element and ψ a ring-LWE error distribution over KR. If R-DLWEq,ψ
is hard given some number l of samples, then so is the variant of R-DLWEq,ψ in which the
secret s is sampled from χ ··= bp · ψew+pR∨, given l − 1 samples.

Proof. For a proof see [LPR13b].
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The goal of this chapter is to develop a toolkit for ring-LWE based cryptography that provides
efficient algorithms for basic operations and cryptographic tasks. In a general ring-LWE
setting we are working with elements in a cyclotomic number field K = Q(ζm) of dimension
n = ϕ(m) for some positive integer m. In particular, these elements live in certain ideals of
K, most prominent the ring of integers R = OK and its dual ideal R∨. All considered ideals
are represented by Z-bases, so we represent an element a by its coordinate vector a ∈ Z[n]

with respect to a specific basis. Consequently, our algorithms work only on the coordinate
vector while keeping track of the basis.

The developed toolkit is originally due to [LPR13b]. We follow closely the explanations
of [LPR13b], but at the same time use a different structure that the original one. One might
say that we use a “top-down” presentation, whereas [LPR13b] uses more or less the opposite
“bottom-up” approach. We feel like our presentation helps the understanding, especially
looking to our implementation of the toolkit later on.

The chapter starts in Section 2.1 with a motivational section, where we present two appli-
cations of the toolkit. Following these applications, we summarize the necessary operations,
which are then developed through the rest of this chapter. The Sections 2.2 and 2.3 deal
with some basic arithmetic and the representation of elements in R and R∨ in different bases.
We define several specific bases, which have some nice properties to simplify the necessary
operations. We develop efficient methods to change the representation between these bases
and show how multiplication and addition can be performed. Then, in Section 2.3.6 and
Section 2.4 we adapt the algorithmic tasks of decoding and discretization to our ring-LWE
setting. Finally, the Sections 2.3.5 and 2.2.5 give some insight on our methods of sampling
Gaussians in R∨ and R. As an overview, Figure 2.1 summarizes and briefly explains the
central algebraic objects and notations used in the toolkit.

For the rest of this chapter, if not stated differently, let K = Q(ζm) be the m-th cyclotomic
number field for some positive integer m and R ⊂ K its ring of integers. R∨ is the dual ideal
of R as defined in Section 1.4.4. The dimension of K is n = ϕ(m). Further, let H ⊂ CZ∗m be
the subspace of CZ∗m as defined in Definition 1.4.7. Finally, let q be a prime such that q = 1
mod m.

2.1 Applications of the Toolkit

We start this chapter with a motivational section. We will describe two ring-LWE based
cryptosystems that use the toolkit. The purpose of this section is to give the reader an idea
and some motivation for the different operations and tasks we need and which will be later
on efficiently handled by the toolkit. Therefore, we recommend to read this section twice.
Once at the beginning of the study of this work and once afterwards. In the second run, the
way the toolkit and our implementation works for these applications and how things work
together will become much clearer.
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Notation Description See

m,n = ϕ(m), m̂ A positive integer m with prime power factorization m =∏s
l=0ml. Consequently, n =

∏s
l=0 ϕ(ml). Furthermore,

m̂ = m/2 if m is even, otherwise m̂ = m

ζm, ωm A primitive m-th root of unity viewed as an abstract ele-
ment ζm in some algebraic closure of Q. ωm is a primitive
m-th root in C or Zq for a prime q = 1 mod m.

§ 1.4.1

K = Q(ζm) ∼=
Q[X]/(Φm(X)) ∼=⊗s

l=0 Q(ζml)

Them-th cyclotomic number field K. Elements inK are of-
ten viewed as polynomials in the quotient Q[X]/(Φm(X)),
where Φm(X) is the m-th cyclotomic polynomial. In this
work, we view K as the tensor product of the prime power
indexed Q(ζml).

§ 1.4.1

σ : K → Cn The canonical embedding of K to Cn. It endows K with
a canonical geometry, e.g., ‖a‖2 = ‖σ(a)‖2 for a ∈ K.
Further, addition and multiplication in K correspond via
σ to their component-wise counterparts in Cn.

§ 1.4.2

R = Z[ζm] ∼=
Z[X]/(Φm(X)) ∼=⊗s

l=0 Z[ζml ]

The ring of integers in K (often denoted as OK). Similar
to K we view R as the tensor product of the subrings Rl =
Z[ζml ].

§ 1.4.3

R∨ =
〈
t−1
〉
,

g, t ∈ R
The dual fractional ideal of R. It is generated by the el-
ement t−1 = g/m̂. In particular, we have R ⊆ R∨. Each
of R∨, g, and t can be seen as the tensor product of their
counterparts in Q(ζml).

§ 1.4.4

~p ⊂ R,
t−1 ~p ⊂ R∨

The “powerful” Z-basis ~p of R and t−1~p of R∨. For prime
powers m, ~p coincides with the power basis of Z[ζm].
For non prime powers m it is the tensor product of the
power(ful) bases of each Z[ζml ] and differs from the usual
power basis.

§ 2.2.1,
§ 2.3.1

~c ⊂ Rq,
t−1 ~c ⊂ R∨q

The “Chinese remainder” Zq-basis ~c of Rq = R/qR and
t−1~c of R∨q = R∨/qR∨ for a prime q = 1 mod m. Yields
linear time algorithms for addition and multiplication in Rq
and can be efficiently swapped with the powerful Zq-basis
~p of Rq.

§ 2.2.1,
§ 2.3.1

~d ⊂ R∨ The “decoding” Z-basis of R∨. It is the dual basis of the
conjugate of the powerful basis ~p. Coincides with the tensor
product of the decoding bases of R∨ml Can be efficiently
swapped with t−1~p.

§ 2.3.1

Figure 2.1: Central Algebraic Objects and Notations
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Although we will later use the toolkit to realize these cryptosystems, which implies the
use of specific bases and algorithms to perform most of the operations, the cryptosystems
are almost entirely described in a implementation- and basis-independent manner. We use
abstract mathematical objects, operations and tasks (like ideals in rings, basic ring arithmetic
or probability distributions over ideals) which could be represented and realized also through
different approaches.

We state the cryptosystems without any correctness or hardness proofs. Such proofs can
be found in [LPR13b] as well as a third application and further details.

2.1.1 Dual-Style Cryptosystem

The first cryptosystem is a ring-based variant of the commonly called “dual” LWE encryption
from [GPV08].

Let K = Q(ζm) be the m-th cyclotomic number field for some positive integer m and
R ⊂ K be the ring of integers of K. Let p and q be coprime integers, where p defines the
message space Rp = R/pR and q is a prime such that q = 1 mod m. We call q the ring-LWE
modulus. Let ψ be a continuous LWE error distribution over KR and b·e a valid discretization
to cosets of R∨ or pR∨. Then, an expression like bp ·ψepR∨ means that we sample an element
from ψ, scale it by p and discretize it to pR∨. Further, denote by DR,r the discrete Gaussian
distribution over R for some standard deviation r ≥

√
n · ω(

√
log n), where n = ϕ(m). For

some parameter l ≥ 2 we define the cryptosystem as follows.

• Gen: Let a0 = −1 ∈ Rq = R/qR and choose uniformly random and independent
elements a1, . . . , al−1 ∈ Rq. Further, let x0, . . . , xl−1 ← DR,r be independent samples
from the discrete Gaussian distribution DR,r over R. Now define al ··= −

∑
i∈[l] aixi and

xl ··= 1 and output
a = (a1, . . . , al) ∈ R{1,...,l}q

as the public key and
x = (x1, . . . , xl) ∈ R{1,...,l}

as the secret key. By construction we have 〈a,x〉 = x0 ∈ Rq.

• Enca(µ ∈ Rp) : Choose independent samples e0, e1, . . . , el−1 ← bp · ψepR∨ and hide the
message in el ← bp · ψet−1µ+pR∨ . Let

e = (e1, . . . , el) ∈ (R∨){1,...,l},

where the ei are the representatives of cosets ei + pR∨ and can thus be viewed in R∨.
Now define the ciphertext

c ··= e0 · a + e ∈ (R∨q ){1,...,l}.

• Decx(c) : Decode 〈c,x〉 to d = J〈c,x〉K ∈ R∨ and retrieve the message

µ = t · d mod pR ∈ Rp.

Recall that R∨ =
〈
t−1
〉
, so t · d ∈ R and the reduction modulo pR is indeed in Rp.
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2.1.2 Compact Public-Key Cryptosystem

The second cryptosystem is again a public-key scheme, but with generally more compact keys
and ciphertexts. To be more precise, the keys and ciphertexts consist only of one or two ring
element, whereas in the first cryptosystem the parameter l, which controls the size of the keys
and ciphertexts, is at least 2.

As in the previous section let K = Q(ζm) be the m-th cyclotomic number field for some
positive integer m and R ⊂ K be the ring of integers of K. Let p and q be coprime integers,
where p defines the message space Rp = R/pR and q is a prime such that q = 1 mod m. Let
ψ be a continuous LWE error distribution over KR and b·e a valid discretization to cosets of
R∨ or pR∨. We define the cryptosystem as follows.

• Gen : First, choose a uniformly random a ∈ Rq. Further, choose samples x ← bψeR∨
and e← bp · ψepR∨ . Define b ··= m̂(a · x+ e) mod qR ∈ Rq and output

(a, b) ∈ Rq ×Rq

as the public key. The secret key is x ∈ R∨. [Recall that m̂ = t · g and R∨ =
〈
t−1
〉
. We

have a · x + e ∈ R∨/qR∨. Multiplication with m̂ yields m̂(a · x + e) ∈ gR/gqR. Now,

reducing m̂(a·x+e) mod qR leads to m̂(a·x+e) mod qR ∈ gR/gqR
/
gR/qR ∼= gqR/qR,

which can then be viewed in Rq.]

• Enc(a,b)(µ ∈ Rp) : Choose samples z ← bψeR∨ , e′ ← bp ·ψepR∨ and e′′ ← bp ·ψet−1µ+pR∨ .
Define u ··= m̂(z · a+ e′) mod qR ∈ Rq and v ··= z · b+ e′′ ∈ R∨q . Output

(u, v) ∈ Rq ×R∨q

as the ciphertext.

• Decx(u, v) : Compute v − u · x = m̂(e · z − e′ · x) + e′′ mod qR∨ and decode it to
d = Jv − u · xK ∈ R∨. Retrieve the message

µ = t · d mod pR.

Recall that R∨ =
〈
t−1
〉
, so t · d ∈ R and the reduction modulo pR is indeed in Rp.

2.1.3 Summarization of the Necessary Operations

Now that we saw the two applications, we will summarize which features and operations our
toolkit has to provide to realize these applications. To begin with, all functions and operations
take place in the ring of integers R of the cyclotomic number field K = Q(ζm), in its dual
ideal R∨ ⊂ K or in the quotients Rq and R∨q . Therefore, we need a way to represent elements
in R and R∨ which is suitable for a computer. We already saw in Section 1.4 that there exist
Z-bases of size n = ϕ(m) for R and R∨ (in fact for every fractional ideal in K). We use
these bases to represent an element in R or R∨ by an integral coordinate vector of size n with
respect to a specific basis. In Section 2.2.1 and Section 2.3.1 we will define several specific
bases which have some nice properties, in particular concerning the functions and algorithms
we provide.

As we are dealing with element in K, which is in particular a field, we should be able
to perform basic arithmetic tasks, namely addition and multiplication. In particular, we are
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interested in basic arithmetic in R and R∨. In Sections 2.2.3 and 2.3.3 we will develop efficient
methods for addition and multiplication in R and R∨, which could also be used more generally
in K.

In both applications we need to sample elements from different probability distributions
over different domains. While a uniformly random sample can be achieved fairly easy, the
computation of a discrete Gaussian or a discretized Gaussian needs some non-trivial algo-
rithms. In Section 2.2.5 we describe an algorithm that samples directly from the discrete
Gaussian distribution DR,r. An efficient way of sampling Gaussians in KR is developed in
Section 2.3.5, which can be used or the error distribution ψ. These Gaussian can then be
discretized using the algorithm from Section 2.4.

Finally, we need an algorithm that decodes certain elements in R∨. First, we introduce
the decoding problem for our ring-LWE setting in Section 2.3.6 and then develop an efficient
algorithm in Section 3.4.

2.2 Working in the Ideal R

Let m be an arbitrary positive integer and K = Q(ζm) be the m-th cyclotomic number field.
The ring of integers R ⊂ K is also an integral ideal in K. In our toolkit applications and, more
generally, in ring-LWE based cryptography a lot of the action takes place in the ideal R or the
quotient Rq = R/qR for some prime q = 1 mod m. In the first place, the arithmetic tasks
of addition and multiplication are performed. The complexity of these operations depends
heavily on the basis, which is used for the representation of elements in R and Rq. In the
following we will define two specific bases, a Z-basis for R and a Zq-basis for Rq, which provide
efficient algorithms not only for the arithmetic tasks, but also for discretization and sampling
of Gaussians over R. Furthermore, we can switch the representation between these two bases
efficiently, which is an important feature for many of our algorithms.

As it will turn out, the essence of many of our algorithms is the Chinese remainder transform
CRT. It is a specific transformation matrix, which will be used very often in our algorithms,
especially in the basis switching and arithmetic operations. Therefore, it is useful to optimize
the efficiency of an application of CRT. At the end of this section we provide a sparse
decomposition of CRT, which can be used for exactly this purpose.

2.2.1 Two Specific Bases of R

The Powerful Basis of R

First, we start with a Z-basis of R, hence a Q-basis of K, called the “powerful” basis.

Definition 2.2.1. For K = Q(ζm) and R = Z[ζm] we define the powerful basis ~p of R as
follows:

• For prime powers m, we define ~p to be the usual power basis (ζjm)j∈[ϕ(m)], seen as a
vector over R.

• For arbitrarym ∈ N with prime power factorizationm =
∏s
l=0ml, we define ~p =

⊗s
l=0 ~pl

as the Kronecker (tensor) product of the power(ful) bases ~pl of each Kl = Q(ζml).

Remark 2.2.2. Recall from the definition of the Kronecker product (see. Definition 1.2.1)
that the index set of ~p is given by the product

∏s
l=0 [ϕ(ml)]. Thus, if we want to specify an
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entry of ~p, we need one index jl ∈ [ϕ(ml)] per prime power ml. The desired entry is then

given by p(jl) =
∏s
l=0 ζ

jl
ml . If we use the fact that ζml = ζ

m/ml
m ∈ K, it is possible to convert

this index set into a subset of [m] of size ϕ(m). To do this, we map the index tuple (jl) to
j =

∑s
l=0 (m/ml)jl mod m and access the entry via pj = ζjm. This index set will in general

not be equal to [ϕ(m)], which implies that the powerful basis differs from the power bases.
The only exception is the case, where m is a prime power. As an example, take m = 15 and
set ζ = ζ15. Then the powerful basis is given by ζ0, ζ3, ζ5, ζ6, ζ8, ζ9, ζ11 and ζ14. Usually,
we will stick to the first, structured index set, because the other one tends to be somewhat
irregular.

The Chinese Remainder Basis of R

The second special basis we define is the Chinese remainder basis. It is a Zq-basis for Rq,
where q is a prime integer such that q = 1 mod m. This basis yields very fast algorithms for
multiplication using only arithmetic in Zq.

Let m ∈ N be arbitrary with prime power factorization m =
∏s
l=0ml and q = 1 mod m a

prime. Then q = 1 mod ml also holds for each ml. Furthermore, we have that

Rq = R/qR =

s⊗
l=0

Rl/

s⊗
l=0

qRl =

s⊗
l=0

Rl/qRl,

so that we can focus on the case where m is a prime power.
Recall from Section 1.4.5 that 〈q〉 factorizes in R into 〈q〉 =

∏
i∈Z∗m qi, where qi = 〈q〉 +〈

ζm − ωim
〉

is prime in R and ωm is some fixed primitive m-th root of unity in Zq.

Definition 2.2.3. For a positive integer m let K = Q(ζm), R = Z[ζm] and q = 1 mod m be
a prime integer. We define the Chinese remainder (CRT) Zq-basis ~c of Rq = R/qR as follows:

• If m is a prime power, then ~c = (ci)i∈Z∗m is characterized by ci = 1 mod qi and ci = 0
mod qj for i 6= j, where qi are the prime ideal factors of 〈q〉 in R. (Its existence is
guaranteed by Lemma 1.4.24.)

• For arbitrary m ∈ N with prime power factorization m =
∏s
l=0ml, ~c is defined as the

tensor product of the CRT bases ~cl of each Rl/qRl, i.e., ~c ··=
⊗s

l=0 ~cl.

2.2.2 Switching between the Powerful and the CRT Basis

Recall that every Z-basis of R is also a Zq-basis of Rq. In particular, the powerful basis ~p is a
Zq-basis of Rq. In the following we will show that we can switch between the powerful and the
CRT basis using a specific basis transformation matrix. That is, if we have an element a ∈ Rq
represented in the powerful basis we can obtain a representation in the CRT matrix via a linear
transformation of the coordinate vector, and vice versa using the inverse transformation.

Definition 2.2.4. Let m be a prime power and q a prime such that q = 1 mod m. Further,
let ωm be a primitive root of unity in Z∗q . We define the following transformations:

• The discrete Fourier transform DFTm,q over Z∗q is the Zm × Zm square matrix with

entries DFTm,q(i, j) = ωijm.
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• The Chinese remainder transform CRTm,q over Z∗q is the square submatrix of DFTm,q

with rows restricted to the index set Z∗m and columns restricted to the index set [ϕ(m)].

Now let m be an arbitrary positive integer with prime power factorization
∏s
l=0ml and q = 1

mod m a prime. Then we have q = 1 mod ml for each 0 ≤ l ≤ s and we define

DFTm,q =
s⊗
l=0

DFTml,q and CRTm,q =
s⊗
l=0

CRTml,q.

Remark 2.2.5. For prime powers m, the fact that q = 1 mod m is very important, since
it guarantees the existence of a primitive m-th root of unity in Zq. Instead of q = 1 mod m
we can equivalently say that q − 1 = 0 mod m. In particular, this implies that m divides
q − 1. Since q is prime, we have that q − 1 = ϕ(q), which is also the order of the group Z∗q .
Now we know that Z∗q contains exactly ϕ(d) elements of order d for every divisor d of q − 1.
In particular, Z∗q contains an element ωm of order m, i.e., a primitive m-th root of unity. If
m ∈ N is arbitrary with prime power factorization m =

∏s
l=0ml, the same reasoning implies

that Zq contains a primitive m-th root of unity as well as primitive ml-th roots of unity for
each ml.

The discrete Fourier transform DFTm,q gets important when we decompose the Chinese
remainder transform CRTm,q in Section 2.2.4. Right now we are only interested in CRTm,q,
but it useful to define DFTm,q and CRTm,q at the same time, since they are so closely related.

Proposition 2.2.6. Let m be an arbitrary positive integer and K = Q(ζm). Further let
R ⊂ K be the ring of integers of K and q = 1 mod m a prime. Let ~p be the powerful basis
of Rq as defined in Definition 2.2.1 and ~c the CRT basis of Rq as defined in Definition 2.2.3.
Then ~p and ~c are related by

~p T = ~c T · CRTm,q,

where CRTm,q is the Chinese remainder transformation over Zq from Definition 2.2.4.

Proof. Assume that m is a prime power. Recall from Section 1.4.5 that Rq = R/ 〈q〉 ∼=∏
i∈Z∗m (R/qi), where each R/qi is isomorphic to Zq via the map ζm 7→ ωim for some element

ωm of order m in Zq. Now, by definition of ~c, viewing the elements of ~c in
∏
i∈Z∗m (R/qi)

converts them into
ci = (0, . . . , 0, 1︸︷︷︸

i-th entry

, 0, . . . , 0) ∈
∏
i∈Z∗m

(R/qi).

Moreover, for any j ∈ [n], ζjm mod qi is given by ωijm. Combining these two facts yields that

ζjm =
∑
i∈Z∗m

ωijm · ci

for any j ∈ [n]. For arbitrary m ∈ N, the bases ~p and ~c as well as the matrix CRTm,q are
defined via tensor products of prime power cases. The desired relation then follows from the
mixed-product property of the tensor product.

Remark 2.2.7. Let a ∈ Rq be given by a coordinate vector a ∈ Z[n]
q in the basis ~p. Then by

Proposition 2.2.6 we have

a = 〈~p,a〉 =
〈
~c T · CRTm,q,a

〉
= 〈~c,CRTm,q ·a〉 . (2.1)

Hence, the coordinate vector of a with respect to the basis ~c is given by CRTm,q ·a ∈ ZZ∗m
q .

Similarly, we can switch from the basis ~c to ~p by multiplication with CRT−1
m,q.
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2.2.3 Addition and Multiplication R

Basic arithmetic in the ideal R is a core feature of the toolkit. Addition is, generally speaking,
not an issue. By linearity, addition of two elements in R corresponds to the component-wise
addition of the respective coordinate vectors, at least if both elements are represented in the
same basis. The same holds for Rq. Now, for R we regard only the powerful basis ~p, so all
elements will be represented with respect to ~p. For Rq we regard also the Chinese remainder
basis ~c. In the previous section we saw that we can easily switch between representations in
~p and ~c. Thus, we can always make sure that also elements in Rq are represented in the same
basis.

The multiplication operation is not performed so easily. If we have two elements a, b in R
or Rq given by some coordinate vectors a and b, we do not know per se how the coordinate
vector of the product ab can be expressed in terms of a and b. We will se that the complexity
of this expression depends on the basis, in which the elements are represented. First we deal
with elements in R in the powerful basis ~p.

Multiplication in the Powerful Basis

Recall from Section 1.4.2 that the canonical embedding σ embeds the ideal R to a lattice
σ(R) in H. Now, we want to take advantage of the fact that σ is a ring homomorphism,
where multiplication in H is given by coordinate-wise multiplication. Instead of multiplying
two elements a, b ∈ R directly in R, we first embed them via σ, multiply them in H and
finally pull the result back via σ−1. This works because of the homomorphic property of σ,
i.e., σ(ab) = σ(a)� σ(b). In mathematical terms we multiply via the equation

ab = σ−1(σ(ab)) = σ−1(σ(a)� σ(b)). (2.2)

Next, we have to ask how the embedding σ is applied to elements in R using the coordinate
vector representation. As we will show it is possible to view σ as a vector transformation
of the coordinate vector in the powerful basis. First, we define the vector transformation
matrix, which is similar to the Chinese remainder transformation CRTm,q over Z∗q from Def-
inition 2.2.4.

Definition 2.2.8. Let m be a prime power and ωm ∈ C be any primitive m-th root of unity
in C. We define the following transformations:

• The discrete Fourier transform DFTm over C is the Zm×Zm square matrix with entries
DFTm(i, j) = ωijm.

• The Chinese remainder transform CRTm over C is the square submatrix of DFTm with
rows restricted to the index set Z∗m and columns restricted to the index set [ϕ(m)].

Now let m be an arbitrary positive integer with prime power factorization
∏s
l=0ml. Then we

define

DFTm =

s⊗
l=0

DFTml and CRTm =

s⊗
l=0

CRTml .

Remark 2.2.9. First, we observe that DFTm is a symmetric matrix, which implies that
DFT∗m = DFTm. Furthermore, a straightforward computation shows that the inverse of
DFTm is given by

DFT−1
m =

1

m
DFT∗m .
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The discrete Fourier transform DFTm gets important when we decompose the Chinese
remainder transform CRTm in Section 2.2.4. Right now we are only interested in CRTm, but
it useful to define DFTm and CRTm at the same time, since they are so closely related.

Proposition 2.2.10. Let K = Q(ζm) be the m-th cyclotomic number field for some positive
integer m and R ⊂ K its ring of integers. Further let ~p be the powerful basis of R and
σ : K → H the canonical embedding of K. If we apply σ entry wise to the row vector ~p T and
view the image as a matrix whose columns are the images of the basis elements, then we have
the relation

σ(~p T ) = CRTm,

where CRTm is the Chinese remainder transform over C from Definition 2.2.8.

Proof. Let m be a prime power. Recall from Definition 2.2.1 that the powerful basis ~p is
indexed by the set [ϕ(m)]. Since m is a prime power, the powerful basis equals the usual
power basis and the row vector ~p T is given by

~p T = (1, ζm, . . . , ζ
ϕ(m)−1
m ).

Hence, applying σ to the j-th entry of ~p T for some j ∈ [ϕ(m)] yields a column vector
containing the powers σi(ζ

j
m) = ωijm, where i runs over Z∗m. Combining these column vectors

to a matrix leads exactly to CRTm.
Now, if m is an arbitrary positive integer with prime power factorization m =

∏s
l=0ml, the

powerful basis is defined as the tensor product ~p =
⊗s

l=0 ~pl, where ~pl are the powerful bases
of the rings of integers Rl ⊂ Kl = Q(ζml). Also the Chinese remainder transform is defined
via the tensor product, i.e., CRTm =

⊗s
l=0 CRTml . From Equation (1.2) it follows that

σ

(
s⊗
l=0

~p Tl

)
=

s⊗
l=0

σ(l)(~p Tl ) =
s⊗
l=0

CRTml ,

where σ(l) are the canonical embeddings of Kl. This finishes the proof.

Corollary 2.2.11. Let a ∈ R be an element given by a coordinate vector a ∈ Z[n] in the
powerful basis, i.e., a = 〈~p,a〉. Then we can compute the embedding of a via multiplication of
a with CRTm, i.e.,

σ(a) = CRTm ·a.

Proof. Applying σ to a yields

σ(a) = σ(〈~p,a〉) = σ(~p T · a) = σ(~p T ) · a,

where we used in the last step that each entry of σ is a Q-homomorphism and fixes in particular
elements in Z. Now with Proposition 2.2.10 it follows

σ(a) = CRTm ·a.

Observation 2.2.12. Proposition 2.2.10 and Corollary 2.2.11 imply direct relations for the
inverse embedding σ−1. If we want to retrieve the coordinate vector a ∈ Z[n] of an element
a ∈ R, when we are given σ(a) ∈ H, it is sufficient to multiply σ(a) with the inverse CRT−1

m .
Indeed we have

CRT−1
m ·σ(a) = CRT−1

m ·CRTm ·a = a.
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Combining these results with Equation (2.2) from Remark 2.2.7 yields a nice way of mul-
tiplying two elements in R. Let a, b ∈ R and a,b ∈ Z[n] their respective coordinate vectors
with respect to the powerful basis. Then we can compute the coordinate vector c of ab in the
powerful basis by multiplying a and b with CRTm, component-wise multiplying the results
and finally retrieving c via a multiplication with CRT−1

m . In mathematical terms this means

c = CRT−1
m ((CRTm ·a)� (CRTm ·b)), (2.3)

where ab = 〈~p, c〉.
We can extract a second corollary from Proposition 2.2.10 giving some insight about the

length the powerful basis elements.

Corollary 2.2.13. For each entry pj in the powerful basis ~p we have that ‖pj‖2 =
√
n and

‖pj‖∞ = 1.

Proof. Recall from Section 1.4.2 that we defined the `2 and`∞ norm in K via the canonical
embedding σ. Thus, by Proposition 2.2.10, we have that ‖pj‖ = ‖(CRTm)·j‖, where (CRTm)·j
is the j-th column of CRTm. Since each entry of CRTm is a root of unity, hence has norm 1,
we get that

‖(CRTm)·j‖2 =
√
ϕ(m) =

√
n and ‖(CRTm)·j‖∞ = 1.

Multiplication in the CRT Basis

When regarding multiplication of elements in the quotient Rq = R/qR for some prime q = 1
mod m, we could try to operate in the powerful basis with a similar approach as for elements
in R. However, as it turns out multiplication in the Chinese remainder basis ~c is much more
efficient. Since we can easily switch from the powerful to the CRT basis, we will perform all
multiplications in Rq with respect to ~c.

Proposition 2.2.14. Let K = Q(ζm) be the m-th cyclotomic number field for some positive
integer m and R ⊂ K its ring of integers. Further let q be a prime such that q = 1 mod m
and Rq = R/qR. Let a, b ∈ Rq be two elements given by the coordinate vectors a,b ∈ ZZ∗m

q

with respect to the Chinese remainder basis ~c of Rq. Then the coordinate vector c of the
product ab ∈ Rq is given by the coordinate-wise multiplication of a and b, i.e.,

ab = 〈~c,a〉 · 〈~c,b〉 = 〈~c,a� b〉 = 〈~c, c〉 .

Proof. Assume m is a prime power. For any fixed i ∈ Z∗m and each j ∈ Z∗m such that i 6= j,
we have that

c2
i mod qi = (ci mod qi) · (ci mod qi) = 1 mod qi,

c2
i mod qj = (ci mod qj) · (ci mod qj) = 0 mod qj .

Recall from Definition 2.2.3 that the elements of the CRT basis are uniquely determined by
those equations. Consequently, we have c2

i = ci ∈ Rq for each i ∈ Z∗m. Furthermore, for an
arbitrary k ∈ Z∗m it holds that

(ci · cj) mod qk = (ci mod qk) · (cj mod qk) = 0 mod qk,
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because either ci = 0 mod qk or cj = 0 mod qk. Hence, we have that ci · cj = 0 ∈ Rq for any
i, j ∈ Z∗m such that i 6= j.

Now, if we write a =
∑

i∈Z∗m ai · ci and b =
∑

i∈Z∗m bi · ci, then the product ab ∈ Rq is given
by

ab =

∑
i∈Z∗m

ai · ci

 ·
∑
i∈Z∗m

bi · ci

 =
∑
i∈Z∗m

∑
j∈Z∗m

aibj · (cicj) =
∑
i∈Z∗m

aibi · ci,

since cicj = ci for i = j, and cicj = 0 otherwise.
Now suppose that m is an arbitrary positive integer with prime power factorization m =∏s
l=0ml. By the tensorial decomposition Rq =

⊗s
l=0Rl/qRl, where Rl are the rings of integers

in Kl = Q(ζml), we can represent two elements a, b ∈ Rq as a =
⊗s

l=0 al and b =
⊗s

l=0 bl

for suitable al, bl ∈ Rl/qRl. Let a,b ∈ ZZ∗m
q be the respective coordinate vectors of a and b

in ~c. We can decompose a and b via the Kronecker product of vectors to a =
⊗s

l=0 al and
b =

⊗s
l=0 bl, where al and bl are the respective coordinate vectors of al and bl in ~cl. Here,

each ~cl is the CRT basis of Rl/qRl. Then, we have that

a =

s⊗
l=0

al =

s⊗
l=0

〈~cl,al〉 and b =

s⊗
l=0

bl =

s⊗
l=0

〈~cl,bl〉.

By definition of the multiplication in the tensor product space, it follows that

ab =
s⊗
l=0

〈~cl,al〉 · 〈~cl,bl〉 =
s⊗
l=0

〈~cl,al � bl〉.

Thus, the coordinate vector c of ab in the CRT basis is given by c =
⊗s

l=0 al � bl. Finally,
by Remark 1.2.4, we can interchange tensoring and component-wise multiplication and get

c =
s⊗
l=0

al � bl =

(
s⊗
l=0

al

)
�

(
s⊗
l=0

bl

)
= a� b.

2.2.4 Sparse Decomposition of DFT and CRT

In Section 2.2.2 we saw that we can switch between representations in the powerful and
in the CRT bases using the transformation matrix CRTm,q from Definition 2.2.4 and its
inverse. Further, in Section 2.2.3, we showed that multiplication in the powerful basis of R
can be performed using multiplications with CRTm and CRT−1

m from Definition 2.2.8. In an
implementation of the toolkit, the memory usage and complexity of application algorithms for
CRT transformations are not very efficient, if we treat them as usual m-dimensional square
matrices. The tensorial decomposition

CRTm,q =
s⊗
l=0

CRTml,q and CRTm =
s⊗
l=0

CRTml

of both transformations already allows us store only the matrices of prime power dimensions
ml, where m =

∏s
l=0ml is the prime power factorization of m. This saves a good amount
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of memory and in Section 3.1 we further develop an algorithm that speeds up computations
taking advantage of the tensorial decomposition via parallelization. However, we can optimize
the memory usage and efficiency of an application of the transformations even more. This is
done via a sparse decomposition of the transformations for prime powers m, which holds for
both, CRTm and CRTm,q. These decompositions are developed in [PM08] for a more general
algebraic framework and we present only the special case.

Recall that we defined not only the Chinese remainder transformations CRTm and CRTm,q

in Definitions 2.2.4 and 2.2.8, but also the discrete Fourier transformations DFTm and
DFTm,q. These discrete Fourier transformations will play an essential role in the sparse
decomposition and in fact we start with the decomposition of DFTm.

Both, the discrete Fourier transformation DFTm and the Chinese remainder transformation
CRTm will be decomposed in a way, such that in an application we do only need to apply
matrices DFTp and CRTp for primes p. We can apply these matrices in the standard way
using O(p2) operations. However, the special structure of DFTp and CRTp allows us to
use Cooley-Tukey and Rader FFT algorithms, performing an application of the matrices in
O(p log p). This is explained in more detail in Section 3.2.

Throughout this section ωm will denote a m-th primitive root of unity in C, which is used to
define DFTm and CRTm. Further, we will describe the sparse decomposition only for DFTm

and CRTm. If we view ωm as a primitive m-th root of unity in Zq, which do exist, since q = 1
mod m, every definition and equation that we develop can be adopted directly to DFTm,q

and CRTm,q and their inverses.

Decomposition of DFT

Let m be a prime power of some prime p, and let m′ = m/p. We can express DFTm in
terms of DFTp and DFTm′ , and by iterating even in terms of DFTp alone. This is done by a
Cooley-Tukey decomposition.

Proposition 2.2.15. Let m be a prime power of some prime p, and let m′ = m/p. Let ωm
be a primitive m-th root of unity in C, which was used to define DFTm. Define the “twiddle”
matrix Tm as the m-dimensional diagonal matrix, whose entries are ωi,jm for (i, j) ∈ [p]× [m′]
in it’s k-th diagonal position for k = i ·m′ + j. Further let Lmm′ be the permutation matrix
representing the “bit-reversal” or “stride” permutation. Generally, the permutation Lmd is
defined for all d|m by i 7→ i · d mod m− 1 for 0 ≤ i < m− 1 and m− 1 7→ m− 1. Then we
can decompose the discrete Fourier transform to

DFTm = Lmm′ · (I[p] ⊗DFTm′) · Tm · (DFTp⊗I[m′]),

where all terms are square matrices of size m = p ·m′.

Proof. In order to verify the desired equation, it suffices to compare the action of both sides
on the standard basis. For a more convenient computation we reindex the columns of DFTm

on the left side of the equation with pairs (j0, j1) ∈ [p] × [m′], using the standard bijection
j = m′j0 + j1 ∈ [m]. This corresponds to the index set of the Kronecker products on the
right side of the equation (cf. Remark 1.2.2). Similarly we reindex the rows of DFTm with
pairs (i0, i1) ∈ [p] × [m′], but this time with the non-standard bijection i = pi1 + i0. Note
that this reindexation actually permutes the rows of DFTm in the manner of Lmm′ . So in the
computation we ignore the permutation Lmm′ .
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Now, assume we take the (j0, j1)-th unit vector for any index (j0, j1) ∈ [p] × [m′]. Multi-
plication with DFTp⊗I[m′] results in a vector with entries ωi0j0p in the (i0, j1)-th position for
each i0 ∈ [p], and zero elsewhere. Applying the diagonal twiddle matrix changes these entries
to ωi0j0p ·ωi0j1m . Note that the twiddle matrix is also reindexed by the standard correspondence.
Finally, multiplication with I[p] ⊗DFTm′ yields the vector with entries

ωi0j0p · ωi0j1m · ωi1j1m′ = ωm
′i0j0+i0j1+pi1j1

m = ω(pi1+i0)(m′j0+j1)
m

for each i1 ∈ [m′] and thus in any desired location (i0, i1) ∈ [p]×[m′]. In other words, applying
the (j0, j1)-th unit vector to the left side of the equation yields exactly the (j0, j1)-th column
of the DFTm matrix on the left side. Consequently, the equation is correct. In the last step

we used the fact that for any divisor n of m we have ωn = ω
m/n
m .

Decomposition of CRT

If we adjust the sparse decomposition of DFTm from Proposition 2.2.15 slightly we get a
similar decomposition for CRTm.

Proposition 2.2.16. Let m be a prime power of some prime p, and let m′ = m/p. Further

define the twiddle matrix Tm and the stride permutation L
ϕ(m)
m′ as in Proposition 2.2.15.

[Note that ϕ(m) = ϕ(pk) = (p − 1)pk−1 = ϕ(p) ·m′ for some k ≥ 1, thus m′|ϕ(m) and the

permutation L
ϕ(m)
m′ is well defined.] Denote by T̂m the submatrix of Tm with columns restricted

to [ϕ(p)]×[m′] and rows restricted to Z∗p×[m′]. Then we can decompose the Chinese remainder
transform to

CRTm = L
ϕ(m)
m′ · (IZ∗p ⊗DFTm′) · T̂m · (CRTp⊗I[m′]),

where all terms are square matrices of size ϕ(m) = ϕ(p) ·m′.

Proof. Similar as in the proof of Proposition 2.2.15 we reindex the columns of CRTm on the left
side of the equation with pairs (j0, j1) ∈ [ϕ(p)]×[m′] and the rows with pairs (i0, i1) ∈ Z∗p×[m′].

Again, the reindexation of the rows actually permutes them in the manner of L
ϕ(m)
m′ , so we

can ignore the permutation L
ϕ(m)
m′ in our computations.

If we perform the same steps as in the proof of Proposition 2.2.15, while keeping in mind
that the rows of T̂m and CRTp are now indexed by pairs in Z∗p × [m′] and the columns are
indexed by pairs in [ϕ(p)] × [m′], we get that the product on the right side of the equation
has entries

ω((p−1)i1+i0)(m′j0+j1)
m

for any (i0, i1) ∈ Z∗p × [m′] and (j0, j1) ∈ [ϕ(p)]× [m′]. This are exactly the entries of CRTm

with the above reindexation.

Decomposition of the Inverses

Recall from Proposition 1.2.3 that (A ⊗ B)−1 = (A−1 ⊗ B−1) for invertible and suitable
dimensional matrices A and B. This together with the inversion rules of standard matrix
multiplication leads to the following decompositions,

DFT−1
m =

(
DFT−1

p ⊗I[m′]

)
· T−1

m ·
(
I[p] ⊗DFT−1

m′
)
· (Lmm′)

−1 ,

CRT−1
m =

(
CRT−1

p ⊗I[m′]

)
· T̂−1

m ·
(
IZ∗p ⊗DFT−1

m′

)
·
(
L
ϕ(m)
m′

)−1
.
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Note that all non-zero entries of the twiddle matrices are roots of unity and thus have mag-
nitude one. Consequently, we have T−1

m = Tm, since Tm is diagonal and z · z = ||z||2 for all
z ∈ C. The same holds for T̂m. Thus, we can restate the above equations as

DFT−1
m =

(
DFT−1

p ⊗I[m′]

)
· Tm ·

(
I[p] ⊗DFT−1

m′
)
· (Lmm′)

−1 , (2.4)

CRT−1
m =

(
CRT−1

p ⊗I[m′]

)
· T̂m ·

(
IZ∗p ⊗DFT−1

m′

)
·
(
L
ϕ(m)
m′

)−1
. (2.5)

If we multiply two elements in R via CRTm, we will always apply CRT−1
m after we applied

CRTm. This causes the stride permutations to cancel each other out with the inverses.
Consequently, in an implementation, we can omit the stride permutation completely. When
we switch between the powerful an the CRT basis using CRTm,q, the stride permutation is
important, since we apply only CRTm,q or CRT−1

m,q and not both. An easy computation shows

that the inverse
(
L
ϕ(m)
m′

)−1
is given by

(
L
ϕ(m)
m′

)−1
= L

ϕ(m)
ϕ(p) .

2.2.5 Sampling Discrete Gaussians in R

A well known algorithm from linear algebra that generates an orthogonal basis out of any
basis for a vector space V is the Gram-Schmidt orthogonalization. Let V be an n-dimensional
vector space. For an ordered basis B = {bi}i∈[n] of V , the Gram-Schmidt orthogonalization

B̃ = {b̃i∈[n]} is defined iteratively by the following schema.

• First, define b̃0 ··= b0.

• Then, for i = 1, 2, . . . , n − 1, define b̃i as the component of bi orthogonal to the linear
span of b̃0, . . . , b̃i−1, i.e.,

b̃i ··= bi −
∑
j∈[i]

b̃j ·

〈
bi, b̃j

〉
〈
b̃j , b̃j

〉 .
Viewing B as a matrix whose columns are the basis vectors bi, its orthogonalization cor-

responds to the unique matrix factorization B = QDU . Thereby Q is unitary with columns
b̃i/‖b̃i‖2, D is real diagonal with positive entries ‖b̃i‖2 > 0 and U is real upper unitriangular

with entries wj,i =
〈
bi, b̃j

〉/〈
b̃j , b̃j

〉
. With these matrices, the Gram-Schmidt orthogonal-

ization is B̃ = QD and thus B = B̃U . The real positive definite Gram matrix of B is
B∗B = UTD2U . Since U is upper triangular, this is exactly the Cholesky decomposition of
B∗B, which is unique. Therefore, the decomposition uniquely determines the matrices D and
U in the Gram-Schmidt orthogonalization of B. Also, using the definitions, one may prove
that D2 and U are both rational if the Gram matrix was rational already.

The Gram-Schmidt orthogonalization becomes important for us, when we are dealing with
the discrete Gaussian distribution over R. In [GPV08], Gentry, Peikert and Vaikuntanathan
develop an efficient algorithm for sampling discrete Gaussians over any lattice Λ in H with
standard deviation s, i.e., sampling from DΛ+c,s. This algorithm uses a fixed basis B of the

lattice Λ and, in particular, also its Gram-Schmidt orthogonalization B̃.
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Lemma 2.2.17 ([GPV08, Theorem 4.1]). There is a probabilistic polynomial-time algorithm
that samples to within small (negl(n)) statistical distance of DΛ+c,s, given c ∈ H, a basis B of

Λ, and a parameter s ≥ maxj ‖b̃j‖·ω(
√

log n), where B̃ is the Gram-Schmidt orthogonalization
of B.

Remark 2.2.18. The statistical distance is a measure for the “difference” between two prob-
ability distributions. Further, negl(n) means a negligible function in n. That is, negl(n) is
asymptotically smaller than n−c for any constant c > 0, i.e., limn→∞ n

c · negl(n) = 0 for any
constant c > 0. So, if we sample to within negl(n) statistical distance of DΛ+c,s, means that
we sample from a distribution that is not exactly the same, but indistinguishable from DΛ+c,s.

Remark 2.2.19. Given an input c,B and s as in Lemma 2.2.17, the algorithm creates a
Gaussian distributed element in the coset L(B) + c ⊂ H. Further, the algorithm needs
a subroutine (oracle) for sampling discrete Gaussians from DZ,s,c′ , i.e., Gaussians over Z
centered at c′ with standard deviation s. Given such a subroutine, the algorithm does the
following. Let cn−1 = c. Then, for i = n− 1, . . . , 0, do:

• Define c′i ··=
〈
ci, b̃i

〉/〈
b̃i, b̃i

〉
and si ··= s/‖b̃i‖ > 0.

• Sample zi from DZ,si,c′i .

• Let ci−1 = ci − zibi.

Finally, output c0 as the sampled element.

Assume that the given basis B has a rational Gram matrix B∗B and that the element c can
be represented by a rational coordinate vector in the basis B. From the above considerations
about the Gram-Schmidt orthogonalization we know that the matrices D,U of the Cholesky
decomposition of B∗B are also rational in this case. Recalling the definition of D and U ,
we observe that these matrices provide all the necessary information we need, in order to
compute si and c′i. The norm ‖b̃i‖ is just the i-th diagonal entry of D and the center c′i is
given by the inner product of the coordinate vector of ci and the i-th row of U . Thus, in an
implementation, D and U should be pre-computed to save further performance.

We can easily translate this algorithm into a sampling procedure for discrete Gaussians over
R using the powerful basis ~p and the canonical embedding σ. Recall that σ(~p T ) = CRTm,
so the given basis matrix B is actually CRTm. The following lemma will give some insight
about the Gram-Schmidt orthogonalization of CRTm, or to be more precise, about the QDU
decomposition of CRTm. Indeed, as it follows from the lemma, the Gram matrix of CRTm is
rational and hence ~p is a good choice for sampling Gaussians in R.

The mixed-product property of the Kronecker product and the fact that QD uniquely

determines the Gram-Schmidt orthogonalization imply that Ã⊗B = Ã ⊗ B̃. Therefore, by
the tensor structure of CRTm, it suffices to consider the case of prime powers m.

Lemma 2.2.20. Let m be a power of some prime p and m′ = m/p. Then we have the
decomposition

CRTm = Qm ·
(√

m′Dp ⊗ I[m′]

)
·
(
Up ⊗ I[m′]

)
,

where Qm is a unitary matrix, Dp is the real diagonal [ϕ(p)]× [ϕ(p)] matrix with√
(p− 1)− j

(p− j)
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in its j-th diagonal entry, and Up is the upper unitriangular [ϕ(p)]× [ϕ(p)] matrix with

−1

p− i− 1

in its (i, j)-th entry for 0 ≤ i < j < ϕ(p).

Proof. Recall the sparse decomposition of CRTm from Proposition 2.2.16

CRTm =
(
I[p] ⊗DFTm′

)
· T̂m ·

(
CRTp⊗I[m′]

)
.

By the fact that T̂m and 1√
m′
·DFTm′ are unitary matrices, it follows that

CRTm =
√
m′Q′ ·

(
CRTp⊗I[m′]

)
for some unitary Q′. Hence, it suffices to show that CRTp decomposes as CRTp = Qp ·Dp ·Up
for some unitary Qp.

Let G = CRT∗p ·CRTp be the Gram matrix of CRTp. Since p is a prime, we have that
Z∗p = {1, . . . , p − 1} and [ϕ(p)] = {0, . . . , p − 2}. Thus for any j ∈ [ϕ(p)] the j-th column of

CRTp is given by (ω1·j
p , . . . , ω

(p−1)·j
p )T . For roots of unity in C, inversion and complex conju-

gation coincide, hence for any i ∈ Z∗p the i-th row of CRT∗p is given by (ω−1·i
p , . . . , ω

−(p−1)·i
p ).

Multiplying these vectors yields the (i, j)-th entry of G

G(i,j) =

p−1∑
k=1

ωk·i−k·jp =

p−1∑
k=1

(ωi−jp )k.

But ωi−jp is just another primitive p-th root of unity ω′p ∈ C, except when i = j. So, if i 6= j,
we have G(i,j) = (ω′p)

1 + . . . + (ω′p)
p−1 = −1, and G(i,i) = p − 1 otherwise. Therefore, the

matrix G is given as

G =


p− 1 −1 · · · −1

−1
. . .

. . . · · ·
...

. . .
. . . −1

−1 · · · −1 p− 1

 .

By uniqueness of the Cholesky decomposition it suffices to show that

G = UTp ·D2 · Up.

This is done by elementary calculations. For k ≥ 2 define

T (k) ··=
1

1 · 2
+

1

2 · 3
+ · · ·+ 1

(k − 1) · k
.

Adding 1/k to the above sum leads to

T (k) +
1

k
= T (k − 1) +

1

(k − 1) · k
+

1

k
= T (k − 1)

1 + (k − 1)

(k − 1) · k
= T (k − 1) +

1

k − 1
.
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Since T (2) + 1/2 = 1, by induction we have that T (k) = 1 − 1/k. Closely examining the
multiplication UTp ·D2 ·Up, we observe that for any i ∈ [ϕ(p)] the i-th diagonal entry is given
by

p− 1− i

p− i
+

i−1∑
k=0

1

(p− k − 1)2

(
p− 1− k

p− k

)
.

Considering only the latter summation in the above expression, we see that

i−1∑
k=0

1

(p− k − 1)2

(
p− 1− k

p− k

)

=
i−1∑
k=0

p− 1

(p− k − 1)2
− k

(p− k − 1)2 · (p− k)

=

i−1∑
k=0

(p− 1)(p− k)− k
(p− k − 1)2 · (p− k)

=
i−1∑
k=0

p(p− k − 1)

(p− k − 1)2 · (p− k)

= p
i−1∑
k=0

1

(p− k − 1)(p− k)
.

Now, observe that the elements in the last sum are exactly those who lie “between” T (p) and
T (p− i). Thus,

p

i−1∑
k=0

1

(p− k − 1)(p− k)
= p(T (p)− T (p− i))

= p

(
1− 1

p
− 1 +

1

p− i

)
=

p

p− i
− 1 =

i

p− i
,

and the i-th diagonal entry of UTp ·D2 ·Up is p−1, as required. All other entries are calculated
similarly and the calculation is left to the reader.

Remark 2.2.21. Let m be an arbitrary positive integer with prime power factorization
m =

∏s
l=0ml, where each ml is the power of some prime pl, and m′l = ml/pl. From the above

lemma it follows that the matrices D and U in the decomposition of CRTm are given by

D =

s⊗
l=0

(√
m′Dpl ⊗ I[m′l]

)
and

U =
s⊗
l=0

(
Upl ⊗ I[m′l]

)
.

According to the above discussion, knowing the QDU decomposition of CRTm allows us to
efficiently sample discrete Gaussians over R in the powerful basis. When doing so, we have to
compute inner products with the rows of U . Through the Kronecker decomposition, an inner
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product with a row of U can be reduced to inner products with the respective rows in all
Upl . Note that each row of Upl has a small common denominator. Thus, if the element c has
an integral coordinate vector (which will be the case), one could compute the inner product
using integer arithmetic and divide the result by the common denominator. However, due to
the structure of our implementation we have to use another approach. In the end, we will
compute the inner product using real arithmetic, which is only a small disadvantage. See
Section 4.5.2 for details.

2.3 Working in the Dual Ideal R∨

For our applications, arithmetic operations in the dual ideal R∨ of R are equally important to
those in R itself. In Section 2.2 we developed efficient methods for addition and multiplication
in the ideal R, which depend heavily on the specific bases we defined for R. In this Section
we will develop similar methods for arithmetic operations in R∨ and power Ik = (R∨)k for
some k ≥ 2. Again, we define several specific bases and show that they are a good choice for
usage in our algorithms. Those bases are closely related to the specific bases of R and provide
similar algorithms for bases switching as well as for addition and multiplication.

2.3.1 Three Specific Bases of R∨

The Powerful and the Chinese Remainder Basis of R∨

Recall from Section 1.4.4 that the dual ideal R∨ is generated by the element t−1 as defined
in Definition 1.4.21, i.e., R∨ =

〈
t−1
〉

= t−1R. This implies that each Z-basis ~b of R can be

transformed into a Z-basis of R∨ via multiplication of the basis elements by t−1, i.e., t−1~b is
a Z-basis of R∨. The same holds for Zq-bases ~b′ of Rq, which then get Zq-bases of R∨q . Using
this fact we can define the powerful and the Chinese remainder bases for R∨ as follows.

Definition 2.3.1. Let K = Q(ζm) be the m-th cyclotomic number field for some positive
integer m and R ⊂ K its ring of integers. Further, let R∨ be the dual ideal of R and
Ik = (R∨)k a power of R∨ for some integer k ≥ 1. For a prime q = 1 mod m let Rq = R/qR,
R∨q = R∨/qR∨ and Ik,q = (R∨q )k. Let ~p be the powerful basis of R from Definition 2.2.1 and ~c
be the Chinese remainder basis of R from Definition 2.2.3. Then we define the powerful basis
of the power Ik as t−k~p and the Chinese remainder basis of the power Ik,q as t−k~c.

The Decoding Basis of R∨

For an arbitrary positive integer m and K = Q(ζm) define the Q-homomorphism τ : K → K
as the map that maps the primitive root of unity ζm to its inverse, i.e., τ(ζm) = ζ−1

m =

ζm−1
m . The image of the power basis (1, ζm, . . . , ζ

ϕ(m)
m ) under τ is again a basis, so τ is

an automorphism. Furthermore, τ is an involution, since τ(τ(ζm)) = (ζ−1
m )−1 = ζm. Let

{σi}i∈Z∗m be the n = ϕ(m) distinct Q-homomorphisms from K to C that define the canonical
embedding σ of K (cf. Section 1.4.2). For each i ∈ Z∗m we have that

σi(τ(ζm)) = σi(ζ
−1
m ) = ω−im = ωm−im = ωim = σ(ζm),

where ωm ∈ C is a primitive m-th root of unity in C. The computation shows that under the
canonical embedding σ, τ corresponds to complex conjugation, i.e., σ(τ(a)) = σ(a) for each
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a ∈ K. That is why we refer to τ as the conjugation map. Note that τ actually corresponds

to σm−1. For any m′ dividing m, τ still maps ζm′ = ζ
m/m′
m to its inverse ζ−1

m′ = ζ
−m/m′
m .

Further, the image of the powerful basis τ(~p) is a Z-basis of R, because τ is an automorphism
and hence τ(R) = R.

Definition 2.3.2. Let m be an arbitrary positive integer and K = Q(ζm) be the m-th
cyclotomic number field. Further let R ⊂ K be the ring of integers in K and R∨ its dual
ideal. Then we define the Z-basis ~d for R∨ as the dual of the conjugate powerful basis, i.e.,
~d ··= τ(~p)∨. We call ~d the decoding basis of R∨.

Remark 2.3.3. By definition, the decoding basis has the same index set as the powerful basis.
For prime powers m we have τ(~p) = (ζ−jm )j∈[ϕ(m)]. Hence, ~d is the dual of the conjugate power
basis of R. For arbitrary m ∈ N with prime power factorization m =

∏s
l=0ml it is immediate

that

τ(~p) = τ

(
s⊗
l=0

~pl

)
=

s⊗
l=0

τ(~pl),

where ~pl are the powerful bases of the rings of integers Rl ⊂ Kl and Kl = Q(ζml). Further-

more, recall from Section 1.4.4 that (~a ⊗~b)∨ = (~a ∨ ⊗~b ∨). These two facts imply that the
decoding basis ~d for arbitrary m is the tensor product of the decoding bases of each R∨l .

2.3.2 Switching between the Specific Bases of R∨

Similar to the results from Section 2.2.2 we want to develop a method to switch between the
bases of R∨ that we defined above. A first thing to observe is that by linearity of the inner
product in K we can switch between the powerful and the Chinese remainder basis of R∨q just

as we did in Rq. That is, for an element a ∈ R∨q given by some coordinate vector a ∈ Z[n]
q in

the powerful basis t−1~p we have that

a =
〈
t−1~p,a

〉
= t−1 〈~p,a〉 = t−1 〈~c,CRTm,q ·a〉 =

〈
t−1~c,CRTm,q ·a

〉
, (2.6)

where we used Equation (2.1) in the third step. Similarly, we can switch from t−1~c to t−1~p
using CRT−1

m,q.
The following proposition states how the powerful and the decoding basis are related. We

can use this relation to switch efficiently between those bases.

Proposition 2.3.4. Let m be some positive integer and K = Q(ζm) be the m-th cyclotomic
number field. Further let R ⊂ K be the ring of integers in K and R∨ its dual ideal. Let t−1~p be
the powerful basis of R∨ and ~d the decoding basis. For a prime p denote by Lp ∈ Z[ϕ(p)]×[ϕ(p)]

the lower-triangular matrix, whose (i, j)-th entry is one for i ≥ j, and zero otherwise. Let
m =

∏s
l=0ml be the prime power factorization of m such that ml are prime powers of some

primes pl. Define m′l = ml/pl and Lm =
⊗s

l=0 Lml =
⊗s

l=0(Lpl ⊗ I[m′l]). Then we have the

relation
~d T = t−1~p T · Lm. (2.7)

Proof. We can view both, t−1~p T and ~d T , as Kronecker decompositions

t−1~p T =

s⊗
l=0

t−1~p Tl and ~d T =

s⊗
l=0

~d Tl ,
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where t−1~p Tl and ~d Tl are the powerful and decoding bases of the respective dual ideals R∨l of
the ring of integers Rl ⊂ Kl = Q(ζml). Then, by the mixed-product property of the Kronecker
product it suffices to prove that

~d Tl = t−1~p Tl (Lpl ⊗ I[m′l]),

i.e., we can reduce our focus to prime powers.
Let m be a prime power of some prime p and m′ = m/p. In order to simplify the compu-

tation, instead of [n], we use the bijective index set [ϕ(p)] × [m′]. The bijection is given by
(j0, j1) 7→ j = j0m

′ + j1. For the powerful basis this means that

pj = p(j0,j1) = ζjm = ζj0m
′+j1

m = (ζm
′

m )j0 · ζj1m = ζj0p · ζj1m .

With this indexation and the way that the Kronecker product is defined, observe that the
matrix (Lp ⊗ I[m′]) consists of pure one diagonals starting at each row indexed by (j0, 0) for
j0 ∈ [ϕ(p)]. Therefore, we can rewrite Equation (2.7) as

d(j0,j1) = t−1 · (ζj0p + ζj0+1
p + . . .+ ζp−2

p ) · ζj1m .

Recalling from Definition 1.4.21 that t−1 = (1− ζp)/m yields

1− ζp
m

· (ζj0p + ζj0+1
p + . . .+ ζp−2

p ) · ζj1m

=
1

m
· ((ζj0p − ζj0+1

p ) + (ζj0+1
p − ζj0+2

p ) + . . .+ (ζp−2
p − ζp−1

p )) · ζj1m

=
1

m
· (ζj0p − ζp−1

p ) · ζj1m .

To verify this equation we need to prove that the right-hand side meets the characterization
of the dual basis. Thus, since d(j0,j1) = τ(p(j0,j1))

∨, the trace of the product of the right-hand
side with τ(p(j′0,j

′
1)) has to be one if (j0, j1) = (j′0, j

′
1) and zero otherwise. Note that with the

indexation we use, the element τ(p(j′0,j
′
1)) is given by ζ

−j′0
p ·ζ−j

′
1

m . For any (j′0, j
′
1) ∈ [ϕ(p)]× [m′]

we have (
1

m
· (ζj0p − ζp−1

p ) · ζj1m
)
· (ζ−j

′
0

p · ζ−j
′
1

m ) =
1

m
· (ζj0−j

′
0

p − ζp−1−j′0
p ) · ζj1−j

′
1

m .

Next, we need to compute the trace of this term. Using ζp = ζm
′

m and the linearity of the
trace, it holds that

Tr

(
1

m
(ζ
j0−j′0
p − ζp−1−j′0

p )ζ
j1−j′1
m

)
=

1

m

(
Tr
(
ζ
m′(j0−j′0)+(j1−j′1)
m

)
− Tr

(
ζ
m′(p−1−j′0)+(j1−j′1)
m

))
.

By Lemma 1.4.19, if j1 6= j′1, then j1 − j′1 6= 0 mod m′ and both traces are zero. Further,
if j1 = j′1 but j0 6= j′0, then both j0 − j′0 and p − 1 − j′0 are not equal to zero mod p, which
implies that for both traces we are in the second case of Lemma 1.4.19. Thus, the whole term
is zero. Finally, if (j0, j1) = (j′0, j

′
1), we have

1

m

(
Tr
(
ζ
m′(j0−j′0)+(j1−j′1)
m

)
− Tr

(
ζ
m′(p−1−j′0)+(j1−j′1)
m

))
=

1

m

(
Tr
(
ζ0
m

)
− Tr

(
ζ
m′(p−1−j′0)
m

))
=

1

m

(
Tr (1)− (−m′)

)
=

1

m

(
ϕ(m) +m′

)
=

1

m

(
ϕ(p)m′ +m′

)
=
pm′

m
= 1,

which ends the proof.
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Remark 2.3.5. Let a ∈ R∨ be given by a coordinate vector a ∈ Z[n] in the basis ~d. Then,
we have that

a =
〈
~d,a
〉

=
〈
t−1~p T · Lm,a

〉
=
〈
t−1~p, Lm · a

〉
. (2.8)

Thus, the coordinate vector of a with respect to the basis t−1~p is given by Lm · a. Similarly,
we can switch from the basis t−1~p to ~d by multiplication with L−1

m . Since Lp is defined as

Lp =

1
...

. . .

1 · · · 1


the inverse is given by

L−1
p =


1

−1
. . .

. . .
. . .

−1 1

 .

Both matrices can be applied using O(ϕ(p)) scalar operations via successive sums and partial
differences (cf. Section 4.5.3), which makes the switch between the bases efficient.

2.3.3 Addition and Multiplication in R∨

Addition and multiplication in the dual ideal R∨ is equally important to the same operations
in R. In Section 2.2.3 we described how we add and multiply elements in R. As before, by
linearity, addition of two elements corresponds to component-wise addition of the coordinate
vectors, if they are with respect to the same bases. Since we can switch efficiently between all
considered bases of R∨, we can always assume that the elements are represented in the same
basis. The same holds for addition in R∨q .

When dealing with multiplication we have to distinguish between the modulo case, where
we multiply in R∨q , and the normal case in R∨. In the modulo case, multiplication works

nearly as in Rq. Let a, b ∈ R∨q be two elements and a,b ∈ ZZ∗m
q their respective coordinate

vectors in the CRT basis t−1~c of R∨q . By linearity and Proposition 2.2.14, we have that

ab =
〈
t−1~c,a

〉
·
〈
t−1~c,b

〉
= t−2 〈~c,a� b〉 =

〈
t−2~c,a� b

〉
.

Now, t−2~c is a Zq-basis of the power I2,q = (R∨q )2 ⊂ R∨q . In a more general setting, where
a ∈ Ik1,q and b ∈ Ik2,q for some k1, k2 ≥ 1, the same computation yields that

ab =
〈
t−(k1+k2)~c,a� b

〉
∈ Ik1+k2,q (2.9)

i.e., a � b is the coordinate vector of ab ∈ Ik,q in the CRT basis t−k~c, where k = k1 + k2.
Together with Proposition 2.2.14 this is even true for k1, k2 ≥ 0.

For normal multiplication in R∨ we use the same approach as in R. That is, we multiply
two elements a, b ∈ R∨ via the canonical embedding σ, i.e.,

ab = σ−1(σ(a)� σ(b).

To make this operation efficient we need an efficient computation of σ in the decoding basis.
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Proposition 2.3.6. Let K = Q(ζm) be the m-th cyclotomic number field for some positive
integer m and R ⊂ K its ring of integers. Further let ~d be the powerful basis of the dual ideal
R∨ and σ : K → H the canonical embedding of K. For any element a ∈ KR = K ⊗ R such

that a =
〈
~d,a
〉

for a suitable coordinate vector a ∈ R[n] (such a coordinate vector exists and

is unique, since any Q-basis of K is a R-basis of KR) we have that

σ(a) = (CRT∗m)−1 · a,

where CRTm is the Chinese remainder transform over C from Definition 2.2.8. In particular,
we have that

σ(~d T ) = (CRT∗m)−1.

Proof. Recall the characterization of the dual basis from Section 1.4.4. Given the dual basis
{d∨j }j∈[n], each entry aj of a for j ∈ [n] can be computed as

Tr(a · d∨j ) = Tr

∑
i∈[n]

aidi · d∨j

 =
∑
i∈[n]

(
ai · Tr(did

∨
j )
)

= aj ,

since Tr(did
∨
j ) = δij . Keeping the definition of the decoding basis in mind, it follows that

aj = Tr(a · d∨j ) = Tr(a · τ(pj)) =
∑
i∈Z∗m

(σi(a)σi(τ(pj))) =
∑
i∈Z∗m

(σi(a)σi(pj)) = 〈σ(a), σ(pj)〉H .

Note that the second entry of 〈·, ·〉H gets conjugated by definition. Since σ(~p) = CRTm, the
latter equation is equivalent to

a = CRT∗m ·σ(a).

Applying (CRT∗m)−1 leads to the desired equation.

The latter result is of greatest interest for us, if we look at elements a, b ∈ R∨, whose
coordinate vectors a and b are in Z[n]. Then we can perform a multiplication of a and b via

ab = CRT∗m(((CRT∗m)−1 · a)� ((CRT∗m)−1 · b)). (2.10)

”Mixed” Addition and Multiplication

A difficulty arises if we want to add or multiply two elements a, b, where a ∈ R and b ∈ R∨. We
know that R ⊂ R∨, so we could view a as an element in R∨ and perform the desired operation
in R∨. However, we have no efficient procedure that computes the coordinate vector of a in
t−1~p or ~d given the coordinate vector of a in ~p. A possibility would be a multiplication with
t. If b is the coordinate vector of ta in ~p, then we have〈

t−1~p,b
〉

= t−1 〈~p,b〉 = t−1ta = a,

i.e., b would be the coordinate vector of a in t−1~p. For an efficient multiplication with t
we would need its coordinate vector in the basis ~p. Unfortunately, the computation of this
coordinate vector is rather complex and we would like to omit it completely.

Without a coordinate vector of a in some basis of R∨ we are not able to perform any
operation inR∨. We can solve this problem by the following observation. In both, the powerful
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and the decoding bases, we can easily embed elements under the canonical embedding σ into
H via the CRT matrices. If we represent a in ~p and b in ~d, we can compute the coordinate
vector c of a+ b or ab in ~d as

c = CRT∗m(CRTm ·a � (CRT∗m)−1 · b),

where a and b are the respective coordinate vectors of a and b and � ∈ {+,�}.

2.3.4 Sparse Decomposition of DFT∗ and CRT∗

The previous section introduced an efficient method for the multiplication of elements in R∨.
The method uses the conjugate transpose of the Chinese remainder transformation CRT∗m
and its inverse. Similar to CRTm we can decompose CRT∗m to

CRT∗m =

s⊗
l=0

CRT∗ml ,

where m =
∏s
l=0ml is the prime power factorization of m. To speed up algorithmic appli-

cations of CRT∗ml , we can adopt the sparse decomposition of CRTml from Section 2.2.4. A
sparse decomposition of CRT∗ml also needs a sparse decomposition of DFT∗ml . The same holds
for the inverse (CRT∗m)−1.

Proposition 2.3.7. Let m be a prime power of some prime p, and let m′ = m/p. Let ωm be
a primitive m-th root in C, which was used to define DFTm. Define the “twiddle” matrix Tm
as the m-dimensional diagonal matrix, whose entries are ωi,jm for (i, j) ∈ [p]× [m′] in it’s k-th
diagonal position for k = i ·m′ + j. Further, let Lmm′ be the permutation matrix representing
the “bit-reversal” or “stride” permutation. Generally, the permutation Lmd is defined for all
d|m by i 7→ i · d mod m− 1 for 0 ≤ i < m− 1 and m− 1 7→ m− 1. Then we can decompose
the conjugate transpose of the discrete Fourier transform to

DFT∗m =
(
DFTp ⊗ I[m′]

)
· Tm ·

(
Ip ⊗DFTm′

)
· (Lmm′)

−1 ,

where all terms are square matrices of size m = p ·m′.

Proposition 2.3.8. Let m be a prime power of some prime p, and let m′ = m/p. Further

define the twiddle matrix Tm and the stride permutation L
ϕ(m)
m′ as in Proposition 2.3.7. [Note

that ϕ(m) = ϕ(pk) = (p − 1)pk−1 = ϕ(p) · m′ for some k ≥ 1, thus m′|ϕ(m) and the

permutation L
ϕ(m)
m′ is well defined.] Denote by T̂m the submatrix of Tm with columns restricted

to [ϕ(p)]×[m′] and rows restricted to Z∗p×[m′]. Then we can decompose the conjugate transpose
of the Chinese remainder transform to

CRT∗m =
(
CRT∗p⊗I[m′]

)
· T̂m ·

(
IZ∗p ⊗DFTm′

)
·
(
L
ϕ(m)
m′

)−1
,

where all terms are square matrices of size ϕ(m) = ϕ(p) ·m′.

Proof of Propositions 2.3.7 and 2.3.8. Both propositions follow from the sparse decomposi-
tion of DFTm and CRTm from Propositions 2.2.15 and 2.2.16. Using Proposition 1.2.3 and
the usual rules for conjugate matrices we get

DFT∗m =
(
DFT∗p⊗I[m′]

)
· T ∗m · (Ip ⊗DFT∗m′) · (Lmm′)

∗
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and
CRT∗m =

(
CRT∗p⊗I[m′]

)
· T̂ ∗m ·

(
IZ∗p ⊗DFT∗m′

)
·
(
L
ϕ(m)
m′

)∗
.

First, we observe that DFTm is a symmetric matrix for all m, and thus DFT∗m = DFTm.
Furthermore, the twiddle matrices Tm and T̂m are diagonal matrices and the transposition in

the conjugate transposes can be skipped. Finally, Lmm′ and L
ϕ(m)
m′ are permutation matrices,

so complex conjugation changes nothing and the transpose equals the inverse.

In the same way as above, we get decompositions of (DFT∗m)−1 and (CRT∗m)−1 from Equa-
tions (2.4) and (2.5)

(DFT∗m)−1 = Lmm′ ·
(
Ip ⊗

(
DFTm′

)−1
)
· T̂m ·

((
DFT∗p

)−1 ⊗ I[m′]

)
, (2.11)

(CRT∗m)−1 = L
ϕ(m)
m′ ·

(
IZ∗p ⊗

(
DFTm′

)−1
)
· T̂m ·

((
CRT∗p

)−1 ⊗ I[m′]

)
. (2.12)

Similar to CRTm we will always apply the matrices CRT∗m and (CRT∗m)−1 in a way such
that the stride permutations cancel each other out. Therefore we omit them completely in
our implementation.

2.3.5 Sampling Gaussians in the Decoding Basis

This section deals with the sampling of continuous Gaussians over KR = K ⊗ R represented
in the decoding basis. We will show how the somewhat efficient way of sampling via the
canonical embedding σ can be further optimized under certain circumstances. Our goal
is to achieve a real coordinate vector a of some Gaussian distributed a ∈ KR such that

a =
〈
~d,a
〉

. By Proposition 2.3.6 this can be done by sampling σ(a) from the n-dimensional

Gaussian distribution over H and then left multiply by CRT∗m. The latter is done somewhat
efficiently using the sparse-decomposition of CRT∗m from Proposition 2.3.8. Further, recall
from Remark 1.4.8 that H has the unitary basis matrix

B =
1√
2

(
I
√
−1J

J −
√
−1I

)
∈ CZ∗m×[ϕ(m)],

which implies that the sample σ(a) is obtained by sampling n independent real Gaussians
used as coefficients for the basis B.

Definition 2.3.9. For a positive integer m define the radical rad(m) of m as the product of
all primes dividing m.

The above procedure can be optimized when rad(m)� m, which is the case for basically all
m of interest. Multiplication by CRT∗m via the sparse decomposition from Proposition 2.3.8
results in multiplication with a DFT followed by a twiddle matrix and then a CRT. Noticing
that the first two matrices are scaled unitary matrices and that Gaussian distributions are
invariant under unitary transformations let us observe that we can effectively skip those
multiplications. Since the leftover application of the CRT matrix is in general of much lower
dimension, this is significantly faster. The following proposition provides more details.

Proposition 2.3.10. Let m be a positive integer and m =
∏s
l=0ml be the prime power

factorization of m, where each ml is the power of some prime pl. Let K = Q(ζm) be the m-th
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cyclotomic number field, R ⊂ K the ring of integers in K and R∨ its dual ideal. Define the
matrices

C∗ ··=
s⊗
l=0

(
CRT∗pl ⊗I[m′l]

)
and

B′ =

s⊗
l=0

(
B′pl ⊗ I[m′l]

)
,

where B′pl is the [ϕ(p)]× [ϕ(p)] matrix

B′pl =
1√
2

(
I
√
−1J

J −
√
−1I

)
and m′l = ml/pl [In the case pl = 2 we define B′pl := 1]. Here I denotes the ϕ(pl)/2-
dimensional identity matrix and J the ϕ(pl)/2-dimensional reverse identity matrix. Then,
in order to sample a continuous Gaussian of standard deviation r over KR = K ⊗ R in
the decoding basis of R∨, it is sufficient to sample n = ϕ(m) independent real Gaussians of
standard deviation r

√
m/rad(m) in a vector c and left multiply c by C∗B′. The resulting

vector is the coordinate vector of the desired Gaussian in the decoding basis.

Proof. Recall the sparse decomposition of CRT∗ml ,

CRT∗ml =
(

CRT∗pl ⊗I[m′l]
)
· T̂ ∗ml ·

(
IZ∗pl
⊗DFT∗m′l

)
.

The twiddle matrix T̂ ∗ml and the scaled discrete Fourier transform 1/
√
m′l · DFT∗m′l

are both

unitary matrices. Therefore, we can combine them in the sparse decomposition to some
unitary Ql and write

CRT∗ml =
(

CRT∗pl ⊗I[m′l]
)
·
√
m′l ·Ql.

Using the mixed-product property of the Kronecker product yields

CRT∗m =
s⊗
l=0

CRT∗ml =
s⊗
l=0

(CRT∗pl ⊗I[m′l]) ·
√

m

rad(m)

s⊗
l=0

Ql.

Now, Q =
⊗s

l=0Ql is unitary and therefore sends a Gaussian distribution over H ⊂ CZ∗m to
a Gaussian distribution with the same standard deviation over H ′ = QH ⊂ CZ∗m . Hence, in
order to produce a continuous Gaussian of standard deviation r over H, it suffices to sample
a Gaussian of standard deviation r

√
m/rad(m) over H ′ and left multiply the result by

C∗ =
⊗
l

(
CRT∗pl ⊗I[m′l]

)
= CRT∗rad(m)⊗I[m/rad(m)].

It remains to show that B′c is a Gaussian of standard deviation r
√
m/rad(m) over H ′. To

do so, it is sufficient to show that B′ is a unitary basis matrix for H ′. From Proposition 2.3.6
and the fact that H is an n-dimensional real vector space it follows that CRT∗mH is isomorphic
to R[n] and hence C∗ ·H ′ = C∗ ·QH is also isomorphic to R[n], since the difference between

52



2 The Toolkit

CRT∗mH and C∗ ·QH is only the factor
√
m/rad(m) ∈ R. Therefore, we can characterize H ′

as
H ′ =

{
x ∈ CZ∗m

∣∣∣C∗x ∈ R[n]
}
.

Now, it suffices to show that B′ is a unitary matrix such that C∗B′ is real, in order to proof
that B′ is a unitary basis matrix of H ′.

Clearly B′ is unitary. By the mixed-product property it is sufficient to check that the
product CRT∗pl ·B

′
pl

is real, in order to prove that C∗ ·B′ is real. Letting Dpl = CRT∗pl ·B
′
pl

we
can compute the entries of Dpl using the somewhat symmetric structure of B′pl . By definitions
of CRT∗pl and B′pl we have

Dpl(j0, j1) =
1√
2

(
ωpl

j0·j1 + ωpl
j0·(pl−j1)

)
=

1√
2

(
ωpl

j0·j1 + ωj0·j1pl

)
=
√

2 · Re(ωj0·j1pl
)

and

Dpl(j0, ϕ(pl)−j1) =
1√
2

(
iωpl

j0·j1 − iωpl
j0·(pl−j1)

)
=

1√
2

(
iωpl

j0·j1 − iωj0·j1pl

)
=
√

2 ·Im(ωj0·j1pl
),

where i =
√
−1 is the imaginary unit, j0 ∈ [ϕ(pl)] and 1 ≤ j1 ≤ ϕ(pl)/2. Note that we used

the fact that ωp
p−j = ωp

−j = ωjp for any prime p and integer j. Clearly, both computed values
are in R implying that C∗B′ is a real matrix.

2.3.6 Decoding R∨ and its Powers

In this section we want to adopt the decoding algorithm from Section 1.3.1 to our general
ring-LWE setting. Recall that the goal of the decoding algorithm is to recover a sufficiently
short element x ∈ V , given x mod Λ, where V is some vector space and Λ a lattice in V . The
algorithm uses short linearly independent vectors in the dual lattice Λ∨ to recover x. Now,
for our applications we have to decode elements from the quotient K/R∨. To do so, we use
the decoding basis ~d of R∨, whose dual basis in (R∨)∨ = R is the conjugate powerful basis
τ(~p). By Remark 1.3.5 the length of elements we can successfully decode, depends inversely
on the maximum length of the dual basis elements. Therefore, we would like to have dual
basis elements that are as short as possible. Since τ maps roots of unity again to roots of
unity, the basis elements in the conjugate powerful basis have the same length as the powerful
basis elements, i.e., ‖τ(pj)‖2 = ‖pj‖2. By Observation 2.2.13 the latter norm is ‖pj‖2 =

√
n.

Further, by Lemma 1.4.17 and the fact that N(R) = 1, we get that every nonzero element
in R has length at least

√
n. This implies that the decoding basis is a optimal choice, since

there cannot exist any set of shorter dual elements.
Unfortunately, in the more general case, when we decode K/Ik for some power Ik =

(R∨)k =
〈
t−k
〉
, k ≥ 1, this is not the case any more. Here the “decoding” basis would be

t1−k ~d and we could perform the rounding off algorithm in this basis. But, as it turns out,
the elements of the dual basis tk−1τ(~p) might be much longer than the shortest nonzero
elements in I∨k =

〈
tk−1

〉
. This is why we use the scaled decoding basis m̂1−k ~d, where we recall

from Definition 1.4.21 that m̂ = t · g. Also, keeping in mind that R∨ = t−1R, the scaled
decoding basis generates the superideal Jk = m̂1−kR∨ = g1−kt−kR ⊇ Ik and has the dual
elements m̂k−1τ(~p) ∈ I∨k of length m̂k−1√n. The scaled decoding basis is still not optimal,
but nearly so. Lemma 1.4.17 together with Equation (1.6) imply that the minimum distance
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of I∨k = (R∨)1−k is at least

√
n ·N(1−k)/n(R∨) =

√
n ·∆(k−1)/n

K .

Then, using Equation (1.4), we can estimate the ratio between the basis elements and the
shortest nonzero vector as

‖m̂k−1τ(~p)‖2
λ1(I∨k )

=
m̂k−1√n
λ1(I∨k )

≤ m̂k−1√n
√
n ·∆(k−1)/n

K

=

 ∏
odd prime p|m

p1/(p−1)

k−1

,

which is for almost all relevant choices of m and k quite small. For example, if we take all
odd primes up to 17, the term inside the parenthesis is ≈ 6.73. The product of these primes
is 255255, so this corresponds already to choices of m ≥ 255255.

In the following we consider a “scaled up and discretized” version of the rounding off algo-
rithm, due to reasons of convenience in applications and implementations. In this version we
decode from Ik,q to Ik for some integer q ≥ 1. That is, the unknown vector in Ik is given
modulo qIk, and the output is expected to be in Ik. For k ≥ 2, the scaled decoding basis
m̂1−k ~d may generate a strict superideal Jk ⊃ Ik and the decoded element might be in Jk
but not in Ik. In this case we define the output as undefined. But as long as the unknown
element in Ik is short enough, it will be decoded correctly.

Notation 2.3.11. For any a ∈ Zq, let JaK denote the unique representative a′ ∈ a +
qZ ∩ [−q/2, q/2). Further, for vectors a ∈ Znq we extend J·K component-wise such that
JaK ∈ [−q/2, q/2)n.

Definition 2.3.12. Let Ik = (R∨)k for some k ≥ 1. Then we define the decoding function

J·K : Ik,q → Ik as follows. For any element a ∈ Ik,q, write a =
〈
m̂1−k ~d,a

〉
mod qJk for some

coordinate vector a over Zq, where Jk = m̂1−kR∨ ⊇ Ik. Then, define JaK ··=
〈
m̂1−k ~d, JaK

〉
if

this value is in Ik, otherwise JaK is undefined.

Lemma 2.3.13. Let Ik = (R∨)k for some k ≥ 1 and a ∈ Ik some element. Write a =〈
m̂1−k ~d,a

〉
for some integral coordinate vector a. Further let q ≥ 1 be some integer. Then

the following holds:

(i) If every coefficient aj is in the range [−q/2, q/2), then Ja mod qIkK = a.

(ii) For every coefficient aj we have |aj | ≤ m̂k−1√n · ‖a‖2.

Proof. The first claim is just a reformulation of Claim 1.3.4 for the ring-LWE setting. The
second claim follows from Remark 1.3.5 and the fact that ‖m̂k−1τ(~p)‖2 = m̂k−1√n.

In Section 3.4 we describe how this procedure can be implemented efficiently. For further
analysis of this topic we refer to [LPR13b].

2.4 Discretization in Q(ζm)

An important step in our cryptosystems from Section 2.1 is the conversion of a continuous
Gaussian into a discrete Gaussian-like distribution. In our usual setting, where K = Q(ζm) is
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the m-th cyclotomic number field for some positive integer m and R ⊂ K is its ring of integers,
this means that we have to discretize a certain point x ∈ KR = K ⊗R to a point y ∈ c+ pR∨

where p is an integer scaling factor and R∨ is the dual ideal of R. In Section 1.3.2 we described
the discretization problem for general lattices in a vector space. Via the canonical embedding
σ we could convert the discretization problem in KR to a discretization problem in the vector
space H. However, the discretization algorithm works only on the coordinate vectors of the
involved elements. The coordinate vector of an element a ∈ R∨ with respect to a basis ~b is
the same as for the element σ(a) ∈ σ(R∨) ⊂ H with respect to the basis σ(~b). Consequently,
we can view all concerned elements directly in KR when performing the algorithm.

To begin with, we take a closer look at the special case mentioned at the beginning of this
section, namely discretizing a point x ∈ KR to a coset c+ pR∨. Let n = ϕ(m). Suppose the
points x ∈ KR and c ∈ R∨ are given by some coordinate vectors x ∈ R[n] and c ∈ Z[n]. We
assume that both points are represented in the decoding basis ~d. The basis for our lattice
pR∨ is then given by p~d. Thus, we have to represent c′ = c − x mod pR∨ in the basis p~d.
Since our points are given in the decoding basis, this is simply done by cutting of the integer
parts of each coordinate in 1

p(c− x). Indeed, we have

c− x =
〈
~d, c− x

〉
=

〈
p~d,

1

p
(c− x)

〉
,

where 1
p(c − x) ∈ Rn. Cutting of the integer parts leads to a vector in [0, 1)[n]. Let z =

(zi) ∈ [0, 1)[n] be this resulting vector. Then, we have to choose randomly and independently
values fi from {zi − 1, zi} where P [fi = zi] = 1 − zi. We have f = (fi) ∈ (−1, 1)[n] and by

construction f ··=
〈
p~d, f

〉
∈ c′ + pR∨. Now, the output of the algorithm is y ··= x+ f , where

y ∈ R∨ and y + pR∨ = c+ pR∨. To validate the latter two conditions, we have to check two
properties. On the one hand, y needs to have an integer coordinate vector with respect to
the decoding basis and, on the other hand, 1

p(y − c) has to be an integral vector.
Let i ∈ [n] be an arbitrary index. We have to distinguish two cases for the build-up of the

entry yi in the coordinate vector of y. Either fi = zi or fi = zi − 1. Note that we compute
in the decoding basis, so the coordinates of f are actually pf . Let ni denote the integer such
that 1

p(ci − xi)− ni ∈ [0, 1). Then, in the first case we have

yi = xi + pfi = xi + pzi = xi + p

(
1

p
(ci − xi)− ni

)
= ci − pni ∈ Z,

and in the second case we have

yi = xi + pfi = xi + p(zi − 1) = xi + pzi − p = ci − pni − p ∈ Z.

The above computation shows both properties. Clearly, y has an integer coordinate vector.
Furthermore, either 1

p(yi − ci) = −ni ∈ Z or 1
p(yi − ci) = −ni − 1 ∈ Z, which implies that

1
p(y − c) is an integral vector. So y is indeed our desired element.

In a more general setting, let ~b be a Q-basis of K and say we want to discretize a point

x ∈ KR to a coset c + p
〈
~b
〉

, where c ∈ H. Note that by allowing real coefficients in the

coordinate vectors, ~b turns into an R-basis of KR. Therefore, if the elements x and c are given
with respect to ~b, we can proceed as in the special case described above. Moreover, in our

applications, the coset representative c will actually be an element in
〈
~b
〉

itself. Hence, it is

sufficient to represent c by an integral coordinate vector as it is done above.

55



3 Further Implementation Notes for some
Features of the Toolkit

This chapter gives some further implementation notes of some central features of the toolkit.
A majority of the operations in the toolkit rely on the transformation of certain coordinate
vectors. These transformations are given as matrices, which are decomposed via the Kro-
necker product. We can take advantage of this decomposition to provide a more efficient
way of multiplying the matrices with the coordinate vectors. This algorithm is developed in
Section 3.1. In particular, the sparse decomposition of DFT and CRT from Sections 2.2.4
and 2.3.4 use this algorithm. This implies that in the end only the prime-indexed transfor-
mations will be applied to a suitable subvector. Section 3.2 shows how this can be done via
FFT algorithms, providing O(n log n) algorithms instead of O(n2). Subsequently, Section 3.3
explains in more detail, compared to Chapter 2, how addition and multiplication in R and R∨

can be implemented. Next, in Section 3.4 we describe an algorithm that efficiently decodes
elements in R∨, if possible. Finally, Section 3.5 deals with some pre-computations that can
be done for better performance. In particular, we explain how the element g ∈ R and the
neutral element in the different bases can be pre-computed.

Throughout this chapter, if not stated differently, let K = Q(ζm) be the m-th cyclotomic
number field for some positive integer m and R ⊂ K its ring of integers. R∨ is the dual ideal
of R as defined in Section 1.4.4. The dimension of K is n = ϕ(m). Further let KR = K⊗R be
the tensor product of K and R, whose image under the canonical embedding σ is the vector
space H (cf. Definition 1.4.7).

3.1 Multiplication with Kronecker Decomposed Matrices

A common task in all our applications and also crucial for the efficiency is the multiplication of
certain square matrices with vectors. Thereby, the matrices are decomposed via the Kronecker
product. That is, for a square matrix A of dimension m we have A =

⊗s
l=0Al where Al are

suitable square matrices with smaller dimensions ml. Recall the mixed-product property for
the Kronecker product: (A⊗B)(C⊗D) = (AC)⊗ (BD). Using this property we can rewrite
the decomposition as

A =

s∏
l=0

(Im1 ⊗ . . .⊗ Iml−1
⊗Al ⊗ Iml+1

⊗ . . .⊗ Ims),

where Iml means the identity matrix of dimension ml. Since the Kronecker product of two
identity matrices is again an identity matrix, namely Iml ⊗ Iml′ = Imlml′ , we can combine the
identity matrices on the left and the right side into a bigger one respectively,

A =

s∏
l=0

(Im1···ml−1
⊗Al ⊗ Iml+1···ms).
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To see how we can use this to our advantage we need to take a closer look at the structure of
each factor.

Let n0 and n1 be arbitrary positive integers. Applying the n0-dimensional identity matrix
via the Kronecker product from the left side to Al leads to a diagonal block matrix with
n0 diagonal blocks Al. A further application of the n1-dimensional identity matrix via the
Kronecker product from the right side scatters the entries of each block Al in an n1 × n1

pattern, leading to a sparse matrix. We illustrate this on an example.

Example 3.1.1. Given the matrix

A =

(
2 2
2 2

)
,

we compute I2 ⊗A⊗ I2. By definition of the Kronecker product we have that

I2 ⊗A⊗ I2 =


2 2 0 0
2 2 0 0
0 0 2 2
0 0 2 2

⊗ I2 =



2 0 2 0 0 0 0 0
0 2 0 2 0 0 0 0
2 0 2 0 0 0 0 0
0 2 0 2 0 0 0 0
0 0 0 0 2 0 2 0
0 0 0 0 0 2 0 2
0 0 0 0 2 0 2 0
0 0 0 0 0 2 0 2


.

Let us analyze this example. If we want to apply this matrix to a vector of dimension
8, the only thing we have to do is to apply the matrix A to the subvectors indexed by
(0, 2), (1, 3), (4, 6) and (5, 7). So instead of a matrix multiplication with I2 ⊗ A⊗ I2 we have
only four multiplications with A which can be parallelized. This saves real performance on
modern architectures. Back in the general setting this means that the application of a matrix
A =

⊗s
l=0Al reduces to m/ml parallel multiplications by Al, in sequence for each ml.

Having this insight, we can construct an algorithm for multiplication with a Kronecker
decomposed matrix. The input will be a list, or any other suitable container, of matrices Al
of dimensions ml representing A =

⊗s
l=0Al and a vector x of suitable dimension. Then the

algorithm outputs y = A ·x. To do so, we simply traverse through the list and for each Al do
the m/ml multiplications and update the resulting vector. Notice that the order in which we
apply the matrices Al does not matter, since (B ⊗ In)(In′ ⊗C) = B ⊗C = (In′ ⊗C)(B ⊗ In)
for appropriate B,C, n and n′. But, as we assume an ordered list anyway, it makes sense to
traverse linear through the list.

Let k be a fixed position in the list, so the algorithm has already made k − 1 loops. Let
xk−1 be the updated input vector. Define n0 ··=

∏k−1
l=0 ml and n1 ··=

∏s
l=k+1ml (for k = 1 or

k = s set n0 = 1 or n1 = 1 respectively). Then we want to compute (In0 ⊗ Al ⊗ In1) · xl−1.
To do so we have to compute the correct indexes to build subvectors of dimension ml. This
is best implemented via a subroutine, because often we also multiply vectors with matrices
of the form I ⊗A or A⊗ I, which then can be realized directly through this subroutine.

Let us again take a look at Example 3.1.1, in particular at the structure of I2⊗A⊗ I2. We
have a diagonal block-matrix with 2 blocks of size 4 = 8/2. The number and size of the blocks
only depend on the dimension of unity matrix which is applied from the left side. Generally
speaking, this means that we have n0 blocks of size m/n0. So, once we know how to compute
the indexes inside of one block we can derive all indexes through shifting by m/n0.
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Each block in our example is of the form A⊗ I2, so the entries of A are scattered in a 2× 2
pattern. We are only interested in the first two rows, because we just need to compute two
subvectors and the rest is repetition. The indexes in the first row where we have non-zero
entries are given by 0 · 2 + 1 and 1 · 2 + 1 and in the second row they are only shifted by 1.
In the general setting this translates to an n1 × n1 scattered matrix Al ⊗ In1 and we have to
compute n1 different subvectors z1, . . . , zn1 , where the indexes of a subvector zi are given by
0 · n1 + i, . . . , (m− 1) · n1 + i. So, in each step the indexes are shifted by 1, n times in total.
Now we can multiply Al with each subvector and the updated vector xl is just the merging
of all resulting subvectors.

Algorithm 3.1.2. Let A =
⊗s

l=0Al be a Kronecker decomposed square matrix of dimension
m =

∏s
l=0ml, where dim(Al) = ml. Then the following Algorithm provides an efficient way

of multiplying A with a vector x of dimension m.

ApplyKronDecomp: Efficiently compute y = (
⊗s

l=0Al) · x
Require: A list A0, . . . , As and an m dimensional vector x.
Ensure: y = (

⊗s
l=0Al) · x.

1: y ··= x {initiate resulting vector}
2: for all Al do
3: n0 ··=

∏l−1
i=0mi

4: n1 ··=
∏s
j=l+1mj

5: y = ApplySingleKronDecomp(Al, n0, n1, y)
6: end for
7: return y

The subroutine ApplySingleKronDecomp(Al, n0, n1, x) is given by

ApplySingleKronDecomp: Efficiently compute y = (In0 ⊗Al ⊗ In1) · x
Require: A square matrix Al of size ml, dimensions n0, n1, such that m = n0 ·ml · n1, and

a vector x of dimension m.
Ensure: y = (In0 ⊗Al ⊗ In1) · x.

1: y ··= 0 {m dimensional vector}
2: y′, x′ ··= 0 {ml dimensional vectors}
3: for i = 0 to m− 1 step (m/n0) do
4: for j = 0 to n1 − 1 do
5: for k = 0 to ml − 1 do
6: x′k ← xk·n1+j+i

7: end for
8: y′ ← Al · x′
9: for k = 0 to ml − 1 do

10: yk·n1+j+i ← y′k
11: end for
12: end for
13: end for

Remark 3.1.3. Notice that, for the sake of simplicity, we do not compute all subvectors
first, multiply them with Al and then update the resulting vector. Instead we make these
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steps ad hoc by first computing one subvector, multiplying it with Al and finally updating
the resulting vector at the corresponding indexes.

3.2 Efficient Application of DFT and CRT in the Prime Case

Recall from Section 2.2.4 that we decomposed the discrete Fourier transform DFTm and
the Chinese remainder transform CRTm from Definition 2.2.8 such that, combined with the
algorithms for the application of Kronecker decompositions from Section 3.1, an application of
DFTm or CRTm only depends on DFTp and CRTp for prime divisor p of m, and some twiddle
matrices. While all twiddle matrices are diagonal and can be applied in linear time, DFTp

and CRTp are dense matrices using quadratic time for an application to a vector. However,
the special form of DFTp and CRTp allows us to optimize the runtime of an application to
O(p log p).

In several fields of research, especially in signal processing, the discrete Fourier transform
for a complex sequence (x0, . . . , xN−1) of length N ∈ N is usually defined as

Xk =
N−1∑
j=0

xjω
jk
N for 0 ≤ k ≤ N − 1, (3.1)

where ωN = exp(2πi/N) ∈ C. If we view the resulting values Xk in a vector (X0, . . . , XN−1),
the above equations correspond to X0

...
XN−1

 = DFTN ·

 x0

...
xN−1

 .

In particular, we can view an application of DFTp as a discrete Fourier transform of prime
length in the sense of Equation (3.1).

In general, an algorithm that efficiently performs a discrete Fourier transformation on an
input (x0, . . . , xN−1) is called a Fast Fourier Transformation (FFT). There are several FFT
algorithms we could use for an application of DFTp, for example Bluestein, Winograd or Rader
FFT. All of these algorithms are suited for inputs of prime length p and need O(p log p) time.
Detailed explanations and analysis of these and more algorithms can be found in [Nus82].
For our implementation we chose to use Rader’s FFT algorithm. It uses a Cooley-Tukey
FFT for power of two input length as a subroutine. In Section 4.2 we briefly describe our
implementation of these FFT algorithms.

Recall from Definition 2.2.8 that CRTp is a submatrix of DFTp. In particular, since p is a
prime number, CRTp is the submatrix of DFTp where the first row and the last column are
removed. Therefore it is possible, via a small adjustment in the algorithm, to apply CRTp

also via Rader’s FFT algorithm as we will see in Section 4.2.
The inverse discrete Fourier transformation for an input (X0, . . . , XN−1) of length N is

defined as

xk =
1

N

N−1∑
j=0

Xjω
−jk
N for 0 ≤ k ≤ N − 1
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and corresponds to an application of DFT−1
N . An application of DFT∗N = DFTN corresponds

to the equations

Xk =

N−1∑
j=0

xjωN
jk for 0 ≤ k ≤ N − 1.

Finally, an application of (DFT∗m)−1 corresponds to

xk =
1

N

N−1∑
j=0

XjωN
−jk for 0 ≤ k ≤ N − 1.

Note that for the primitive root of unity ωN we have that ωN = ω−1
N . Consequently, we

can interchange these terms in the above equations. Using the techniques of Rader’s FFT
algorithm, we can perform applications of DFT−1

p ,DFT∗p and (DFT∗p)
−1 in O(p log p). Since

CRT∗p is a submatrix of DFT∗p, we can apply it similar to CRTp via Rader’s algorithm.

Lyubashevsky, Peikert and Regev state in their paper [LPR13b] that CRT−1
p could also

be applied in O(p log p). There is no specific statement that this should be done by an
FFT algorithm, but one might suggest so. However, CRT−1

p lacks the nice structure of

DFT−1
p = 1/pDFT∗p and is in particular not a submatrix of DFT−1

p . Therefore we were

not able to apply CRT−1
p in O(p log p) via Rader’s algorithm or any other FFT algorithm.

Additionally, we were not yet able to specify the structure of CRT−1
p and therefore could not

find any other method for an application than the naive O(p2) way. The same problematic
applies for (CRT∗m)−1.

3.3 Addition and Multiplication of Ideal Elements

Probably the most important feature of our toolkit is an efficient method for addition and
multiplication in the various ideals we consider. Each element in such an ideal is represented by
an integral coordinate vector with respect to a specific basis. Depending on the constellation
of the elements and the ideals they live in, the actual operation takes place in different ideals.
For example, multiplying two elements a, b ∈ R is done in R, but multiplication of a ∈ R and
b ∈ R∨ is done in R∨. Now, our algorithm only knows the coordinate vector and the basis
of each element. Depending on the basis our algorithm has to recognize the different ideals
that are involved, adjust the bases correctly and then do the actual operation. Since we only
consider three different bases with some optional scaling factors, we only have to distinguish
a manageable amount of cases.

3.3.1 Choosing the Right Basis

In our applications we only have to consider a few ideals, namely R,Rq, (R
∨)k and (R∨q )k

for k ≥ 1. Table 3.1 shows which bases we might use for each ideal. Note that we do not
use t−(k−1)~d as a basis for (R∨)k due to some bad properties in the decoding algorithm. See
Section 3.4 for details.

Suppose we want to compute x = a · b where a and b are represented in the bases ~b1 and
~b2 respectively. As we consider up to three different bases for the same ideal, there is no
unique way of determining a basis in which x is represented. Therefore, we have to choose
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Ring Z-bases Zq-bases

R ~p
Rq ~p,~c

R∨ ~d

R∨q
~d

Ik = (R∨)k t−k~p
Ikq = (R∨q )k t−k~p, t−k~c

Table 3.1: The considered bases

one appropriately. Thereby, we want to perform as few basis transformations as possible,
while trying to avoid computation with high precision reals.

In the following, let (~b1,~b2) denote that the elements a, b are represented in the bases ~b1
and ~b2 respectively. We now describe which output basis we choose in the different cases
and sketch how to compute the coordinate vector x of x. Thereby, we distinguish between
addition and multiplication.

Addition

Adding two elements is in the most cases done by normal vector addition of the coordinate
vectors. If the bases b1 and b2 are equal, there is nothing else to do. If the elements are in the
same ideal, but represented in different bases, we first need to adjust the basis of one element.
In the case, where we do not compute modulo q, i.e., in the ideals R and R∨, the preferred
bases are always ~p and ~d respectively. When computing modulo q, ~c and t−k~c seem the best
choices, since these bases have the best properties concerning addition and multiplication (cf.
Proposition 2.2.14 and Equation (2.9)).

In some rare cases it might happen that we want to add two elements a ∈ R and b ∈
R∨. This is possible since R ⊂ R∨. Unfortunately, we have no efficient way to compute a
representation of a in a basis of R∨. We saw already in Section 2.3.3 that we can evade this
problem via the canonical embedding σ. To be more precise, we can compute the coordinate
vector x of ab as

x = CRT∗m(CRTm a + (CRT∗m)−1b).

Multiplication

Here we describe the cases separately, since unlike to addition, they have not much in common.
First we consider the cases where our elements are in R and R∨ so the coordinate vectors are
in Z[n].

i. (~p, ~p) : We have a ∈ R and b ∈ R. Consequently we compute a · b via the embedding σ
in the basis ~p, i.e.,

x = CRT−1
m (CRTm a� CRTm b) ,

and output x with respect to ~p.

ii. (~p, t−k~p) : Here we have a ∈ R and b ∈ (R∨)k. By linearity of the inner product it holds
that

a · b = 〈~p,a〉 ·
〈
t−k~p,b

〉
= t−k · 〈~p,a〉 · 〈~p,b〉 .
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Thus we can compute x as in (i.) and the output basis is t−k~p.

iii. (~p, ~d) : Again we have a ∈ R and b ∈ R∨ and we can multiply via the canonical
embedding σ, where a is embedded via CRTm and b via (CRT∗m)−1. The product
x = ab ∈ R∨ will be represented in the decoding basis, thus we have to pull back the
element from H via CRT∗m. Together we get

x = CRT∗m
(
CRTm a� (CRT∗m)−1b

)
,

where a and b are the coordinate vectors of a and b respectively.

iv. (t−k1~p, t−k2~p) : Now we have a ∈ Ik1 and b ∈ Ik2 . Again by linearity we can compute
x as in (i.) and the output basis then is t−(k1+k2)~p, i.e., x = ab ∈ Ik1+k2 .

v. (~d, t−k2~p) : If we switch the basis of a to t−1~p via Lm, the computation is as in (iv.)
with k1 = 1.

vi. (~d, ~d) : Note that R∨ is by definition an R-module. In particular, R∨ is not closed under
multiplication, hence x = ab might not be in R∨ (only products ab, where a ∈ R and
b ∈ R∨, will always be in R∨). However it will be in I2. So we switch both bases to
t−1~p and proceed as in (iv.) with k1 = k2 = 1.

Now we consider the cases where the coordinate vectors are in Z[n]
q , i.e., we have elements

in Rq or (R∨q )k for k ≥ 1. These computations are often even more efficient, since we can
avoid to use high precision doubles or floats, but instead compute only with integers. Note
that if we have, for example, elements a ∈ R and b ∈ R∨q , then we have a · b ∈ R∨q . If we take
instead of a ∈ R the coset a ∈ Rq, i.e., reduce a modulo qR, and compute the product a · b,
the result would be the same. This means that we can always assume both elements to be in

Rq, i.e., the coordinate vectors are in Z[n]
q .

vii. (~p, ~p), (~p,~c), (~c,~c) : We have a, b ∈ Rq. The output basis will be ~c in all cases, so
we need both coordinate vectors in the basis ~c. We can achieve this by the basis
transformations CRTm,q and CRT−1

m,q (see Equation (2.1)). Then we get x with respect
to ~c by coordinate-wise multiplication.

viii. (~p, ~d), (~p, t−k~p), (~p, t−k~c), (~c, ~d), (~c, t−k~p), (~c, t−k~c) : Now we have a ∈ Rq and b ∈ (R∨q )k

(k might be 1). In all cases we choose t−k~c as the output basis. Therefore we have
to represent a in the basis ~c and b in t−k~c. Again multiplication with CRTm,q and
CRT−1

m,q switches between ~p and ~c. Similarly, multiplication with Lm and L−1
m switches

between t−1~p and ~d. Linearity allows us to perform all needed basis transformations with
these matrices only. Having the elements represented in the right basis, coordinate-wise
multiplication leads to x with respect to t−k~c.

ix. (~d, ~d), (~d, t−k2~p), (~d, t−k2~c), (t−k1~p, t−k2~p), (t−k1~p, t−k2~c), (t−k1~c, t−k2~c) : As discussed in
Section 2.3.3, multiplication in powers Ik can also be done coordinate wise in the CRT
basis. Thus, letting k1 = 1 in the cases where b1 = ~d, we will output the element
ab ∈ Ik1+k2 in the basis t−(k1+k2)~c. As in (viii.) we transform the coordinate vectors
such that a and b are represented in the correct bases, and then multiply them coordinate
wise to get x.
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Following these standards, an algorithm for addition or multiplication just has to check the
bases of a and b and determine in which ideal they live. Having these informations is sufficient
to choose one of the above cases and perform the necessary operations.

Using these algorithms, one should always try to avoid arithmetic via the canonical embed-
ding. Not only are arithmetic operations over Z and Zq much faster, there is also a subtlety
with precision of the computed elements. Note that the transformation CRTm consists of com-
plex roots of unity. A common representation for complex values z ∈ C are pairs (a, b) ∈ R2

such that z = a + ib. In the case of roots of unity, often either a or b will be an irrational
number like

√
2 or

√
3. Unfortunately we can only approximate such numbers via rationales

given as doubles or floats. Thus, if we embed two integral coordinate vectors via CRTm,
perform some arithmetic operations over H, and finally retrieve the resulting element via
CRT∗m, the resulting vector will contain complex numbers that are only very close to integers.
The error we make, i.e., the distance between the resulting vector and the closest integral
vector, will increase with the number of arithmetic operations we perform over H. We did
not yet run any error analysis on this topic, and therefore do not know exactly how the error
behaves and grows. However, one should be aware of this fact and take it into account in an
implementation.

3.3.2 Special Multiplication

Recall from Section 1.4.4 that the dual Ideal R∨ is generated by t−1 as defined in Defini-
tion 1.4.21. Thus each element a ∈ R∨ can be rewritten as t−1a′ for some a′ ∈ R. Conse-
quently, multiplying a with t results in a′ ∈ R. Although R is a subset of R∨ and a′ could
also be represent in any Z-basis of R∨, for example the decoding basis, it is quite handy to
represent a′ again in the powerful basis. The situation is similar if a is an element in R∨q . In
this case we would like to represent a′ ∈ Rq in the CRT basis. However, this sort of multi-
plication is not covered by our normal multiplication function and has to be done separately.
Fortunately, it turn out to be a very simple task. If we represent a in t−1~p or t−1~c, a′ has
exactly the same coordinates with respect to ~p or ~c. Thus, it is sufficient to manually change
the basis without any further computations.

A multiplication of some element a ∈ R with t is not so easy. Here we would need the
coordinates of t in the powerful basis. Although we can pre-compute g (see. Section 3.5.1)
it is not possible to simply compute t = m̂/g, since we have no function for division, or to
be more precise, for inversion of elements in K. However, this kind of multiplication is not
needed in our applications, which is why our program will lack this feature.

Multiplication with t−1 behaves similar as with t. Again for an element a ∈ R, the product
t−1a ∈ R∨ has the same coordinates, if a is given in the powerful basis ~p and t−1a is represented
in t−1~p. Furthermore, this time we have a simple way to compute the coordinates of t−1 ∈ R∨.
We know that 1 ∈ R has the coordinate vector (1, 0, . . . , 0) in the powerful basis. Consequently
t−1 has the same coordinate vector in t−1~p and we can multiply elements in R∨ with t−1 via
the normal multiplication function. Clearly it is also possible to switch the bases to the CRT
or decoding basis and perform the multiplication there.

3.4 Efficient Decoding

In this section we describe an efficient implementation of the decoding procedure from Sec-
tion 2.3.6. Recall that we have to recover a short element a ∈ I which is given in the form
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a′ = a mod qI, where I = (R∨)k is a power for some k ≥ 1. The input is given as

a coordinate vector a′ over Zq such that a′ =
〈
t1−k~b,a′

〉
mod qI. Thereby ~b is some of

the Zq-basis of R∨q we consider, i.e., the powerful, CRT or decoding basis. The output is a

coordinate vector a over Z with respect to the basis t1−k ~d of I.
First, we treat the simpler case where k = 1, i.e., we decode R∨q . Since we can switch

efficiently from both, the powerful and CRT bases, to the decoding basis, we assume that the

input coordinate vector is given with respect to ~d. Thus, for an input a′ ∈ Z[n]
q we have that

R∨q 3 a′ =
〈
~d,a′

〉
mod qR∨. To decode this element we define the coordinate vector of the

output as a = Ja′K (cf. Notation 2.3.11) so that a =
〈
~d,a
〉
∈ R∨ is the desired element.

For k ≥ 2 recall from Section 2.3.6 that we use the scaled decoding basis m̂1−k ~d which
generates the superideal J = m̂1−kR∨ ⊃ I. In fact, each scaled basis m̂1−k~b, where ~b is any
Z-basis of R∨, generates this superideal. Assume this time that the input a′ ∈ Iq is given
with respect to the CRT basis. The decoding procedure then consists of three steps:

(i) First compute the representation of a′′ = a′ mod qJ in the Zq-basis m̂1−k~c of Jq.

(ii) Then decode a′′ to an element a ∈ J in the scaled decoding basis m̂1−k ~d, similarly to
the case k = 1.

(iii) Finally compute the representation of a in the Z-basis t1−k ~d of I.

For the first step recall from Definition 1.4.21 that m̂ = g · t for g ∈ R. In particular, we
have gk−1 ∈ R. Let a′ be the coordinate vector of the product gk−1a′ ∈ Iq in the basis t1−k~c,
i.e., gk−1a′ =

〈
t1−k~c,a′

〉
mod qI. Multiplying both sides with g1−k yields the equivalence

gk−1a′ =
〈
t1−k~c,a′

〉
mod qI ⇔ a′ =

〈
m̂1−k~c,a′

〉
mod qJ .

Thus we can compute the coordinates of a′′ = a′ mod qJ in the basis m̂1−k~c by multiplication
of a′ with gk−1 in the basis t1−k~c. In Section 3.5.1 we describe how to pre-compute the
coordinates of g in the CRT basis and hence also for gk−1, which makes the first step very
efficient.

The second step works analogously to the case k = 1. First we switch the basis of a′′ ∈ Jq
to the scaled decoding basis. Hence, we have a′′ =

〈
m̂1−k ~d,a′′

〉
for some a′′ over Zq. The

decoded element is then given by a =
〈
m̂1−k ~d, Ja′′K

〉
∈ J , which matches the outcome of the

decoding function from Definition 2.3.12 if it is in I.
If a is not in I then the conversion into a representation of a in the basis t1−k ~d is impossible,

which indicates decoding failure. Otherwise, the computation in step (iii) is somewhat inverse
to step (i). Multiplying a with g1−k yields the coordinate vector of a in t1−k ~d which can be
seen by the following equivalence

g1−k · a =
〈
m̂1−k ~d,a

〉
∈ J ⇔ a =

〈
t1−k ~d,a

〉
∈ I.

As we are now working in the decoding basis, multiplication by g cannot be performed
as efficiently as in the first step. At least there is a better way than performing a usual
multiplication via the canonical embedding σ, which includes computation with high precision
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complex numbers. To be more precise, there is an integral matrix A such that g · ~d T = ~d T ·A,
which means that we can multiply an element with g in the decoding basis by applying A to
the respective coordinate vector. Similarly we can divide by g using the inverse A−1.

Proposition 3.4.1. Let K = Q(ζm) be the m-th cyclotomic number field for some positive
integer m with prime power factorization m =

∏s
l=0ml, where each ml is a power of some

prime pl. Further let R ⊂ K be the ring of integers in K and R∨ its dual ideal. Denote by ~d
the decoding basis of R∨. For each prime power ml, let nl = ϕ(ml), m

′
l = ml/pl and define

the [nl]× [nl] ∼= ([ϕ(pl)]× [m′l])× ([ϕ(pl)]× [m′l]) matrices A by

Al =



2 1 1 . . . 1
−1 1 0 · · · 0

0 −1 1
. . .

...
...

. . .
. . . 0

0 · · · 0 −1 1

⊗ I[m′l].

Then we have that

g · ~d T = ~d T ·
s⊗
l=0

Al,

where g ∈ R is defined as in Definition 1.4.21.

Proof. By the tensorial decomposition of ~d and the multilinearity of the tensor product, it
suffices to show that

gl · ~d Tl = ~d Tl ·Al,
where gl = 1 − ζpl and ~dl is the decoding basis of R∨l , the dual ideal of the ring of integers
Rl ⊂ Kl = Q(ζml).

For better readability we drop the subscript l, i.e., let m be a prime power of some prime p
and m′ = m/p. Define n ··= ϕ(m) and recall from the proof of Proposition 2.3.4 that we have
the relation

d(j0,j1) =
1

m
· (ζj0p − ζp−1

p ) · ζj1m ,

where j0 ∈ [ϕ(p)] and j1 ∈ [m′]. Now multiplication of g = (1− ζp) with d(j0−j1) yields

g · d(j0,j1) = (1− ζp) ·
1

m
· (ζj0p − ζp−1

p ) · ζj1m

=
1

m
· ζj1m · (ζj0p − ζp−1

p − ζj0+1
p + ζpp )

=
1

m
· ζj1m · (ζj0p − ζp−1

p )− 1

m
· ζj1m · (ζj0+1

p − 1)

= d(j0,j1) −
1

m
· ζj1m · (ζj0+1

p − 1).

Further computations with the last term lead to

1

m
· ζj1m · (ζj0+1

p − 1) =
1

m
· ζj1m · (ζj0+1

p − 1 + ζp−1
p − ζp−1

p )

=
1

m
· ζj1m · (ζj0+1

p − ζp−1
p )− 1

m
· ζj1m · (1− ζp−1

p )

= d(j0+1,j1) − d(0,j1).
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Together we get the equality

g · d(j0,j1) = d(j0,j1) − d(j0+1,j1) + d(0,j1). (3.2)

Note for the last column that the greatest index in [ϕ(p)] is p−2 and that d(p−1,j1) = 0.

Remark 3.4.2. It follows immediately from Proposition 3.4.1 that we can divide an element
by g in the decoding basis if we multiply the coordinate vector with A−1 =

⊗s
l=0A

−1
l . For a

prime power ml of some prime pl, the inverse A−1
l is given by

A−1
l =

1

pl


1 2− pl 3− pl · · · −1
1 2 3− pl · · · −1
1 2 3 · · · −1
...

...
...

. . .
...

1 2 3 · · · pl − 1

⊗ I[m′l].

All matrices, Al and A−1
l for each 0 ≤ l ≤ s, can be applied in linear time, as described

in Section 4.5.3. Furthermore, it useful to avoid rational arithmetic and therefore division
by g should be done by first multiplying the coordinate vector with the integral matrix
rad(m)A−1 =

⊗s
l=0 plAl and then evenly divide the result by rad(m) =

∏s
l=0 pl. If the latter

step is not possible, the decoded element is not in I and decoding failure is detected.

We can also multiply by g in the powerful basis. Let m be a prime power of a prime p and
assume a setting as in Proposition 3.4.1. The powerful basis of R is given by

p(j0,j1) = ζj0p · ζj1m
for pairs (j0, j1) ∈ [ϕ(p)]× [m′]. Multiplying with g = (1− ζp) yields

g · p(j0,j1) = (1− ζp) · ζj0p · ζj1m = ζj0p · ζj1m − ζj0+1
p · ζj1m = p(j0,j1) − p(j0+1,j1),

for 0 ≤ j0 ≤ ϕ(p)− 2. In the case j0 = ϕ(p)− 1 = p− 2 we have

ζj0p · ζj1m − ζj0+1
p · ζj1m = ζp−2

p · ζj1m − ζp−1
p · ζj1m

= ζp−2
p · ζj1m + (1 + . . .+ ζp−2

p ) · ζj1m
= 2ζp−2

p · ζj1m + ζp−3
p · ζj1m + . . .+ 1 · ζj1m

= 2p(j0,j1) + p(j0−1,j1) + . . .+ p(0,j1),

where we used the equality 1 + ζp + . . .+ ζp−1
p = 0. These equalities show that multiplication

with g is given by the matrix JATJ , where J = J[n] is the [n]× [n] reversal identity matrix,
i.e.,

J =

 1

. .
.

1

 .

We have J = J−1, J[n] = J[ϕ(p)]⊗J[m′] and (JATJ)−1 = J(AT )−1J , which is used for division
by g. Thus, multiplication by g in the powerful basis is also done in linear time.

Regarding the above considerations, we could also use the decoding or powerful basis in
the first step of the decoding procedure for k ≥ 2, since we can efficiently multiply with g in
both bases. But still, the CRT basis remains the best choice here, as it produces the easiest
computations overall.
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3.5 Pre-Computation

In order to speed up our computations and algorithms, it is useful to pre-compute certain
elements and transformations. Usually, in an application, the toolkit will be initialized only
once and pre-computation really makes great sense. Concerning transformation matrices there
is nothing to say about the pre-computation, since all our transformations are defined in a
direct way and can be pre-computed straight forwardly. A different situation arises when pre-
computing certain elements. All special elements of our interest are defined in an algebraic
way. In an implementation they are represented by a coordinate vector with respect to a
certain basis. These coordinates might not be available directly from the definition, but have
to be computed, which is what we explain in the following sections.

3.5.1 The Element g

As mentioned in Section 3.4, the decoding procedure can be speed up by pre-computing the
element g =

∏
2 6=p|m (1− ζp) in the CRT basis. It can be convenient, to first compute g in

the powerful basis, and then swap the basis to CRT via CRTm,q. Recall the definition of
the powerful basis from Definition 2.2.1. We need to represent every ζp in the powerful basis,
where p is an odd prime dividing m. An element is represented by a coordinate vector with the
same index set as the powerful basis, which is

∏s
l=0 [ϕ(ml)] for prime power factors m0, . . . ,ms

dividing m. The element of the powerful basis indexed by (jl)l=0,...,s is given by p(jl) =∏s
l=0 ζ

jl
ml . Let ml be a power of some prime pl and m′l ··= ml/pl, then we have ζpl = ζ

m′l
ml . Thus,

if we have a coordinate vector which is one in the entry indexed by (0, . . . , 0,m′l, 0, . . . , 0), for a
fixed l, and zero otherwise, the represented element would be ζpl . Note that ϕ(ml) = ϕ(pl)·m′l,
so m′l is indeed a valid entry for this index. Since an implementation will most likely work
with linear index sets, we have to translate the index (0, . . . , 0,m′l, 0, . . . , 0) into an index in
[ϕ(m)]. This is done by the bijection

s∏
l=0

[ϕ(ml)]→ [ϕ(m)]

(jl)l 7→ j = j0 · ϕ(m1) · · ·ϕ(ms) + . . .+ js−1 · ϕ(ms) + js.

Having this insight, we can pre-compute g in the following manner:

• Compute the prime power factorization m =
∏s
l=0ml of m.

• Initialize g = 1 ∈ R in the powerful basis, i.e., g is represented by the vector (1, 0, . . . , 0).

• For each ml, except when pl = 2, represent the element ζpl by the vector having entry
1 at the index m′l · ϕ(ml+1) · · ·ϕ(ms) and update g = g · (1− ζpl).

• Finally switch the basis of g to ~c.

If the element g ∈ R is not needed, but only g ∈ Rq, then we can directly represent all
elements in the CRT basis. In more detail, we can compute ζpl in the powerful basis, switch
the basis to ~c and then multiply also in ~c, which is just coordinate-wise multiplication. In this
way we can omit the embedding σ and computation with high precision complex numbers.
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3.5.2 Ones in Different Bases

While working with our toolkit, it can be quite convenient to have access to ones represented
in different bases. For the powerful basis, this is not worth mentioning, since it is clear by
definition that the coordinate vector of 1 ∈ R in the powerful basis is given by v = (1, 0, . . . , 0).
Since the powerful and CRT bases are related via CRTm,q, it is also clear that 1 ∈ Rq is
represented in ~c by CRTm,q ·v = (1, . . . , 1). However, this does not help us to determine
the coordinate vector of 1 ∈ R∨ in the decoding basis. Moreover, there is no trivial way to
specify this vector from the definition of ~d. Fortunately there is a way to compute the desired
coordinate vector via the canonical embedding σ.

Let K = Q(ζm) and n = ϕ(m) for some positive integer m. Further let {σi}i∈Z∗m be the
n distinct ring-homomorphisms from K to C. For each i ∈ Z∗m we have that σi(1) = 1 ∈ C.
Thus, the canonical embedding σ maps the one in K to the all ones vector in H, i.e.,

σ(1) = (σi(1))i∈Z∗m = (1)i∈Z∗m .

Since the pull back σ−1 in the decoding basis ~d is done by multiplication with CRT∗m, the
coordinate vector 1 of 1 ∈ R∨ in ~d is given by

1 = CRT∗m ·(1, . . . , 1)T .

Now we can also switch the bases and represent 1 ∈ R∨ in powerful and CRT bases of R∨.
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4 An Implementation in C++

In this chapter we present our C++ implementation of the toolkit [LPR13b], which we de-
scribed in the beginning of this work. The complete source code is available at https:
//github.com/CMMayer/Toolkit-for-Ring-LWE.git. In their most recent work
[CP15] (which was written simultaneously to this one) Crockett and Peikert introduce a
general-purpose library for lattice-based and ring cryptography written in the functional lan-
guage Haskell. In particular, this library includes an implementation of the toolkit [LPR13b].
Next to [CP15] this is - as far as we know - the first implementation written in C++, which is
why we decided to focus on functionality rather than efficiency. That is, we use several classes
from the C++ standard library to aid readability and handling of the source code. Using
these classes often trades off with efficiency compared to native structures that we could have
used as well. We also omitted parallel programming and multi threading, since it is highly
liable for errors and unexpected behavior. There is still much work to do in order to get our
program practicable and maybe usable for on-time cryptography. Nevertheless, a working
program is a good start to build upon.

Dealing with arrays in C++ is often very unhandy, especially when working with dynamic
arrays. Therefore, we chose the class std::vector from the C++ standard library (STL)
for the representation of the coordinates of our elements. Despite the fact that arrays are
faster we gain some advantages like range checks for indexes, better usability with containers
and functions as well as compatibility to many useful algorithms from the STL. Another
subtlety occurs while working with pointers in C++. Linking pointers to temporary elements
can cause unexpected behavior. Moreover, the lack of a garbage collector in C++ can lead
to unnecessary memory leaks, when pointers are treated incorrectly. We can avoid the latter
by the use of smart pointers provided by the STL. Smart pointers manage their memory
usage automatically and we do not have to worry about that issue any more. There are
three different sorts of smart pointers implemented in the STL. We will use only two of them,
namely shared pointers and unique pointers. As the names suggest, shared pointers are used
for object, where more than one pointer might point to. They keep track of the number
of different pointers pointing to the same object. Unique pointers, on the other hand, are
intended for objects where at all times only one pointer points to.

Using these STL classes together with STL algorithms and local functions, we try to help
the reader in terms of the understanding of our source code. Studying the source code together
with the following introduction to our program should be sufficient to understand why and
how everything works.

Before we present the different classes of our program, we start with some algorithms and
utility functions we throughout the program. In Section 4.1 we describe our implementation
of the algorithm for applications of Kronecker-decompositions from Section 3.1. Furthermore,
in Section 4.2 we explain our implementation of Rader and Cooley-Tukey FFT, which is used
for the application of prime-indexed CRT matrices. Finally, in Section 4.3 we provide and
explain several useful mathematical functions.
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4.1 Application of Kronecker Decompositions

In Section 3.1 we described an algorithm that efficiently multiplies a given coordinate vector
with a matrix that is decomposed via the Kronecker product. The presented algorithms can be
implemented straightforward and there is no further explanation necessary. Therefore, we only
list the declarations of the functions which implement the algorithms and present the involved
data types. Our program provides two algorithms, applyKroneckerDecomposition for
the application of a decomposed matrix

A =

s⊗
l=0

Al

and applySingleKroneckerDecomposedMatrix for the application of a single matrix
In ⊗ A ⊗ In′ , where the latter is used as a subroutine in the first routine, but it is also used
separately by other classes. The declarations are as follows.

Listing 4.1: Transformation Algorithms

template<typename T> using avt_uptr =
std::unique_ptr<AbstractVectorTransformation<T>>;

template<typename T> void
applySingleKroneckerDecomposedMatrix(std::vector<T>& x,
AbstractVectorTransformation<T> const* matrix, std::vector<T> const&
vec, int const dim1, int const dim2)

template<typename T> void applyKroneckerDecomposition(std::vector<T>& x,
std::list<avt_uptr<T>> const& matrices, std::vector<T> const& vec)

The class AbstractVectorTransformation represents all vector transformations we
work with and is defined in Section 4.5. Since we consider integer, real and complex vector
transformations, the functions are actual template functions, so there is a separate function
for each required data type. As mentioned above applyKroneckerDecomposition calls
applySingleKroneckerDecomposition with the transformations in the input list. Al-
though the list consists of unique pointers to vector transformations, the application function
applySingleKroneckerDecomposition expects a normal pointer to a constant vector
transformation. This is due to convenience and will be no problem, since the unique pointers
also provide a normal pointer to the element they point to.

The class AbstractVectorTransformation provides a function that applies itself to
a vector, which is used inside applySingleKroneckerDecomposition for matrix multi-
plication. On the other hand, some transformations will themselves call again the procedure
applyKroneckerDecomposition in their application function which causes a class over-
lapping recursion. This behavior is described in more detail in Section 4.5.

4.2 Rader and Cooley-Tukey FFT

As described in Section 3.2 we use some Fast Fourier Transformations (FFT) in order to
efficiently apply the matrices DFTp and CRTp from Definition 2.2.8 for some prime p. We
will use Rader’s FFT algorithm, which has a Cooley-Tukey FFT as a subroutine. Detailed

70



4 An Implementation in C++

descriptions and explanations of both algorithm can be found in [Nus82]. For a more vivid
introduction to Rader’s FFT with examples and implementation notes see [Ros13].

Our implementation provides the following functions for efficient FFT algorithms.
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Listing 4.2: FFT algorithms

typedef std::vector<std::complex<double>> complex_vec;

void cooley_tukey_fft(complex_vec& output, complex_vec const& input);
void cooley_tukey_ifft(complex_vec& output, complex_vec const& input);

void cooley_tukey_fft(complex_vec& output, complex_vec const& input,
int N, int start = 0, int step = 1);

void cooley_tukey_ifft(complex_vec& output, complex_vec const& input,
int N, int start = 0, int step = 1);

void rader_dft_for_primes(complex_vec& output, complex_vec const& input,
complex_vec const& precomp_DFT_omega_p, int generator);

void rader_crt_for_primes(complex_vec& output, complex_vec const& input,
complex_vec const& precomp_DFT_omega_p, int generator);

void rader_crt_star_for_primes(complex_vec& output,
complex_vec const& input, complex_vec const& precomp_DFT_omega_p,
int generator);

void unitsGeneratorPermutation(complex_vec& output,
complex_vec const& input, int generator, int p);

void unitsGeneratorPermutationInverse(complex_vec& output,
complex_vec const& input, int generator, int p);

void zeroPadding(complex_vec& output, complex_vec const& input,
int newSize);

void cyclicPadding(complex_vec& output, complex_vec const& input,
int newSize);

In the following we will explain our implementations of Rader and Cooley-Tukey FFT. We
start with the Cooley-Tukey algorithm.

4.2.1 Cooley-Tukey FFT

Recall from Section 3.2 that the discrete Fourier transformation (DFT) for a complex sequence
(x0, . . . , xN−1) of length N is defined as

Xk =

N−1∑
j=0

xjω
jk
N for 0 ≤ k ≤ N − 1,

where ωN = exp(2πi/N) ∈ C. Assume that the input length N is a power of two, i.e.,
N = 2s for some s ∈ N. In this case we can split the above sum into two sums, one for the
elements indexed by odd numbers and one for the numbers indexed by even numbers. For
any 0 ≤ k ≤ N − 1 we have the equality

Xk =

N/2−1∑
j=0

x2jω
(2j)k
N +

N/2−1∑
j=0

x2j+1ω
(2j+1)k
N .
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Now, on the one hand, we have that

ω2
N =

(
e

2πi
N

)2
= e

2πi
N/2 = ωN/2

and on the other hand we can factor out ωkN in the second sum. Hence we can rewrite the
above equality to

Xk =

N/2−1∑
j=0

x2jω
jk
N/2 + ωkN

N/2−1∑
j=0

x2j+1ω
jk
N/2.

Define Ek ··=
∑N/2−1

j=0 x2jω
jk
N/2 and Ok ··=

∑N/2−1
j=0 x2j+1ω

jk
N/2. Both, Ek and Ok are discrete

Fourier transforms of length N/2 and we have

Xk = Ek + ωkNOk.

Consequently, we can compute Xk recursively via Ek and Ok. Since ω
N/2
N/2 = 1, we have that

Ek+N/2 = Ek and Ok+N/2 = Ok. Further we have that

e
2πi
N

(k+N/2) = e
2πik
N

+πi = eπie
2πik
N = −e

2πik
N .

Summarizing the facts, we can restate the discrete Fourier transformation as

Xk = Ek + ωkNOk,

Xk+N/2 = Ek − ωkNOk,

for 0 ≤ k ≤ N/2− 1. This is the basic idea of the Cooley-Tukey FFT for powers of two.
We will also need the inverse discrete Fourier transformation (DFT−1), which is defined as

xk =
1

N

N−1∑
j=0

Xjω
−jk
N for 0 ≤ k ≤ N − 1.

Assuming that N is a power of two, we can split the sum analogously to the discrete Fourier
transform. The only difference we will get in the end is that for 0 ≤ k ≤ N/2− 1 we have

xk =
1

N
(ek + ωkNok),

xk+N/2 =
1

N
(ek − ωkNok),

where ek ··=
∑N/2−1

j=0 x2jω
−jk
N/2 and ok ··=

∑N/2−1
j=0 x2j+1ω

−jk
N/2. Thus, we can compute N · xk for

0 ≤ k ≤ N − 1 recursively via ek and ok and divide the result by N to get xk. This is the
Cooley-Tukey IFFT algorithm.

Now our implementations of Cooley-Tukey FFT and IFFT are straightforward using the
above results. We only emphasize that our algorithms work on the same vector throughout
the complete recursion. That is, instead of splitting the input vector of length N into two
subvectors of length N/2, we want to traverse through the input vector such that we only
meet the elements of a specific subvector. To do this, we provide the length of the currently
regarded subvector as well as a start position and a step width to traverse through the original
vector. To illustrate this, let x = (x0, . . . , xN−1) be the original input for a power of two N .
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In order to get the subvector of all entries indexed by odd numbers, we provide the length
N/2, the starting position s0 = 0 and the step width s1 = 2. Now, if we traverse through
x starting at position s0 and performing N/2− 1 steps of width s1 we will meet exactly the
elements indexed by odd numbers. If we change s0 to 1 and do the same again, we will meet
all elements indexed by even numbers. We can use the same method to get the subvectors
containing every 4-th element or every 8-th element and so on. In particular, we can achieve
every subvector that occurs in the whole recursion of a Cooley-Tukey FFT.

4.2.2 Rader FFT

Our implementation of Rader’s FFT algorithm follows the descriptions of [Ros13]. We leave
the following statements without any proof. For a detailed and complete explanation see
e.g. [Nus82].

The basic idea of Rader was that we can view the discrete Fourier transformation for prime
length p as a convolution. To do this, he took advantage of a different indexation induced by
the group Z∗p . We know from group theory that Z∗p contains at least one generator g, i.e., g
is of order ϕ(p) = p − 1 and for each a ∈ Z∗p there is a unique j ∈ [p− 1] such that a = gj .
The inverse g−1 in Z∗p is also a generator and we can equivalently say that for each a ∈ Z∗p
there is a unique i ∈ [p− 1] such that a = g−i. Let x = (x0, . . . , xp−1) be an input vector and
X = (X0, . . . , Xp−1) the result of a discrete Fourier transformation. We can use a generator
g of Z∗p to rewrite the discrete Fourier transformation

Xa = x0 +

p−1∑
b=1

xaω
ba
p , a ∈ {0} ∪ Z∗p

to

Xg−k = x0 +

p−2∑
j=0

xgjω
g−(k−j)
p .

Note that the reindexation via g actually permutes the entries of x and X and we have to
take this into account in our implementation. The latter sum in the above equation is in
particular a convolution, which can be computed via discrete Fourier transformations. Let

X̃ = (Xg−j )j∈[p−1], x̃ = (xgj )j∈[p−1] and ω̃p = (ωg
−j
p )j∈[p−1]. Then we have that

X̃ − x0 = DFT−1(DFT(x̃)�DFT(ω̃p)),

where � denotes component-wise multiplication. Our goal is to use the Cooley-Tuckey FFT
for powers of two to compute DFT−1(DFT(x̃)�DFT(ω̃p)). Well, we know that the vectors x̃
and ω̃p are of length p−1, which is in general not a power of two. Nevertheless, there is a way
to solve this problem using different padding methods. Let M ≥ 2p − 3 be a power of two.
We transform both, x̃ and ω̃p into vectors of length M . For x̃ let x̃′ be the vector that we get
if we insert the necessary amount of zeros between the first and second entry of x̃ so that the
length of x̃′ is M . For ω̃p we denote by ω̃′p the vector of length M that contains the entries of

ω̃p in a cyclic loop. On can show that the first p−1 elements of DFT−1(DFT(x̃′)�DFT(ω̃′p))

are equal to DFT−1(DFT(x̃) � DFT(ω̃p)). The vector DFT(ω̃′p) should be pre-computed,
since it is equal for every DFT of length p.

Recall that we use Rader’s algorithm to apply the transformation matrix DFTm from Def-
inition 2.2.8. In Section 3.2 we described, how applications of DFT∗m,DFT−1

m and (DFT∗m)−1
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can be viewed as equations similar to DFTm. These applications can also be done via Rader
FFT. If we compare the equations for DFT∗m,DFT−1

m and (DFT∗m)−1

Xa = x0 +

p−1∑
b=1

xaωp
ba, a ∈ {0} ∪ Z∗p,

Xa =
1

p
(x0 +

p−1∑
b=1

xaω
−ba
p ), a ∈ {0} ∪ Z∗p,

Xa =
1

p
(x0 +

p−1∑
b=1

xaωp
−ba), a ∈ {0} ∪ Z∗p,

we see that they differ mainly in the multiplication with ωp. First, in the inverse cases we have
to divide the result by p. Besides that, by the above considerations it is sufficient to adjust
the pre-computed vector DFT(ω̃′p) in order to perform an application of DFT∗m,DFT−1

m or
(DFT∗m)−1. To be more precise, the usage of ωp in the computation of DFT(ω̃′p) corresponds to
an application of DFT∗m; the usage of ω−1

p = ωp in the computation of DFT(ω̃′p) corresponds

to an application of DFT−1
m ; and the usage of ωp

−1 = ωp in the computation of DFT(ω̃′p)
corresponds to an application of (DFT∗m)−1.

The implementation of rader_dft_for_primes follows closely the explanations from
above. For an input (x0, . . . , xp−1), we permute the size p − 1 subvector (x1, . . . , xp−1) ac-
cording to the permutation induced by the generator g. If p − 1 is not a power of two we
zero pad the permuted vector to achieve a vector whose size is a power of two. Then we
perform Cooley-Tukey FFT and multiply the result component-wise with the pre-computed
DFT(ω̃′p) vector, which is given as an input parameter. Now we perform Cooley-Tukey IFFT
and extract the first p− 1 entries of the result. Lastly, we permute the p− 1 entries according
to the permutation induced by g−1 and add the offset x0.

Finally, we want to use Rader FFT also for the application of CRTp and CRT∗p. Recall from
Definition 2.2.8 that CRTp is a submatrix of DFTp. This implies that CRT∗p is a submatrix
of DFT∗p. In particular, we receive CRTp if we remove the first row and the last column of
DFTp. Therefore, in the algorithm for CRT we do not need to compute the first entry X0.
The remaining entries X1, . . . , Xp−1 can be computed as in the DFT case, when we add a
zero at the end of the input vector. The matrix CRT∗p can be achieved from DFT∗p if the first
column and the last row are removed. The algorithm for CRT∗p is again a slight adjustment
of Rader FFT. First note that the input vector is of size p− 1. We can treat it as the vector
(x1, . . . , xp−1) from above, i.e., we do not need the offset x0, since this corresponds to the first
column of DFT∗m. If we perform the same steps as in Rader FFT for DFT∗p we get a result
vector (X1, . . . , Xp−1). The entry Xp−1 is the multiplication of the input vector with the last
row of DFT∗p, which we do not need. Additionally, the first entry X0, which corresponds to
the multiplication of the input vector with the first row of DFT∗p, is missing. Therefore, we
can shift the result vector to the right and replace the first entry to get (X0, . . . , Xp−2). The
entry X0 can be computed at the beginning of the algorithm.

As we mentioned already in Section 3.2 we were not able to apply CRT−1
p and (CRT∗p)

−1 via
Rader’s FFT algorithm. Instead we use standard matrix-vector multiplication, which needs
O(p2) time instead of O(p log p).
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4.3 Mathematics Utilities

Throughout our implementation we need to solve some tasks from general mathematics. We
provide algorithms for these tasks in a separate file. To keep dependencies on third-party
libraries low, we implemented most algorithms from scratch, where we only use the boost
library [DA15] for some tasks concerning primes. Also in this way, the algorithms match the
data types of the rest of the program. Here is a list of available functions in the mathematics
utility file.

Listing 4.3: Mathematics Utilities

int findGeneratorOfZZpUnits(int p);

int getNextPowerOfTwo(int n);

bool isPowerOfTwo(int n);

int fastModPow(int base, int exponent, int modulus);

unsigned int const eulerTotient(unsigned int const n);

std::list<std::pair<unsigned int, unsigned int>>
primeFactorization(pos_int const m);

unsigned int getPrimeMod1(pos_int const m, pos_int const min);

std::complex<double> const computeRootOfUnity(unsigned int m);

NTL::ZZ_p const findElementOfOrder(unsigned int order, unsigned int p);

findGeneratorOfZZpUnits. The first three functions are used in the FFT algorithms
from Section 3.2. The algorithm findGeneratorOfZZpUnits computes a generator g of
the unit group Z∗p for some prime integer p. It is due to [Buc08] and checks for some random
element in Z∗p, if its order is ϕ(p). Since the generator of Z∗p is in general not unique and
we use random numbers that we test, the results of several calls of our algorithm with the
same input parameters may vary. For further details on the way how the algorithm works,
see [Buc08].

getNextPowerOfTwo and isPowerOfTwo. In particular for the Cooley-Tuckey FFT al-
gorithm from Section 4.2.1 we need to compute powers of 2 that are bigger but as close as
possible to some integer n. That is, for a given n the goal is to find a power 2k such that
2k−1 < n ≤ 2k. For a solving algorithm it is convenient to be able to check if a given n is
already a power of 2. We can do this on the bit level. If n is a power of 2 its bit code can be
seen as a unit vector, lets say (0, 0, 0, 1, 0, 0, 0, 0). Subtracting 1 from n leads to a bit vector
having only 1s up to the position previous to the only non-zero entry before. Our example
vector would look like (0, 0, 0, 0, 1, 1, 1, 1). If we perform a bit-wise AND with n − 1 and n,
the result is exactly the zero bit vector. It is easy to see that the same procedure results in
some non-zero vector if n was not a power of 2 in the first place. Thus, if we convert the
resulting integer, that is represented by the bit vector, into a boolean, the negation of this
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boolean indicates whether n was a power of 2 or not. Now, if we want to compute the next
bigger power of 2 for n, we can check if it is already a power of 2 or not. If not, we use again
the bit code to our advantage. Clearly, the bit representation of the next bigger power of 2
has a 1 next to the last 1 in the bit vector of n. Unfortunately, C++ does not allow us to
manipulate single bits of an integer. An equivalent solution using the same idea is to shift
the bits of n one step to the right until it is zero. For each performed step we take the next
power of 2 starting at the exponent k = 1. The resulting number is the desired power of 2.

fastModPow. If we compute with integers in Zq for some prime q, we usually use the class
NTL::ZZ_p, which makes sure that all arithmetic is done modulo q. However, the data
type we use for the coordinates is int, so sometimes it might be convenient to perform
the modulo arithmetic manually. In particular, this avoids unnecessary conversions between
int and NTL::ZZ_p. Of course the laws of modulo arithmetic allow us to use standard
addition and multiplication followed by a call of the modulo operator to get a correct result.
But especially when it comes to exponentiation we can use some facts from group theory to
speed up computations. There is a well known algorithm for fast modulo exponentiation,
which can be found in e.g. [Buc08] including further details on how the algorithm works. Our
implementation is just the translation of the pseudocode from [Buc08] to C++.

eulerTotient. Another function from general mathematics that we need is Euler’s totient
function ϕ(·). The computation of ϕ(n) for some positive integer n is not trivial, but we can
use several properties of the Euler totient, known from algebra, to make computations more
efficient via recursion. As an anchor we can use that ϕ(p) = p − 1 for primes p. Further we
know that ϕ is multiplicative for coprime integers m,n, i.e., ϕ(mn) = ϕ(m)ϕ(n). Finally,
for prime powers pk we have ϕ(pk) = (p − 1)pk−1, which for the case p = 2 combined with
the previous result yields ϕ(n) = 2k−1ϕ(m), where n = 2km for an odd m. Christian Stigen
Larsen provides an algorithm for Euler’s totient in [Lar12] using all these tricks. To complete
this algorithm we need a prime test, a list of primes up to a certain prime and a binary
greatest common divisor (gcd) function. All these dependencies are implemented via the
boost library, using Miller-Rabin for primality testing, a fast look up table providing the first
10000 primes and some gcd function. We note that all relevant input values wont have prime
divisors greater than the 10000-th prime.

primeFactorization. Our function for the computation of prime factorizations also uses
the look up table from the boost library. For our purposes it is convenient to compute rather
a prime power factorization, i.e., directly produce a list of maximal prime powers pk dividing
some input m. We will produce pairs (p, k) of primes p and integers k, such that pk divides
m, but pk+1 does not. Since the values of the input m will be rather small it is sufficient to
use a simple algorithm, which traverses through a list of primes and counts how often it is
possible to evenly divide m by the respective prime. Clearly, since the list of primes we use
provides only the first 10000 primes, our algorithm will fail to compute the factorization for
inputs with huge prime factors (bigger than the 10000-th prime). As already mentioned this
will be no problem for us.

getPrimeMod1. The ring-LWE modulus q is always a prime, such that q = 1 mod m,
where the considered field K is the m-th cyclotomic field. Therefore, it is nice to have a
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simple procedure that computes such a prime q ≥ M greater than some bound M . Again
we use the look up table for primes from the boost library. First, we search for a prime that
is greater or equal to M . Then, starting at this prime, we traverse through the list until we
found a prime q = 1 mod m.

computeRootOfUnity. The function computeRootOfUnity is a simple convenience
function computing the complex value of the “first” root of unity ωm. “First” means the
first in the unit circle, i.e., ωm = exp(2πi/m).

findElementOfOrder. Finally findElementOfOrder searches for an element g ∈ Z∗p
of a given multiplicative order. The return type is NTL::ZZ_p, since we use this type almost
always for elements in Zp throughout the rest of the program. We assume that the input p is a
prime number, such that the order of Z∗p is ϕ(p) = p−1. Group theory tells us, that the order of
each element g ∈ Z∗p divides the group order, which is p−1. Furthermore, for each divisor d of
p−1 Z∗p contains exactly ϕ(d) many distinct elements of order d. Consequently, our algorithm
will only succeed in finding the desired element g, if and only if, the given order divides p− 1.
Johannes Buchmann describes in [Buc08], how to test algorithmically if a given element has
a specific order. Note that this algorithm is similar to findGeneratorOfZZpUnits, which
is indeed a special case, where we look for an element of order p − 1. We separated these
functions nevertheless, because they are used in different contexts and their output types
differ.

4.4 The Basic Class Structure

As the basis for our program, we need a useful class structure that is capable of properly
managing all informations we got and need. As we saw in the previous chapters, we work with
elements a that live in a specific field K = Q(ζm) for some positive integer m. More precise,
the elements a live in some ideals I ⊂ K and are represented by a coordinate vector of size
n = ϕ(m) with respect to a specific basis. Also, we saw that we need a lot of transformation
matrices, whose definitions are dependent on the input parameter m, i.e., on the prime power
factorization of m. So these transformations depend on the same parameter as the field K.
We divide our representation into two main parts. We define one class that represents the
field K and manages the transformations and another class that represents the elements in
K. Thereby, the element class has to be rather “dynamic”, because the elements can switch
their bases or live in another ideal after a multiplication and so on. On the contrary, the
field class has to be more “static” or “constant”, since the field and the transformation do not
change after their initialization.

As already mentioned there are several vector transformations we use throughout all our
operations in the toolkit. These transformations are used to change the basis in which an
element is represented in, or to embed an element into the vector space H. We use our field
class to manage the different transformations, since they depend on the same input param-
eter m as the field does. Arising from the tensor structure of the ring R and its Z bases we
consider, all vector transformations we use are decomposed via the Kronecker product. To be
more precise, the transformations are decomposed in smaller matrices of prime or prime power
dimensions. As we saw in Section 3.1, this yields more efficient algorithms for matrix-vector
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multiplication, where only certain subvectors are multiplied with the smaller dimensional ma-
trices. Also, nearly all of the transformation of prime or prime power dimension have special
structures allowing us to apply them in a more efficient way than the standard matrix-vector
multiplication, which uses quadratic time. These facts imply that a simple matrix class with
a standard matrix-vector multiplication is not suitable for our program. Instead we need a
transformation class that realizes many different, but very specific matrix-vector multiplica-
tions. To do so, we make use of an abstract base class that has a pure virtual function for the
application to a vector. In this way, we can realize decomposed transformations like CRTm

with its sparse decomposition (cf. Section 2.2.4), which then itself consists of other transfor-
mations of the same base class, or represent a single matrix which can be applied directly to
a vector.

4.5 Vector Transformation Matrices

The representation of the vector transformations we use throughout the toolkit has to be
versatile in the sense that it has to be capable of managing different transformations for inte-
gers, reals and complex numbers that are differently decomposed via the Kronecker product.
The basic idea is to define an abstract base class that has only a dimension as a member
variable and a pure virtual member function for the application to a vector. Furthermore,
the type of the transformation is captured as a template. Using only a single dimension
is sufficient, since we consider only square transformation matrices. We call this base class
AbstractVectorTransformation and define it as follows.

Listing 4.4: The base class for all vector transformations

template<typename T> class AbstractVectorTransformation
{
public:
typedef T entry_type;
typedef std::vector<entry_type> entry_type_vec;

// Getter
inline int getDim() const { return dim_; };

// Purely virtual method to apply the matrix to a given vector (Param:
vec) and store the result in x.

virtual void applyToVector(entry_type_vec& x, entry_type_vec const& vec)
const = 0;

~AbstractVectorTransformation(){};

protected:

AbstractVectorTransformation(int dim):dim_(dim){};

int dim_; // Dimension of the transformation matrix.
};

The virtual function applyToVector provides great flexibility for all transformations we
realize with this class. Many transformations use different algorithms to apply themselves
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to a vector. Since we realize the transformations in different classes that all inherit from
AbstractVectorTransformation, each of these application algorithms can be imple-
mented through the applyToVector function. We can use this function without know-
ing the exact data type of the actual transformation, since the correct implementation of
applyToVector is called automatically. This mechanism will become clearer in the fol-
lowing sections, where we describe how the different considered vector transformations are
realized by this base class. Thereby we distinguish between integer, real and complex trans-
formations.

Let m be a fixed positive integer with prime power factorization m =
∏s
l=0ml, where each

ml is the power of some prime pl, and m′l = ml/pl. In general, all considered transformations
are of the form

Am =
s⊗
l=0

Aml .

The factors Aml are transformations that can be further decomposed in different ways. We
store Am as a list of transformations in our field class. The factors Aml are then constructed
when the field object is constructed. Usually, Aml is further decomposed such that it relies
only on transformations Apl . The matrices Aml and Apl are represented in different classes.
We describe this scenario for each transformation in detail. Thereby, we refer to Aml as the
prime power case, and to Apl as the pure prime case.

4.5.1 Complex Transformations

The only complex vector transformations we consider are sorts of Chinese remainder or dis-
crete Fourier transformations as defined in Definition 2.2.8. Recall the sparse decompositions
from Section 2.2.4

DFTm = (I[p] ⊗DFTm′) · Tm · (DFTp⊗I[m′])

and
CRTm = (IZ∗p ⊗DFTm′) · T̂m · (CRTp⊗I[m′]),

where m is a prime power of some prime p, m′ = m/p and we omitted the stride permuta-
tion. Since m′ may be a non trivial prime power itself, DFTm′ can be further decomposed
until we are only left with prime-indexed transformations. Therefore, we distinguish between
transformations that are already fully decomposed and those who can be further decomposed.

The Pure Prime Case

For some prime p consider the matrices DFTp,DFT−1
p ,DFT∗p and (DFT∗p)

−1 and their CRT

counterparts. Recall from Section 3.2 that we can apply all of these matrices except of CRT−1
p

and (CRT∗p)
−1 via Rader’s FFT algorithm, which we briefly described in Section 4.2.2. To use

Rader FFT we need a fixed generator g of Z∗p and the pre-computed discrete Fourier transform

of ω̃p = (ωg
−j
p )j∈[p−1], where ωp ∈ C is a primitive p-th root of unity. If the length p − 1 of

ω̃p is not a power of two we use cyclic padding to transform ω̃p into a vector ω̃′p whose size is
a power of two. Then we can use the Cooley-Tukey FFT from Section4.2.1 to pre-compute
DFT(ω̃′p). For an application of CRT−1

p and (CRT∗p)
−1 we use the standard matrix-vector

multiplication and thus have to store the actual matrix in our class.
Because of the different informations we need for CRT−1

p and (CRT∗p)
−1 compared to

the remaining transformations, we represent them in two separate classes. For CRT−1
p and
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(CRT∗p)
−1 we use the class MatrixCompMult. The name indicates that it represents a com-

plex matrix, which uses standard matrix-vector multiplication for an application to a vector.
The class is defined as follows.

Listing 4.5: Definition of MatrixCompMult

class MatrixCompMult : public
AbstractVectorTransformation<std::complex<double>>

{
public:
typedef std::vector<std::complex<double>> entry_type_vec;
typedef boost::numeric::ublas::matrix<std::complex<double>> matrix_type;

MatrixCompMult(int p, bool adjoint);
MatrixCompMult(MatrixCompMult const& matrix);
~MatrixCompMult();

protected:
virtual void applyToVector(entry_type_vec& x, entry_type_vec const& vec)

const;

private:
std::unique_ptr<matrix_type> matrix_;

void invert();
};

When the constructor is called the matrix CRTp is computed according to its definition. Then
we use the invert function to compute CRT−1

p . If the boolean parameter adjoint is true,

we compute (CRT−1
p )∗ = (CRT∗p)

−1. The resulting matrix is stored in the attribute matrix_.
For the latter, we use the matrix class from the boost library [DA15]. Additionally, the boost
library provides functions to compute the conjugate transpose and the LU -factorization of a
matrix. We use the LU -factorization to implement the invert function. For an explanation
on how the LU -factorization is used to compute the inverse of a matrix see [MvdGvdG15].
The applyToVector function also uses tools from the boost library to perform a standard
matrix-vector multiplication.

For the representation of the remaining complex transformations with prime indexes we use
the class MatrixCompFFT. The name indicates that it represents a complex matrix, which
uses FFT algorithms for an application to a vector. The class is defined as follows.

Listing 4.6: Definition of MatrixCompFFT

class MatrixCompFFT : public
AbstractVectorTransformation<std::complex<double>>

{
public:
typedef std::vector<std::complex<double>> entry_type_vec;

enum class MatrixType{
DFT_P,
DFT_P_INV,
DFT_P_STAR,
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DFT_P_STAR_INV,
CRT_P,
CRT_P_STAR

};

MatrixCompFFT(MatrixType matrixType, int p);
~MatrixCompFFT();

protected:
virtual void applyToVector(entry_type_vec& x, entry_type_vec const& vec)

const;

private:
MatrixType matrixType_;
int generator;
std::unique_ptr<entry_type_vec> precomp_DFT_omega_p_;
};

Since this class represents several matrices, which use different implementations of Rader FFT
for an application (cf. Section 3.2 and Section 4.2), we distinguish them via the class enum
MatrixType. An indicator of this type as well as the dimension p are given on construc-
tion. A call of the constructor starts with the computation of a generator g of Z∗p and its
inverse g−1 = gp−2 mod p. To do this, we use the functions findGeneratorOfZZpUnits
and fastModPow from the mathematics utilities (see Section 4.3). Depending on the given
indicator we compute the vector ω̃p of the respective complex transformation according to the
considerations of Section 4.2.2. Finally, we compute the discrete Fourier transform DFT(ω̃′p)
using Cooley-Tukey FFT and store it in precomp_DFT_omega_p_. The generator g is also
stored, since we need it for calls of Rader’s FFT algorithms.

Now, the application function simply checks the indicator of the different transformation
matrices and calls the respective version of Rader FFT as described in Section 4.2.2, using
the generator and the pre-computed discrete Fourier transform.

The Prime Power Case

For a prime power m of some prime p recall again the sparse decompositions of DFTm and
CRTm

DFTm = (I[p] ⊗DFTm′) · Tm · (DFTp⊗I[m′])

and
CRTm = (IZ∗p ⊗DFTm′) · T̂m · (CRTp⊗I[m′]).

Similar decompositions apply if we consider the conjugate transposes, inverses or inverses
of the conjugate transposes of DFTm and CRTm (cf. Section 2.2.4 and Section 2.3.4). For
example we have

DFT∗m =
(
DFTp ⊗ I[m′]

)
· Tm · (Ip ⊗DFT∗m′)

and
CRT∗m =

(
CRT∗p⊗I[m′]

)
· T̂m ·

(
IZ∗p ⊗DFT∗m′

)
.

If we compare, for example, the decompositions of DFTm and DFT∗m, the appearing factors
are somewhat similar, but in reverse order. Furthermore, since m′ might be a proper prime
power itself, it holds for all decompositions that the DFT part could be further decomposed.
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In the following we refer only to DFTm and CRTm. In our explanations these matrices can
be interchanged with DFT−1

m ,DFT∗m, (DFT∗m)−1 and their CRT counterparts.
Due to small differences we separate the representation of CRTs and DFTs. The above con-

sideration motivate the following definition of TransformationCompDft, which represents
all kinds of DFTs for proper prime powers.

Listing 4.7: Definition of TransformationCompDft

class TransformationCompDft : public
AbstractVectorTransformation<std::complex<double>>

{
public:
typedef std::vector<std::complex<double>> entry_type_vec;
typedef AbstractVectorTransformation<std::complex<double>> base_type;

TransformationCompDft(int m, int p, bool reversed,
std::shared_ptr<MatrixCompFFT const> DFT_p);

~TransformationCompDft();

protected:
virtual void applyToVector(entry_type_vec& x, entry_type_vec const& vec)

const;

private:
bool reversed_;
std::shared_ptr<base_type const> DFT_p_; // MatrixCompFFT
std::unique_ptr<base_type const> DFT_m_prime_; // TransformationCompDFT
std::unique_ptr<entry_type_vec> twiddleMatrix_;
};

The boolean reversed_ is true if we represent DFT∗m or DFT−1
m and indicates that the

factors in the sparse decomposition appear in reversed order. In the end, an application
of DFTm will only depend on DFTp. Since all iterative decompositions of DFTm will use
the same matrix DFTp, we use a shared pointer that points to the desired DFTp object.
The latter will be of type MatrixCompFFT. The pointer DFT_m_prime_ points to the
DFTm′ object. Since DFTm′ might be further decomposed, the type of this object is again
TransformationCompDFT. If m′ = m/p = 1, we are in the last step of the decomposition
and have DFTm = DFTp. In this case we leave DFT_m_prime_ as a null pointer. The same
holds for the pointer twiddleMatrix_, which points to a vector representing the diagonal
twiddle matrix Tm.

Assume that the constructor is called with input m, p, some boolean b and some pointer d,
and m′ = m/p > 1, i.e., m′ = pk for some k ≥ 1. Then the constructor calls itself with input
m′, p, b, d to initialize the decomposition of DFTm′ . This causes a recursive call of constructors
until m′ = 1 and DFTm cannot be further decomposed. Also, if m′ > 1, the twiddle matrix
is computed as well. We compute Tm if b = false, and Tm otherwise.

In the case m′ = 1, the application function of TransformationCompDFT forwards its
call directly to the application function of MatrixCompFFT, which represents DFTp. If
m′ > 1, the application functions of the factors of the sparse decomposition are called in
the correct order. That is, if reversed_ = true they are called in reversed order, and in
normal order otherwise.
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For the representation of CRTm we use the class TransformationCompCRT. It is defined
as follows.

Listing 4.8: Definition of TransformationCompCRT

class TransformationCompCrt : public
AbstractVectorTransformation<std::complex<double>>

{
public:
typedef AbstractVectorTransformation<std::complex<double>> base_type;

enum class EmbeddingType
{

COMPLEX_CRT_M,
COMPLEX_CRT_M_INVERSE,
COMPLEX_CRT_M_STAR,
COMPLEX_CRT_M_STAR_INVERSE,

};

TransformationCompCrt(int m, int p, EmbeddingType embedding);
~TransformationCompCrt();

protected:
virtual void applyToVector(entry_type_vec& x, entry_type_vec const& vec)

const;

private:
bool reversed_;
std::unique_ptr<base_type const> CRT_p_; // MatrixCompFFT
std::unique_ptr<base_type const> DFT_m_prime_; // TransformationCompDFT
std::unique_ptr<entry_type_vec> twiddleMatrix_;
};

Overall, this class works very similar to TransformationCompDFT, although there are some
minor differences. First note that the object of CRTp is linked via a unique pointer, since in
opposite to DFTp there will be only one pointer pointing to this object. The possibly remain-
ing decompositions of DFTm′ do again need the matrix DFTp. The remaining attributes and
the application function behave as in the class TransformationCompDFT.

A main difference between TransformationCompCRT and TransformationCompDFT
occurs in the functioning of the constructor. Next to the integers m and p, the construc-
tor expects an indicator for the transformation that is represented. The possible cases are
CRTm,CRT−1

m ,CRT∗m and (CRT∗m)−1. Depending on the value of the indicator we first con-
struct the object for CRTp. There are two possible types for these objects. If we represent
CRTm or CRT∗m, we use MatrixCompFFT from Listing 4.6 as the data type for CRTp or
CRT∗p. If the represented transformation is CRT−1

m or (CRT∗m)−1, then the data type is

MatrixCompMult from Listing 4.5 and the object represents CRT−1
p or (CRT∗p)

−1. Now, if
m′ > 1, we can initiate the construction of the respective DFTm′ of type MatrixCompFFT
and the vector representing the twiddle matrix. Thereby the constructor of the DFTm′ object
needs a shared pointer to the DFTp object for the sparse decomposition. This shared pointer
is also constructed at this stage.
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4.5.2 Real Transformations

The real transformations that we need are the matrices D and U from the Gram-Schmidt
orthogonalization of the CRT matrix from Remark 2.2.21 and C∗B′ from Proposition 2.3.10,
which is used to efficiently sample Gaussians over KR in the decoding basis. In all cases the
transformations are given in the form

Am =
s⊗
l=0

(Apl ⊗ I[m′l]),

where pl are the distinct prime factors of m and m′l = ml/pl for all prime powers ml dividing
m. Thus, we can split the representation into three parts. As already mentioned above, the
complete transformation Am is given as a list of transformations of the type (Apl ⊗ I[m′l]) and

stored in our field class. Further, we separate (Apl ⊗ I[m′l]) and Apl in two classes. We refer

to (Apl ⊗ I[m′l]) as the prime power case and to Apl as the pure prime case.

The Pure Prime Case

As discussed in Section 2.2.5, concerning D and U , we will only need the i-th diagonal entries
of D and the i-th rows of U in our computations. Since we defined D and U as Kronecker
decompositions, we do not have direct access to these values. However, remember that we
have an efficient algorithm for the application of Kronecker decompositions (cf. Section 3.1
and Section 4.1). Using this algorithm with the i-th unit vector as input will result in the
i-th column of the specific transformation. Thus we can access the desired values via appli-
cations of D =

⊗s
l=0 (

√
m′lDpl ⊗ I[m′l]) and UT =

⊗s
l=0 (UTpl ⊗ I[m′l]) to the appropriate unit

vectors. Further, the matrices Dpl and Upl are defined in a direct way allowing us to imple-
ment specialized algorithms for their application that are faster than standard matrix-vector
multiplication. Additionally, these algorithms are specialized in a way that we do not need
to store the specific matrices Dpl and UTpl .

Unfortunately, the matrix C∗B′ lacks this nice feature and has to be applied via the standard
matrix-vector multiplication. At least we can easily pre-compute the prime case matrices
CRT∗pl ·B

′
pl

and store them in order to speed up the following multiplications with C∗B′.
Following these different properties of the real transformations we represent them in two

distinguished classes. For
√
m′Dpl and UTpl we define the class MatrixRealGS, where “GS”

stands for Gram-Schmidt.

Listing 4.9: Definition of MatrixRealGS

class MatrixRealGS : public AbstractVectorTransformation<double>
{
public:
MatrixRealGS(int dim, int m_prime, bool D_or_U);
MatrixRealGS(MatrixRealGS const& mr);

~MatrixRealGS();

protected:
virtual void applyToVector(entry_type_vec& x, entry_type_vec const& vec)

const;
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private:
int m_prime_;
bool GS_D_or_U_;
void gsU(entry_type_vec& x, entry_type_vec const& vec) const;
void gsD(entry_type_vec& x, entry_type_vec const& vec) const;
};

The boolean attribute GS_D_or_U_ indicates whether
√
m′Dpl or UTpl is represented. The

dimension of these matrices is ϕ(pl) = pl − 1 which is given on construction. The attribute
m_prime_ stores the integerm′l, which we need for the application of

√
m′Dpl and is also given

on construction. The procedures gsD and gsU are subroutines used in applyToVector and
apply the matrices

√
m′Dpl and UTpl , respectively, to a given input vector. If GS_D_or_U_ is

true, then gsD is called, and gsU otherwise. The computations in these routines are based
on the definitions of Upl and Dpl from Lemma 2.2.20. Multiplication with

√
m′Dpl can be

done in linear time and an implementation is straight forward, since it is a diagonal matrix.
Noticing that the increasing rows of UTpl differ in only one entry, we see that UTpl can also be
applied in linear time via successive sums.

The matrices CRT∗pl ·B
′
pl

are represented by the class MatrixRealSampleGauss, which
we define as follows.

Listing 4.10: Definition of MatrixRealSampleGauss

class MatrixRealSampleGauss : public AbstractVectorTransformation<double>
{
public:
typedef std::vector<entry_type> entry_type_matrix;
// Use a single vector to represent a matrix.

MatrixRealSampleGauss(int dim);
MatrixRealSampleGauss(MatrixRealSampleGauss const& mr);

~MatrixRealSampleGauss();

protected:
virtual void applyToVector(entry_type_vec& x, entry_type_vec const& vec)

const;

private:
std::unique_ptr<entry_type_matrix> matrix_;
};

Again the dimension pl−1 is given on construction. Additionally we have a unique pointer to
a vector of doubles which stores the actual matrix CRT∗pl ·B

′
pl

. In Section 2.3.5 we showed how
each entry of this matrix can be computed given only its dimension. Consequently we can
pre-compute CRT∗pl ·B

′
pl

on construction and any further applications are done via standard
matrix-vector multiplication.
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The Prime Power Case

Let m be a power of some prime p and m′ = m/p. Then, the transformation we have to
represent is of the form

Ap ⊗ I[m′],

where Ap is a [ϕ(p)] × [ϕ(p)] matrix. Hence, the dimension of the transformation is n =
ϕ(m) = ϕ(p)m′. The prime-indexed matrix Ap will be an object of type MatrixRealGS or
MatrixRealSampleGauss, which do both inherit from the same base class. Consequently,
we store Ap in an attribute which is a unique pointer to exactly this base class.

Listing 4.11: Definition of TransformationRealPrimePower

class TransformationRealPrimePower : public
AbstractVectorTransformation<double>

{
public:
typedef AbstractVectorTransformation<double> base_type;

// the real vector transformation types
enum class TransformationType
{
REAL_GS_D,
REAL_GS_U,
REAL_CONVERT_GAUSSIANS
};

TransformationRealPrimePower(int m, int p,
TransformationType transformation);

~TransformationRealPrimePower();

protected:
virtual void applyToVector(entry_type_vec& x, entry_type_vec const& vec)

const;

private:
std::unique_ptr<base_type const> matrix_p_;
};

The constructor switches over the indicator of the represented transformation and constructs
a unique pointer to the respective object for Ap. That is, if we represent D or U , the desired
matrix object is of type MatricRealGS. The constructor of MatricRealGS asks for the
dimension ϕ(p) = p−1 of D and U , the value m′ and a boolean indicating whether D or U is
represented. The latter is true for D and false for U . On the other hand, if we represent
C ∗B′, the desired matrix object is of type MatricRealSampleGauss. Then,we only have
to pass the dimension ϕ(p) = p− 1 to the constructor.

The applyToVector function is implemented very easily. Since the given transformation
has the form Ap⊗I[m′], we just need to call applySingleKroneckerDecomposedMatrix
from Section 4.1 for the template type double and input parameters x, matrix_p_.get(),
vec, 1 and m′. Here matrix_p_.get() returns a normal pointer pointing to the same
object as the unique pointer does.
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4.5.3 Integer Transformations

First we recall all integer transformations we considered throughout this work. Definition 2.2.4
introduced an integer version of the Chinese remainder transform CRTm,q where all entries
are over Zq for some given prime q = 1 mod m. Since the sparse decompositions from
Section 2.2.4 also apply for CRTm,q, the representation will be similar to the one of the
complex case CRTm, described in Section 4.5.1. Further in Proposition 2.3.4 we defined the
integer transformation Lm =

⊗s
l=0 Lml =

⊗s
l=0(Lpl ⊗ I[m′l]), where ml are prime powers, of

some primes pl, dividing m and m′l = ml/pl. Finally, in Section 3.4 we saw that multiplication
with the element g in the powerful and decoding basis can be performed via the application of
some integer transformations, which we now refer to as G~pm =

⊗s
l=0G

~p
ml =

⊗s
l=0(G~ppl ⊗ I[m′l])

and G
~d
m =

⊗s
l=0G

~d
ml

=
⊗s

l=0(G
~d
pl
⊗ I[m′l]). Additionally, we will also need the inverses of all

integer transformations.1

By the properties of the Kronecker product, Lm, G~pm, G
~d
m and their inverses do all have

the same basic format

Am =

s⊗
l=0

Aml =

s⊗
l=0

(Apl ⊗ I[m′l]).

Similar to the real transformations (see Section 4.5.2) Am will be given as a list of transfor-
mations Aml , which is stored and managed by the field class. Further Aml and Apl will be
represented by separate classes.

The Pure Prime Case

Each one of the matrices Lm, G~pm, G
~d
m and their inverses can be applied in linear time using

a specialized algorithm. If we represent all these matrices by the same class MatrixZZ,
this class needs to know which particular matrix it represents, in order to call the correct
application algorithm. Therefore we distinguish the different matrices by a class enum.

Listing 4.12: Definition of MatrixZZ

class MatrixZZ : public AbstractVectorTransformation<int>
{
public:
enum class MatrixType
{

MATRIX_L,
MATRIX_L_INVERSE,
MATRIX_G_DECODING,
MATRIX_G_INVERSE_DECODING,
MATRIX_G_POWERFUL,
MATRIX_G_INVERSE_POWERFUL

};

MatrixZZ(int dim, MatrixType matrixType);
MatrixZZ(MatrixZZ const& mzz);

1Note that the inverses of G~ppl and G
~d
pl are actually rational transformations, since they are scaled by a factor

1/p. Hence, in a decoding procedure, we first scale them by p, apply them and then divide the result by p.
The latter step should still result in integral values as long as decoding is successful.

88



4 An Implementation in C++

~MatrixZZ();

inline MatrixType getMultType() const { return matrixType_; };

protected:
virtual void applyToVector(entry_type_vec& x, entry_type_vec const& vec)

const;

private:
MatrixType matrixType_;

// specialized application algorithms
void gDec(entry_type_vec& x, entry_type_vec const& vec) const;
void gInvDec(entry_type_vec& x, entry_type_vec const& vec) const;
void gPow(entry_type_vec& x, entry_type_vec const& vec) const;
void gInvPow(entry_type_vec& x, entry_type_vec const& vec) const;
void applyL(entry_type_vec& x, entry_type_vec const& vec) const;
void applyLInverse(entry_type_vec& x, entry_type_vec const& vec) const;
};

The dimension ϕ(pl) = pl − 1 will be given on construction as well as the type of the matrix
that is represented. The applyToVector function just needs to switch over the attribute
matrixType_ and call the respective application algorithm.

Implementation of the Specialized Application Algorithms

Recall that Lp is the lower unitriangular matrix containing only ones and its inverse has ones
on the main diagonal and values −1 on the first lower diagonal. Thus Lp can be applied
in linear time using successive sum and L−1

p via a simple loop computing xi − xi−1, where
x = (xi) is some input vector.

The matrices G
~d
p and

(
G
~d
p

)−1
, for some prime p, are defined as the [ϕ(p)]× [ϕ(p)] matrices

G
~d
p =



2 1 1 . . . 1
−1 1 0 · · · 0

0 −1 1
. . .

...
...

. . .
. . . 0

0 · · · 0 −1 1

 and
(
G
~d
p

)−1
=

1

p


1 2− p 3− p · · · −1
1 2 3− p · · · −1
1 2 3 · · · −1
...

...
...

. . .
...

1 2 3 · · · p− 1

 .

G
~d
p can be applied similar to L−1

p , but we reverse the loop and compute also the sum
∑1

i=p−1 xi,

which is used for the first entry. Concerning
(
G
~d
p

)−1
we will first apply the scaled version

p
(
G
~d
p

)−1
. Observe that the successive rows of p

(
G
~d
p

)−1
only differ in one entry, so we

first compute the sum x0 +
∑p−1

i=1 (i + 1 − p)xi for the first entry an then, in a second loop,
successively add pxi. In a last step, we try to evenly divide the resulting vector by p. If this
is not possible we throw an error, since decoding failure is detected.

To see how the application of G~pp and p(G~pp)−1 can be realized, recall that G~pp was defined
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as

G~pp = J · (G~d
p)
T · J = J ·



2 −1 0 . . . 0

1 1 −1
. . .

...
1 0 1 0
...

...
. . .

. . . −1
1 0 . . . 0 1

 · J,

where J is the reversed identity matrix. Similarly (G~pp)−1 is given as

(G~pp)
−1 = J · 1

p


1 1 1 . . . 1

2− p 2 2 . . . 2
3− p 3− p 3 . . . 3
...

...
...

...
...

−1 −1 −1 . . . p− 1

 · J.

Both multiplications with J are done via the std::reverse function, which just reverses

the order of a given input vector. The application of (G
~d
p)
T is implemented straight forward.

In each step we just have to compute x0 + xi − xi+1 except for the last one, where it is

x0 + xp−2. The application of p((G
~d
p)
T )−1 is also quite easy. Let x′0, . . . , x

′
p−2 be the entries

of the resulting vector. First we compute the sum S ··=
∑p−2

i=0 xi and set S0 = S. For
0 ≤ i ≤ p− 3 inductively define Si+1 = Si + S − pxi and set x′i = Si, which is best done by a
for loop. It is easy to see that for i ≥ 1 we have

Si = (i+ 1− p)x0 + . . .+ (i+ 1− p)xi−1 + (i+ 1)xi + . . .+ (i+ 1)xp−2,

which is just the inner product of the input vector x and the i-th row of p((G
~d
p)
T )−1. As

before we do now try to evenly divide by p, which is possible as long as no decoding failure
occurs.

The Prime Power Case

Now we want to represent the integer transformations of the form Am = (Ap ⊗ I[m′]), where
m is a power of some prime p and Ap will be an object of type MatrixZZ as defined above.
This is done very similar to the real transformation case described in Section 4.5.2.

Listing 4.13: Definition of TransformationZZ_PrimePower

class TransformationZZ_PrimePower : public
AbstractVectorTransformation<int>

{
public:
typedef AbstractVectorTransformation<int> base_type;

// the integer vector transformation types
enum class TransformationType
{

INT_L,
INT_L_INVERSE,
INT_G_DECODING,
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INT_G_INVERSE_DECODING,
INT_G_POWERFUL,
INT_G_INVERSE_POWERFUL

};

TransformationZZ_PrimePower(int m, int p,
TransformationType transformation);

~TransformationZZ_PrimePower();

protected:
virtual void applyToVector(entry_type_vec& x, entry_type_vec const& vec)

const;

private:
std::unique_ptr<base_type const> matrix_p_;
};

The constructor takes the values m, p and an indicator for the represented integer transfor-
mation. The dimension is set to ϕ(m) = ϕ(p)m′ = (p − 1)m/p. Then, the unique pointer
matrix_p_, which points to a MatrixZZ object, is constructed. Thereby, the indicator of
the transformation and the dimension ϕ(p) = p−1 are passed to the constructor of MatrixZZ.
(Note that the passed indicator is of another data type and has a slightly different name, but
indicates the same transformation.)

The applyToVector function is implemented analogously to the real transformation
prime power case. That is, applySingleKroneckerDecomposedMatrix from Section 4.1
for the template type int is called with input parameters x, matrix_p_.get(), vec, 1
and m′l. As before, matrix_p_.get() returns a normal pointer pointing to the same object
as the unique pointer does.

Representing CRTm,q

The only integer transformations that we cannot represent by the above classes are CRTm,q

and CRT−1
m,q for prime powers m. Using the sparse decomposition from Section 2.2.4 we can

rewrite CRTm,q and CRT−1
m,q as

CRTm,q = L
ϕ(m)
m′ ·

(
IZ∗p ⊗DFTm′,q

)
· T̂m,q ·

(
CRTp,q ⊗I[m′]

)
and

CRT−1
m,q =

(
CRT−1

p,q ⊗I[m′]

)
· T̂−1

m,q ·
(
IZ∗p ⊗DFT−1

m′,q

)
·
(
L
ϕ(m)
m′

)−1
,

where DFTm′,q, T̂m,q and CRTp,q are defined as in Proposition 2.2.16 with ωm, ωm′ and ωp

being roots of unity in Zq. Note that we omitted the permutation L
ϕ(m)
m′ in the complex case,

since the complex CRT transformations are applied in a way such that the permutation is
always canceled out by its inverse. Concerning the integer CRT transformations, this is no
longer the case. We switch between the bases ~c and ~p using these transformations and usually
one switches only in one direction. Thus, the permutation is necessary and we need to take
care of it.

In the following we present two classes, one representing the CRT transformation in its
sparse decomposition and the other representing the matrices inside the decomposition. An
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exception is made by the twiddle matrix, which is a diagonal matrix and hence we represent
it by a single vector.

We start with the second class, which we call MatrixZZq, since all matrices represented
by it are over Zq. In this class we store a unique pointer to a square matrix over Zq. For
this matrix we use the class mat_ZZ_p from the NTL library [Sho15]. The NTL library is a
free C++ library under the GNU General Public License for doing number theory. The class
mat_ZZ_p represents matrices over Zp for some arbitrary prime p. Further it provides some
standard matrix features like multiplication modulo p and transposition as well as a particular
nice feature, inversion modulo p. Our class MatrixZZq is just an interface between the NTL
and our program. We do also provide inversion modulo p, which is then used to pre-compute
CRT−1

p,q and DFT−1
m′,q.

Listing 4.14: Definition of MatrixZZq

class MatrixZZq : public AbstractVectorTransformation<int>
{
public:
typedef NTL::mat_ZZ_p matrix_type;

MatrixZZq(matrix_type const& entries);
MatrixZZq(MatrixZZq const& matrix);

~MatrixZZq();

void invert();

protected:
virtual void applyToVector(entry_type_vec& x, entry_type_vec const& vec)

const;

private:
std::unique_ptr<matrix_type> matrix_;
};

The invert function is just a forwarding to the NTL inversion applied to the stored matrix.
This means that the object behind matrix_ will be overwritten and the class then represents
the inverse matrix. In the application algorithm we have to translate the input vector to the
NTL version. The NTL has his own data types for integers (ZZ) and integers modulo p
(ZZ_p) as well as for vectors and matrices over these ground types. Since our matrix is of
type mat_ZZ_p, we have to convert the input vector to a vec_ZZ_p, multiply it with the
matrix via the NTL and convert the result back to a vector of integers. The NTL provides
an overload of the assignment operator for the types ZZ_P and long. Hence, we can convert
the input vector coordinate-wise into a vec_ZZ_p. The other direction is a bit more messy.
We will also proceed component-wise but unfortunately there is no direct access to the long
object that lies behind a ZZ_P object. Therefore, we have to do this manually via the rep
function returning the representative of an element. Eventually the returned representative
will be an array of long objects, which stores the desired element at its second position, i.e.,
at the index 1.

The implicit conversion between int and long that is performed several times, should
never be a problem for us. In all applications the used numbers are small enough to be rep-
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resented by the type int.

Next we present the first class from above, i.e., the class representing CRTm,q in its de-
composed form. We call the class TransformationZZqCrt, because it represents the CRT
transform over Zq.

Listing 4.15: Definition of TransformationZZqCrt

class TransformationZZqCrt : public AbstractVectorTransformation<int>
{
public:
typedef AbstractVectorTransformation<int> base_type;

TransformationZZqCrt(MatrixZZq const& DFT, MatrixZZq const& CRT,
std::vector<NTL::ZZ_p> const& twiddleMatrix, bool const reversed);

~TransformationZZqCrt();

protected:
virtual void applyToVector(entry_type_vec& x, entry_type_vec const& vec)

const;

private:
void permutationL_M_D(entry_type_vec& x, entry_type_vec const& a, int d)

const;

bool reversed_;
std::unique_ptr<base_type const> DFT_;
std::unique_ptr<base_type const> CRT_;
std::unique_ptr<std::vector<NTL::ZZ_p> const> twiddleMatrix_;
};

The pointers DFT_ and CRT_ point to the actual matrices DFTm′,q and CRTp,q, which will be
of type MatrixZZq. Further, the diagonal twiddle matrix is represented by a single vector of
ZZ_p objects. The boolean reversed_ indicates whether the represented transformation is
CRTm,q (false) or CRT−1

m,q (true). The name of this attribute is due to the fact, that the
single matrices in the sparse decomposition are applied in reversed order. The permutation
function can be implemented straight forward following the definition of the stride permu-

tation from Proposition 2.2.15. Note that we apply only L
ϕ(m)
m′ and

(
L
ϕ(m)
m′

)−1
, where the

parameter m′ is given as the input d and ϕ(m) is given implicitly, since the input vector vec
has exactly the length ϕ(m). Moreover, since ϕ(m) = ϕ(p) ·m′, using the definition one can
verify that (

L
ϕ(m)
m′

)−1
= L

ϕ(m)
ϕ(p) ,

so a call of the permutation function with input d = ϕ(p) performs the inverse stride permu-
tation.

Finally, the implementation of the applyToVector function again uses the application
functions for Kronecker decompositions from Section 4.1. First, note that we have implicit
access to ϕ(p) = dim(CRTp,q) and m′ = dim(DFTm′,q). If the boolean reversed_ is
false, the represented transformation is CRTm,q and according to the sparse decomposi-
tion from Proposition 2.2.16 we first apply the matrix (CRTp,q ⊗I[m′]), which is done by a call
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of applySingleKroneckerDecomposedMatrix with input parameters x, CRT_.get(),
vec, 1 and m′. Then, we compute the inner product of the vector representing the twiddle
matrix and x, where all arithmetic is modulo q. Next, the matrix (IZ∗p ⊗ DFTm′,q) is applied,
i.e., we call again applySingleKroneckerDecomposedMatrix, but this time with input

parameters x, DFT_.get(), x, ϕ(p) and 1. In a last step, we apply the permutation L
ϕ(m)
m′

to x. If, on the other hand, the boolean reversed_ equals true, then the represented

transformation is CRT−1
m,q. Now we start with the permutation L

ϕ(m)
ϕ(p) and then make the

exact same multiplications as before, but in reversed order.

4.6 The Class RingLweCryptographyField

In the following we will describe our class that represents the fieldK = Q(ζm) for some positive
integer m. The name of this class is RingLweCryptographyField (short: rlweField)
and it is a rather “static” class, in the sense that it is instantiated once at the beginning of
an application and does never change throughout the whole process. All elements that we
consider live in the field K and we reflect this in our class structure. Once the field class
is instantiated, all elements we construct get a pointer to this field. In this way, the field
class can manage all vector transformations we consider, which are dependent on the input
m, and an element can access them whenever needed. The considered transformations are
pre-computed on construction and stored in the rlweField class. Besides this main feature,
the field class can also construct some special elements, like zeros and ones in different bases
or the elements t and g from Definition 1.4.21.

4.6.1 Member Variables

Let us first take a look at the member variables rlweField is equipped with. First we store
some constants, namely the integer m, the dimension n = ϕ(m) and the radical rad(m). In
our applications of the toolkit we work a lot with elements whose coordinates are over Zq,
where the r-LWE modulus q is some prime integer such that q = 1 mod m. We also store
this modulus in our field class.

As already mentioned in Section 4.5, all vector transformations we consider are given as
a Kronecker decomposition Am =

⊗s
l=0Aml and we will store this decomposition in a list.

This is done by the field class, so for each transformation we store a unique pointer to a
list containing unique pointers to objects of type AbstractVectorTransformation as
defined in Section 4.5.

Finally, we store some coordinate vectors for special elements, which are pre-computed on
construction. To be more precise, we store the coordinates of t in the decoding basis, these of
g in the CRT basis and the coordinates for ones in different bases, which are held in a map,
where the basis is the key and the coordinates the value. Note that we cannot construct any
elements a ∈ K at the pre-computation stage, since such an element would need a pointer to
the field, which is still under construction at this stage. This is why we store the coordinate
vectors instead and create the particular element only if we need it.

All together we declare the following member variables.
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Listing 4.16: Member Variables of RingLweCryptographyField

class RingLweCryptographyField : public
std::enable_shared_from_this<RingLweCryptographyField>

{
private:
unsigned int const m_;
unsigned int const n_;
unsigned int rad_m_;
unsigned int const rlwe_modulus_;

std::unique_ptr<std::vector<int>> t_inverse_decoding_coords_;
std::unique_ptr<std::vector<int>> g_crt_coords_;
std::unique_ptr< std::map<RingElement::Basis,

std::unique_ptr<std::vector<int>>> > ones;

template<typename T>
using avt_uptr = std::unique_ptr<AbstractVectorTransformation<T>>;

template<typename T>
using avt_list_uptr = std::unique_ptr<std::list<avt_uptr<T>>>;

// Integer transformations
avt_list_uptr<int> Lm_;
avt_list_uptr<int> LmInverse_;

avt_list_uptr<int> crtMq_;
avt_list_uptr<int> crtMqInverse_;

avt_list_uptr<int> mgd_; // multiplication with g in decoding basis.
avt_list_uptr<int> dgd_; // multiplication with g^-1 in decoding basis.
avt_list_uptr<int> mgp_; // multiplication with g in powerful basis.
avt_list_uptr<int> dgp_; // multiplication with g^-1 in powerful basis.

// Complex transformations
avt_list_uptr<std::complex<double>> crtM_;
avt_list_uptr<std::complex<double>> crtMInverse_;
avt_list_uptr<std::complex<double>> crtMStar_;
avt_list_uptr<std::complex<double>> crtMStarInverse_;

// Real transformations
avt_list_uptr<double> sample_gauss_D_;
avt_list_uptr<double> gs_decomp_U_;
avt_list_uptr<double> gs_decomp_D_;
}

The meaning of the inheritance from std::enable_shared_from_this will be explained
later.

4.6.2 Constructor

We provide only one constructor for this class. In order to instantiate a specific field we need
two informations, the integer m and the ring-LWE modulus q. All other pre-computations
can be done using these values.
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Listing 4.17: Constructor of RingLweCryptographyField

class RingLweCryptographyField : public
std::enable_shared_from_this<RingLweCryptographyField>

{
public:
RingLweCryptographyField(unsigned int m, unsigned int modulus);

~RingLweCryptographyField();
}

The constructor initiates the variables m_, n_ and rlwe_modulus_ to m, ϕ(m) and modulus,
respectively. Thereby the Euler totient ϕ(m) is computed via a function, which is provided
by a separate mathematics utility file (see Section 4.3). The variable rad_m_ is set to 1 and
will be further manipulated throughout the pre-computations, which are triggered by a call
of a private init-function.

4.6.3 Available Functions

Next to pre-computation, the field class has two main features, the construction of special
elements and the application of vector transformations. Besides some standard getter func-
tions we provide procedures for the construction of the special elements g and t−1, for zeros
and ones in different bases as well as for functions for the application of an integer, real or
complex transformation to some given vector. We indicate the different transformations we
consider by a class enum.

Listing 4.18: Available Functions of RingLweCryptographyField

class RingLweCryptographyField : public
std::enable_shared_from_this<RingLweCryptographyField>

{
public:
enum class TransformationMatrices
{

COMPLEX_CRT_M,
COMPLEX_CRT_M_INVERSE,
COMPLEX_CRT_M_STAR,
COMPLEX_CRT_M_STAR_INVERSE,
INTEGER_L_M,
INTEGER_L_M_INVERSE,
INTEGER_CRT_MQ,
INTEGER_CRT_MQ_INVERSE,
INTEGER_MULT_G_DEC,
INTEGER_DIV_G_DEC,
INTEGER_MULT_G_POW,
INTEGER_DIV_G_POW,
REAL_SAMPLE_GAUSS_D,
REAL_GS_DECOMP_U,
REAL_GS_DECOMP_D

};

unsigned int getDimension() const;
unsigned int getModulus() const;
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unsigned int getM() const;
unsigned int getRadM() const;

RingLweCryptographyElement getElementT_inverse() const;
RingLweCryptographyElement getElementG() const;
RingLweCryptographyElement getZero(RingLweCryptographyElement::Basis

basis) const;
RingLweCryptographyElement getOne(RingLweCryptographyElement::Basis

basis) const;

void applyIntTransformation(TransformationMatrices transformation,
coordinate_vec& x, coordinate_vec const& a) const;

void applyRealTransformation(TransformationMatrices transformation,
real_vec& x, real_vec const& a) const;

void applyCompTransformation(TransformationMatrices transformation,
comp_vec& x, comp_vec const& a) const;

}

The type of the special elements is RingLweCryptographyElement, which is our class for
the representation of elements in K. Its constructor takes a shared pointer to this field class,
an indicator of the basis in which the element is represented, a coordinate vector with respect
to the indicated basis and two optional integer values, which we omit for the moment. See
Section 4.7 for a detailed description and further explanations concerning the functionality
of the element class. When constructing a 0 or 1 in K, the basis indicator is given by the
input parameter. Clearly, the coordinate vector for zeros is for all bases the zero vector. If
we construct a 1 ∈ K, the coordinate vector in the specific basis is not always trivial, but can
be pre-computed as described in Section 3.5.2 and 4.6.4. We can access the pre-computed
coordinate vectors via the map ones, where the basis indicators work as keys. The coordinate
vectors for g and t−1 are also pre-computed, but already with respect to a specific basis,
namely the Chinese remainder basis ~c for g and the decoding basis ~d for t−1. All element
constructions still lack the shared pointer to this field class. At this stage it becomes important
that RingLweCryptographyField inherits from std::enable_shared_from_this.
This provides a function, which returns a shared pointer similar to the this pointer, and
takes care of the consistency of the object counter each shared pointer has. That is, if we
already created a shared pointer to the instance of RingLweCryptographyField, the
object counter will be updated correctly. Otherwise, a new object counter will be initiated.
It would also be possible to create a shared pointer directly from the this pointer. However,
this can lead to inconsistencies in the actual object count.

Recall that the field class stores a unique pointer to a list of abstract vector transformations
for each transformation Am we consider. This list represents the Kronecker decomposition
Am =

⊗s
l=0Aml , where ml are the different prime powers dividing m. If we call one of the

three application functions, applyIntTransformation, applyRealTransformation
or applyComplexTransformation, we have to pass an indicator for the specific transfor-
mation we want to apply. The application is done via applyKroneckerDecomposition
from Section 4.1, using the input x and vec, as well as the list for the indicated transforma-
tion. The latter is chosen via a switch statement over the indicator. If we call an application
function with a mismatching indicator, for example applyIntTransformation with the
indicator COMPLEX_CRT_M, nothing will happen. One specialty arises when we divide by
g, i.e., when we use the indicators INTEGER_DIV_G_DEC or INTEGER_DIV_G_POW. While
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computing the result, we could detect decoding failure causing an error to be thrown. This
error will be forwarded and eventually handled by the decoding procedure.

4.6.4 Pre-Computation on Construction

As mentioned above, the constructor calls a private init-function, which starts the pre-
computations. We have to pre-compute the following values and objects:

(i) All the vector transformations we consider,

(ii) the radical rad(m),

(iii) the coordinates of the neutral element in the different bases,

(iv) the coordinates of g in the CRT basis and these of t−1 in the decoding basis.

Recall that the vector transformations are given in the form Am =
⊗s

l=0Aml , where ml are
the different prime powers dividing m. Thus, to start things off, we have to compute the
prime power factorization of m. This is done by a function from the mathematics utilities
from Section 4.3, which computes a list of pairs (pl, kl) such that ml = pkll for primes pl
and integers kl. Consequently, given such a pair, we can compute the values m′l = pkl−1

l ,
ml = pl ·m′l and nl = ϕ(ml) = (pl − 1) ·m′l. Once we initialized all the vector transformation
lists as empty lists, we can start a loop over the prime power factorization. Inside this loop
we update rad_m_ to rad_m_ · pl, so that after the loop rad_m_ is indeed the product of all
prime divisors of m. Further, we compute the specific transformations for the prime powers
ml. This step is divided into three parts, i.e., we provide one pre-computation function for
each type (integer, real and complex) of transformations we consider.

Pre-Compute the Transformations

For better readability we drop the index l ∈ [s+ 1], i.e., m is now a prime power of some
prime p and m′ = m/p.

Integer Transformations. Following the class structure of the integer transformations as
described in Section 4.5.3, there are two different ways how they are constructed. The “easier”

way applies for Lm, G~pm, G
~d
m and their inverses. For each of the latter transformations we

construct a unique pointer to a TransformationZZ_PrimePower object. The constructor
of TransformationZZ_PrimePower takes the values m and p, and an indicator for the
represented transformation. After construction, each unique pointer is added to the respective
list.

Concerning CRTm,q and CRT−1
m,q we have to put some more effort into computations.

The constructor of TransformationZZqCrt (cf. Listing 4.15) takes two matrices of type
MatrixZZq (cf. Listing 4.14), a vector of NTL::ZZ_p objects and a boolean. The construc-
tor of MatrixZZq on the other hand, takes an object of type NTL::mat_ZZ_p. So first we
construct the two NTL matrix objects for CRTp,q and DFTm′,q, which are of dimension p− 1
and m′, respectively, and a NTL::ZZ_p vector of size n, representing the twiddle matrix. In
order to compute the entries for these objects, we need the roots of unity ωp, ωm′ and ωm
which are all over Zq. These roots are computed via the findElementOfOrder function
from the mathematics utilities (see Section 4.3). Now we can compute the entries according
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to the definitions from Section 2.2.4, where we use the NTL::power function for fast modulo
exponentiation. Having this done, we can continue with the construction of the MatrixZZq
objects, which are then passed, together with the NTL::ZZ_p vector and the boolean false,
to the constructor of the unique pointer to the TransformationZZqCrt object. We add
this pointer to the list for the CRT transform. Since all objects are copied in the latter con-
struction, we can now invert them without any side effects. That is, the MatrixZZq objects
are inverted via their build in function and the vector entries are component-wise inverted
modulo q. Finally we repeat the above construction, where this time the boolean true is
passed, as we construct CRT−1

m , and add the pointer to the list for the inverse CRT transform.

Real Transformations. For the construction of the real transformations we have to construct
unique pointers to objects of type TransformationRealPrimePower. The constructor of
TransformationRealPrimePower just asks for the values p and m, and for an indicator
of the respective real transformation that is represented. We call the constructor for each
suitable indicator and add the pointer to the respective list.

Complex Transformations. The construction of the complex transformations works exactly
as the one for the real transformations. Now, the unique pointers point to objects of type
TransformationCompCrt. Again we call the constructor with p, m and one of the suitable
indicators for complex transformations. Then, the unique pointer is added to the respective
list.

Special Coordinate Vectors

After the pre-computation of the transformations is finished, we can continue with the co-
ordinate vectors for the special elements. In Section 3.5.2 we described how the coordinate
vectors of the neutral element in the different bases can be computed. The implementa-
tion follows these instructions closely, where we use the already computed transformations to
switch between the bases.

Section 3.5.1 introduced an algorithm which computes the coordinates of g in the CRT basis.
Actually, the algorithm works in the powerful basis and only switches the basis as a very last
step. Since we do not need g in the powerful basis, we perform all operation in the CRT
basis saving some performance. Recall that for each l ∈ [s+ 1] we have to create elements
with coordinate vectors that are 1 at the index m′l · ϕ(ml+1) · · ·ϕ(ms), where m0, . . . ,ms

are the distinct prime power divisors of m. We already computed these prime power factors
and can pass them to this computation. Then the indexes m′l · ϕ(ml+1) · · ·ϕ(ms) are easiest
computed, if we traverse the list of prime power divisors in reverse order. Start with a variable
i = 1. Since each ml is given in the form ml = pkll , we can easily compute m′l = pkl−1

l and
ϕ(ml) = (pl − 1) · m′l. The first index (l = s) is given by m′s · i = m′s, which we use to
create the element ζps ∈ Rq and update g = g · (1 − ζps), where g was initialized as 1 ∈ Rq.
Next, we update i = i · ϕ(ms) and proceed with the next step in the loop. Now, the index is
m′s−1 · i = m′s−1 · ϕ(ms) and we can create the next element to update g. Inductively we will
get i = ϕ(ml+1) · · ·ϕ(ms) and indexes m′l · ϕ(ml+1) · · ·ϕ(ms) at the l-th step in the loop, for
s ≥ l ≥ 0. At the end of the loop, g will be the desired element.

As the last step in pre-computations, we construct the coordinate vector of t−1 in the
decoding basis. This is done very easily. Note that by linearity, t−1 ∈ R∨ has the exact
same coordinates in the powerful basis t−1~p as 1 ∈ R in ~p. These coordinates are given by
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(1, 0, . . . , 0). Applying the transformation L−1
m from Proposition 2.3.4 yields the coordinate

vector with respect to ~d.

4.7 The Class RingLweCryptographyElement

The representation of elements a ∈ K = Q(ζm) plays a central role in our program. Such
elements are represented by the class RingLweCryptographyElement, which, roughly
speaking, keeps track of the coordinates and the basis specifying a certain element. Also it
has a “lives in” relation to the class RingLweCryptographyField representing K (see.
Section 4.6). All the functions and algorithms that we developed throughout this work are
available for this class. In the following we describe how this class works and how we realized
the features of the toolkit.

4.7.1 Member Variables

Let us first take a look at the member variables of RingLweCryptographyElement. As
described in the beginning of this chapter, we prefer to use the std::vector class for the
representation of the coordinates. Instead of the vector itself, we store a unique pointer to the
vector. A shared pointer to an RingLweCryptographyField object represents the field
K in which the element lives. Next, we need a useful representation of the regarded basis.
In all computations that we make, it is not important how the regarded basis actually looks
like. We only need to know which basis we are looking at. Thus, it is sufficient to indicate
each basis of our interest and equip our class with such an indicator. This works only if we
regard a small finite amount of different basis indicators. We can achieve this, if we separate
the power k for bases like t−k~c or t−k~p. Unfortunately, this is still not sufficient to uniquely
determine the ideal in which the element lives. For example, right now we cant distinguish
R and Rq. Therefore we need another variable for q, indicating if computations are done
modulo q or not.

These considerations lead to the following member variables

Listing 4.19: The Member Variables of RingLweCryptographyElement

class RingLweCryptographyElement
{
public:
enum class Basis
{

BASIS_POWERFUL,
BASIS_T_INVERSE_POWERFUL,
BASIS_CRT,
BASIS_T_INVERSE_CRT,
BASIS_DECODING

};
private:
std::shared_ptr<RingLweCryptographyField const> field_;
std::unique_ptr<std::vector<int>> coordinates_;
Basis basis_;
unsigned int primeModulusQ_;
unsigned int k_;
}
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Note that k can only be greater or equal to one, if the given basis actually represents R∨.
Otherwise we make sure, that k is always zero.

4.7.2 Constructors

Having all member variables set, we can move on to the constructors. First we observe that,
since all elements we create live in some field K, it is not useful to have a default constructor
taking no arguments as input. The least we have to know is the field K. For later usage
of the program it will be convenient to have a constructor that instantiates a sort of default
element in a given field. To be more precise, given a shared pointer to the field K, this
constructor actually creates the zero element in R, i.e., sets the basis to ~p, the coordinate
vector to 0 ∈ Z[n] and the values q and k to zero. Furthermore, we have a constructor that
creates an element, given a shared pointer the field K, the coordinate vector, the basis and
two optional arguments for the modulus q and the power k, which have the default values
q = 0 and k = 1. The ideal power k is always set via an extra setter-function, which makes
sure that k = 0, if the basis is ~p or ~c (in this cases, the represented element lives in the ideal
R, where the power k has no meaning). For later purposes it is also useful the have a copy
constructor. Summarizing this, we have the following constructor overloads

Listing 4.20: Class Constructors of RingLweCryptographyElement

class RingLweCryptographyElement
{
public:
typedef std::shared_ptr<RingLweCryptographyField const> rlwe_field_sptr;

// ‘‘Default’’ constructor
RingLweCryptographyElement(rlwe_field_sptr field);

// Constuctor for known elements
RingLweCryptographyElement(rlwe_field_sptr field,

Basis basis,
std::vector<int>& coordinates,
unsigned int primeModulusQ = 0,
unsigned int idealPower = 1);

// Copy constructor
RingLweCryptographyElement(RingLweCryptographyElement const& elmt);

// Default destructor
~RingLweCryptographyElement();
}

4.7.3 Functions

Throughout this work we developed several kinds of tasks our program has to handle. A lot
of the features of the toolkit will be provided by our element class. For example, we have the
basic arithmetic in K and algorithmic tasks like decoding and discretizing. In the following
we give a code snippet with all available functions in our class header. Then each group of
functions is explained in more detail.
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Note, that in general we designed our procedures in a way, that they do not have any return
value, but instead manipulate one of the input parameters. For example, the procedure for
addition takes three argument, x, a and b, so that x = a+ b. In this way, the user can decide
whether he uses a new element for the result, recycles and old one, or takes one of the input
elements for the output.

Listing 4.21: Available Functions of RingLweCryptographyElement

//For better raedability
typedef RingLweCryptographyElement RingElement

class RingLweCryptographyElement
{
public:
//Changing the basis
bool changeBasisTo(Basis newBasis);

//Additional operator overloads
RingElement& operator=(RingElement const& elmt);
RingElement& operator+=(RingElement const& elmt);
RingElement& operator-=(RingElement const& elmt);
RingElement& operator*=(RingElement const& elmt);
RingElement& operator*=(const int scalar);
}

//Comparison
bool operator==(RingElement const& lhs, RingElement const& rhs);
bool operator!=(RingElement const& lhs, RingElement const& rhs);

//Adition
RingElement operator+(RingElement const& a, RingElement const& b);
RingElement operator-(RingElement const& a, RingElement const& b);
RingElement operator-(RingElement const& a);
bool add(RingElement& x, RingElement const& a, RingElement const& b);
bool sub(RingElement& x, RingElement const& a, RingElement const& b);
bool neg(RingElement& x, RingElement const& a);

//Multiplication
RingElement operator*(RingElement const& a, RingElement const& b);
RingElement operator*(int const scalar, RingElement const& b);
bool mult(RingElement& x, RingElement const& a, RingElement const& b);
bool multWithScalar(RingElement& x, int const scalar,

RingElement const& a);

//Special multiplication
bool multWithT(RingElement& x, RingElement const& a);
bool multWithT_Inverse(RingElement& x, RingElement const& a);

//Decoding
void decode(RingElement& x, RingElement const& a);
bool computeUniqueRepresentative(RingElement& x, RingElement const& a);
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//Discretizing
void discretize(RingElement& x,

std:.vector<double>& realCoordinateVector,
RingElement const& cosetRepresentative,
int const scalingFactor = 1);

//Sampling
void sampleGaussiansInK_RR(real_vec& x,

RingLweCryptographyField const& field,
double mean,
double stddev);

void sampleDiscretizedGaussian(RingElement& x,
double mean,
double stddev,
RingElement const& cosetRepresentative,
int const scalingFactor = 1);

void sampleDiscreteGaussianInR(RingElement& x,
RingElement const& c,
real_type stddev);

int sampleDiscreteGaussianInZZ(double stddev,
double center,
double funcValue = 3);

void sampleUniformlyCoordVec(RingElement& x, int lb, int ub);

Changing the basis

In Sections 2.2.2 and 2.3.2 we saw how we can efficiently switch between the different bases
we deal with. On the one hand, we have the relation between the powerful basis ~p and the
Chinese remainder basis ~c, and, on the other hand, between the decoding basis ~d and t−1~p. In
all cases, the coordinate vector of the element is transformed by some transformation matrix.
These transformations are managed by the field class. The element class provides two private
functions, one that switches the representation between ~p and ~c, and another one that does
the same for ~d and t−1~p.

Listing 4.22: Basis Swapping

class RingLweCryptographyElement
{
private:
bool swapBasesPowerfulAndCrt(bool direction);
bool swapBasesTInversePowerfulAndDecoding(bool direction);
}

The direction is oriented at the function name, i.e., swapBasesPowerfulAndCrt(true)
switches ~p to ~c, swapBasesTInversePowerfulAndDecoding(true) from t−1~p to ~d and
both in the opposite direction for the input false. The returned boolean indicates the success
of the swap. Both functions call the needed transformation from the field class. We can use
them internally for basis swapping, if we already know the current basis of the element.
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The changeBasisTo routine is used for a change of bases, if we do not know the current
basis. As the input parameter it takes the basis, in which we want to represent the element.
Then, it checks the current basis and, if possible, changes the bases via the above mentioned
private functions. If the desired change is not possible, an error is thrown.

Addition

The core function for addition is bool add(x,a,b), which takes two elements a and b,
computes the sum a + b and stores the result in x, i.e., x = a + b. Furthermore, it returns
a boolean, indicating if addition succeeded or failed. Reasons for a failure could be an input
with inconsistent attributes, like an element with basis ~c but a modulus q = 0.

As we saw in Section 3.3.1, we have to distinguish between addition modulo some integer q
and normal addition. Thus add(x,a,b) uses two private subroutines, addModulo(x,a,b)
and addNonModulo(x,a,b), with the same input parameters. In the modulo case, all
additions are performed coordinate-wise, we only might have to switch the basis of one element
to match both bases. The basis switching is done via the sub routines described above. The
two involved bases are compared via a switch statement over the basis attribute. The non
modulo case works similarly, but addition might be performed via the canonical embedding
σ. We describe later how this works in detail.

All other functions, like sub or neg and the respective operators, just call add with suitable
parameters.

Multiplication

Concerning multiplication we have two separate functions, bool mult(x,a,b) and bool
multWithScalar(x,s,a), both storing the result in x and returning a boolean indicating
failure or success, similar to the addition routine. Since the scalar s is given as an integer,
multWithScalar just needs to multiply the coordinate vector with s, depending on the
modulus either modulo q or not. On the other hand, the normal multiplication function
mult works similarly to the addition function. That is, we distinguish between the modulo
q and the normal case, which are both handled in separate subroutines with the same input
parameters, namely multModulo(x,a,b) and multNonModulo(x,a,b). As described
in Section 3.3.1, in the modulo case, we just need to check the involved bases via a switch
command over the basis attributes of a and b, adjust those bases properly, i.e., switch them
always to the CRT basis, and then multiply the respective coordinate vectors component-wise
modulo q. Further, we have to compute the ideal power for x, which is just the sum k1 + k2,
where k1 and k2 are the ideal powers of a and b respectively.

The non modulo case works analogously. The involved bases are compared, maybe swapped,
and the elements are multiplied. Here we cannot simply multiply the coordinate vectors
coordinate-wise. Instead the vectors are multiplied via the canonical embedding σ, i.e., via
CRTm (see Section 2.2.3).

Special Multiplication

Following the considerations from Section 3.3.2 we provide separate functions for the mul-
tiplication with t and t−1. The procedure bool multWithT(x,a) returns false, if the
basis is ~c or ~p, since we do not provide multiplication of elements in R with t. Further, if the
basis is ~d, it is changed to t−1~p, and unchanged otherwise. Then the basis is manually set to

104



4 An Implementation in C++

the respective counterpart without the factor t−1, i.e., t−1~p to ~p and t−1~c to ~c, and the ideal
power k is set to zero.

The function bool multWithT_Inverse(x,a) works somewhat conversely. In the cases
where the basis is ~p, we manually set the basis to t−1~p and then change it to ~d, since the
decoding basis is somehow the default basis for R∨. If the basis is ~c, it is set to t−1~c. In both
cases the ideal power k is set to one. In the remaining cases where the basis represents R∨ or
R∨q , the element a is multiplied with t−1 in the usual way. Thereby t−1 is pre-computed and
provided by our field class.

Decoding

The decoding procedure follows closely the descriptions from Section 3.4. As a subroutine
we use the function computeUniqueRepresentative, which represents the map J·K for
elements with coordinate vectors over Zq. Recall that, regarding the map coordinate-wise,
for a ∈ Zq we want to output the unique representative JaK ∈ Z ∩ [−q/2, q/2). Thus the
subroutine checks for a correct input and then subtracts q from every entry that is greater
than (q−1)/2, where the last quotient is an integer division, i.e., the result is rounded in case
that q− 1 is odd. Clearly, the coordinate vector has entries in Z∩ [−q/2, q/2) and represents
the same element after this procedure.

The decoding function just checks if k equals 0 or 1 or is greater than 1. If k = 0, the
represented element cannot be in R∨ or some power of it and consequently cannot be decoded.
The rest of the implementation is more or less straight forward. The only thing we have to
keep in mind is that we do not know the value of k in advance and therefore cannot pre-
compute gk−1. Thus if k > 1 and the element is represented in the CRT basis, we first have
to compute gk−1 using the pre-computed element g. Similarly, in the other bases, using the
respective integer transformation equals only one multiplication with g and we might have to
repeat this step. Further, if q > 0, all arithmetic is modulo q. At this stage we compute the
modulo arithmetic manually, since the integer transformations for multiplication with g are
not per se transformations over Zq, but rather over Z.

Discretizing

Given a Z-basis ~b of R or R∨, an element x =
〈
~b,x

〉
∈ KR and a coset representative

c =
〈
~b, c
〉

, where x ∈ Rn and c ∈ Zn, discretization is the task to compute an element

y, with coordinates over Z such that the distance of x and y is small. In Section 2.4 we
explain how such an element can be computed efficiently. The presented method includes some
randomness, which we get from the C++ standard library. We use the default random engine,
instantiated with a random device, to sample elements from different distributions. The
computations presented in Section 2.4 can all be done coordinate-wise. For the discretization
function, the coordinates x are given as a vector of doubles and c is a vectors of integers.
We can perform coordinate-wise manipulations of two vectors by the std::transform
algorithm, using a locally defined function.

The computation of the coordinates for y works as follows. First, we compute the decimal
part of 1

p(ci−xi), where the scaling factor p is given as an input. The STL provides a function
that divides a double into its integer and decimal part. The decimal part of a negative double,
will also be negative, which is why we might have to translate the outcome zi by +1, since
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we want values in [0, 1). Now we can create a Bernoulli distribution that returns true with
probability 1− zi and false otherwise. If the outcome is true, we return yi = xi + pzi ∈ Z
and yi = xi + p(zi − 1) ∈ Z otherwise. Since all considered values here are doubles, we might
face some minor computation inaccuracies. We round these errors off, in order to be able to
safely convert these doubles into integers. Finally, we can create the output element, where
the coordinate vector might be taken modulo q, if the representative c is actually in Rq or
R∨q .

Sampling in Several Ideals

For our applications we basically need to sample elements in K in two different ways. In both
cases we want to sample some discrete Gaussians, but we can do this by sampling directly from
the discrete Gaussian distribution or by discretizing some continuous Gaussians. First, we
describe the discretized variant, where we sample continuous Gaussians over KR and discretize
them to a certain coset of some ideal c+I. In our application we will actually regard a scaled
version, i.e., if ψ is a continuous Gaussian distribution over KR, then we discretize samples
from p · ψ for some scaling factor p. Moreover, we do only need to discretize to R∨, which is
quite convenient, since we saw in Section 2.3.5 how we can efficiently sample elements from
ψ using the decoding basis.

sampleGaussiansInK_RR. The efficient method of sampling continuous Gaussians over
KR in the decoding basis is realized in the function sampleGaussiansInK_RR, which com-
putes a vector of doubles representing the coordinates of the sampled element in the decoding
basis. The function expects four inputs, the double vector for the output, the field K and the
mean and standard deviation for the Gaussian distribution. Note that, although we actually
sample from an n-dimensional Gaussian distribution, it is sufficient to expect only a single
standard deviation, since we use spherical Gaussian distributions whose standard deviations
are equal for each dimension. Let s be the given standard deviation. According to Propo-
sition 2.3.10 we can now sample a vector of doubles, where each entry is taken from the
Gaussian distribution with standard deviation s′ = s ·

√
m/rad(m). For these Gaussians we

use the normal distribution with a default random engine from the standard library. Next,
we multiply this vector with D = C∗B′ using the function provided by the field class, turning
the single samples into the desired coordinates.

sampleDiscretizedGaussian. The procedure sampleDiscretizedGaussian sam-
ples an element from bp · ψec+pR∨ , where the mean and standard deviation of ψ, the coset
representative c and the scaling factor p are given as input parameters. Further, the func-
tion expects a ring element x to store the sampled element. Using the above described
sampleGaussiansInK_RR function, we can sample a coordinate vector from ψ and scale
it by p, if p > 1. Then we discretize the element represented by these coordinates to c+ pR∨

using the discretize function. At all times we expect that the used basis is the decoding
basis, so in particular c needs to be represented in the decoding basis in order to guarantee a
correct working of the function.

Next, we describe the function that samples discrete Gaussians directly from the discrete
Gaussian distribution Ds,R over R.
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sampleDiscreteGaussiansInR. Concerning samples from the discrete Gaussian distri-
bution over R, we saw in Section 2.2.5 how we can use the Gram-Schmidt orthogonalization
of the powerful basis to our advantage. Lemma 2.2.17 restated Theorem 4.1 of [GPV08],
which says that there is an efficient algorithm producing samples from the discrete Gaussian
distribution Ds,Λ+c for some lattice Λ = L(B) for a given basis B, a coset representative c
and a standard deviation s. For our purposes, the lattice Λ is given by R and the powerful
basis. We will only sample elements from R, so c is zero. The standard deviation s has
to fulfill the constraint s ≥ maxj ‖b̃j‖ · ω(

√
log n), where b̃j are the vectors of the Gram-

Schmidt orthogonalization B̃. A usual choice for ω(
√

log n) would be log(n) and the maximal
length of the powerful basis is

√
n, so the algorithm works for example for s =

√
n · log(n).

In Remark 2.2.19 we already described the algorithm from [GPV08]. There, we used some
unspecified subroutine for the sampling of discrete Gaussians over Z. Gentry, Peikert and
Vaikuntanathan developed an algorithm for this purpose in [GPV08]. We implemented this
algorithm in sampleDiscreteGaussiansInZZ, which takes a standard deviation s, a cen-
ter c and some function value t. The purpose of t is explained later. The algorithm uses
rejection samling and works as follows. First, we choose an integer x ∈ Z ∩ [c− s · t, c+ s · t]
uniformly at random and then return it with probability ρs(x− c) = exp(−π‖x− c‖2/s2) or
repeat otherwise. The value t makes sure, that the sample x is actually a relevant sample and
not some integer far away from the center, whose returning probability ρs(x−c) would nearly
be zero. While Gentry, Peikert and Vaikuntanathan suggest to use t = log(n) ≥ ω(

√
log(n)),

we set the default value of t to 3, since 99, 73% of the data of the Gaussian distribution
are within 3 times the standard deviation. In our implementation we use the uniform and
Bernoulli distribution from the STL. For further analysis and a correctness proof we refer
to [GPV08].

Now we can implement the algorithm from Remark 2.2.19. To do so, we have to loop

from n − 1 to 0 and first compute the values c′i ··=
〈
ci, b̃i

〉
/
〈
b̃i, b̃i

〉
and si ··= s/‖b̃i‖ > 0,

where s and cn−1 = c are given as input parameters. Recall from Section 2.2.5 that c′i can
be computed as the inner product of ci with the i-th row of the matrix U from the Gram-
Schmidt orthogonalization of CRTm = QDU and the value ‖b̃i‖ equals the i-th diagonal entry
of D. Further, in Section 4.5.2 we implemented the application of U such that UT is applied
instead. Thus we can access the i-th row of U via the i-th column of UT , i.e., applying UT to
the i-th unit vector. We use the same method to get the i-th column of D and then extract
‖b̃i‖ as the i-th entry of this column. For the computation of the inner product we use the
inner_product algorithm from the STL. Finally, we can update ci using a sample zi from
the sampleDiscreteGaussiansInZZ routine. After the loop we can equip the output
element x with the desired coordinates c0 with respect to the powerful basis ~p.

sampleUniformlyCoordVec. Finally, the function sampleUniformlyCoordVec is de-
fined for convenience. It simply samples a new coordinate vector for the given element x,
whose entries are uniformly distributed over Z ∩ [lb, ub], where the integral bounds lb and ub
are given as input parameters. The implementation is straight forward and uses again tools
from the STL to produce randomness.
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