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Abstract. Aggregate signature schemes allow for the creation of a short
aggregate of multiple signatures. This feature leads to significant reduc-
tions of bandwidth and storage space in sensor networks, secure routing
protocols, certificate chains, software authentication, and secure logging
mechanisms. Unfortunately, in all prior schemes, adding a single invalid
signature to a valid aggregate renders the whole aggregate invalid. Veri-
fying such an invalid aggregate provides no information on the validity of
any individual signature. Hence, adding a single faulty signature destroys
the proof of integrity and authenticity for a possibly large amount of data.
This is largely impractical in a range of scenarios, e.g. secure logging,
where a single tampered log entry would render the aggregate signature
of all log entries invalid.
In this paper, we introduce the notion of fault-tolerant aggregate signature
schemes. In such a scheme, the verification algorithm is able to determine
the subset of all messages belonging to an aggregate that were signed
correctly, provided that the number of aggregated faulty signatures does
not exceed a certain bound.
We give a generic construction of fault-tolerant aggregate signatures from
ordinary aggregate signatures based on cover-free families. A signature in
our scheme is a small vector of aggregated signatures of the underlying
scheme. Our scheme is bounded, i.e. the number of signatures that can
be aggregated into one signature must be fixed in advance. However
the length of an aggregate signature is logarithmic in this number. We
also present an unbounded construction, where the size of the aggregate
signature grows linearly in the number of aggregated messages, but the
factor in this linear function can be made arbitrarily small.
The additional information encoded in our signatures can also be used
to speed up verification (compared to ordinary aggregate signatures) in
cases where one is only interested in verifying the validity of a single
message in an aggregate, a feature beyond fault-tolerance that might be
of independent interest. For concreteness, we give an instantiation using
a suitable cover-free family.
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1 Introduction

Aggregate signature schemes allow anyone to aggregate multiple signatures by
different signers into a single combined signature, which is considerably smaller
than the size of the individual signatures. This type of digital signature schemes
was first proposed and instantiated by Boneh, Gentry, Lynn and Shacham
[Bon+03], and has since evolved into a diverse and active research area.

Applications of Aggregate Signatures. The main motivation for aggregate
signature schemes is to save bandwidth and storage space. Therefore, their
applications are manifold [AGH10].

A well-known field of application are sensor networks, which consist of several
small sensors that measure an aspect of their physical environment and send
their findings to a central base station. Digital signatures ensure the integrity and
authenticity of the measurements during transfer from the sensors to the base
station. Using a conventional digital signature scheme, the verifying base station
would need to receive each signature separately, which is bandwidth-intensive.
However, if the signatures were aggregated beforehand using an aggregate signa-
ture scheme, the bandwidth consumption on the side of the base station is reduced
drastically. Also, verifying an aggregate signature is typically considerably faster
than verifying all individual signatures.

Another application is secure logging. Log files are used to record events like
user actions, system errors, failed log-in attempts as well as general information,
and play an important role in computer security by providing, for example,
accountability and a basis for intrusion detection. Log files are usually kept for
very long periods of time, which means that thousands or even millions of log
entries need to be stored. Digital signatures are used to ensure the integrity of
the log data. For aggregate signature schemes, it is sufficient to store one single
aggregate signature over all log entries, instead of an individual signature per
log entry as with a normal digital signature scheme. Whenever a new log entry
is added to the log file, one simply calculates a signature for the new entry and
aggregates it into the already existing aggregate signature.

Aggregate signatures can also be useful for authenticating software. To ensure
the validity of software libraries and programs it has become common to sign their
code and/or compiled binaries. Mobile operating systems often only allow signed
programs to be executed. Again, it is advantageous to use an aggregate signature
to save download bandwidth and verification overhead upon execution, e.g. if
all programs are verified at boot time. Like in the logging scenario, aggregate
signatures allow for installation of new applications without having to store the
individual signatures of all installed programs.

Problem Statement. In all known aggregate signature schemes an aggregate
signature is invalid (i.e., verification fails) if just one invalid message–signature
pair is contained in the aggregate. Note that either this pair was already invalid
(i.e., the individual signature was not valid for this particular message) when
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the aggregate was created or a “wrong” message is included for verification.
In any case, the verification algorithm can give no information about which
message–signature pair is the reason for the failure or if other message–signature
pairs were valid. This essentially renders the aggregate useless after an invalid
signature is added, even though the majority of the messages might have been
correctly signed.

For sensor networks, this means that the measurements of all sensors are lost
even if only a single sensor sends an invalid signature, for example because of
calculation glitches or transmission errors. Usually it is not feasible for compu-
tationally weak sensors to ensure the validity of their signature before sending
it, since many signature schemes use expensive operations like pairings for ver-
ification. An aggregator could ensure the validity of the individual signatures
before aggregation, but this would undo one of the advantages of the aggregate
signature scheme altogether.

The same problem occurs in the logging scenario: If one log entry is not
correctly signed, is tampered with, or is lost (for example through hard disk
errors or crashes), the signature for the whole log file becomes invalid. In [MT09]
Ma and Tsudik state that this is one of the reasons why they still need to
store individual signatures for every log entry, although they use an aggregated
signature for the complete log. This is undesirable, since one of the motivations
for using the aggregate signature schemes for logging is to save storage space.

This problem also affects the software authentication scenario. If a new
program is installed and its signature is invalid or the code of an already installed
program gets changed (through hard disk problems etc.), the whole aggregated
signature used for authenticating the software becomes invalid. In the worst
case this would mean that no program can be executed anymore, because the
operating system might block every unauthenticated program.

Contribution. To solve the above mentioned problems, we introduce the concept
of fault-tolerant aggregate signature schemes, which are able to tolerate a specific
number of invalid (or faulty) signatures while aggregating. In such a scheme, the
verification algorithm does not output boolean values like “valid” and “invalid”
but instead outputs a list of validly signed messages and will leave out all messages
that are invalid.

Note that in contrast to ordinary aggregate signatures, fault-tolerant aggregate
signatures cannot offer an aggregate signature size which is independent of the
number of individual signatures to be aggregated. In other words, we cannot
hope to aggregate an unlimited number of individual signatures using a constant-
size aggregate. This easily follows from an information-theoretic argument: Let
us assume we fix the size of an aggregate signature to l bits. This l-bit string
then needs to be used by the verification algorithm (as the only “source of
information”) to determine which of its input messages are valid. Hence, based
on the l-bit string, the algorithm can distinguish at most 2l different outputs.
However, considering n messages and corresponding individual signatures, d of
which are invalid, there are

(
n
n−d
)
possible different subsets (and thus outputs)
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which should be distinguishable by the verification algorithm by considering
this string. So n is upper bounded by

(
n
n−d
)
≤ 2l. (For a more formal argument

using the notation of fault-tolerant aggregate signature introduced later, refer to
Appendix A.)

Besides a formal framework for fault-tolerant aggregate signatures, we also
present a generic construction which can be used to turn any aggregate signature
scheme into a fault-tolerant scheme. This construction makes use of cover-free
families [KS64] to provide fault-tolerance and comes with a tight security reduction
to the underlying signature scheme. For concreteness, we explicitly describe how
to instantiate our scheme with a cover-free family based on polynomials over
a finite field [KRS99], which has a compact representation. (We generalize the
known family to multivariate polynomials in Appendix B.) This leads to an
instantiation featuring short aggregate signatures relative to the number n of
individual signatures that are aggregated (provided that the maximal number of
faults the scheme should tolerate is relatively small compared to n).

As an additional feature, our construction allows the verification of an indi-
vidual signature in a fashion that is more efficient (e.g., saving a number of costly
pairing operations in the case of pairing-based aggregate signatures) than verify-
ing the complete aggregate. This provides a level of flexibility to the signature
scheme as demanded by certain applications such as secure logging [MT09].

As a shortcoming of our scheme, we need to assume that aggregates may
only contain a previously fixed upper bound d of invalid individual signatures.
If for some reason this bound is exceeded, the faulty signatures may affect the
verifiability of other messages, as is the case for common aggregate signatures.
This is also analogous to error-correction codes (which are related to cover-free
families), where only a specific number of errors can be located.

Basic Idea of Our Construction. To get a glimpse of our generic construction
of a fault-tolerant aggregate signature scheme, we now informally illustrate
the basic idea. Let an ordinary aggregate signature scheme (e.g., BGLS) and
n individual signatures σ1, . . . , σn generated using this scheme be given. Our
goal is to detect d = 1 faulty individual signatures. To achieve this, our approach
is to choose m subsets T1, . . . , Tm ⊂ {σ1, . . . , σn} of individual signatures and
aggregate the signatures of each subset, thereby yielding aggregate signatures
τ1, . . . , τm, such that

1. m is (significantly) smaller than n and
2. even if one of the individual signatures is faulty and the corresponding

aggregate signatures τi will be invalid, all other individual signatures σj are
aggregated into at least one different, valid signature τk.

For example, consider the following binary 4× 6 matrix

A := (ai,j) :=


1 0 0 1 0 1
1 1 0 0 1 0
0 1 1 1 0 0
0 0 1 0 1 1
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for which n = 6 and m = 4.
A describes a solution to the above mentioned problem as follows: The

1-entries in column j indicate in which Ti the individual signature σj is contained.
Consequently, the 1-entries in row i indicate the σj contained in Ti. More precisely,
Ti := {σj : ai,j = 1} and τi is the aggregate of all σj ∈ Ti. Observe that while it
is usually unnecessary for the verification to know the order of the claims from
the aggregation process, in our fault-tolerant scheme, specifying the correct order
is inevitable.

For the matrix above, an aggregate signature τ = (τ1, τ2, τ3, τ4) for individual
signatures σ1, . . . , σ6 would be formed in the following manner:

τ =


τ1
τ2
τ3
τ4

 =


Agg(σ1, σ4, σ6)
Agg(σ1, σ2, σ5)
Agg(σ2, σ3, σ4)
Agg(σ3, σ5, σ6)

=̂


σ1 σ4 σ6
σ1 σ2 σ5

σ2 σ3 σ4
σ3 σ5 σ6

,
where Agg informally denotes the aggregation function of the underlying aggregate
signature scheme.

Let us assume that only one signature σj is faulty. Then all τi are faulty
where ai,j = 1. However, because all other σk were also aggregated into at least
one different τi, we can still derive the validity of σk.

For a concrete example, suppose σ1 is faulty. Then τ1 and τ2 will be faulty,
whereas τ3 and τ4 are valid. We see that σ2, σ3 and σ4 occur in τ3, and σ5, σ6
occur in τ4, and so we may be sure that the corresponding messages were signed.

The matrix A defined above has the property that it can tolerate one faulty
signature, i.e., if just one signature is faulty, then all other messages can still
be verified. Unfortunately, this is not possible if two or more faulty signatures
are aggregated. Lets assume that σ1 and σ2 are faulty. In this case, τ1, τ2 and
τ3 become invalid and τ4 is the only valid signature. We could still derive the
validity of σ3, σ5, σ6, because τ4 is valid. However, the validity of σ1, σ2 and σ4
can no longer be verified, since they were never aggregated to τ4.

Note that our scheme does not support fully flexible aggregation: Each column
of A can only be used to hold one individual signature, as can be seen in the
example above. Two aggregate signatures where the same column is used can not
be aggregated further without losing the guarantee of fault-tolerance. However,
our scheme still supports a notion of aggregation which is only slightly restricted:
Individual signatures can always be aggregated, while aggregate signatures can
only be aggregated if no column is used in both. As long as this requirement is
met, signatures can be aggregated in any order. This notion is sufficient for many
use cases, we discuss this further in Section 3.

The construction of matrices that can tolerate d > 1 faulty signatures is
more intricate, but incidence matrices belonging to d-cover-free families turned
out to imply the desired property. Informally speaking, in such a matrix the
“superposition” s of up to d arbitrary column vectors ai1 , . . . ,aid , i.e., the vector s
which has a 1 at position ` if at least one of the vectors ai1 , . . . ,aid has a 1 at this
position, does not “cover” any other distinct column vector aj (j 6∈ {i1, . . . , id}).
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In other words, there is at least one position ` such that aj has a 1 at this
position but s shows a 0. This implies that if at most d individual signatures
(each belonging to one column) are invalid, then each distinct individual signature
is contained in at least one valid aggregate signature, and the corresponding
message can therefore be trusted. Hence applying such a matrix, as sketched
above, implies that any subset of faulty individual signatures of size up to d will
not compromise the trustworthiness of any other message. There are different
constructions of d-cover-free families for d and n of unlimited size (where these
parameters need to satisfy certain conditions depending on the family) featuring
m� n for choices of the parameters n, d with d� n.

Related Work. The first full aggregate scheme was constructed by Boneh
et al. [Bon+03] in the random oracle model. Full aggregate schemes allow any
user to aggregate signatures of different signers, i.e., aggregation is a public
operation. Furthermore it is possible to aggregate individual signatures as well
as already aggregated signatures in any order. In [HSW13] Hohenberger, Sahai
and Waters give the first construction of such a scheme in the standard model
using multilinear maps. Recently, Hohenberger, Koppula, and Waters [HKW15]
have constructed a “universal signature aggregator” based on indistinguishability
obfuscation. A universal signature aggregator can aggregate signatures from any
set of signing algorithms, even if they use different algebraic settings. In [ZS11]
Zaverucha and Stinson construct an aggregate one-time-signature.

Since it has proven difficult to construct full aggregate schemes in the standard
model, a lot of research was focused on signature schemes with some form of
restricted aggregation. One major type of restricted aggregation is sequential
aggregation, as proposed by Lysyanskaya, Micali, Reyzin and Shacham [Lys+04].
In these schemes, the aggregate is sequentially sent from signer to signer and
each signer can add new information to the aggregate. Multiple constructions
are known, both in the random oracle [Lys+04; Nev08; Bol+07; Ger+12] and the
standard model [Lu+06; Sch11; LLY15]. Another type of aggregation is synchro-
nized aggregation, as proposed by Gentry and Ramzan [GR06]. Here, a special
synchronization information, like the current time period, is used while signing.
All signatures sharing the same synchronizing information behave like signatures
of a full aggregate scheme, i.e., both individual and aggregated signatures can be
aggregated in any order. Again, schemes in the random oracle [AGH10; GR06]
and standard model [AGH10] are known. Other authors considered aggregate
signature schemes that need interaction between the signers [BN07; BJ10] or can
only partially aggregate the signatures [Her06; BGR14].

Our construction is based on cover-free families, which are a combinatorial
structure that was first introduced by Kautz and Singleton [KS64] in the language
of coding theory. They have several applications in cryptography, for example
group testing [STW97], multireceiver authentication codes [SW99], encryption
[Cra+07; Dod+02; HK04] and traitor-tracing [TS06]. There are multiple construc-
tions of signature schemes using cover-free families. Hofheinz, Jager, and Kiltz
[HJK11] use cover-free families to construct a (m, 1)-programmable hash function.
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They then use this hash function to construct conventional digital signature
schemes from weak assumptions. Zaverucha and Stinson [ZS11] construct an
aggregate one-time-signature using cover-free families.

Outline. Section 2 introduces some notations, conventions, and preliminary
definitions. Section 3 presents a general definition of fault-tolerant aggregate
signature schemes and some properties of such schemes, such as the security
definition. Our construction is presented and analyzed in Section 4. Afterwards,
we discuss an instantiation of our scheme with a specific class of cover-free families
in Section 5.

2 Preliminaries

Let [n] := {1, . . . , n}. The multiplicity of an element m in a multiset M is the
number of occurrences of m in M . For two multisets M1,M2, the union M1 ∪M2
is defined as the multiset where the multiplicity of each element is the sum of
the multiplicities in M1, M2.

If v is a vector or a tuple, v[i] refers to the i-th entry of v. If M is a matrix,
rows(M) and cols(M) denote the number of rows and columns of M , respectively.
For i ∈ [rows(M)], j ∈ [cols(M)], M [i, j] is the entry in the i-th row and j-th
column of M .

Throughout the paper, κ ∈ N is the security parameter. We say an algorithm
A is probabilistic polynomial time (PPT) if the running time of A is polynomial
in κ and A is a probabilistic algorithm. All algorithms are implicitly given 1κ as
input, even when not noted explicitly.

In this work, σ usually refers to signatures of standard aggregate signature
schemes, whereas τ mostly refers to signatures of a fault-tolerant aggregate
signature scheme.

2.1 Aggregate Signatures

Let us quickly review the definition of aggregate signature schemes and the
associated security notion, as defined in [Bon+03]. An aggregate signature scheme
is a tuple of four PPT algorithms:

– KeyGen(1κ) creates a key pair (pk, sk).
– Sign(sk,m) creates a signature for message m under secret key sk.
– Agg(C1, C2, σ1, σ2) takes as input two multisets of public-key and message

pairs C1 and C2 and corresponding signatures σ1 and σ2 and creates an
aggregate signature σ, certifying the validity of the messages in C1∪C2 under
the corresponding public keys.

– Verify(C, σ) takes as input a multiset of public-key and message pairs C and
an aggregate signature σ for C and outputs 1, if the signature is valid, and 0
otherwise.
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For correctness we require that any signature that is generated by the signature
scheme by applications of Sign and Agg using key pairs of the scheme, is valid,
i.e. Verify outputs 1.

Security Notion for Aggregate Signatures. The security experiment for
aggregate signatures consists of three phases [Bon+03]:

– Setup Phase. The challenger generates a pair of keys (pk, sk) := KeyGen(1κ)
and gives the public key pk to the adversary.

– Query Phase. The adversary A may (adaptively) issue signature queries mi

to the challenger, who responds with σi := Sign(sk,mi).
– Forgery Phase. Finally, A outputs a multiset of public-key and message pairs
C∗ and a signature σ∗.

The adversary wins the experiment iff there is a message m∗ such that c∗ =
(pk,m∗) is in C∗, Verify(C∗, σ∗) = 1, and m∗ has never been submitted to the
signature oracle.

An aggregate signature scheme Σ is (t, q, ε)-secure if there is no adversary A
running in time at most t, making at most q queries to the signature oracle and
winning in the above experiment with probability at least ε.

2.2 Cover-Free Families

For our construction of a fault-tolerant aggregate signature scheme in Section 3
we need a d-cover-free family, which allows us to detect up to d invalid individual
signatures in our aggregate signature.

Definition 1. A d-cover-free family F = (S,B) (denoted by d-CFF) consists of
a set S of m elements and a set B of n subsets of S, where d < m < n, such
that: For any d subsets Bi1 , . . . , Bid ∈ B and all distinct B ∈ B \ {Bi1 , . . . , Bid},
it holds that

|B \
d⋃
k=1

Bik | ≥ 1.

So, it is not possible to cover a single subset with at most d different subsets. To
get a better representation of a d-CFF and to simplify the handling of it, we will
use a matrix in the following way:
Definition 2. For a d-CFF F = (S,B), where the elements of S and B have a
well-defined order, such that we can write S = {s1, . . . , sm}, B = {B1, . . . , Bn},
we define its incidence matrix M as follows:

M[i, j] =
{

1, if si ∈ Bj ,
0, otherwise.

The i-th row ofM is denoted byMi ∈ {0, 1}n, for i ∈ [m].
So, si ∈ S corresponds to row i and Bj ∈ B corresponds to column j, i.e.M has
m rows and n columns.
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3 Fault-Tolerant Aggregate Signatures

Claims and Claim Sequences. As a notational convenience, we introduce
the concept of claims. A claim c is simply a pair (pk,m) of a public key and
a message, conveying the meaning that the owner of pk has authenticated the
message m. In this sense, a signature σ for m that is valid under pk is a proof
for the claim c. This definition allows for a more compact representation of our
algorithms.

The signature scheme we introduce in Section 4 critically requires an order
among the claims. While the actual order is arbitrary, it must be maintained by
the aggregation and verification algorithms. We therefore define the fault-tolerant
signature schemes based on sequences of claims, instead of multisets.

More precisely, when an individual signature τ ′ for a claim c is first aggregated
into an aggregate signature τ , one must assign a unique “position” j to c. If one
wishes to verify τ , one must call Verify with a sequence of claims C that has c at
its j-th position, i.e. C[j] = c. Therefore, two aggregate signatures τ1, τ2 for two
sequences of claims C1, C2 can not be aggregated if C1[j] 6= C2[j] for some j.

Thus, our scheme does not support fully flexible, arbitrary aggregation.
However, if the signers agree in advance on the positions j of their claims,
they can aggregate all their signatures into a single combined signature τ . This
prerequisite can easily be fulfilled in many applications. In wireless sensor networks
for example, one only has to configure each sensor to use a different position j.
Moreover, it is always possible to use our scheme as a sequential aggregate
signature scheme, since the position j of a claim needs only be determined when
it is first aggregated. Our scheme is therefore suitable for all applications where
sequential aggregate signatures are sufficient, too, such as secure logging [MT09].

For the general aggregation setting, we will have to deal with “incomplete”
claim sequences, i.e. if a claim sequence does not yet contain a claim at position j.
We therefore assume the existence of a claim placeholder ⊥ that may be contained
in claim sequences. When aggregating the signatures of two such incomplete
claim sequences C1, C2, the claim sequences will be merged, meaning that claim
placeholders in C1 are replaced by actual claims from C2, for each position j
where C1[j] = ⊥ and C2[j] 6= ⊥, and vice versa. (This merging operation replaces
the multiset union used by common aggregate signature schemes.)

For technical reasons, we also require that there is no position where C1 and
C2 both contain a claim, even if the claims are identical. As a consequence, if
a signature τ is aggregated into two different aggregate signatures τ1, τ2 using
the same position j, τ1 and τ2 can not be aggregated later. Note, however, that
this does not preclude the possibility to aggregate τ into τ1 and τ2 at different
positions.

We now move to the formal definition. A claim sequence is a tuple of claims
and claim placeholders ⊥. The multiset of elements of a claim sequence C
excluding ⊥ is denoted by elem(C). Two claim sequences C1, C2 are mergeable if
for all i ∈ [min(|C1|, |C2|)] it holds that C1[i] = ⊥ or C2[i] = ⊥ or C1[i] = C2[i].
C1, C2 are called exclusively mergeable, if for all such i it holds that C1[i] = ⊥ or
C2[i] = ⊥. (In particular, two exclusively mergeable sequences are mergeable.)
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For example, for distinct claims c1, c2, c3, define C1 = (⊥, c2, c3), C2 = (c1,⊥,⊥),
C ′2 = (c1, c2,⊥), C ′′2 = (c1, c3, c2). Then, C1, C2 are exclusively mergeable, C1, C

′
2

are mergeable, but not exclusively mergeable, and C1, C
′′
2 are not mergeable.

Let C1 and C2 be two mergeable claim sequences of length k and l, respectively.
Without loss of generality, assume k ≥ l. Then the merged claim sequence C1 tC2
is (c1, . . . , ck), where

ci :=
{
C1[i], if C2[i] = ⊥, C2[i] = C1[i] or i > l,

C2[i], otherwise.

The empty signature λ is a signature valid for exactly the claim sequences
containing only ⊥ and the empty claim sequence.

Subsequences. Let C = (c1, . . . , cn) be a tuple and b ∈ {0, 1}n be a bit sequence
specifying a selection of indices. Then C[b] is the subsequence of C containing
exactly the elements cj where b[j] = 1, replacing all other claims by ⊥. In
particular, ifM is an incidence matrix of a cover-free family, then C[Mi] is the
subsequence containing all cj whereM[i, j] = 1 and ⊥ at all other positions.

Syntax of Fault-Tolerant Signature Schemes. We are now ready to define
fault-tolerant aggregate signature schemes. The intuitive difference of such a
scheme to an ordinary aggregate signature scheme is that its verification algorithm
does not only output a boolean value 1 or 0 that determines if either all claims
are valid or at least one claim is invalid, but it gives (some) information on which
claims in C are valid. In particular, it outputs the set of valid claims. If the
signature contains more errors than the scheme can cope with, Verify may output
just a subset of the valid claims. Other claims may be clearly false or just not
certainly true. (The verification algorithm ought to be conservative and reject a
claim in case of uncertainty.)

The aggregation algorithm is called with two claim sequences, hence, before ag-
gregating, a single claim cmust be converted to a claim sequence C = (⊥, . . . ,⊥, c)
by assigning a position to c.

Definition 3. An aggregate signature scheme with list verification1 is a tuple
of four PPT algorithms Σ = (KeyGen,Sign,Agg,Verify), where

– KeyGen(1κ) creates a key pair (pk, sk).
– Sign(sk,m) creates a signature for message m under secret key sk.
– Agg(C1, C2, τ1, τ2) takes as input two exclusively mergeable claim sequences
C1 and C2 and corresponding signatures τ1 and τ2 and creates an aggregate
signature τ , certifying the validity of the claim sequence C1 tC2.

1 The name “list verification” is chosen to indicate the changes in syntax, in particular
that the verification algorithm outputs a multiset (list) instead of just 1 or 0.
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– Verify(C, τ) takes as input a claim sequence C and an aggregate signature τ
for C and outputs a multiset of claims Cvalid ⊆ elem(C) specifying the valid
claims in τ . Note that this may be a proper subset of elem(C), or even empty,
if none of the claims can be derived from τ (for certain). Again, here, C may
contain ⊥ as a claim placeholder.

Σ is required to be correct as defined in the following paragraphs.

Regular Signatures. Informally, a signature is regular if it is created by running
the algorithms of Σ. More formally, let C be a claim sequence and τ be a signature.
We recursively define what it means for τ to be regular for C:

– If (pk, sk) is in the image of KeyGen(1κ) and C = ((pk,m)) for a message m,
and if τ is in the image of Sign(sk,m), then τ is said to be regular for C and
for any claim sequence obtained by prepending any number of ⊥ symbols to
C.

– If τ1 is regular for a claim sequence C1, τ2 is regular for another claim sequence
C2, and C1, C2 are exclusively mergeable, then τ is regular for C1 tC2 if τ
is in the image of Agg(C1, C2, τ1, τ2).

– The empty signature λ is regular for the claim sequences containing only ⊥
and the empty claim sequence ().

If a signature τ is not regular for a claim sequence C, it is called irregular for C.

Fault Tolerance. Let M = {(c1, τ1), . . . , (cn, τn)} be a multiset of claim and
signature pairs, which is partitioned into two multisetsMirreg andMreg, containing
the pairs for which τi is irregular for C = (ci) and regular for C, respectively.2
Then the multiset M contains d errors, if |Mirreg| is d. An aggregate signature
scheme Σ with list verification is tolerant against d errors, if for any such multiset
M containing at most d errors, for any signature τ that was aggregated from the
signatures in M (in arbitrary order) and the corresponding claim sequence C,
which may additionally contain any number of claim placeholders ⊥, we have

R ⊆ Σ.Verify(C, τ),

where R is the multiset of all the claims (i.e. the first component of the pairs) in
Mreg. In other words, Verify outputs at least all claims of regular signatures.3

A d-fault-tolerant aggregate signature scheme is an aggregate signature scheme
with list verification that is tolerant against d errors. A fault-tolerant aggregate
signature scheme is a scheme that is d-fault-tolerant for some d > 0.
2 While there may be schemes with valid signatures which are not regularly generated,
like in the usual correctness properties, our guarantees do only concern regular
signatures.

3 Intuitively, one would expect R = Σ.Verify(C, τ). However, this is not achievable in
general, as the aggregation of multiple irregular signatures may contain a new valid
claim ci corresponding to an irregular signature σi. This does not contradict security,
as crafting such irregular signatures may be hard if one does not know σi.
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Correctness. Observe that 0-fault-tolerance means that if M contains only
regularly created signatures, then Verify must output all claims in M (or C,
respectively). This is analogous to the common definition of correctness for
aggregate signature schemes. We therefore call an aggregate signature scheme
with list verification correct, if it is tolerant against 0 errors.

Errors During Aggregation. Our definitions above assume that aggregation
is always done correctly. This is a necessary assumption, since it is impossible to
give guarantees for arbitrary errors that happen during aggregation. Consider for
example a faulty aggregation algorithm that ignores its input and just outputs a
random string. It is an interesting open question to find a fault-tolerant signature
scheme that can tolerate certain types of aggregation errors, too.

Compression Ratio. Denote by size(σ) the size of a signature σ. Let C be a
claim sequence of length n, and σ∗ an aggregate signature of maximum size4

which is regular for C. We say that an aggregate signature scheme has compression
ratio ρ(n) iff

n

size(σ∗) ∈ Θ(ρ(n)).

Note that if size(σ∗) is upper bounded by a constant, then the compression
ratio is ρ(n) = n, which is optimal for common aggregate signature schemes.
As argued in the introduction this is not possible for fault-tolerant aggregate
signatures, cf. Appendix A.

Security Experiment. The security experiment for aggregate signatures with
list verification, which is a direct adaption of the standard security experiment
of [Bon+03], consists of three phases:

– Setup Phase. The challenger generates a pair of keys (pk, sk) := KeyGen(1κ)
and gives the public key pk to the adversary.

– Query Phase. The adversary A may (adaptively) issue signature queries mi

to the challenger, who responds with τi := Sign(sk,mi).
– Forgery Phase. Finally, A outputs a claim sequence C∗ and a signature τ∗.

The adversary wins the experiment iff there is a message m∗ such that c∗ =
(pk,m∗) ∈ Verify(C∗, τ∗), and m∗ has never been submitted to the signature
oracle.

Definition 4. An aggregate signature scheme with list verification is (t, q, ε)-
secure if there is no adversary A running in time at most t, making at most
q queries to the signature oracle and winning in the above experiment with
probability at least ε.
4 The size of an aggregated signature might depend on the aggregation order.
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4 Generic Construction of Fault-Tolerant Aggregate
Signatures

In this section, we present our generic construction of fault-tolerant aggregate
signature schemes. It is based on an arbitrary aggregate signature scheme Σ,
which is used as a black box, and a cover-free family. Our scheme inherits its
security from Σ, and can tolerate d faults if it uses a d-cover-free family.

Our Construction. In the following we describe a generic construction of our
fault-tolerant aggregate signature scheme. For this let Σ be an ordinary aggregate
signature scheme. Moreover, let M be the incidence matrix of a d-cover-free
family F = (S,B), as defined in Section 2.2. For the sake of presentation, we
first show our bounded construction. In this version of our construction, the
maximum number of signatures that can be aggregated is cols(M). We discuss
in Section 4.1 how to remove this restriction.

In our scheme, signatures for just one claim are simply signatures of the
underlying scheme Σ, whereas aggregate signatures are short vectors of signatures
of Σ. We identify each element of the universe S with a position in this vector,
and each subset B ∈ B with an individual signature of the underlying scheme Σ.

Here, we require also that the underlying scheme Σ supports claim sequences
and claim placeholders as an input to Agg and Verify, contrary to just multisets,
as in the definition of Section 2.1. Moreover, we assume that Σ supports the
empty signature λ as an input to Agg and Verify. However, these are not essential
restrictions, as for instance any normal aggregate scheme may be easily adapted
to a scheme of the modified syntax, by ignoring any order and claim placeholders,
i.e. applying elem(·) on the claim sequences before they are passed to the Agg
and Verify algorithm.

– KeyGen(1κ) creates a key pair (pk, sk) by using the KeyGen algorithm of Σ.
– Sign(sk,m) takes as input a secret key sk and a message m and outputs the

signature as given by Σ.Sign(sk,m).
– Agg(C1, C2, τ1, τ2) takes as input two exclusively mergeable claim sequences
C1 and C2 and corresponding signatures τ1 and τ2. It proceeds as follows:
1. If one or both of the claim sequences Ck (k ∈ {1, 2}) contains only one

(proper) claim c, i.e. τk is an individual signature, then σk is initialized
as τk, the corresponding signature given to Agg. Then τk is expanded to
a vector, by setting

τk[i] :=
{
σk, ifM[i, j] = 1,
λ, otherwise,

for i = 1, . . . ,m,

where j is the index of c in the claim sequence.
2. Then the signatures τ1, τ2, which are both vectors now, are aggregated

component-wise, i.e.

τ [i] = Σ.Agg(C1[Mi], C2[Mi], τ1[i], τ2[i]).
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Finally, Agg outputs τ .
– Verify(C, τ) takes as input a claim sequence C and an aggregate signature τ

for C. For each component τ [i] of τ it computes bi := Σ.Verify(C[Mi], τ [i])
and outputs the multiset of valid claims

Cvalid := elem

 ⊔
i∈[k],bi=1

C[Mi]

. (1)

We now prove the security of our scheme.

Theorem 1. If Σ is a (t, q, ε)-secure aggregate signature scheme, then the
scheme defined above is a (t′, q, ε)-secure aggregate signature scheme with list
verification, where t′ is approximately the same as t.

Proof. Let Σ′ be the scheme described above. The following argument is rather
direct. Assume that A is an adversary breaking the (t′, q, ε)-security of Σ′. We
construct an attacker B breaking the (t, q, ε)-security of Σ.
B simulates A as follows. In the setup phase B starts executing A and passes

its own input pk on to A. Whenever A makes a signature query for a message m,
B obtains the signature σ by forwarding m to the challenger. B then passes σ
to A and continues the simulation. When A outputs a claim sequence C∗ and a
signature τ∗, B checks if there is a claim c∗ = (pk,m∗) in C∗, such that m∗ was
never queried by A.

If this is not the case, then B outputs ⊥ and terminates. Otherwise, by
definition of Σ′.Verify, there must be an index i such that

Σ.Verify(C∗[Mi], τ∗[i]) = 1 (2)

and m∗ ∈ elem(C∗[Mi]). B outputs C∗[Mi] and τ∗[i]. This is a valid signature,
because of (2).

Note that B’s queries are exactly the same as A’s. Therefore, if A did not
query m∗, then neither did B. Thus, B wins exactly iff A wins, and therefore
B also has success probability ε. We also see that B makes at most q queries.
Finally, it is easy to verify that the running time of B is approximately the same
as the running time of A. ut

We now turn to proving the fault-tolerance of our scheme.

Theorem 2. Let Σ be the aggregate signature scheme with list verification
defined above. If Σ is based on a d-CFF, then it is tolerant against d errors, and
in particular, it is correct.

Proof. Let M = {(c1, τ1), . . . , (cm, τm)} be a multiset of claim and signature
pairs, which is partitioned into two multisets Mirreg and Mreg, containing the
pairs for which τi is irregular for Ci = (ci) or regular for Ci, respectively. Let
M contain at most d errors, i.e., |Mirreg| ≤ d. Moreover, let τ be a signature
that was aggregated from the signatures in M (in arbitrary order) and C the
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corresponding claim sequence. To simplify the proof, we assume without loss
of generality that C = (c1, . . . , cn), i.e., the order in the claim sequence is the
same as in the indexing of the signatures in M and it does not include any
claim placeholders ⊥. Finally, let F = (S,B) be a d-cover-free family used by the
scheme above, where S = {s1, . . . , sm} and B = {B1, . . . , Bn}.

We need to show that R ⊆ Σ.Verify(C, τ) =: V , where R is the multiset of
all the claims in Mreg. Recall that rows(M) and cols(M) denote the number
of rows and columns ofM, respectively. Let bi := Σ′.Verify(C[Mi], τ [i]) for all
i ∈ [rows(M)].

Assume for a contradiction that there is a claim c∗ that is contained strictly
more often in R than in V . Then there exists an index j∗ such that C[j∗] = c∗

and bi = 0 for all i ∈ [rows(M)] withM[i, j∗] = 1.
In the following, let I := {i ∈ [rows(M)] : M[i, j∗] = 1} be the set of these

indices I, and observe that these are the indices of all rows where the signature
for c∗ is aggregated into τ [i].

We now try to obtain a contradiction by showing that the set Bj∗ , which
corresponds to the column j∗ ofM, is covered by the sets Bk, corresponding to
the columns of the claims with irregular signatures.

For each i ∈ I, since bi = 0 and using the correctness of Σ′, there must be
some k ∈ [n] such that (ck, σk) ∈ Mirreg andM[i, k] = 1. Since M contains at
most d errors, there are at most d such indices k in total. Let K denote the
set of these indices. Note that j∗ /∈ K, since (c∗, σ∗) ∈ Mreg, according to our
assumption.

We now have established that for each i ∈ I, there exists a k with (ck, σk) ∈
Mirreg andM[i, k] = 1, and |K| ≤ d. Recall that by definition of the incidence
matrixM, we have for all i ∈ [rows(M)] and j ∈ [cols(M)]:

M[i, j] = 1 ⇐⇒ si ∈ Bj .

Restating the fact from the above paragraph using this equivalence yields that
for all i with si ∈ Bj∗ , there exists a k with si ∈ Bk, where there are at most d
distinct indices k ∈ K in total. But this means that Bj∗ ⊆

⋃
k∈K Bk, where the

union is over at most d different subsets Bk of S. This is a direct contradiction to
the d-cover-freeness of F , so our assumption must be false, and we must therefore
have R ⊆ V . ut

Compression Ratio. Let C be a claim sequence of length n ∈ N, and τ be an
aggregate signature regular for C. We assume in the following that the length of
all signatures of the underlying scheme Σ′ is bounded by a constant s and is at
least 1. Then the compression ratio of our scheme is ρ(n) = n

rows(M) , since

n

size(τ) ≤
n

rows(M) · s ∈ O(ρ(n)) and n

size(τ) ≥
n

rows(M) ∈ Ω(ρ(n)). (3)

Clearly, the compression ratio ρ(n) of our scheme is less than 1 if n < rows(M),
and the resulting aggregate signature is larger than the sum of the individual
signature sizes when only few signatures have been aggregated so far. Our scheme
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can be easily adapted to fix this behavior, by simply storing all individual
signatures instead of immediately aggregating them, until n = rows(M). When
the n+ 1-st signature is added, the individual signatures are aggregated using
the aggregation algorithm defined above. When further signatures are added, the
size of the aggregate signature remains bounded by rows(M) · s.

4.1 Achieving Unbounded Aggregation

In order to achieve unbounded aggregation, we do not need just one cover-free
family, but a sequence of cover-free families increasing in size, such that we can
jump to the next larger one, as soon as we exceed the capacity for the number of
aggregatable signatures. This sequence needs to exhibit a monotonicity property,
in order to work with our scheme, which we define next.

Definition 5. We consider a family (M(l))l of incidence matrices of corre-
sponding d-cover-free families (Fl)l := (Sl,Bl)l, where rows(l) denotes the
number of rows and cols(l) denotes the number of columns of M(l). (M(l))l
is a monotone family of incidence matrices of (Fl)l, if Sl ⊆ Sl+1, Bl ⊆
Bl+1, l ≥ 1, s.t. Sl+1 = {s1, . . . , srows(l), srows(l)+1, . . . , srows(l+1)} and Bl+1 =
{B1, . . . , Bcols(l), Bcols(l)+1, . . . , Bcols(l+1)}, where Sl = {s1, . . . , srows(l)} and Bl =
{B1, . . . , Bcols(l)}.

Note that Definition 5 implies that

M(l+1) =
(
M(l) A

0 B

)
where for i = 1, . . . , rows(l), j = cols(l) + 1, . . . , cols(l + 1)

A[i, j] =
{

1, if si ∈ Bj ,
0, otherwise

and for i = rows(l), . . . , rows(l + 1), j = cols(l) + 1, . . . , cols(l + 1)

B[i, j] =
{

1, if si ∈ Bj ,
0, otherwise.

So, eachM(l) contains all previousM(1), . . . ,M(l−1).
Now, we are able to achieve unbounded aggregation, i.e. our construction

is able to aggregate an arbitrary number of signatures, by replacing the fixed
incidence matrix M of a d-CFF in our construction with a monotone family
of incidence matrices (M(l))l. For this, a run of our aggregation algorithm
Agg on inputs C1, C2, τ1, τ2 first has to determine the smallest l, such that
cols(l) ≥ max(|C1|, |C2|) and then proceeds with the corresponding incidence
matrixM(l). Analogously, our verification algorithm Verify on inputs C, τ first
determines the smallest l such that cols(l) ≥ |C|.
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Compression Ratio. The compression ratio of our unbounded scheme is ρ(n) =
n/rows(l), where l is the minimum index such that cols(l) ≥ n.

4.2 Additional Features of Our Construction

Selective Verification. Let τ be a regular signature with corresponding claim
sequence C = (c1, . . . , cn). Assume we would want to know whether a signature
for a specific claim c∗ was aggregated into τ , but we want to avoid verifying all
the claims in C to save verification time, especially if C is large. It is a unique
feature of our fault-tolerant aggregate signature scheme that there is an additional
algorithm SelectiveVerify(C, τ, c∗) that outputs the number of occurrences of c∗
in C that have a valid signature in τ , i.e., the number of occurrences of c∗ in
Verify(C, τ), while being faster than actually calling Verify(C, τ).

Let Σ be the aggregate signature scheme with list verification defined above
and Σ′ be the underlying aggregate signature scheme. Then SelectiveVerify works
as follows. First, it determines the set J of indices j where c∗ occurs in C, i.e.
cj = c∗. Then it determines the set I := {i ∈ rows(M) : M[i, j] = 1 for a j ∈ J},
i.e. the set of indices of all rows where an individual signature for c∗ should have
been aggregated. Then, it initializes M := () and iterates over all i ∈ I, checking
if bi := Σ′.Verify(C[Mi], τ [i]) = 1. If this is the case for an i, it sets

M := M tC[Mi].

As soon as M contains |J | occurrences of c∗, SelectiveVerify skips all remaining
i ∈ I. After the loop is done, SelectiveVerify outputs the number of occurrences
of c∗ in M .

Since Σ.Verify returns all claims that are contained in a subsequence C[Mi]
with bi = 1, the output of SelectiveVerify is exactly the number of occurrences of
c∗ in Σ.Verify. SelectiveVerify therefore inherits the fault-tolerance and security
properties already proven for Σ.Verify.

In the best case, SelectiveVerify requires only one call to the underlying
verification algorithm Σ′.Verify. In the worst case, it still only requires |I| ≤∑

j∈J |Bj | calls to Σ′.Verify, where Bj is the set from the cover-free family
corresponding to column j.

Going a little further, it is even possible to create a “subsignature” for c∗
that allows everyone to check that c∗ has a valid signature without requiring the
complete claim sequence C and the complete signature τ : It is sufficient to give
C ′ :=

⊔
i∈I C[Mi] and the signatures τ [i] for i ∈ I to the verifier.

5 A Concrete Instantiation of Our Scheme

In this section, we consider a concrete construction of a d-CFF which can
be used to instantiate our generic d-fault-tolerant aggregate signature scheme.
There are several d-CFF constructions in the literature, for instance, construc-
tions based on concatenated codes [LVY01; DMR00b; DMR00a], polynomials,
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algebraic-geometric Goppa codes as well as randomized constructions [KRS99].
The following theorem gives a lower bound for the number of rows of the incidence
matrix in terms of parameter d and the number of columns. Proofs can be found
in [DR82; Für96; Rus94].

Theorem 3. For a d-CFF F = (S,B), where |S| = m, |B| = n, it holds

m ≥ c d2

log d logn

for some constant c ∈ (0, 1).

In the following construction we use for concreteness only a single incidence
matrix, but the next lemma by [LVW06] shows a generic construction to get a
monotone family of incidence matrices.

Lemma 1. If F = (S,B) and F ′ = (S ′,B′) are d-CFFs, then there exist a
d-CFF F∗ = (S∗,B∗) with |S∗| = |S|+ |S ′| and |B∗| = |B|+ |B′|.

Proof. SupposeM andM′ are the incidence matrices of d-CFFs F = (S,B) and
F ′ = (S ′,B′), respectively. Then

M∗ =
(
M 0
0 M′

)
is an incidence matrix for a d-CFF F∗ = (S∗,B∗) with |S∗| = |S| + |S ′| and
|B∗| = |B|+ |B′|. ut

For our approach we could use a deterministic construction of a d-CFF based
on polynomials like [KRS99] did in the following way and for which we propose
a generalization to the multivariate case in Appendix B.

For our d-CFF F = (S,B) let Fq = {x1, . . . , xq} be a finite field and

S := F2
q = {(xi, xj) : i, j = 1, . . . , q}, with |S| = q2.

For ease of presentation, we assume that q is a prime (as opposed to a prime
power), so we may write Fq = {0, . . . , q− 1}. We consider the set of all univariate
polynomials f ∈ Fq[X] of degree at most k, denoted by Fq[X]≤k. So,

Fq[X]≤k :=
{
akX

k + · · ·+ a1X + a0 : ai ∈ Fq, i = 0, . . . , k
}
.

We have |Fq[X]≤k| = qk+1. Now, for every f ∈ Fq[X]≤k, we consider the
subsets

Bf = {(x1, f(x1)), . . . , (xq, f(xq))} ⊂ S of size q,

consisting of all tuples (x, y) ∈ S which lie on the graph of f ∈ Fq[X]≤k, i.e. for
which f(x) = y. From this we obtain

B := {Bf : f ∈ Fq[X]≤k}, which is of size qk+1.
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For any distinct Bf , Bf1 , . . . , Bfd
∈ B it holds that

|Bf ∩Bfi | ≤ k,

since the degree of each polynomial gi := f − fi is at most k and hence they have
at most k zeros. Thus, we have∣∣∣∣∣Bf \

d⋃
i=1

Bfi

∣∣∣∣∣ ≥ q − d · k
To achieve a d-CFF with this construction, q ≥ d · k + 1 must be fulfilled.

Now, we consider the incidence matrixM of a d-CFF, which consists of |S|
rows and |B| columns. Each row corresponds to an element of S and each column
to an element of B. In the construction above each row corresponds to a tuple
(x, y) ∈ F2

q, where the order is (0, 0), (0, 1), . . . , (q − 1, q − 1). In the following,
let (xi, yi) denote the corresponding tuple for row i, i = 0, . . . , q2 − 1. We start
counting from 0 for simplicity, hence,

(x0, y0) = (0, 0), . . . , (xq−1, yq−1) = (0, q − 1),
(xq, yq) = (1, 0), . . . , (x2q−1, y2q−1) = (1, q − 1),

. . .
(xq2−q, yq2−q) = (q − 1, 0), . . . , (xq2−1, yq2−1) = (q − 1, q − 1).

Each column of the incidence matrixM corresponds to a polynomial of degree
at most k, where we decide to start with constant polynomials and end with
polynomials of degree k, i.e. f0 := 0, f1 := 1, f2 := 2, . . . , fq := X, fq+1 := X+1,
fq+2 := X + 2, . . . , f2q := 2X, f2q+1 := 2X + 1, . . . , fqk+1−1 := (q− 1)Xk + (q−
1)Xk−1 + · · ·+ (q − 1)X + q − 1.

By fj we will denote the corresponding polynomial for column j, for j =
0, . . . , qk+1 − 1, again starting from 0. Now, the incidence matrix is built as

M[i, j] =
{

1, if fj(xi) = yi,

0, otherwise.

Example. For q = 5, d = 2 and k = 2 we have a 2-CFF with

S = {(0, 0), (0, 1), . . . , (4, 3), (4, 4)}, |S| = 25.

We have
B = {Bf0 , . . . , Bf124},

since |F5[X]≤2| = 53 = 125, where

Bfj
= {(0, fj(0)), (1, fj(1)), . . . , (4, fj(4))}, |Bfj

| = 5, j = 0, . . . , 53 − 1
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and f0 := 0, f1 := 1, . . . , f124 := 4X2 + 4X + 4. Thus, we obtain our incidence
matrixM:


0 1 . . . X . . . 4X2 + 4X + 4

(0, 0) 1 0 . . . 1 . . . 0
(0, 1) 0 1 . . . 0 . . . 0
...

...
...

. . .
...

. . .
...

(4, 4) 0 0 . . . 1 . . . 1

 =M

Remark. With this univariate polynomial-based construction of a d-CFF it is
very easy to generate our incidence matrix or only some parts of it, which we need
for our verification algorithm or if we want to check some information separately.

If, for example, one is interested to verify the validity of only one single
claim–signature pair (cj , σj) in an aggregate signature, it is not necessary to
generate the whole matrix but only the rows where the related column j has
1-entries. So, you have to know which polynomial corresponds to column j.

For this, we can use the fact, that each positive number n = 0, . . . , qk+1 − 1
can be written as ak · qk +ak−1 · qk−1 + · · ·+a0, where ak, . . . , a0 ∈ {0, . . . , q−1}.
So, each n corresponds to a (k + 1)-tuple denoted by (a(n)

k , . . . , a
(n)
0 ). For the

sake of convenience, we start to count the rows and columns of our matrix by
0, as before. Thus, for column j = 0, . . . , qk+1 − 1 we assign the polynomial
fj = a

(j)
k Xk + · · ·+ a

(j)
0 .

Analogously, for each row i = 0, . . . , q2−1, we assign the tuple (b(i)
1 , b

(i)
0 ) ∈ F2

q ,
where i = b

(i)
1 · q + b

(i)
0 . Let I ′j ⊂ {0, . . . q2 − 1} be the subset of all rows i′ where

fj(b(i′)
1 ) = b

(i′)
0 . So, it suffices to generate only the rows i′ ∈ I ′j to verify the

validity of σj . To get the 1-entries of these rows, you have to check for each i′ ∈ I ′j
which polynomials f ∈ Fq[X]≤k fulfill f(b(i′)

1 ) = b
(i′)
0 . For all arbitrary, but fixed

values ak, . . . a1 ∈ {0, . . . , q − 1} compute an appropriate a0. This results in qk
polynomials, accordingly columns, per row. If the coefficients of the appropriate
polynomials are known then we can use them to compute the number of the
corresponding columns with 1-entries.

Compression Ratio of Our Bounded Scheme. If our bounded scheme is instanti-
ated with this CFF, and we assume that the length of signatures of the underlying
scheme Σ′ is bounded by a constant s, then, as shown in (3), the compression
ratio is

ρ(n) = n

rows(M) = n

|S|
= n

q2 .

For n = |B|, we therefore have

ρ(n) = |B|
|S|

= qk+1

q2 .

Since q ≥ dk+1, we have that |B| grows exponentially in k, whereas |S| grows
only quadratically in k. Hence, |B| is exponential in |S|, or, stated differently, |S|
is logarithmic in |B|.
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Compression Ratio of Our Unbounded Scheme. When our unbounded scheme is
instantiated with the monotone family of CFFs obtained by fixing an incidence
matrixM and repeatedly using Lemma 1 onM, then the asymptotic compression
ratio is ρ(n) = 1, since

n

rows(l) ≤
cols(l)
rows(l) = cols(M)

rows(M) for all l,

which is constant. Therefore, the size of an aggregate signature is linear in the
length of the claim sequence.

However, if we assume that all signatures of the underlying scheme Σ′ have a
size bounded by s, then the concrete size of an aggregate signature is at most

rows(l)s ≤ l rows(M)s
≤ (n/cols(M) + 1) rows(M)s

=
(

rows(M)
cols(M) n+ rows(M)

)
s ,

since rows(l) = l rows(M) for the construction of the monotone family of CFFs,
and l = dn/cols(M)e ≤ n/cols(M) + 1.

Therefore we see that the length of the aggregate signature is linear in n, but
the factor rows(M)/cols(M) can be made arbitrarily small by choosing a proper
CFF, such as the one described above.

It is an interesting open problem to construct an unbounded fault-tolerant
scheme with better compression ratio, for example by finding a better monotone
family of CFFs. A generalization of the above construction to multivariate poly-
nomials, which might be advantageous in some scenarios, is given in Appendix B.

Example Instantiations. Table 1 shows parameters of several cover-free families
based on the construction described in this section. For each of the rows given
there, there is an instance of our fault-tolerant signature scheme that can compress
signatures for up to n claims to a vector of m aggregates, while tolerating up to
d errors. (The numbers q and k are needed for the instantiation of the CFF, but
do not immediately reflect a property of our fault-tolerant aggregate signature
scheme.) Of course, our scheme can be instantiated with different parameters
and completely different constructions of CFFs as well.
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A Discussion on Signature Size

A typical requirement for aggregate signatures is that the length of an aggregate
signature is the same as that of any of the individual signatures [HSW13]. Also,
the number of signatures that can be aggregated into a single signature should
be unbounded.

We show that these goals are mutually exclusive for an “ideal” fault-tolerant
aggregate signature schemes if one wishes to maintain a constant d ≥ 1.

Proposition 1. Let n, d ∈ N, and Σ be a d-fault-tolerant signature scheme.
Assume that Σ.Verify(C, τ) = R for all claim sequences C and corresponding
signatures τ constructed from an arbitrary multiset M = {(c1, τ1), . . . , (cn, τn)}
of n claim–signature pairs and containing at most d errors, and where R is the
multiset of all claims ci accompanied by a regular signature τi in M . Then we
have |τ | ≥ Ω(log2 n) as a function of n, where d is considered constant, and |τ |
is the length of the signature τ in bits.

Proof. Call an output O of Σ.Verify in accordance with C, if O is a sub-multiset
of elem(C) and |O| ≥ |elem(C)| − d.

Now, let n, d,Σ,C, τ,M,R be as in the theorem statement. Clearly, since we
assumed that Verify always outputs R, Σ.Verify’s output must be in accordance
with C. For a fixed number of errors i ∈ {0, . . . , d}, there are

(
n
i

)
distinct outputs

in accordance with C. Thus, for up to d errors, there are up to

s(n) :=
d∑
i=0

(
n

i

)
≥
(
n

d

)
≥ (n− d)d

d!

distinct outputs in accordance with C.
Σ.Verify must use τ to determine the correct output R among the set of

outputs in accordance with C. If the signature size |τ | is at most l ∈ N bits,
then Σ.Verify can distinguish at most 2l cases based on τ . Thus, we must have
2l ≥ s(n), or, equivalently,

l ≥ log2 s(n) ≥ log2
(n− d)d

d! = d log2(n− d)− log2(d!) ∈ Ω(log2 n) .

This concludes the proof. ut

Note that the assumption that Σ.Verify(C, τ) = R is somewhat artificial:
We assume an ideal d-fault-tolerant signature scheme, where Σ.Verify always
“magically” outputs the correct multiset R, when called with a claim sequence
containing n claims.

On the one hand, Σ.Verify(C, τ) ⊇ R is required by the d-fault-tolerance of Σ.
Intuitively, one would expect the other Σ.Verify(C, τ) ⊆ R direction to follow
from the security of Σ. However, this does not appear to follow in general, due
to two reasons:
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The first reason is that security is only required against adversaries that
have running time polynomial in κ, i.e. adversaries that can create at most a
polynomial number of claims.

The second reason is that if for two fixed C, τ there is a claim c = (pk,m) in
Σ.Verify(C, τ) that is not in R, then this does only violate the security definition
if the challenge public key randomly drawn by the security experiment happens
to be equal to pk by chance.

B Cover-Free Families Using Multivariate Polynomials

For our polynomial based construction, we can also use multivariate polynomials
f ∈ Fq[X1, . . . , Xt], t ∈ N, of degree at most k. Each multivariate polynomial
f with degree ≤ k consists of monomials in terms of ai1,...,itX

i1
1 · · ·X

it
t , where

ai1,...,it ∈ Fq and i1 + · · ·+ it ≤ k. We denote by Fq[X1, . . . , Xt]≤k the set of all
multivariate polynomials f ∈ Fq[X1, . . . , Xt] of degree at most k, i.e.

Fq[X1, . . . , Xt]≤k :=

 ∑
i1+···+in≤k

ai1,...,itX
i1
1 · · ·X

it
t : ai1,...,it ∈ Fq

.
For the maximal number of monomials of degree exactly k, we obtain

(
t+k−1
k

)
.

Hence, for degree at most k, we have

k∑
i=0

(
t+ i− 1

i

)
=
(
t+ k

k

)
, and hence, |Fq[X1, . . . , Xt]≤k| = q(

t+k
k ).

We can now define

Bf :=
{

(x, f(x)) : x ∈ Ftq
}
, with |Bf | = qt,

and
B := {Bf : f ∈ Fq[X1, . . . , Xt]≤k}, with |B| = q(

t+k
k ).

Now, we set
S := Ft+1

q , which is of size qt+1.

The number of zeros is at most k ·qt−1 and thus, for different Bf , Bf1 , . . . , Bfd
∈ B

it holds ∣∣∣∣∣Bf \
d⋃
i=1

Bfi

∣∣∣∣∣ ≥ qt − d · k · qt−1.

To achieve a d-CFF with this construction, qt ≥ d · k · qt−1 + 1 must be fulfilled.
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Compression Ratio of Our Bounded Scheme. If our bounded scheme is instanti-
ated with this multivariate CFF, and we assume for simplicity, that the size of
signatures of the underlying scheme Σ′ is bounded by a constant, then as shown
in (3), the compression ratio is

ρ(n) = n

rows(M) = n

|S|
= n

qt+1 .

For n = |B|, we therefore have

ρ(n) = |B|
|S|

= q(
t+k

k )
qt+1 .

Compression Ratio of Our Unbounded Scheme. By using Lemma 1 onM we can
also obtain a monotone CFF based on multivariate polynomials and use it to
instantiate our unbounded scheme. The discussion about the compression ratio
of the unbounded scheme in Section 5 also applies to this instantiation.
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