
1

Speed and Area Optimized Parallel Higher-Radix
Modular Multipliers

Khalid Javeed, Xiaojun Wang

Abstract—Modular multiplication is the fundamental and
compute-intense operation in many Public-Key crypto-systems.
This paper presents two modular multipliers with their efficient
architectures based on Booth encoding, higher-radix, and Mont-
gomery powering ladder approaches. Montgomery powering
ladder technique enables concurrent execution of main operations
in the proposed designs, while higher-radix techniques have been
adopted to reduce an iteration count which formally dictates a
cycle count. It is also shown that by an adopting Booth encoding
logic in the designs helps to reduce their area cost with a
slight degradation in the maximum achievable frequencies. The
proposed designs are implemented in Verilog HDL and synthe-
sized targeting virtex-6 FPGA platform using Xilinx ISE 14.2
Design suite. The radix-4 multiplier computes a 256-bit modular
multiplication in 0.93 µs, occupies 1.6K slices, at 137.87 MHz in a
cycle count of dn/2e+2, whereas the radix-8 multiplier completes
the operation in 0.69 µs, occupies 3.6K slices, achieves 123.43
MHz frequency in a cycle count of dn/3e+4. The implementation
results reveals that the proposed designs consumes 18% lower
FPGA slices without any significant performance degradation as
compared to their best contemporary designs.

Index Terms—Finite field, elliptic curve cryptography (ECC),
interleaved multiplication, public key cryptography (PKC).

I. INTROUCTION

Crypto-systems based on public-key cryptography (PKC)
[1], [2], [3], [4] are structured using finite field arithmetic
primitives such as modular addition, subtraction, multiplica-
tion, and inversion. Among these primitives, modular multi-
plier is the one that is computationally intensive and therefore
it must be carefully optimized in order to boost a performance
of the associated system. Dedicated hardware architectures
have been the most optimum choice for high-performance
systems. Field Programmable Gate Array (FPGA) becomes
a very popular implementation platform to accelerate many
tedious operations because of its low cost, reconfigurability,
short design cycle, and many others factors.

Several independent hardware architectures have been pro-
posed to speed-up a modular multiplication primitive in order
to reduce the computational complexities of an overall secu-
rity infrastructure in many communication networks. Modular
multiplication of operands x, y over a modulus M (denoted
as z = x × y modulo M) is a two step process: inte-
ger multiplication and reduction modulo M . The reduction
operation typically requires a division operation which is
a very compute-intense operation, therefore many strategies

K. Javeed is with the School of Electronic Engineering, Dublin City
University, Dublin, Ireland (email: khalid.javeed2@mail.dcu.ie)

X. Wang is with the School of Electronics Engineering, Dublin City
University, Dublin, Ireland (email: xiaojun.wang@dcu.ie).

have been proposed to lower the computational intensity of the
reduction step. Generally these can be lined-up in three main
categories: designs over standard primes [5], designs based
on Montgomery multiplication method [6] and designs over
interleaved multiplication method [7].

II. BACKGROUND AND RELATED WORK

In order to lower a computational intensity of the reduc-
tion step the National Institute of Standard and Technology
(NIST) has recommended five specialized primes M of size
(M192,M224,M256,M384,M512). These primes have a spe-
cial structure (very close to the power of 2) i.e., 2a ± 2b ± 1,
and are called pseudo-Mersenne primes. Typically a modular
multiplication operation when computed over this prime form
results in high performance and lower computational cost.
However, as a modulus value is pre-defined, which results
in a very-rigid structure not able to opt for any other prime
value, hence lacks flexibility. The designs reported in [8], [9]
exploited the special structure of NIST recommended primes.
The architecture in [9] is developed to support NIST primes
M224 and M256 while [8] supports all of five NIST primes.
It occupies 8340 slices and 259 dedicated DSPs blocks on
Virtex-6 FPGA platform and performs the respective opera-
tion between 80-200 ns. These implementations have limited
flexibility which may not be suited to many applications.

Montgomery multiplication method converts the required
division operation into cheap shift and addition operations.
However, to take leverage of the Montgomery method one
needs to transform operands and a result from normal to
Montgomery representation and vice versa before and after
the original operation. The method is suitable where an overall
back and forth conversion overhead is negligible as compared
to the main operation cost e.g., in exponentiation algorithms.
Montgomery multiplication algorithm based designs are re-
ported in [10], [11]. Among these [11] is a based on radix-
4 and [10] incorporated radix-16 techniques. Koç et al. in
[12] discussed several possible strategies on basis of their
performance and implementation cost.

Interleaved multiplication method is proposed by Blakley
[7] in 1983. The method is based on iterative addition and
reduction of partial products. Partial products accumulation
and intermediate results reduction are integrated in a way to
eliminate the final division. The idea is to reduce intermediate
results below a modulus value in each iteration so that the
final division can be omitted. The algorithm starts traversing a
multiplier from most-significant-bit (MSB) to least-significant-
bit (LSB). Several modifications and hardware architectures

2

· · ·
0,±x,±2x︷ ︸︸ ︷
×× ×× 0︸ ︷︷ ︸

0,±x,±2x

Fig. 1. BE radix-4 scheme

have been reported [13], [14], [15], [16], [17], [18]. In [17]
a faster interleaved modular multiplier based on Montgomery
and Barrett reduction techniques is reported. Its 130-nm ASIC
implementation runs at a maximum frequency of 320 MHz
and computes one 256-bit modular multiplication in 0.05 us.
Ghosh et al in [16] reported a radix-2 parallel interleaved
modular multiplier. Its Virtex-II Pro FPGA implementation
consumes 3475 slices with a latency of 3.2 us and takes n
clock cycles to a perform n-bit modular multiplication.

A. Contribution

The main objective of this work is to design efficient
modular multipliers that are not only optimized for speed
and area, but also have a flexibility to adopt any value for a
prime M . The main contributions of this work are summarized
below.
• A Booth encoded Montgomery powering ladder based

radix-4 modular multiplier is presented. Radix-4 method
is adopted to reduce iteration count (partial products),
Montgomery powering ladder based strategy is incorpo-
rated to perform main operations concurrently, and Booth
recoding is used to optimize the design space complexity.

• Then, the same idea is extended to a radix-8 Booth
encoded Montgomery powering ladder based modular
multiplier.

• The radix-4 version of the multipliers performs a n-bit
modular multiplication in dn/2e+2 clock cycles, whereas
the radix-8 version executes the operation in dn/3e + 4
for the same bit length.

• In both of the proposed modular multipliers addition and
subtraction is performed by the available fast carry chains
(FCC) on FPGA platform.

The rest of this paper is structured as follows: Section
III presents our proposed radix-4 and radix-8 Booth en-
coded Montgomery Powering ladder based modular multipli-
ers. Hardware architectures of the multipliers are presented
in section IV. Section V presents implementation results and
performance evaluation to the other related designs, while the
paper is concluded in section VI.

III. PROPOSED MODULAR MULTIPLIERS

Typical Higher-radix based multipliers produce faster results
because of their lower iteration count as compared to their
bit-level implementation. However, these techniques deterio-
rate the critical path, which limit their maximum achievable
frequencies. Several techniques have been proposed to reduce
inner complexities that shortened the critical path of higher-
radix multipliers. We introduced modifications to the Inter-
leaved Multiplication (IM) algorithm.

Input: x, y,M : y := [1, yn−2, ..., y0]
Output: xy mod M

1 r1 := x and r2 := x2

2 for i := n− 2 downto 0 do
3 if (yi := 1) then
4 r1 := r1.r2 and r2 := (r2)

2

5 else
6 r2 := r1.r2 and r1 := (r2)

2

7 return r1
Algorithm 1: The Montgomery Powering Ladder

Input: M,x, y : 0 ≤ x, y ≤M
Output: z = x× y mod M

1 z := 0, R1 := x, R2 := 2x mod M
2 for i := 0 downto n− 1; i := i+ 2 do
3 if (y(i,i+1,i+2)) := ({000}|{111}) then
4 v(i) := 0
5 else if (y(i,i+1,i+2)) := ({001}|{010}{101}|{110})

then
6 v(i) := R

(i)
1

7 else
8 v(i) := R

(i)
2

9 R
(i+2)
1 := 4R

(i)
1 mod M

10 R
(i+2)
2 := 4R

(i)
2 mod M

11 if (BEctr := 1) then
12 z(i+2) := z(i) − v(i) mod M
13 else
14 z(i+2) := z(i) + v(i) mod M
15 return z(i)

Algorithm 2: BE radix-4 IMML Modular Multiplication

A. BE Radix-4 IMML Multiplier

A Booth encoded Montgomery powering ladder based
radix-4 multiplier (BE radix-4 IMML) is a modification of
the interleaved modular multiplication (IM) algorithm which is
also known as binary double-and-add algorithm. Montgomery
powering ladder (ML) [19] technique was initially proposed
to speed-up a square and multiply method of a modular
exponentiation. The ML method given in Alg. 1 eliminates
conditional branch evaluation and enables parallel execution
of a modular multiplication and modular squaring operations
as mentioned in steps 4 and 6 of the Alg. 1. Both of these
operations are performed at every iteration of the algorithm
irrespective of an exponent bit yi. Serial Booth encoded radix-
4 and radix-8 IM multipliers are proposed in [13] and radix-4
and ML based parallel multiplier is reported in [18]. Booth
encoding technique was first suggested by Booth [20] and later
on modified by Macsorley [21]. The modified radix-4 Booth
encoding technique is shown in Fig. 1, where it appends zero
to the right of least significant bit (LSB) of a multiplier y.
In the case of radix-4, it is operated on triplets with one bit
overlap starting from y − 1 and proceeds towards the most
significant bit (MSB), Possible partial products in case of BE
radix-4 due to scanning of a triplet of y are {0,±1,±2}x for a
multiplicand x. Our proposed modification to the IM algorithm
on basis of BE, radix-4, and ML techniques is given in Alg.

3

TABLE I
BOOTH ENCODED RADIX-4 MONTGOMERY POWERING LADDERING BASED PARALLEL MULTIPLIER

z := 0 R1 := x R2 := 2x mod M

i = 0 z(i+2) := z(i) ± v(i) mod M R
(i+2)
1 := 4R

(i)
1 mod M R

(i+2)
2 := 4R

(i)
2 mod M

· · · ·
⇓ ⇓ ⇓ ⇓
· · · ·

i = dn/2e z(i+2) := z(i) ± v(i) mod M R
(i+2)
1 := 4R

(i)
1 mod M R

(i+2)
2 := 4R

(i)
2 mod M

TABLE II
BOOTH ENCODED RADIX-8 MONTGOMERY POWERING LADDERING BASED PARALLEL MULTIPLIER

z := 0 R1 := x R2 := 2x mod M R3 := 3x mod M R4 := 4x mod M

i = 0 z(i+3) := z(i) ± v(i) mod M R
(i+3)
1 := 8R

(i)
1 mod M R

(i+3)
2 := 8R

(i)
2 mod M R

(i+3)
3 := 8R

(i)
3 mod M R

(i+3)
4 := 8R

(i)
4 mod M

· · · · · ·
⇓ ⇓ ⇓ ⇓ ⇓ ⇓
· · · · · ·

i = dn/3e z(i+3) := z(i) ± v(i) mod M R
(i+3)
1 := 8R

(i)
1 mod M R

(i+3)
2 := 8R

(i)
2 mod M R

(i+3)
3 := 8R

(i)
3 mod M R

(i+3)
4 := 8R

(i)
4 mod M

· · ·
︷ ︸︸ ︷
×××××× 0︸ ︷︷ ︸

Fig. 2. BE radix-8 scheme

2. The modified BE radix-4 IMML algorithm scans triplets of
a multiplier y from LSB to MSB and instead of shifting an
accumulator contents it shifts partial products in each iteration.
The Alg. 2 is comprised of several independent steps such as
9, 10, 12, and 14. In each iteration possible partial products
(R1, R2) are two-bit left shifted and are either modular added
or subtracted from an accumulator (z) contents. Table I depicts
an execution flow of the ALg. 2, note that a partial product 2x
mod M needs to be pre-computed. Due to processing two bits
of a multiplier in each iteration, the total number of iterations
in the given algorithm is dn/2e, where n is bit length of a
modulus M i.e., n = log2 M .

B. BE Radix-8 IMML Multiplier

A modified BE radix-8 IMML algorithm is given in Alg. 3.
A BE radix-8 technique is shown in Fig. 2, where it scans a
quadruplet of a multiplier y with a single bit overlap between
adjacent quadruplets. Possible partial products in this case are
{0,±1,±2±3,±4}x. The generation of ±3x,±4x is a major
difference to the BE radix-4 IMML algorithm.

The Alg. 3 is comprised of six main steps i.e., 14, 15, 16, 17,
19, and 20. In the steps 14, 15, 16, and 17 three-bit left-shift
modulo M operation is performed on their respective partial
products, while in the steps 15 and 17 modular addition or
subtraction of a respective partial product is performed from an
accumulator z as detailed in Table II. Note that due to the ML
method, there is hardly any data dependency among all these
operations, therefore these can be executed concurrently. In the
case of BE radix-8 IMML method, the iteration count is further
reduced to dn/3e, however it requires more design space due
to several parallel units to execute the above mentioned steps
which would be discussed in the next section.

Input: M,x, y : 0 ≤ x, y ≤M
Output: z = x× y mod M

1 z := 0, R1 := x, R2 := 2x mod M
2 R3 := 3x mod M , R4 := 4x mod M
3 for i := 0 downto n− 1; i := i + 3 do
4 if (y(i,i+1,i+2,i+3)) := ({0000}|{1111}) then
5 v(i) := 0
6 else if (y(i,i+1,i+2,i+3)) := ({0001}|{0010}{1101}|{1110}) then
7 v(i) := R

(i)
1

8 else if (y(i,i+1,i+2,i+3)) := ({0011}|{0100}{1011}|{1100}) then
9 v(i) := R

(i)
2

10 else if (y(i,i+1,i+2,i+3)) := ({0101}|{0110}{1001}|{1010}) then
11 v(i) := R

(i)
3

12 else
13 v(i) := R

(i)
4

14 R
(i+3)
1 := 8R

(i)
1 mod M

15 R
(i+3)
2 := 8R

(i)
2 mod M

16 R
(i+3)
3 := 8R

(i)
3 mod M

17 R
(i+3)
4 := 8R

(i)
4 mod M

18 if (BEctr := 1) then
19 z(i+3) := z(i) − v(i) mod M
20 else
21 z(i+3) := z(i) + v(i) mod M

22 return z(i)

Algorithm 3: BE radix-8 IMML Modular Multiplication

IV. HARDWARE ARCHITECTURES

Hardware architectures of the presented BE radix-4 IMML
and BE radix-8 IMML algorithms mentioned in Alg. 2, Alg.
3 are shown in Fig. 3(a) and Fig. 4(a), respectively.

The BE radix-4 IMML architecture consists of three main
blocks EU1, EU2 and A/S. In addition to these main blocks
there is a BE block, three n-bit data registers R1, R2, Z
and one shift register (SR). Blocks EU1 and EU2 are exactly
identical, and perform two-bit left shift mod M operation i.e.,
4Ri mod M . The A/S block is responsible for performing
addition/subtraction mod M operation i.e., x ± y mod M .
Internal architectures of the blocks EUi, A/S and BE are shown
in Fig. 3(c), Fig. 3(d) and Fig. 3(e), respectively. Each EUi

block consists of two identical smaller A1 blocks cascaded in
series, where each of the A1 blocks performs single-bit left
shift mod M operation i.e., 2x mod M operation. The BE
block accepts three respective multiplier bits, yi, yi+1, yi+2

and outputs a single-bit control signal (BEctrl) for the A/S
block. Initially, the SR register is loaded with multiplier y

4

EU1
R1 EU2

R2

A/S

0

z

BE

+

<<

x

2x mod M

A1

A1

A1

EU1
EU2

BE

(a)

(b) (c)

(d)

(e)

.

.
y
.
.

012

0

n

SR

x

4x mod M
BE ctrl

M

CIN

~CIN

C1

C1

C2

CIN

0

1

0

1

+

+

Cout

1 01 0

0 1

x y

(x ± y) mod M

Cout

A/S
M 1

01

yi+1

yi+2

yi

yi+1

Fig. 3. BE radix-4 IMML multiplier hardware architecture

PU1, PU2, PU3, PU4

(b)

PU3
R3 PU4

R4

A/S

0

z

BE

(a)

PU2
R2PU1

R1

x 8x mod p

BE

(c)

.

.
y
.
.

0

n

SR

01234

A1 A1 A1

yi+1

yi
yi+1

yi+2 yi+2 yi+3

Fig. 4. BE radix-8 IMML multiplier hardware architecture

which performs two-bit right shift of y in each clock cycle.
Steps 9, 10 are performed by the blocks EU1 and EU2 while
steps 12 and 14 are performed by the A/S block. In each
iteration of the algorithm all these steps are executed on their
respective blocks concurrently. It is worth mentioning that at
the start an operand x is loaded to register R1, however register
R2 needs to be loaded with the 2x mod M value, which is
done by a pre-computation process not shown in Fig. 3. In
the pre-computation process any of the EUi blocks can be
configured to compute the 2x mod M value which is then
saved in register R2. This pre-computation process does not
incur any additional combinational blocks and it only costs
an extra two clock cycles overhead. As the total number of
iterations in the BE radix-4 IMML algorithm in Alg. 2 is
dn/2e and the proposed architecture performs each iteration
in a single clock cycle, therefore the latency of the proposed
design is dn/2e + 2 clock cycles, where an extra two cycles
are consumed in the pre-computation process. Note that the
critical path of the BE radix-4 IMML is comprised of an A/S
block and a multiplexer, overall which is comprised of four

multiplexers and two n-bit adders.
Similarly, the BE radix-8 IMML architecture in Fig. 4(a) is

comprised of four identical processing units PU1−4 and the
same A/S block. In addition to these it also contains some
data registers R1−3 and Z, a BE block and SR. Each PUi

unit performs three-bit left shift mod M operation i.e., 8x
mod M , and consists of the three A1 units cascaded in series
fashion as shown in Fig. 4(b). The BE block as shown in
Fig. 4(c) now operates on four respective multiplier bits i.e.,
yi, yi+1, yi+2, yi+3 and generates a control signal for the A/S
block. Note that for the BE radix-4 IMML we need to have
a pre-computed value (2x mod M), however in the BE radix-
8 IMML registers R1, R2, R3, R4 must be pre-loaded with
an operand x and 2x mod M , 3x mod M , and 4x mod
M , respectively. The values 2x mod M and 4x mod M are
computed by the block PU1 in a single clock cycle, then the
registers R2 and R3 are updated with the results. The 3x mod
M value is calculated in the A/S block by selecting appropriate
inputs (R1, R3) and the result is stored in the register R3 in
the next clock cycle. The pre-computation process in the BE

5

TABLE III
MODULAR MULTIPLIERS IMPLEMENTATION COMPARISON IN FPGA

Design Platform M size Area (slices) LUTsb S.regc Freq. (MHz) Time (us) TPd (Mb/s) AT/be

Radix-2 IM [7]
∮

Virtex 6 256 1012 2900 777 125 2.03 126 8.02
Radix-2 PIM [16] Virtex II pro 256 3475 - - 80 3.02 84.76 40.99

Radix-2 PIM [16]
∮

Virtex 6 256 1190 3207 1075 174.1 1.48 172.9 6.879
BE Radix-4 IM [13] Virtex 6 256 1375 4630 - 86.6 1.49 171.8 7.42
BE Radix-8 IM [13] Virtex 6 256 1739 5657 - 71 1.21 211 8.21
Radix-4 IMML [18] Virtex 6 256 1985 6300 2187 166 0.78 328 6.04

224 1745 5367 1883 167.6 0.68 329.4 5.29
192 1519 4641 1625 168.7 0.57 336.84 4.52

Radix-8 IMML [18]
∮

Virtex 6 256 4428 13880 2756 124.4 0.69 79.2 11.93
224 4014 12737 2436 127.6 0.59 379.66 10.57
192 3631 10520 2116 132.6 0.48 400 9.07

BE Radix-4 IMML Virtex 6 256 1631 4935 1382 137.87 0.93 275.26 5.9
224 1496 4427 1221 142.7 0.79 283.54 5.27
192 1395 3846 1057 145.7 0.66 290.9 4.8
160 1042 3184 910 147 0.54 296.2 3.51

BE Radix-8 IMML Virtex 6 256 3622 10284 1952 123.43 0.696 367.81 9.84
224 3326 9115 1727 125.7 0.61 367.2 9.05
192 2745 7728 1502 127 0.50 384 7.14
160 2306 6334 1276 128.4 0.42 609.5 6.05∮

Our implementation, bLook-up-tables, cSlice registers, dThroughput, eSlice area times product per bit

radix-8 IMML multiplier is performed in 4 clock cycles. As the
total number of iterations in the Alg. 3 is dn/3e, therefore the
proposed architecture computes n-bit modular multiplication
operation in dn/2e+ 4 clock cycles.

V. IMPLEMENTATION AND RESULTS

The proposed BE radix-4 and BE radix-8 IMML multipliers
have been coded in Verilog HDL and Xilinx ISE 14.2 Design
Suite is used for synthesis, mapping, placement and routing
purposes targeting Virtex-6 FPGA device XCV6LX550. Xilinx
ISIM simulator has been used for behavioral simulation of the
designs. Addition and subtraction is performed through in-built
fast carry chains of the device.

Table IV lists PAR (post placement and routing) results of
the designs against four different field sizes (160, 192, 224,
256), where the BE radix-4 IMML multiplier computes a 256-
bit modular multiplication operation in 0.93 us, consuming
1985 slices (6300 LUTs) whilst running at 137.87 MHz max-
imum frequency. The BE radix-8 IMML multiplier completes
the same bit length operation in 0.696 us, occupies 3622 slices
(10284 LUTs). A throughput (TP) of our BE radix-4 IMML
is 275.26 ×106 bits per second (bps), whereas the BE radix-8
IMML has a TP of 367.8 ×106 bps. Slice area × time per
bit (AT/b) values of the BE radix-4 and BE radix-8 IMML
designs are 5.9, 9.84 respectively.

The same Table also demonstrates performance metrics of
several other related designs based on the IM algorithm. It
is important to mention that to perform a fair and conclusive
performance comparison, Table IV only demonstrates designs
based on IM algorithm. Our radix-2 implementation of the IM
algorithm [7] on the same platform takes 2.03 us to perform
a 256-bit modular multiplication operation and occupies 1012
slices (2900 LUTs) whilst achieving a 125 MHz maximum
frequency. It is 54% and 66% slower than the proposed BE
radix-4 IMML and BE radix-8 IMML multipliers, respectively.
The design in [16] is also based on radix-2 implementation of

the algorithm on Virtex-II pro, where it computes the operation
in 3.02 us and occupies 2475 slices. A direct comparison
among our designs and [16] is not conclusive, therefore we
implement the design on Virtex-6, where it takes 1.48 us,
occupies 1190 slices and achieves 171.8 MHz maximum
frequency. It is 1.59 and 2.12 times slower as compared to
the proposed BE radix-4 and BE radix-8 IMML modular
multipliers respectively.

The BE radix-4 and BE radix-8 based designs reported
in [13] are not using ML method, hence, they execute the
main operations of IM algorithm in a serial fashion. Though
these designs consumes the same amount of clock cycles to
perform a modular multiplication operation, however due to
serial nature of the designs they are not able to achieve lower
critical path delays as compared to the proposed designs. Our
BE radix-4 IMML design is 1.6 times faster than the BE radix-
4 IM design, while the BE radix-8 IMML design is 1.74 times
faster than the BE radix-8 IM design on the same platform.

In [18] radix-4 IMML design is proposed and its imple-
mentation on Virtex-6 platform takes 0.77 us, occupies 1985
slices, and runs at a maximum frequency of 166 MHz. It is
0.16 times faster than our BE radix-4 IMML design, however it
consumes 0.18 times more FPGA slices. If the same idea [18]
is even extended to radix-8 then it requires 4428 slices, which
is 1.2 times more than our BE radix-8 IMML design without
any significant speed improvement. In Fig. 5 we present
comparisons among the above mentioned designs on the basis
of throughput versus slice area × time per bit value (AT/b)
for a field size of 256-bit, which depicts that our BE radix-4
IMML design has the lowest area-delay product while the BE
radix-8 IMML has the same throughput and much lower area-
delay product as compared to the Radix-8 IMML [18]

∮
. There-

fore, by combining BE and Montgomery powering ladder
approaches to include a parallelism in the IM algorithm result
in speed and area optimized modular multipliers. Both of the
presented architectures are highly flexible to perform modular

6

��

���

����

����

����

����

����

����

����

�� �� �	 �
 �� ��� ��� ��� ���

�

��
�
�

�
�
��
��
�
�
��

����

our

[26]

[23] [19]

 [7]

our [26]

 [19]

Fig. 5. Throughput vs AT/b for different designs

multiplication for any prime number M , which demonstrates
that these designs are very much compatible to build many
crypto-processors based on elliptic curve cryptography (ECC)
using several different arbitrary curves [22].

VI. CONCLUSION
This paper has introduced Booth encoded radix-4 and radix-

8 Montgomery powering ladder based modular multipliers.
Higher-radix approaches have been used to decrease iteration
count, which formally is the total number of required clock
cycles to compute a modular multiplication operation. We
noticed that using the Montgomery powering ladder approach
reduces inner multiplier complexities and enables parallel
execution of the main operations. Furthermore, we explored
that incorporating Booth encoding logic helps to reduce design
space complexity with a slight overhead in the critical path
as compared to designs not using Booth recoding logic.
Radix- 4 Booth encoded Montgomery powering ladder version
computes a n-bit modular multiplication operation in dn/2e+2
clock cycles and achieves a maximum frequency of 137.87
MHz, while the radix-8 version takes dn/3e+ 4 clock cycles
and achieves a maximum frequency of 123.43 MHz for a field
size of 256-bit.

VII. ACKNOWLEDGMENT

This work is funded by the Higher Education Authority
(HEA) Ireland, under Telecommunication Graduate Initiative
(TGI) scheme.

REFERENCES

[1] W. Diffie and M. E. Hellman, “New directions in cryptography,”
Information Theory, IEEE Transactions on, vol. 22, no. 6, pp. 644–654,
1976.

[2] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of computation,
vol. 48, no. 177, pp. 203–209, 1987.

[3] V. S. Miller, “Use of elliptic curves in cryptography,” in Advances in
Cryptology-CRYPTO85 Proceedings. Springer, 1986, pp. 417–426.

[4] R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and Public-Key cryptosystems,” Communications of the ACM,
vol. 21, pp. 120–126, 1978.

[5] P. FIPS, “186-2. digital signature standard (dss),” National Institute of
Standards and Technology (NIST), 2000.

[6] P. L. Montgomery, “Modular multiplication without trial division,”
Mathematics of computation, vol. 44, no. 170, pp. 519–521, 1985.

[7] G. Blakely, “A computer algorithm for calculating the product AB
modulo M,” IEEE Transactions on Computers, vol. 32, no. 5, pp. 497–
500, 1983.

[8] H. Alrimeih and D. Rakhmatov, “Pipelined modular multiplier sup-
porting multiple standard prime fields,” in Application-specific Systems,
Architectures and Processors (ASAP), 2014 IEEE 25th International
Conference on, June 2014, pp. 48–56.

[9] T. Güneysu and C. Paar, “Ultra high performance ECC over NIST primes
on commercial FPGAs,” in Cryptographic Hardware and Embedded
Systems–CHES 2008. Springer, 2008, pp. 62–78.

[10] K. Kelley and D. Harris, “Very high radix scalable Montgomery multipli-
ers,” in System-on-Chip for Real-Time Applications, 2005. Proceedings.
Fifth International Workshop on, July 2005, pp. 400–404.

[11] A. Tenca and L. Tawalbeh, “An efficient and scalable radix-4 modular
multiplier design using recoding techniques,” in Signals, Systems and
Computers, 2004. Conference Record of the Thirty-Seventh Asilomar
Conference on, vol. 2, Nov 2003, pp. 1445–1450 Vol.2.

[12] Ç. K. Koç, T. Acar, and B. S. Kaliski Jr, “Analyzing and comparing
montgomery multiplication algorithms,” Micro, IEEE, vol. 16, no. 3,
pp. 26–33, Jun 1996.

[13] K. Javeed and X. Wang, “Radix-4 and radix-8 booth encoded interleaved
modular multipliers over general Fp,” in Field Programmable Logic and
Applications (FPL), 2014 24th International Conference on, Sept 2014,
pp. 1–6.

[14] D. Narh Amanor, C. Paar, J. Pelzl, V. Bunimov, and M. Schimmler,
“Efficient hardware architectures for modular multiplication on FPGAs,”
in Field Programmable Logic and Applications, 2005. International
Conference on, Aug 2005, pp. 539–542.

[15] S. Ghosh, D. Mukhopadhyay, and D. Roychowdhury, “Secure dual-core
cryptoprocessor for pairings over barreto-naehrig curves on fpga plat-
form,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions
on, vol. 21, no. 3, pp. 434–442, March 2013.

[16] S. Ghosh, D. Mukhopadhyay, and D. Chowdhury, “High speed Fp
multipliers and adders on FPGA platform,” in Design and Architectures
for Signal and Image Processing (DASIP), 2010 Conference on, Oct
2010, pp. 21–26.

[17] M. Knezevic, F. Vercauteren, and I. Verbauwhede, “Faster interleaved
modular multiplication based on Barrett and Montgomery reduction
methods,” Computers, IEEE Transactions on, vol. 59, no. 12, pp. 1715–
1721, Dec 2010.

[18] K. Javeed, X. Wang, and M. Scott, “Serial and parallel interleaved
modular multipliers on FPGA platform,” in Field Programmable Logic
and Applications (FPL), 2015 25th International Conference on, Sept
2015, p. in press.

[19] P. L. Montgomery, “Speeding the pollard and elliptic curve methods of
factorization,” Mathematics of computation, vol. 48, no. 177, pp. 243–
264, 1987.

[20] A. D. Booth, “A signed binary multiplication technique,” The Quarterly
Journal of Mechanics and Applied Mathematics, vol. 4, no. 2, pp. 236–
240, 1951.

[21] O. L. MacSorley, “High-speed arithmetic in binary computers,” Pro-
ceedings of the IRE, vol. 49, no. 1, pp. 67–91, 1961.

[22] D. J. Bernstein and T. Lange, “Safecurves: choosing safe curves for
elliptic-curve cryptography,” http://safecurves. cr. yp. to, 2014.

