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Abstract

Symmetric Searchable Encryption (SSE) is a very efficient and practical way for data owners to out-
source storage of a database to a server while providing privacy guarantees. Such SSE schemes enable
clients to encrypt their database while still performing queries for retrieving documents matching some
keyword. This functionality is interesting to secure cloud storage, and efficient schemes have been de-
signed in the past. However, security against malicious servers has been overlooked in most previous
constructions and these only addressed security against honest-but-curious servers.

In this paper, we study and design the first efficient SSE schemes provably secure against mali-
cious servers. First, we give lower bounds on the complexity of such verifiable SSE schemes. Then, we
construct generic solutions matching these bounds using efficient verifiable data structures. Finally, we
modify an existing SSE scheme that also provides forward secrecy of search queries, and make it prov-
ably secure against active adversaries, without increasing the computational complexity of the original
scheme.

1 Introduction

Searchable Encryption schemes encode a database of documents into a data structure that can be outsourced
to a remote server, in order to allow keyword-based search while preserving the privacy of both the database
and the queries. Cloud-based storage is a direct application of these schemes: cloud providers supply data
storage with high-availability guarantees and strong security protection. While availability failures can be
immediately detected by users, security breaches can be known long after their use by malicious people.
Even if the cloud providers should do their best to guarantee both availability and security, external or even
internal people may want to (illegally) get access to the data or to alter computations performed on the data.
As a consequence, data privacy and correctness of the computations should be guaranteed by design.

Since external storage is shared between many users with huge amounts of data to be processed, these
security guarantees should be at a low cost for both the server and the client. The goal of searchable en-
cryption schemes is to address this problem: the server itself should not learn anything about the search
∗Direction Générale de l’Armement - Maitrise de l’Information. The views and conclusions contained herein are those of the

authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied,
of the DGA or the French Government.
†Université de Rennes 1, IRISA
‡Ecole Normale Supérieure, Département d’Informatique

1



queries (which keywords the user is looking for), nor about the database updates triggered by the client.
Symmetric Searchable Encryption [SWP00] provides elegant and practical solutions to this problem using
symmetric cryptographic primitives, while avoiding costly oblivious RAM-based systems [GO96], at the
price of a small amount of leakage of information. For example, classical constructions for efficient SSE
schemes encrypt a reversed index which maps each keyword w with the list DB(w) of the indices of the
matching documents. Usually, the keywords are deterministically encrypted using a pseudo-random func-
tion, as well as the list DB(w). In this case, the size pattern (the total number of document/keyword pairs
stored), the search pattern (the repetition of searched keywords), and the access pattern (the document in-
dices of a search result) cannot be hidden to the server, since the encryption used for the keywords and
indices is deterministic. Such leakage is tolerated though, to improve performance, but may lead to some
attacks [CGPR15].

Our Contributions. This paper studies the efficiency and security of dynamic, verifiable and forward
secure SSE schemes. We give lower bounds on dynamic and verifiable SSE and build optimal constructions
achieving these bounds. Then, we revisit a dynamic and forward secure SSE scheme described by Stefanov
et al. [SPS14], and make it verifiable by fixing the propositions of Stefanov et al. and providing a complete
security proof. These results are summarized in Table 1.

Our goal is to provide efficient dynamic SSE solutions secure against malicious servers: the server can
return incorrect answers to the clients. Consequently, we formally define the verifiability of an SSE scheme:
the client must be able to verify that the answers output by a search query are indeed correct, i.e. that the
server provided the indices of all the documents matching the keywords. In particular, in case of empty
search results, the client must check that indeed no document matches the searched keyword. This last point
is crucial, and previous informal solutions addressing malicious behaviors of the server, such as [SPS14],
were unable to provide such guarantees.

To this end, we first study this problem from a theoretical point of view and give lower bounds on the
computational complexity of search and update queries. Efficient schemes have time complexity close to
optimal in terms of the number of answers for the search operations and the number of distinct keywords for
the update operations. More precisely, we show that if the client’s private storage is not linear in the number
of distinct keywords in the database, the verification of an SSE scheme has to have a logarithmic overhead
for either search or update queries. We prove this result by exhibiting a reduction between this problem and
memory checkers (see Section 3). Then, we present generic solutions for the construction of verifiable SSE
schemes that match these lower bounds (see Section 5). The first solution relies on Merkle tree-like data
structures and Set Hashing, while the second one uses cryptographic accumulators instead of Merkle trees.

Yet, these schemes do not provide the strongest property of forward privacy: if the user looks for a
keyword w and later adds a new document containing w, the server will learn that this new document has
a keyword that has been looked for in the past. We think that this property is essential in practice as SSE
schemes must limit, as much as possible, the amount of information leaked to the server. In Section 6,
we present an efficient dynamic and verifiable SSE scheme that achieves forward secrecy. We show how
we can adapt previous solutions proposed by Stefanov et al. [SPS14] in order to add verifiability, while
keeping good performances, both in theory and in practice, and without being subject to the weaknesses of
the original propositions (cf. Section 6.2). Indeed, we give a full security proof for our construction.

Related Work. Curtmola et al. [CGKO06] gave the first efficient SSE construction, achieving sublinear
search time: the previous schemes, like the seminal work of Song et al. [SWP00], required search complexity
linear in the number of documents stored in the database. They also improved the previous security models
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and introduced the notion of adaptive security for SSE. A highly efficient construction was presented by
Cash et al. in [CJJ+13]. This construction also supports complex queries involving several keywords, as
does the scheme of Pappas et al. [PKV+14]. Cash and Tessaro [CT14] studied the trade-off between locality
and server storage size of SSE schemes.

Dynamic SSE was first considered by Song et al. [SWP00], but no solution with sublinear search time
existed before the work of Kamara et al. [KPR12]. Recently, two new dynamic SSE schemes have been
proposed. The first one, by Cash et al. [CJJ+14], extends [CJJ+13], and show that SSE is feasible on very
large databases. The other one, by Stefanov et al. [SPS14], is the first forward secure construction, and
remains practical. However, the problem of malicious servers has not been studied, except in [SPS14], but,
as we will see later, their proposition is flawed.

A way to construct SSE with very little leakage would be using ORAM, either generically [GO96,
SvDS+13, GMOT12], or through garbled RAM programs [LO13, WNL+14, WHC+14]. However, these
techniques are less efficient by several orders of magnitudes than specifically designed SSE schemes. Indeed,
they incur large bandwith overhead and need to work on large blocks to be practically efficient (a few
kilobytes, as the documents indices are encoded over a few tens of bits).

As we stated before, another issue when outsourcing computation or storage is correctness. This problem
has been widely studied, in particular in the case of storage, as the memory checking problem [BEG+91,
DNRV09]. In this particular setting, some lower bounds have been proven by Dwork et al. [DNRV09].

Authenticated/verifiable hash tables have also been extensively studied [TT05, PT08, PTT09, CL02,
STSY01], using different cryptographic primitives, as hash functions, or cryptographic accumulators. The
main difference with verifiable SSE is that a hash table can contain at most one element per keyword, and
that the queried keys are not meant to be hidden to the server, only soundness of the returned results is
ensured.
Table 1 – Comparison of SSE schemes. In this table, N is the total number of document/keyword pairs, d
is the number of documents, m is the size of the result, |W | is the number of distinct keywords, 0 < ε < 1
is a fixed constant, α is the number of times the queried keyword was historically added to the database,
and µ is the number of updated document/keyword pairs. For every scheme, except the one by Kurosawa
and Ohtaki [KO13], the storage is linear in the number of document keyword pairs. For [KO13], the storage
space is O(|W |.d).

Scheme
Time Complexity Forward

Verifiable
Search Update Secure

Previous work
Cash et al. [CJJ+14] Πdyn

bas O(m) O(µ) 7 7

Stefanov et al. [SPS14]
Linear SPS O(α+ logN)

O(µ log2N) 3 7
Sublinear SPS O(m log3N)

Kurosawa and
Ohtaki [KO13]

O(d) O(µd) 7 3

This work
Lower Bound (Sec.5) GSV-Hash O(m+ log |W |) O(µ log |W |) 7 3

Optimal Search (Sec.5) GSV-Acc.-Pairing O(m) O(µ|W |ε) 7 3

Optimal Update (Sec.5) GSV-Acc.-RSA O(m+ |W |ε) O(µ) 7 3

Verifiable SPS
Linear (Sec. 6.3) O(α+ log2N)

O(log2N) 3 3
Sublinear (Sec. 6.4) O(m log3N)
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Finally, verifiable SSE was first studied by Kurosawa and Ohtaki in [KO12], and then extended to the
dynamic setting in [KO13]. Yet, their solution is inefficient, both from a computational point of view – as
searches or update need work linear in the number of documents in the database – and from a storage point
of view.

2 Definitions

In this paper, the security parameter will be denoted λ. We will also use the standard definitions of pseudo-
random functions (PRF) and semantically secure symmetric encryption schemes [Gol04]. For the sake of
simplicity, we suppose that the keys are strings of λ bits, and that the key generation algorithm uniformly
chooses a key in {0, 1}λ. Unless otherwise specified, we always consider probabilistic algorithms/protocols
running in time polynomial in λ, also called efficient. Adversaries are probabilistic polynomial time (ppt)
algorithms and negl(λ) denotes a negligible function in λ.

2.1 Notations and Tools

2.1.1 Games.

Our security and correctness notions are defined using the code-based games introduced in [BR06]. A game
G is a set of oracle procedures – including an initialization Init procedure and a finalization Final procedure
– that is executed with an adversary A, i.e. A has access to the procedures, with some possible restrictions.
For instance, the Init oracle is always the first one to be called and Final the last one, once A halted, taking
A’s output as input. The output of Final is called the output of the game and is denoted GA(λ). When Final
is omitted, it just forwards the adversary’s output.

At startup, the boolean variables are initialized to false and the integer variables to 0. When the variable
T is a dictionary, T [v] denotes the item associated to v, if there is one, whereas ⊥ denotes the absence of
this item.

2.1.2 Protocols.

In the paper, we will construct and use some two-party protocols, involving a client C and a server S. We
will denote a protocol P as

P (inputC ; inputS) = (PC(inputC), PS(inputS))

meaning that PC (resp. PS) is executed by the client (resp. the server) with input inputC (resp. inputS).
We write

(outC ; outS)
$← C(inputC)↔ S(inputS)

to mean that outC and outS are the outputs of the interaction between C on input inputC and S on input
inputS . When C and S run a protocol P , we simply write (outC ; outS)

$← P (inputC ; inputS). In the
following, we will often consider the messages τ sent by the client (the transcript) as part of the client’s
output.
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2.1.3 MAC: Message Authentication Code.

A message authentication code MAC [Gol04] is a deterministic pair of algorithms (MAC,Verif) with MAC :
K × {0, 1}m → {0, 1}t and Verif : K × {0, 1}m × {0, 1}t → {ACCEPT, REJECT} where K is the key
space. It should be correct, i.e. for all K ∈ K, VerifyK(x,MACK(x)) = ACCEPT, and it should withstand
chosen-message attacks: it must be impossible, without the key K, to forge a new valid (accepted) pair of
message/code. The exact security game CMA is formalized in Figure 6 of Appendix A, and any polynomial
adversary A should not win the game with non-negligible advantage AdvMAC

A (λ). In the paper, we will
suppose that MAC is a pseudo-random function and that VerifK(x, s) = ACCEPT if s = MACK(x) and
REJECT otherwise.

2.1.4 Authenticated Encryption with Associated Data.

The security of our construction heavily relies on authenticated encryption with associated data (AEAD)
schemes. Authenticated encryption (resp. decryption) of m with associated data a under key sk is denoted
AEnc(sk, a,m) (resp. ADec(sk, a,m)). Intuitively, AEAD ensures that only the encryption of m with as-
sociated data a will decrypt to m and that it is impossible, without the key sk, to forge a ciphertext that will
correctly decrypt (i.e. whose decryption will not return REJECT). Full security definitions of authenticated
encryption are given in [RBB03]. For the sake of simplicity in the algorithms descriptions, we will omit the
initialization vector (IV) and consider the encryption scheme as probabilistic.

2.2 SSE: Symmetric Searchable Encryption

To define symmetric searchable encryption schemes, we follow the formalization of [CGKO06] with the
modifications of [CJJ+14]. A database DB = (indi,Wi)

d
i=1 is a tuple of identifier/keyword-set pairs with

indi ∈ {0, 1}λ and Wi ⊆ {0, 1}∗. The set of keywords of the database DB is W = ∪di=1Wi. We setm = |W|
to be the total number of keywords in DB, and N =

∑d
i=1 |Wi| to be the number of document/keyword

pairs. DB(w) denotes the set of documents containing keyword w, i.e. DB(w) = {indi|w ∈ Wi}. N can
also be written as N =

∑
w∈W |DB(w)|.

A dynamic searchable encryption scheme Π = (Setup,Search,Update) consists of one algorithm and
two protocols between a client and a server:

• Setup(DB) is an algorithm that takes as input a database DB. It outputs a pair (EDB,K, σ) where K
is a secret key, EDB the encrypted database, and σ the client’s state.

• Search(K,σ, q;EDB) = (SearchC(K,σ, q),SearchS(EDB)) is a protocol between the client with
input the key K and a search query q, and the server with input EDB. We write (V, σ′, τ)

$←
Search(K, q;EDB) to mean that V , σ′ and τ are sampled by running the protocol with these in-
puts, V being the client output, σ′ the new state of the client, τ the messages sent by the client (the
transcript). V (and σ′) can take the special value REJECT. In this paper, a search query consists of a
single keyword w.

• Update(K,σ, op, in;EDB) = (UpdateC(K,σ, op, in),UpdateS(EDB)) is a protocol between the
client with input the key K and state σ, an operation op and an input in parsed as the identifier ind
and a set W of keywords, and the server with input EDB. As in previous papers [CJJ+14], the update
operations are taken from the set {add, edit+, del, edit−}, meaning, respectively, the addition of a full
document, of a document/keyword pair, the deletion of a full document and the deletion of a single
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Init(DB)

(EDB,K, σ)← Setup(DB)
return EDB

Search(q)

(V, σ, τ)
$← Search(K,σ, q;EDB)

if V 6= DB(q) or σ = REJECT

win← true

return τ
Final()

return win

Update(op, in)

(σ′, τ ;EDB′)
$←

Update(K,σ, op, in;EDB)
if σ′ = REJECT then

win← true

else
DB← Apply(DB, op, in)
EDB← EDB′, σ ← σ′

end if
return τ

Figure 1 – Correctness game for SSE SSECORR.

pair. We write (σ′, τ ;EDB′)
$← Update(K,σ, op, in;EDB) to mean that σ′, τ and EDB′ are sampled

by running the protocol, σ′ being the output of the client i.e. its new state, τ being the messages sent
by the client and EDB′ be the server output i.e. the updated encrypted database. Note that σ′ can take
the special value REJECT.

2.2.1 Correctness.

The correctness of an SSE scheme is the basic property we want to ensure: the search protocol must return
the correct result for every query, except with negligible probability. We formally define correctness with the
security game SSECORR defined in Figure 1. The game uses the function Apply that outputs DB updated
according to the input operation op, and the input in for that operation.

Definition 1 (SSE Correctness). An SSE scheme Π is correct if for all adversary A, AdvCorSSE,ΠA (λ) is
negligible in λ, where

AdvCorSSE,ΠA (λ) = P[SSECORRAΠ(λ) = 1].

2.2.2 Soundness.

The soundness for SSE is the key new property introduced in this paper. As for regular soundness definitions,
it describes the fact that no adversary can cheat the client, and make him accept incorrect search results.

To give a proper soundness definition, we use the game SSESOUND defined in Figure 2. The game
closely follows the game used to define soundness of interactive provers [Gol04]: the client should not
accept an invalid search result. Also, the dynamism of the database raises a difficult point: the verification
has to be done over the current version of the database, yet this one must not be modifiable by a malicious
server. Hence, SSESOUND does not apply the update operation on the database when the client rejects the
execution of the Update protocol with the server.

Definition 2 (SSE Soundness). An SSE scheme Π is sound (or verifiable) if for all adversaryA, AdvSndSSE,Π
A (λ)

is negligible in λ, where
AdvSndSSE,Π

A (λ) = P[SSESOUNDAΠ(λ) = 1].

and in the game SSESOUND, ChallengeUpdate and ChallengeVerify are called only once, just before Final.
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2.2.3 Confidentiality.

The confidentiality definition of an SSE scheme uses the real word vs. ideal word formalization [CGKO06,
KPR12,CJJ+14]. It is parametrized by a leakage function L describing what the protocols leak to the adver-
sary, and formalized as a stateful algorithm.

It uses the games SSEREAL and SSEIDEAL defined in Figure 3, similarly to the real and ideal games
in MPC security definitions. In the real game the adversary chooses a database DB and gets back EDB.
Then, it adaptively runs Search and Update protocols on inputs of its choice, and is given the transcripts
of these protocols. The Final call simply forwards the bit b output by the adversary. In the ideal game,
these transcripts are generated by a simulator S, an efficient algorithm, helped by the outputs of the leakage
function. Finally, the scheme will be secure if no efficient adversary can distinguish between the real and
the ideal games.

Definition 3 (SSE Confidentiality). Let Π = (Setup, Search,Update) be a dynamic SSE instantiation, A
and S probabilistic polynomial-time algorithms, and let L be a stateful algorithm.

Init(DB)

(EDB,K, σ)← Setup(DB)
return EDB

Search(q)

(V, σ′, τ)
$← SearchC(K,σ, q)↔ A

if V 6= REJECT then
σ ← σ′

if V 6= DB(q) then win← true

end if
return τ

Final()

return win

Update(op, in)

(σ′, τ ;EDB)
$←

UpdateC(K,σ, op, in)↔ A
if σ′ 6= REJECT then
DB← Apply(DB, op, in)
EDB← EDB′, σ ← σ′

end if
return τ

Figure 2 – Soundness game for SSE SSESOUND. The notation↔ A represents interactions with the adver-
sary.

SSEREALΠ

Init(DB)

(EDB,K, σ)← Setup(DB)
return EDB

Search(q)

(V, σ′, τ)
$← SearchC(K,σ, q)↔ A

if V 6= REJECT

σ ← σ′

return τ
Update(op, in)

(σ′, τ ;EDB′)
$← UpdateC(K,σ, op, in)↔ A

if σ′ 6= REJECT

σ ← σ′, EDB← EDB′

return τ

SSEIDEALS,L
Init(DB)

(EDB, σS)← S(L(DB))
return EDB

Search(q)

(σ′S , τ)
$← S(σS ,L(q))↔ A

if σ′S 6= REJECT

σS ← σ′S
return τ

Update(op, in)

(σ′S , τ)← S(σS ,L(op, in))↔ A
if σ′S 6= REJECT

σS ← σ′S
return τ

Figure 3 – SSE security games SSEREAL (left) and SSEIDEAL (right). The notation ↔ A represents
interactions with the adversary.
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We define the advantage of A against S in the SSE confidentiality security game as AdvConfSSE,ΠA,S,L (λ)
where

AdvConfSSE,ΠA,S,L (λ) =
∣∣P[SSEREALΠ

A(λ) = 1]− P[SSEIDEALΠ
A,S,L(λ) = 1]

∣∣ .
We say that Π is a L-adaptively-secure instantiation if for all adversaries A, there exists an efficient algo-
rithm S such that AdvConfSSE,ΠA,S,L (λ) ≤ negl(λ).

Query Pattern. In almost all SSE work, the schemes leak the repetion of tokens sent by the client to
the server. For example, two search queries using the same keywords will leak the repetition of these
keywords. In previous works [CGKO06, CJJ+13], this is called the search pattern. In other constructions
(e.g. [CJJ+14]), this type of leakage is not limited to search queries: repetition of keywords for both search
and update queries leaks. Hence, we call it the query pattern. The query pattern qp(x) of x is constructed as
follows: initially qp creates an empty list L as state and sets a counter i ← 0, and then on input x, it incre-
ments i, adds (i, x) to L and outputs qp(x) = {j|(j, x) ∈ L}. In the following, for the sake of simplicity,
we denote x = qp(x).

3 Lower Bounds

Before giving some constructions of verifiable SSE, we want to show that protection against active adver-
saries has an inherent cost, and to lower bound this cost. For semi-honest adversaries, lower bounds are
trivial: search cannot be done in less than Ω(m) where m is the number of results for a query, and update
has to run in Ω(1) per modified document/keyword pair.

For malicious adversaries, the result is not as straightforward. Fortunately, we can rely on the literature
on authenticated data structures (namely authenticated hash tables) [TT05, PT08, PTT09] and memory
checking [BEG+91,NR05,DNRV09] to have a better insight into this question. Actually, in the next section,
we show how to reduce memory checking to verifiable SSE, and, using the lower bound result of [DNRV09],
give a general computational lower bound on the Search and Update algorithms of any SSE scheme secure
against malicious adversaries. Then, based on [TT05], we argue that, if we only use symmetric primitives
for verification, we cannot actually hope for less than the lower bounds described in the introduction, namely
O(m+ log |W |) for Search and O(log |W |) for Update.

3.1 Memory Checking

Memory checking is the problem of outsourcing memory to an untrusted party while ensuring authenticity
and using limited (trusted) local storage. A memory checker C is a probabilistic algorithm that receives from
the user read and write requests, and, by making its own requests to the untrusted remote memory, and
accessing a small private memory, ensures that the original requests were either answered correctly, or that
a fault was reported.

The formal definition of a memory checker can be found in [DNRV09]. In particular, the authors define C
as a (Σ, n, q, s)-checker as a checker that can be used to store a database of n indices with query complexity
q (the average number of remote memory accesses necessary for each memory query processed by the
memory checker) and space complexity s, where the secret and public memory are over the alphabet Σ.

The authors of this work prove a lower bound on q, assuming that the private memory is not “large”: s
is O(nα), with 0 ≤ α < 1. The actual theorem is given as follows:

Theorem 1 (Theorem 3.1 of [DNRV09]). Let C be a (Σ, n, q, s) memory checker with s ≤ n1−ε for some
ε > 0 and |Σ| ≤ npoly logn. It must be that q = Ω( logn

log logn).
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3.2 A General Lower Bound on Verifiable SSE

The problem of verifiable SSE is somewhat similar to the one of memory checking, with two caveats:

• SSE schemes must be able to store a variable number of indices (i.e. keywords);

• in SSE, each keyword can match zero, one, or more documents, instead of having one keyword match-
ing exactly one value in the case of memory checkers.

SSE actually supports more features than regular memory checking, and writing a reduction from mem-
ory checkers to VSSE is straightforward. Finally, the lower bounds on memory checkers from Theorem 1
will also transfer to VSSE, as stated in Theorem 2 and proven in Appendix D.

Theorem 2 (Lower bound of verifiable searchable symmetric encryption). Let Π be a VSSE scheme with
client memory of size s ≤ |W |1−ε for some ε > 0, where w is the number of distinct stored keywords
(keywords with at least one matching document). Then, either Search queries have computational complexity
Ω(max( log |W |

log log |W | ,m)) or Update queries have computational complexity Ω( log |W |
log log |W |).

We emphasize that this result bounds the minimal complexity of the costliest operation between Search

and Update and do not imply that both operation complexity is lower bounded by Ω( log |W |
log log |W |).

3.3 Lower Bound for Practical Construction

Theorem 2 gives us a general bound for generic searchable encryption. However, in this paper, we focus more
on symmetric searchable encryption schemes that (mostly) use symmetric primitives like hash functions or
block ciphers. More exactly, all the existing schemes use deterministic encryption to perform the search and
update protocols (deterministically too), and we might want to use similar techniques for verification.

One technique we can rely on makes use of cryptographic hash functions for verifications. The optimality
of such constructions has been studied by Tamassia and Triandopoulos [TT05], who showed that one cannot
do better than having Ω(log n) verification and update computational complexity to authenticate a dictionary
with n entries through hashing (Theorem 6 in [TT05]). Using the same reduction as in Theorem 2, we can
show that if we rely on hashing for verification purpose in SSE, both Search and Update protocols cannot be
run in less than Ω(log |W |) time. Taking into account the search operation’s lower bound for general SSE,
we actually have that the minimal search complexity is Ω(min(m, log |W |)).

An other well-known technique in authenticated data structures is cryptographic accumulators. In partic-
ular, it has been used in several contributions for verifiable hash tables [CL02, STSY01]. The most efficient
construction [PTT09] performs constant (expected) query time (for both proof generation and verification).
However, the expected update time on the server side is O(nε) for a fixed 0 < ε < 1 (it is constant on the
client side), and we cannot reach the general lower bound of Section 3.2 using cryptographic accumulators.
For practical considerations, we must also consider the fact that the cryptographic operations needed for ac-
cumulators (exponentiation of large integers or bilinear maps) are a lot more computationally expensive than
hashing, and despite a better asymptotical complexity, they might not compare favorably with hashing-based
techniques.

4 Construction of Verifiable Dynamic SSE: General Ideas and Tools

When verifying the results of a search query, one has to check two points: first that every result matches
the query, and then that every matching result has been returned. This crucial fact was already emphasized
in [SPS14].
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If the first point is relatively easy to ensure for static databases, things become more complicated when
considering dynamic databases. We must indeed prevent replay attacks, where the server returns a result that
used to belong to the database but that no longer does (the document-keyword pair was deleted). If using
MACs over the document-keyword pairs would have been enough for static SSE, this is no longer secure
on its own for the dynamic case. Somehow, the client has to store some kind of digest of the outsourced
database. For efficiency, we want this digest to be much smaller than the database.

The second point, is no less important, e.g. when a search query has no matching result. In this case,
how can we prove that there are actually no matches to the query? Similarly, we must prevent the server
to return an empty list of results when there are actual matches. This last remark was not taken into ac-
count in [SPS14], and the modification the authors present to make their scheme secure against malicious
adversaries does not prevent this attack.

4.1 Verifiable Hash Tables

A central component of our verifiable SSE construction is verifiable hash tables. It implements the function-
ality of a regular (static) hash table, but also provides a proof that, when querying a key in the hash table,
the returned element is the right one, and that there are no associated element when querying a key that is
not present in the hash table.

More formally, a verifiable hash table is a tuple of algorithms Θ = (VHTSetup, VHTGet, VHTVerify,
VHTUpdate, VHTRefresh) :

• VHTSetup(T ) takes as input a hash table T and outputs (KVHT,VHT, σVHT) whereKVHT is a private
key, VHT is the verifiable hash table data structure (possibly including a public key), and σVHT the
client’s state.

• VHTUpdate(T,VHT, u) takes as input a hash table T together with its verifiable data structure VHT,
and updates all of these according to the update operation u coming from a predefined update set (e.g.
replacement of a value in the table, deletion of a key, . . . ). It outputs the new verifiable hash table
VHT′ and an update proof π. Its complexity for a table of size n is denoted T prf

up (n).

• VHTRefresh(KVHT, σVHT, π, u) refreshes the digest σVHT (i.e. the client’s state) according to the
update u, using the proof π generated by a previous VHTUpdate call. Its complexity for a table of
size n is denoted T chk

up (n).

• VHTGet(T,VHT, hkey) outputs the tuple (v, π) where v is the value associated to hkey in T , and π
a proof. For a table of size n, its complexity is denoted T prf

∈ (n) when v 6= ⊥ (hkey matches a value),
and T prf

⊥ (n) when v = ⊥.

• VHTVerify(KVHT, σVHT, hkey, v, π) returns ACCEPT or REJECT. For a table of size n, its complexity
is denoted T chk

∈ (n) when v 6= ⊥, and T chk
⊥ (n) when v = ⊥.

A verifiable hash table must have two properties: completeness (VHTGet should return the value asso-
ciated to hkey in T together with a valid proof) and soundness (it is hard for the server, without σVHT, to
forge a valid proof, even if he saw a polynomial number of valid proofs, and tried to corrupt the client’s
state). These properties are formalized by games VHTCOMP and VHTSOUND, as described in Figure 7 in
Appendix B. We will also use static verifiable hash tables. In this case, VHTUpdate and VHTRefresh are
not implemented, as well as the Update procedures from the security games defined above.
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Algorithm 1 Instantiation of verifiable hash table
VHTSetup(T )

1: K ← K
2: Initialize a empty table VHT of size |T |
3: i← 0
4: for all (key, v) ∈ T in ascending lexicographic order

over key do
5: s← MACK(key, v, i)
6: Add (key, v, i, s) to VHT.
7: i++
8: end for
9: return (K,VHT)

VHTGet(T, x)

1: if T [x] 6= ⊥ then
2: (v, i, s)← VHT[x]
3: return (v, (i, s))
4: else
5: Using dichotomic search, locate x in T :
6: Find i such that keyi < x < keyi+1

7: where (vi, i, si) = VHT[keyi]
8: and (vi+1, i+ 1, si+1) = VHT[keyi+1]
9: return (⊥, (i, keyi, vi, si,

keyi+1, vi+1, si+1))
10: end if

VHTVerify(K,x, v, π)

1: if v 6= ⊥ then
2: Parse π as (i, s)
3: return VerifyK((x, v, i), s)
4: else
5: Parse π as

(i, key−, v−, s−, key+, v+, s+)

6: if key− < x < key+,
VerifyK((key−, v−, i), s−) and
VerifyK((key+, v+, i+ 1), s+) then

7: return ACCEPT

8: else
9: return REJECT

10: end if
11: end if

We emphasize that we do not directly need any form of confidentiality on the table content nor on the
queries. We will actually start from a secure SSE scheme (in this case security means confidentiality) and
turn it into a verifiable SSE scheme. The confidentiality of our scheme will be inherited from the confiden-
tiality of the original scheme. The verifiable hash table that will be put on top of the SSE scheme will ensure
soundness. Finally, we have to make sure that correctness of the original scheme correctly transfers to the
verifiable scheme.

Construction of verifiable hash table has been extensively studied in the literature, in particular in the
case of dynamic tables. For now, we suppose that we have access to an implementation of verifiable hash
tables.

4.2 Example Construction of a Static VHT

We give an example instantiation of a static VHT in Algorithm 1. The idea of this construction is to sort
the elements of the input table T according to their key, and place them in a table at their sorted position
and MAC the element together with the position and key. To answer a query with key x, we look for the
corresponding entry in T . If there is a matching element, the server returns it, together with the MAC.
Verification will just consist of verifying the MAC. If there is no matching element, the server finds the key
position in the table using dichotomic search, and returns the position and the neighboring elements together
with the associated MACs. This construction is inherently static: if we were able to modify the content of a
cell, even if we had MACed the new value as in the setup phase, an adversary would be able to run a replay
attack trivially (by submitting a previously seen entry for a given key).

Soundness. The completeness of our instantiation is trivial. The soundness is a bit more involved and
relies on the CMA security of the underlying MAC. In Appendix C, we show that for every adversary A of
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the VHTSOUND game, there exists an adversary B such that

AdvVHTSOUND
A (λ) ≤ AdvCMA

B (λ).

Time Complexity. The verification is always completed in constant time (at most two MAC verifications
and two comparisons). On the other side, the proof generation complexity depends on whether the queried
key has an associated element. If this is the case, the proof is generated in constant time (access to a hash ta-
ble). Otherwise, the prover has to run a dichotomic search among n elements, needing dlog ne comparisons.

5 Verifying SSE Optimally

In this section, we describe a solution for verifiable symmetric searchable encryption that matches the lower
bound of Section 3. The construction described later in the section must be seen as a generic solution to
the verification problem with SSE: we make use of an SSE instantiation Π as a black-box and do not rely
on its construction. In other words, the data structures built in this section can be used on top (or more
exactly besides) of any SSE scheme and turn it in a VSSE scheme with similar confidentiality guarantees
and (additively) logarithmic overhead.

The general principle of this construction is to have a verifiable hash table, whose keys are the database’s
keywords, and which stores digests of an index set. More precisely, we will have a hash table T such that for
any w ∈ W , T [w] = H(DB(w)) where {ind1, . . . , indm} = DB(w), and H a hash function defined over
sets of strings. The main issue here is to make updates fast: we don’t want to re-hash the full set DB(w) when
updating the database for keyword w. The hash functionH must have a certain level of homomorphism: we
need a set hashing function.

5.1 (Multi)set Hashing

Multiset hashing was introduced by Clarke et al. [CDVD+03] and is based on the framework proposed by
Bellare and Micciancio [BM97] for incremental hashing.

The constructions work essentially as follows: if H is a regular (i.e. non incremental) hash function,
H(xm1

1 , . . . , xmnn ) is defined as
∑
mi · H(xi) (xmii represents the element xi with multiplicity mi). We

want multiset hash functions to be secure in the sense of collision resistance. We refer to [CDVD+03] for
the full formal definitions and security requirements for multiset hashing, but MSet-Mu-Hash is defined as
follows:

H(M) : SZ → Fq
M 7→ Πx∈SH(x)Mx

where H : S → Fq is a hash function from the set S to the field Fq. Clarke et al. show that H is collision
resistant as long as the discrete log assumption holds in Fq when H is modeled as a random oracle.

Theorem 3 (Theorem 2 of [CDVD+03]). If the discrete log assumption holds in Fq, and H is a (non-
programable) random oracle, the multiset hash functionH is collision resistant.

This construction clearly fits our functional needs: if S ⊂ S is a set, we can easily compute (i.e. in
constant time) H(S ∪ {x}) (resp. H(S \ {x})) from H(S) and H(x) for x ∈ S (resp. x ∈ S) – or even
from x if we have access to H – asH(S ∪ {x}) = H(S) ·H(x) (resp.H(S \ {x}) = H(S) ·H(x)−1). As
explained before, this will be very helpful to efficiently update the SSE verification data structure.
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For the sake of generality, we extend the multiset hashing definition of [CDVD+03], and define a set
hashing function as quadruple of probabilistic polynomial algorithms (H,≡H,+H,−H) such that H maps
sets included in the superset S, for all S ⊂ S,

• H(S) ≡H H(S) (comparability)

• ∀x ∈ S \ S,H(S ∪ {x}) ≡H H(S) +H H({x}) (insertion incrementality)

• ∀x ∈ S,H(S \ {x}) ≡H H(S)−H H({x}) (deletion incrementality)

We can also define set hashing resistance as follows (AH means that A has oracle access to (H,≡H
,+H,−H)).

Definition 4. A set hash functionH is collision resistant if for all adversary A, AdvCollHA (λ) is negligible
in λ, where

AdvCollHA (λ) = P[(S,M)← AH(λ) : S 6= M andH(S) ≡H H(M)]

5.2 Optimal Verifiable Construction

Let Π be a dynamic SSE scheme, Θ a verifiable hash table instantiation, and H a set hashing function. We
define GSVΠ,Θ,H (for Generic SSE Verification) as in Algorithm 2.

Correctness. The correctness of GSV is straightforward given the correctness of Π and completeness of
Θ. Using an hybrid proof, we can very easily prove the following proposition.

Proposition 4. If Π is a dynamic SSE scheme, Θ a verifiable hash table instantiation, and H a set hashing
function, then for every adversary A, there exists adversaries B and B′ such that

AdvCor
SSE,GSVΠ,Θ,H
A (λ) ≤ AdvCorSSE,ΠB (λ) + AdvCompVHT,Θ

B′ (λ)

Soundness. As expected, the soundness of the GSV scheme directly relies on the soundness of Θ and the
collision resistance ofH. More formally, we have the following proposition.

Proposition 5. If Π is a dynamic SSE scheme, Θ a verifiable hash table instantiation, and H a set hashing
function, then for every adversary A, there exists adversaries B, C, and D such that

AdvSnd
SSE,GSVΠ,Θ,H
A (λ) ≤ AdvCorSSE,ΠB (λ) + AdvCollHC (λ) + AdvSndVHT,Θ

D (λ)

The idea behind the proof is to use hybrids, in which we successively replace the (sometimes incorrect)
SSE scheme by direct calls to the database, the calls to the verifiable hash table by direct call to T and the
set hashing function by a one-to-one representation of the sets.

Confidentiality. Confidentiality of the composite scheme that is GSV is a little trickier: the informations
stored in the verifiable hash table, or the keys, give some informations to the server even if these were
previously hidden by the underlying SSE scheme Π. For example, the server will immediately learn the
number of distinct keywords in the database from the size of the table. Also, he will learn from the search
and update queries the repetition of searched/updated keywords (cf. the query pattern in Section 2.2.3).

13



Algorithm 2 GSV construction

Setup(DB)

1: (KΠ,EDBΠ)← Π.Setup(DB)
2: Initialize T to an empty hash table
3: KT ,KS

$← {0, 1}λ
4: for all w ∈W do
5: wtag← F (KT , w)
6: Ke ← F (KS , w)

7: T [wtag]← H(FKe
(DB(w)))

. Apply FKe
to all the elements of DB(w), and

hash the resulting set
8: end for
9: (VHT, σVHT)← VHTSetup(T )

10: return ((EDBΠ, T,VHT),
(KΠ,KT ,KS), σVHT)

Search(K,σ,w;EDB)

1: Run Π.Search(KΠ, w;EDBΠ).
The client gets the result set V

2: Client:
3: wtag← F (KT , w)
4: Ke ← F (KS , w)
5: ComputeH(FKe

(V ))
6: Send wtag to the server

7: Server:
8: (h, π)← VHTGet(T,VHT,wtag)
9: Send (h, π) to the client

10: Client:
11: VHTVerify(σVHT,wtag, h, π)
12: if not h ≡H H(FKe(V ))
13: return REJECT

14: return V

Update(K,σ, op, in;EDB)

1: Run Π.Update(KΠ, op, in;EDB)
2: For all modified pairs (w, ind) run the following
3: Client:
4: wtag← F (KT , w)
5: Ke ← F (KS , w)
6: h′ ← H(FKe

({ind}))
7: Send (wtag, h′, op) to the server

8: Server:
9: h← T [wtag]

10: if op = add or edit+

11: h̃← h+H h′

12: if op = del or edit−

13: h̃← h−H h′
14: Let u be the replacement of h by h̃ in T [wtag]
15: (VHT, π)← VHTUpdate(T,VHT, u)

16: Send (π, h, h̃) to the client

17: Client:
18: σVHT ← VHTRefresh(σVHT, u)
19: return σVHT

Proposition 6. If Π is a LΠ-adaptively-secure dynamic SSE scheme, Θ a verifiable hash table instantiation,
andH a set hashing function, then for every adversary A, there exist an adversary B and simulators S and
SΠ such that

AdvConf
SSE,GSVΠ,Θ,H
A,S,LGSV (λ) ≤ AdvConfSSE,ΠB,SΠ,LΠ

(λ)

with LGSV(DB) = (LΠ(DB), |W |) for the setup, LGSV(DB, w) = (LΠ(DB, q), w) for a search query, and
LGSV(DB, op, in) = (LΠ(DB, op, in), op, w) of an update query.

The confidentiality of the Π is considered under the definition of Section 2.2.3, i.e. against an active
adversary, which is formally different from the previous confidentiality definitions which considered only
passive adversaries. However, we can see that, when Π has single round Search and Update protocols, these
are equivalent (the adversary cannot mess with the first and single message the client sends).

It is also crucial to see that GSV cannot be forward secure, independently of the chosen SSE scheme:
the update part of the leakage function always return the query pattern.

Computational Complexity. To evaluate the computational complexity of the construction, we will use
the dynamic SSE construction Πdyn

bas of Cash et al. [CJJ+14] which has search complexity linear in the
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Table 2 – Computational complexity of GSV with Πdyn
bas as (non verifiable) SSE scheme, in function of the

VHT instantiation used. The update complexities are given for a single modified keyword/document pair.

VHT Instantiation
Search Update

Server Client Server Client

General VHT
O(T prf

∈ (|W |) +m) O(T chk
∈ (|W |) +m)

O(T prf
up (|W |)) O(T chk

up (|W |))
or O(T prf

⊥ (|W |)) or O(T chk
⊥ (|W |))

Hash Tree [TT05] O(m+ log |W |) O(m+ log |W |) O(log |W |) O(log |W |)
Accumulators Pairing O(m+ 1/ε) O(m+ 1/ε) O(|W |ε) O(1/ε)

[PTT09] RSA O(m+ |W |ε) O(m+ 1/ε) O(1/ε) O(1/ε)

number of results and constant update time.
The computational complexity of Search and Update queries in GSV is given in Table 2, as a general re-

sult (first row), and for two possible VHT instantiations, hash-based [TT05] or cryptographic accumulators-
based [PTT09]. In the first case, we achieve logarithmic complexity in both accessing and updating (includ-
ing the verification), and reach the lower bound of Section 3.3. The second case achieves optimal search
time (for both the client and the server), linear in the number of results, as both access and verification of the
VHT is done in constant time, but needs O(|W |ε) update time, where 0 < ε < 1 is a fixed constant (for the
server only, the client having constant update time). The we could also use the VHT instantiation of [PTT09]
which reverses the complexity for searches and update, and end up with an optimal update complexity.

Hence, depending on VHT implementations, the GSV construction achieves optimality in two senses:
first in a general way, showing that the lower bound of Section 3 is tight, then for the Search query only, and
finally for the Update query only, showing that we can have a VSSE scheme with no (asymptotic) verifi-
cation overhead for either search or update queries. We emphasize that the accumulator-based instantiation
might be interesting in practice for very large databases with a few updates, as in the case of Πdyn

bas .1

A more practice-oriented evaluation is done in Appendix G.1. In particular, we estimate the computa-
tional overhead due to set hashing verification to a few milliseconds for a query matching 10 000 results.

We emphasize that both the search complexity and update complexity are better than one of Kuro-
sawa and Ohtaki [KO13]: e.g. their search algorithm takes time O(d) (d is the number of documents in the
database).

6 Verification of SPS

SPS relies on a hierarchical structure to ensure forward security. As we think that this is a key security
property, the modifications we make must not destroy forward privacy.

We can see SPS as levels of static SSE which are rebuilt upon modification of the database. Hence, we
don’t really need some dynamic verifiable data structures, static ones will suffice.

6.1 Remembering SPS

The SPS construction [SPS14] consists of L+ 1 levels T0, . . . ,TL, where L = blogNc, and each level T`

is of size 2`. Each level can be seen as a map between keywords and lists of tuples of the form (ind, op, cnt),
where ind is a document index, op ∈ {add, del} the operation associated with the tuple (addition or deletion)

1Πdyn
bas supports updates using a dynamic extension under the form of a dictionary stored by the server, but also as a counter table

stored by the client. Both grow linearly with the number of distinct updated keywords, and thus do not support many updates.

15



and cnt a unique counter. These tuples are encoded in a way that their content is hidden unless given a token
allowing decryption. This token will be unique per keyword w and per level `, and with such a token,
the server will not learn anything else than the content of the tuples associated with the keyword w at
level `. They are actually stored in a hash table, that allows a constant-time lookup, for a specific tuple
(w, op, cnt), providing either the document ind or⊥ as output. This conceptual lookup operation is denoted
Γ`[w, op, cnt]. Moreover, in a level `, all the tuples (w, ind, op, cnt) are lexicographically sorted based on
key (w, ind, op).

For dynamism, the update operation exploits the leveled structure: for a new entry (addition or deletion),
it is either inserted at level 0, in the unique cell of T0, or in the first empty level T` with all the entries from
the lower levels T0, . . . ,T`−1: the 2` − 1 entries in the lower levels and the new entry are indeed merged
and re-ordered in T` in the lexicographic ordering based on (w, ind, op), using an oblivious sort. Once the
tuples are sorted, one can easily cancel addition-deletion for the same document/keyword pair, just replacing
the two entries by ⊥. The previous levels are all emptied.

To perform a search with keyword w, for each level, the server is provided the token for w, and performs
lookups to find all matching entry in the levels. He does that for both add and del operations, simplifying
inserted-then-deleted document/keyword pairs from the result set. However, such a data structure can lead
to a linear-time search, in the worse case.

They thus improved their approach with an additional information in the tuples. The main drawback
with the above tuples is the del operations that have to be looked for in a different level before returning a
document that has been added and might have been deleted later. Also an extra information is added to del
entries, such that, at level `, given an add tuple with no matching del entry, the server can efficiently find
the next add tuple with no matching del entry. This extra information is the field `∗, called the target level,
and the conceptual lookup operation now return Γ`[w, op, cnt] = (`∗, ind) or⊥. In a deletion tuple, `∗ is the
level where the associated addition tuple is stored. In an addition tuple, we just set `∗ = `. If each level is
now lexicographic ordered based on (w, `∗, ind, op), a fast procedure allows to find an addition tuple without
deletion, leading to a complexity in O(m log3N). It can find and skip holes (a series of addition tuples that
have been deleted later) in each level. Unfortunately, as is, these methods do not provide verifiable outputs
to the client. Also note that SPS only supports add and del update operations, not edit+ nor edit−.

Stefanov et al. briefly described how to make there construction secure in the malicious model. How-
ever, although the modifications they propose are essential in the malicious model, they are not enough to
guarantee security against active adversaries.

6.2 Quick Cryptanalysis of Ideas of [SPS14] in the Malicious Model

In [SPS14], the authors claim that adding a timestamp to the entries (as we did), MACing these, returning
to the client the MACs with each non deleted entry and the holes proofs (i.e. the del entries at the edge of
each hole component, together with their MAC) is enough. The client then would have to check the size of
the holes and check that they match the distance between two add entries (as CheckResults does).

Incompletely Scanned Levels. One major modification brought by our protocol Verif-SPS is the verifi-
cation that the search has been performed over all the entries of a specific level. The absence of such proofs
(which is the role of non-member proofs in Verif-SPS) allows trivial attacks where the server omits to return
part of the results (e.g., the last add entry of a level), resulting in missing results, or part of the holes (e.g.
the last hole component of a level), resulting in non matching results.

We will see that the generation of such proofs in Verif-SPS is the main modification compared to the
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original SPS scheme, and that this modification implies the logarithmic overhead of the basic verifiable
scheme.

Non-Consecutive Holes. Suppose now that the previous issue is (somehow) fixed. Unfortunately, there is
still a possible attack in the claimed secure against active adversaries scheme of [SPS14].

In fact, checking the size of the holes is not enough to protect against malicious servers. Say there is, at
level `, an add entry e+

∗ in a hole between add entries e+
1 and e+

2 , and that matches a del entry e−∗ . For the
sake of simplicity, we suppose that the del entries matching the hole between e+

1 and e+
2 are all at the same

level, between entries e−1 and e−2 . The server could decide to split the real hole in two, and make the client
believe that e+

∗ is a non deleted matching add entry. He will, in some sort, omit the existence of e−∗ .
However, the size of the hole will still be equal to the distance between the returned add entries (e+

1 and
e+
∗ for the first hole, and e+

∗ and e+
2 for the second one). In Verif-SPS, the attack is thwarted by a procedure

CheckAdjacency. It verifies that every hole component is either the last of its level, or immediately followed
by an other hole component, and hence that no del entry has been omitted by the server.

6.3 Basic Verifiable Construction

To avoid the server tampering with the data, one could MAC the tuples in the levels (together with a times-
tamp to avoid replay attacks). This would ensure that the server never returns to the client a tuple that was
not in the level. Yet, it would not prevent the server from not returning a matching tuple (either for addition
or deletion) for a search query.

Using verifiable hash tables and the particularities of the SPS construction, we show how we can thwart
this attack, and more generally how to make SPS verifiable at the extra cost of a verifiable hash table per
level.

To give a better insight into our verifiable SSE instantiation, we first give a basic construction, itself
based on the basic construction of [SPS14]. The modified construction is described in Algorithms 3, 5,
and 4. It uses a static verifiable hash table instantiation Θ = (VHTSetup,VHTGet,VHTVerify). Except for
Search, the modifications are highlighted in red.

For all of the algorithms/protocols, except Search, the main modification resides in the addition of a ver-
ifiable hash table at every level and the use of authenticated encryption. For example, the Lookup function,
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Algorithm 3 Modified construction from [SPS14].
Setup(DB)

1: Client chooses an encryption key esk, L+ 1 ran-
dom level keys k0, . . . , kL (where L = logN ),
and a key Ke for the PRF F . The scheme’s key
is K = (esk, k0, . . . , kL,Ke).

2: Client initializes an empty hierarchical structure
D consisting of exponentially growing levels
T0, . . . ,TL.

3: Initialize counters r0, . . . , rL to 0.
4: return (K, (r0, . . . , rL), (T0, . . . ,TL))

Lookup(token, op, cnt)

1: hkey← Htoken(0||op||cnt)
2: (v, π)← VHTGet(T`,VHT`, hkey)
3: if v = ⊥ then return (⊥, π)
4: else
5: Parse v as (c1, c2)

6: (`∗, ĩnd)← c1 ⊕Htoken(1||op||cnt)
7: return (`∗, ĩnd, v, π)
8: end if

EncodeEntryesk,`(w, `
∗, ind, op, cnt)

1: token` ← F (k`, h(w))
2: hkey← Htoken`(0||op||cnt)
3: c1 ← (`∗, ind)⊕Htoken`(1||op||cnt)
4: c2 ← AEnc(esk, (`, r`), (w, `

∗, ind, op, cnt))
5: return (hkey, c1, c2)

Update(K, op, ind,W;EDB)

1: for all w ∈W in random order do
2: Compute the target level `∗ of (w, ind, op)
3: if T0 is empty then
4: Select a fresh key k0, r0++
5: T0

� EncodeEntryesk,0(w, `∗, ind, op)
6: else
7: Let T` denote the first empty level.
8: r`++
9: Rebuild(`, (w, ind, op)).

10: end if
11: end for

in addition to retrieving the entry associated with the search token token, operation op, and counter cnt, will
also return a proof that the returned value is correct.

The modifications brought to the Rebuild algorithm (Algorithm 4) are only a bit more complicated to
analyze. First, the use of authenticated encryption instead of encryption without integrity verification ensures
that the server only sends valid entries to the client. However, it does not prevent the server from sending the
entries in the wrong order, or to send the same entry twice. To avoid such attacks, we need to ensure that the
oblivious sort algorithm is secure, even in the presence of a malicious server. But we also have to make sure
that the server cannot replay ciphertexts generated in the past to fool the client. So, we add to the additional
data a per-level timestamp r`, incremented every time a level is rebuilt, as well as a flag, set to 0 or 1, to
distinguish the ciphertexts produced before and after the first call to o-sort. Finally, the authenticating data
structure for the verifiable hash table is initialized (line 28).

Oblivious Sorting with a Malicious Server. Usually, the problem of oblivious sorting is considered in
the semi-honest setting, were the server only tries to infer informations from the messages he sees, but sticks
to the protocol’s execution.

A solution to enable resistance against active adversaries would be to rely on checkable memory tech-
niques, but as we saw in Section 3.2, these are costly an would incur a logarithmic overhead. We could use
less general verification techniques using the fact that, in the case of oblivious sorting, the client always
knows which memory locations were modified at what time, as I/Os are independent from the sorted val-
ues. The client could use this property and add metadata – a timestamp and the memory location – to each
memory block used by the algorithm. Every time a block is processed, the client will check that these data
are consistent with the algorithm state. For example, when using sorting networks [GM11], we can MAC
the location in the array and an integer accounting the last comparison executed on the item (in a sorting
network, we can assign to each comparison a unique integer) to the probabilistic encryption of the item (used
to ensure the obliviousness of the protocol). Every time an item is used by the algorithm, the client checks
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Algorithm 4 Modified Rebuild protocol of the SPS construction.

Rebuild(`, (w, `∗, ind, op, cnt)).
1: Let entry∗ ←

EncodeEntryesk,Ke,k0(w, `∗, ind, op, cnt)

2: Let B̂← {entry∗} ∪T0 ∪ . . .T`−1.
3: for all entry = (hkey, c1, c2) ∈ B̂, with original level
`′ do

4: (w, `∗, ind, op, cnt)

� ADec(esk, (`′, r`′), c2)
5: Overwrite entry with

AEnc(esk, (`, r`, 0),
(w, `∗, ind, op, cnt))

6: end for
7: B̂ ← o-sort(B̂), based on the lexicographic sorting

key (w, `∗, ind, op).
8: for all e = AEnc(esk, (`, r`, 0),

(w, `∗, ind, op, cnt))
in B̂ in sorted order do

9: if e marks the start of a new word w, for an opera-
tion op ∈ {add, del} then

10: Set cntop,w ← 0
11: e← AEnc(esk, (`, r`, 1),

(w, `∗, ind, op, 0))

12: else if e and its adjacent entry are add and del op-
erations for the same (w, `∗, ind) pair then

13: Suppress the entries by updating both entries
with AEnc(esk, (`, r`, 1),⊥)

14: else Update e in B̂:
15: e← AEnc(esk, (`, r`, 1), (w, `∗, ind,

op, cntop,w++))
16: end if
17: end for
18: Randomly permute B̂← o-sort(B̂), based on hkey.
19: Select a new level key k`.
20: for all entry ∈ B̂ do
21: (w, `∗, ind, op, cnt)

� ADec(esk, (`, r`, 1), entry)
22: if op = add then
23: `∗ ← `
24: end if
25: (hkey, c1, c2)

� EncodeEntryesk,Ke,k`
(w, `∗, ind, op, cnt)

26: Add (hkey, c1, c2) to T`

27: end for
28: (VHT`, σVHT`

)← VHTSetup(T`)

this MAC and ensures that it is not an element forged by the adversary. Using authenticated encryption with
additional data, we could actually do both MAC and encryption at once, and the additional cost (compared
to pure encryption) would be negligible using modern AEAD schemes [RBB03]. For now, we suppose that
o-sort is secure against active adversaries.

Verifiable Search. The idea in the simple search algorithm is to make the server send to the client all the
entries matching the searched keyword at every level `, both for op = add and op = del, make the client
perform the eliminations among these entries.

To verify that the server sent all the entries corresponding to keyword w with operation op at level `, we
use the fact that the counters used to compute the entries’ hkey are consecutive. So, if there are c add entries
at level `, for all 0 ≤ i < c, Γ`[w, add, i] 6= ⊥, and Γ`[w, add, c] = ⊥. Consecutiveness of the cntop,w
values, is ensured by the soundness of the o-sort algorithm.

Finally, as we check that the entries have the right value (and in particular that the last one is ⊥), if the
protocol does not abort, we are sure that Ĩ+

` contains all the (w, add) entries at level `, and that Ĩ−` contains
all the (w, del) entries at level `.

Time Complexity. The complexity of this construction is very similar to the one of the original SPS
scheme. We can indeed show that, if the VHT is instantiated using the construction of Section 4.2, search
has complexity O(α + log2N) where α is the number of entries matching the searched keyword in the
database, and update hasO(log2N) amortized,O(N logN) worst-case update time. The full computational
complexity accounting is done in Appendix F.
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Algorithm 5 Simple Search algorithm. Every time that the result of a client’s computation is REJECT, he
immediately stops and returns REJECT.

Search(K,w, σ;EDB)

1: Client: On input (K,w), it computes tokens for each
level.

2: tks← {token` = F (k`, h(w)),
` = 0, . . . , L}

3: The client sends tks to the server.
4: Server:
5: for ` = L to 0 do
6: Initialize Ĩ+

` and Ĩ−` to empty lists.
7: cnt← 0
8: repeat
9: (`∗, ind, entry, π)

� Lookup(token`, add, cnt++)

10: Ĩ+
` [cnt]← (entry, π)

11: until entry = ⊥
12: cnt← 0
13: repeat
14: (`∗, ind, entry, π)

� Lookup(token`, del, cnt++)

15: Ĩ−` [cnt]← (entry, π)
16: until entry = ⊥
17: Send {(Ĩ+

` , Ĩ−` )}` to the client.
18: end for
19: Client: Let I ← ∅

20: for ` = L to 0 do
21: for i = 0 to |Ĩ+

` | − 2 do . Check that all the
elements (but the last) of the list are valid elements

22: Parse Ĩ+
` [i] as (entry, π)

23: hkey← Htoken`(0||add||i)
24: if VHTVerify(σVHT`

, hkey, entry, π)
= REJECT or entry = ⊥ then

25: return REJECT

26: else
27: (`∗, ind)← entry.c1

⊕Htoken`(1||add||i)
28: I ← I ∪ {ind}
29: end if
30: end for
31: Parse Ĩ+

` [|Ĩ+
` | − 1] as (entry, π)

. Check that the last element of the list is ⊥
32: hkey← Htoken`(0||add||(|Ĩ+

` | − 1))
33: VHTVerify(σVHT`

, hkey,⊥, π)

34: Do the same as before, but with del instead of add,
running the loop over Ĩ−` instead of Ĩ+

` , and remov-
ing elements to I instead of adding them.

35: end for
36: return I

6.4 Verifiable Sublinear Construction

In [SPS14], the authors explain that to make their sublinear algorithm secure against malicious adversaries,
one must give a proof for each returned add entry in the form of a MAC, and a proof for each hole as the del
entries at the edge of each deletion region, together with a MAC for each of these entries.

Unfortunately, the verification algorithm is not further detailed and, as we have seen in Section 6.2,
providing these proof elements is not enough: there are still lots of way for the server to cheat. One of these
is by just not returning the add entries for a level `. Or just return part of them, as in the simple search
algorithm. Similarly, the server could also omit to return one or more holes with a specific target level.

As in the simple search algorithm, the main threat the client has to protect against is not receiving all
the elements (either the add entries or the holes) necessary to compute the search result. Again, we heavily
rely on the structure of the levels and on how the entries’ counter increases. For example, for each level `,
the server will give a proof that for a counter cntmax, the entry Γ`[w, add, cntmax] is ⊥, ensuring that there
is no add entry matching w with counter cnt > cntmax. We proceed similarly for del entries.

The verification of the sublinear Search algorithm is not as direct as the verification of basic Search,
and we will present all the procedures needed for the generation of proofs and their verification. For the
sake of readability, in the algorithms, as before, we suppose that once a call returned REJECT, the calling
procedure immediately stops and returns REJECT itself. We also omit the parameters K, w, σ and EDB in
the procedure signatures.
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Algorithm 6 Sublinear Search algorithm.

Search(K,w, σ;EDB)

1: Client: On input (K,w), it computes tokens for each
level.

2: tks← {token` = F (k`, h(w)),
` = 0, . . . , L}

3: The client sends tks to the server.

4: Server:
5: Initialize AllHoles as an empty hash table of lists.

6: for ` = 0 to L do
7: I` ← ProcessLevel(`, token`)
8: end for
9: ΠHoles ← ProveHoles(AllHoles)

10: Send (I0, . . . , IL,ΠHoles) to the client.

11: Client:
12: AllHoles← VerifyHoles(ΠHoles)
13: I ← CheckResults(I0, . . . , IL,AllHoles)
14: return I

6.4.1 Verification of the Sublinear Search Algorithm.

The Search algorithm, as described by Algorithm 6, calls four sub-procedures:

• ProcessLevel, as in the original SPS scheme, finds all the tuples (w, `, ind, add) stored at level ` such
that there is no corresponding entry (w, `, ind, del) in lower levels `′ < `. To do so, it has to find the
holes with target level `, so, for verification purposes, it also returns these holes and adds them to the
hash table AllHoles that tracks all the holes ever found.

• ProveHoles takes as input all the holes found by the calls to ProcessLevel and returns a proof for
these, i.e. a proof that they are maximal and consecutive (we will explain these notions later).

• VerifyHoles verifies the proofs produced by ProveHoles and returns the corresponding holes.

• CheckResults checks the consistency of the results returned by ProcessLevel and produces the result
set I.

The ProcessLevel Algorithm. ProcessLevel is the key procedure described in Algorithm 7. It goes through
the add entries for keyword w at level ` and looks for those that were not deleted by a subsequent deletion. If
such a deletion happened, a corresponding (w, `, ind, del) entry will be in some lower level `′ < ` (note that
such an entry cannot be stored at level ` because it would have been “simplified” by the Rebuild algorithm).
If this search for deletions were done on an entry-by-entry basis, it would be very inefficient, and the server
would need to go through all the add entries at level ` and the search complexity would not be better than in
the simple Search protocol.

To avoid this, if ProcessLevel found an entry that was deleted in the lower levels, it will directly jump
to the next add entry not deleted. This is where SkipHole enters: it finds the largest collection of successive
add entries at level ` (starting at the current entry) for which we can find a matching collection of del entries
in lower levels (line 1). These entries are called a hole.

For this, it uses DeletedSum. DeletedSum finds in every level `′ < ` the largest region of successive del
entries whose target level is ` and document’s index comprised between ind and ind′. It returns the sum of
the size of these regions and their limits i.e. the smallest (resp. biggest) counter cntx (resp. cnty) such that
Γ`′ [w, del, cntx] = (`, indx) and indx ≥ ind (resp. Γ`′ [w, del, cnty] = (`, indy) and indy ≤ ind′). We refer
to these limits as hole components.
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Algorithm 7 The ProcessLevel algorithm (and auxiliary procedures).
ProcessLevel(`, token`)

1: cnt← 0
2: Initialize I` as an empty list.
3: (`, ind, entry, π)

� Lookup(token`, add, cnt++)
4: while entry 6= ⊥ do
5: if (w, `, ind, del) is not found in any lower levels

then . Through a binary search for each lower
level

6: Append (entry, π) to I`
7: else
8: Call (cnt,Hole)←

SkipHole(`, token`, ind)
9: Append Hole to I`

10: end if
11: (`, ind, entry, π)

� Lookup(token`, add, cnt++)
12: end while
13: Append (entry = ⊥, π) to I`

. Show that we reached the last add element in
level `.

14: return I`
AppendHole(AllHoles,Hole)

1: for all (`′, `, cntx, cnty, indx, indy)
∈ Hole do

2: Append (`, cntx, cnty) to AllHoles[`′]
3: end for

SkipHole(`, token`, ind)

1: Through binary search, compute the maximum iden-
fier ind′ ≥ ind in level ` s.t.
count`,`,w,add(ind

′, ind) + 1 = sum, with
(sum,Hole)← DelSum(`, ind, ind′)

2: AppendHole(AllHoles,Hole)
. Track all the generated holes.

3: return the corresponding value cnt for ind′ and
Hole.

DeletedSum(`, ind, ind′)

1: sum← 0, Hole← empty list
2: for `′ = 0 to `− 1 do
3: Find the largest region [(`, indx), (`, indy)] that

falls within the range [(`, ind), (`, ind′)]
4: if such a region is found then
5: Let cntx and cnty be such that

(`, indx) = Γ`[w, del, cntx] and
(`, indy) = Γ`[w, del, cnty]

6: sum← sum+ cnty − cntx + 1
7: Append (`′, `, cntx, cnty, indx, indy) to Hole
8: end if
9: end for

10: return (sum,Hole).

Finally, for the sake of verifiability, we need to keep track of these holes. So we add them to a hash table
of lists AllHoles. AllHoles[`′] stores all the hole components at level `′. Note that, as we process levels in-
creasingly, the target level ` of components added to AllHoles[`′] increases similarly, and as among levels, en-
tries are processed with increasing counter, counters cntx and cnty also increase. Actually, if (`1, cnt1x, cnt

1
y)

and (`2, cnt2x, cnt
2
y) are two successive entries in AllHoles[`′], `1 ≤ `2 and cnt1x ≤ cnt1y < cnt2x ≤ cnt2y.

Hence, the server does not have to go through sorting to get a sorted list (which is important for computa-
tional complexity).

In the end, ProcessLevel returns the lists I` whose elements are either add entries for w in level `
(together with some membership proof) or holes for w with target level `. The last element of this list is
always the ⊥ entry with a VHT proof corresponding to the last counter value of the main loop (the smallest
cnt for which Lookup returns ⊥).

Proving and Verifying Holes. The server has to prove to the client that he did not cheat when producing
the holes. To do so, we could first use the verifiable hash table to show that the hole components limits
are genuine del entries, which is what ProveHoles does. Unfortunately, this is not enough: for example the
server could return two holes for which the intersection of components at a level ` is not empty, which never
happens if the search protocol is run fairly. He could also intentionally omit a del entry. Fortunately, we can
use some very interesting properties of the holes to avoid any falsification of the results by the server, which
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Algorithm 8 Prove and Verify Holes.
ProveHoles(AllHoles)

1: Initialize ΠHoles as an empty table of lists.
2: for ` = 0 to L do
3: cntlast ← −1
4: for all (`′, cntx, cnty, ·, ·) in AllHoles[`] in in-

creasing order do
5: (entryx, πx)

� Lookup(token`, del, cntx)
6: (entryy, πy)

� Lookup(token`, del, cnty)
7: Append ((cntx, entryx, πx), (cnty, entryy, πy))

(in that order) to ΠHoles[`]
8: cntlast ← cnty
9: end for

10: (entrylast, πlast)

� Lookup(token`, del, cntlast + 1)
. entrylast = ⊥

11: Append πlast to ΠHoles[`]
12: end for
13: return ΠHoles

CheckAdjacency(AllHoles[`])

1: cnt← −1, `∗ ← 0
2: for all (`′, cntx, cnty, ., .) ∈ AllHoles[`] in increas-

ing order do
3: if `∗ > `′, cntx 6= cnt+ 1

or cntx > cnty
4: return REJECT

5: cnt← cnty , `∗ ← `′

6: end for
7: return ACCEPT

VerifyHoles(ΠHoles)

1: Initialize AllHoles as an empty table of lists.
2: for ` = 0 to L do
3: cntlast ← −1
4: for all ((cntx, entryx, πx),

(cnty, entryy, πy)) ∈ ΠHoles[`]
do

5: hkeyx ← Htoken`(0||del||cntx)
6: hkeyy ← Htoken`(0||del||cnty)
7: VHTVerify(σVHT`

, hkeyx, entryx, πx)
8: VHTVerify(σVHT`

, hkeyy, entryy, πy)
9: Parse entryx as (l∗x, indx, c2x)

10: Parse entryy as (l∗y, indy, c2y)
11: if l∗x 6= l∗y return REJECT

12: Append (l∗x, cntx, cnty, indx, indy)
to AllHoles[`]

13: cntlast ← cnty
14: end for
15: hkeylast

� Htoken`(0||del||cntlast + 1)
16: VHTVerify(σVHT`

, hkeylast,⊥, πlast)
17: CheckAdjacency(AllHoles[`])
18: end for
19: return AllHoles

we use in ProveHoles and VerifyHoles (Algorithm 8).
First, let us fix a level `. We will consider only hole components or del entries whose level is `. For

such a del entry, there exists an add entry in a higher level `′. Hence it should belong to a hole component
with target level `′. Said otherwise, every del entries belong to a hole, and if the client wants to check that
the server rightly took into account every del entries, he should check that the hole components at level `
span all its del entries. This is exactly what CheckAdjacency does, using the fact that hole components are
consecutive.

In the previous paragraph, we noticed that the elements in AllHoles[`] have components increasing in
a very particular way. Let (`1, cnt1x, cnt

1
y) be an element of AllHoles[`] The del entry with counter value

cnt1y+1 must be either⊥, or a del entry with target level `∗ ≥ `1 (because of the sorting key used in Rebuild).
In the latter case, it necessarily is the start of a new hole component at level `. Hence, if (`1, cnt1x, cnt

1
y)

and (`2, cnt2x, cnt
2
y) are two successive entries in AllHoles[`], we must have `1 ≤ `2 and cnt1x ≤ cnt1y =

(cnt2x − 1) < cnt2y. This condition is checked at line 3 of CheckAdjacency. Testing that the server reached
the last del entries of level ` is done by verifying a non membership proof for counter cntlast + 1 at line 16,
where cntlast is the highest counter value encountered among the hole components of level `. The proof was
produced by the server at line 10.
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Algorithm 9 CheckResults algorithm.

CheckResults(I0, . . . , IL,AllHoles)
1: I ← ∅
2: indlast ← −1
3: cnt← 0
4: for ` = 0 to L do
5: for all e ∈ I` do
6: if e is (entry, π) then
7: hkeyx ← Htoken`(0||add||cnt)
8: VHTVerify(σVHT`

, hkey, entry, π)
9: (w, `, ind, add, cnt)

� ADec(esk, (`, r`), c2)
. As entry has been verified, we know that ADec

returns keyword w, target level ` and operation add.
10: if indlast ≥ ind return REJECT

11: indlast ← ind
12: cnt++
13: I ← I ∪ {ind}
14: else if e is a hole Hole then
15: if previous entry was a hole
16: return REJECT

17: sum← 0
18: indmax ← indlast
19: for all h ∈ Hole do
20: Parse h as (`′, `∗, cntx, cnty, indx, indy)
21: if `∗ 6= `, h /∈ AllHoles[`′]

or indx ≤ indlast
22: return REJECT

23: indmax ← max(indmax, indy)
24: sum← sum+ cnty − cntx + 1
25: end for
26: indlast ← indmax

27: cnt← cnt+ sum+ 1
28: else . e is the proof πlast
29: hkeylast ← Htoken`(0||add||cnt)
30: VHTVerify(σVHT`

, hkey,⊥, πlast)
31: if e is not the last element of I`
32: return REJECT

33: end if . Test value of e
34: end for . Loop over I`
35: end for . Loop over the levels
36: return I

The CheckResults Algorithm. The last thing the client has to do is to check the consistency of the result
lists I` and holes. This is what CheckResults achieves, as described in Algorithm 9. It verifies three points:
first that every add entry in I` has no matching del entry among the holes, then that the holes in I` are
verified holes, and finally that all the add entries at level ` where considered when searching.

First, one must notice that, if the Search protocol is fairly executed by the server, one cannot find in
I` two consecutive holes. Otherwise, it would say that the first hole is not maximal, unlike what SkipHole
ensures. Hence, in CheckResults (line 16), we check that there are not two consecutive holes entries in I`.
In the following, we will suppose that a hole is immediately followed by an add entry in lists I`.

One of the key thing to check is that the document’s index of successively considered entries strictly
increases: in ProcessLevel, the server adds to I` either add entries retrieved using an incrementing counter
or holes whose components limits indices must be larger than the previous add entry and smaller than the
next one, by construction of SkipHole. This condition is checked at lines 10 and 21.

CheckResults would also reject when holes are incorrect, i.e. when their target level is not `, or if they
were not registered in AllHoles. Note that if a hole h is in AllHoles, it has been proved correct by a previous
ProveHole call, and we do not have to show that its components were correctly formed and that their limits
were genuine entries.

The algorithm also checks that the add entries are correct. In particular, the counter value used to retrieve
the hkey is not provided by the server, but recomputed by the client: it is incremented when the current
element e is an add entry, and, if e is a hole, increased by its width. By doing so, and relying on the
increasing document indices, we ensure that the holes width is correct, i.e. that the width of a hole is equal
to the difference of counter values of neighboring add entries. Figure 5 illustrates this point.
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Merging the VHT in the Level Table and De-Amortization. If one uses Section 4.2 as the VHT instan-
tiation Θ, one would notice that the contents of the hash tables, i.e. the entries created by EncodeEntry,
are authenticated ciphertexts (at least for the member c2) – essentially a ciphertext associated with a MAC
– which are then MACed with their position in the table. We could avoid this second MAC by adding the
position in the table to the associated data of the authenticated encryption, and including this position as a
member of the entry. All the algorithms described previously would not change, except that the VHTVerify
calls would be replaced by the verification that the decryption procedure ADec did not return REJECT when
verifying a membership proof.

Moreover, this modification (including the position index in the associated data) would essentially be
transparent to the oblivious sort algorithm. Hence, we could apply the de-amortization as in [SPS14], without
caring about any extra cost induced by the verified hash table. Using de-amortization, the average case
complexity becomes the worst-case complexity: the update operation takes O(log2N) time and induces
O(logN) bandwidth, in the worst case.

If we were to use an other instantiation for Θ, we would have to make sure we can use de-amortization
on this instantiation to avoid unacceptable worst-case complexity.

Time Complexity. As we reuse the same Rebuild algorithm as the one of the simple construction, we refer
to Section 6.3 and claim that Update take O(log2N) amortized time, and O(N logN) in the worst case.

For the Search algorithm, we recall that the original complexity of the unverified search wasO(m log3N)
where m is the number of matching documents. In our case, verification does not increase the search time,
and the complexity of Search is still O(m log3N), as shown in Appendix F.

An estimation of the practical complexity is done in Appendix G.2. In particular, we claim that the
verification of a query’s result on the client side should take a few tens of milliseconds, while the overhead
for the server is negligible.

6.4.2 Security of Verif-SPS

Despite the modifications brought to SPS for verifiability, we claim that this new verifiable dynamic SSE
scheme Verif-SPS is correct, sound and LSPS-adaptively-secure (LSPS is the leakage function of the original
SPS scheme).
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Figure 5 – Example of what CheckResults checks. In this example, IL4 contains the following sequence:
add entry with counter cnt1 and index ind+

1 , a hole whose components are at levels L3, L2 and L1, and an
other add entry with counter cnt2 and index ind+

2 . The upper row represents the add entries for keyword w
at level L4. In red, pink and purple are the ones with a matching entry in the hole. The green entries are the
add entries in IL4
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Correctness follows from the correctness of SPS and from the completeness of the verifiable hash table
Θ. Using an hybrid argument, we can show that for every adversary A there exist two adversaries B and B′

such that
AdvCorSSE,Verif-SPSA (λ) ≤ AdvCorSSE,SPSB (λ) + AdvCompVHT,Θ

B′ (λ)

where B makes the same requests as A to the SSECORR game. In the case of our instantiation of Θ, this
gives us AdvCorSSE,Verif-SPSA (λ) ≤ N2

2λ+2 (we might have collision issues with the hash function computing
hkey in EncodeEntry, which is modeled as a random oracle).

The soundness relies both on the verifiable hash table and on the authenticated encryption scheme, it
is easy to see that using an hybrid argument that will successively suppose the complete soundness of the
VHT, and unforgeability of the authenticated encryption scheme, we will be able to prove the soundness of
Verif-SPS. Yet, in the proof, we will also have to suppose that SPS is also fully correct. More formally, we
have the following theorem, proven in Appendix E.

Theorem 7 (Soundness of Verif-SPS). For every adversary A, there are adversaries B, C and D such that

P[SSESOUNDVerif-SPS
A (λ) = 1]

≤ N ·AdvSndVHT,Θ
B (λ) + AdvAuth,AEnc

C (λ) + AdvCorSSE,SPSD (λ)

Finally, confidentiality directly follows from the confidentiality of SPS. More precisely, as in the pro-
tocols (both Search and Update) the tokens/messages sent by the client to the server are (almost) the same
as in SPS (we replaced encryption by authenticated encryption with associated data that was already freely
available to the adversary) and that the verifiable hash tables only authenticate encrypted entries already
present in the levels, we directly have that for every adversary A, simulator S and leakage function L, there
exists a simulator S′ such that

AdvConfSSE,Verif-SPSA,S′,L (λ) = AdvConfSSE,SPSA,S′,L (λ).

In particular, as SPS is LSPS-adaptively-secure, Verif-SPS is also LSPS-adaptively-secure. We recall that
LSPS(DB) = N for the initialization, LSPS(DB, q) = (DB(w), w) (w is the query pattern) for a search
query, and LSPS(DB, op, in) = (op, ind, n) where n is the number of modified keywords and ind the identi-
fier of the updated document. In particular, an update never reveals that the document matches a previously
searched keyword.

Conclusion

In this paper, we presented the first constructions of verifiable symmetric searchable encryption. We showed
that, even though such constructions have to respect some lower bounds (and that these lower bounds are –
almost – tight), we can build very efficient searchable encryption schemes secure against malicious servers.
In particular, we explained how one can make the construction of [SPS14] verifiable at no additional cost
for the server, and using only a small amount of computation on the client side.

These efficient and secure constructions open some new questions on SSE and verifiability, in particular
about functionalities SSE schemes are likely to achieve – as expressive queries, or a three-party setting
where the data owner and the client are separated – while ensuring results authenticity.
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Appendix

A Chosen Message Attack Security Game

As stated in Section 2.1.3, the Chosen Message Attack (CMA) game formalized in Figure 6 defines the
security of a Message Authentication Code: any polynomial adversary A should not win the game with
non-negligible advantage AdvMAC

A (λ).

Definition 5 (CMA security). Let (MAC,Verif) be a message authentication code,A probabilistic polynomial-
time algorithm. We define the advantage of A in the CMA security game as AdvMAC

A (λ) where

AdvMAC
A (λ) = P[CMAMAC

A (λ) = 1].

We say that (MAC,Verif) is unforgeable if for all adversaries A,

AdvMAC
A (λ) ≤ negl(λ)

.

Init()

K
$← K

return K
Query(x)

s← MACK(x)
Q← Q ∪ {(x, s)}
return x

Challenge(x′, s′)

if VerifyK(x′, s′) = ACCEPT and
(x′, s′) /∈ Q then
win← true

end if
Final()

return win

Figure 6 – Chosen-messages attack game CMA for MACs.

B Security definitions for verifiable hash tables

We describe the security games for the verifiable hash tables, as stated in Section 4.1, to define completeness
and soundness of these verifiable hash tables.

The VHTCOMP is relatively straightforward: it simulates a regular execution of a verifiable hash table
(the adversary does not try to cheat by providing adversarial input to the VHT functions). The VHTSOUND

is a bit more involved as it allows this behavior: not only the adversary can try to forge a valid proof for an
invalid answer (in the Challenge procedure), but he can also try to tamper the client’s state by giving him
wrong refresh informations (in the Update procedure).

Similarly to the previous definitions, for an adversary A we define the following:

AdvCompVHT,Θ
A (λ) = P[VHTCOMPΘ

A(λ) = 1]

AdvSndVHT,Θ
A (λ) = P[VHTSOUNDΘ

A(λ) = 1]

Finally, we say that Θ is correct if, for all adversaries A, AdvCompVHT,Θ
A (λ) is negligible, and that Θ

is sound if, for all adversaries A, AdvSndVHT,Θ
A (λ) is negligible.
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Init(T )

(KVHT,VHT, σVHT)← VHTSetup(T )
return (VHT, σVHT)

Update(u)

(VHT′, π)

� VHTUpdate(T,VHT, u)
σ′VHT

� VHTRefresh(KVHT, σVHT, π, u)
if σ′VHT 6= REJECT then
T ← Apply(T, u)
VHT← VHT′

σVHT ← σ′VHT
end if
return (T,VHT, σVHT)

Challenge(hkey)

(v, π)← VHTGet(T,VHT, hkey)
if T [hkey] 6= v or

VHTVerify(KVHT, σVHT, hkey, v, π)
= REJECT then

win← true

end if
return (v, π)

Init(T )

(KVHT,VHT, σVHT)← VHTSetup(T )
return (VHT, σVHT)

Query(hkey)

(v, π)← VHTGet(T,VHT, hkey)
return (v, π)

Update(u)

(VHT′, π)

� VHTUpdate(T,VHT, u)
The game gives (VHT′, π) to the adversary and
gets back π̃
σ′VHT

� VHTRefresh(KVHT, σVHT, π̃, u)
if σ′VHT 6= REJECT then
T ← Apply(T, u)
VHT← VHT′

σVHT ← σ′VHT
end if
return (T,VHT, σVHT)

Challenge(hkey, v, π)

if T [hkey] 6= v and
VHTVerify(KVHT, σVHT, hkey, v, π)

= ACCEPT then
win← true

end if

Figure 7 – Completeness (VHTCOMP - left) and soundness (VHTSOUND - right) games for verifiable hash
tables.

C Security of the Static Verifiable Hash Table

We show in this section the soundness of the VHT construction of Section 4.2 (Algorithm 1).
Consider the reduction from an adversary A on the VHT instantiation to the CMA game adversary B:

every time the instantiation needs to compute MACK , we replace the call by the Query oracle of the CMA
game. This only happens during the VHTSetup procedure. When A produces a forgery (key, v, π), we will
forward it to the CMA game and produce a MAC forgery.

If the forgery is such that v 6= ⊥, π can be parsed as (i, s) and ((key, v, i), s) is forwarded to CMA. If
A wins the soundness game with this forgery, it implies that (v, π) 6= VHTGet(T,VHT, key), hence that
((key, v, i), s) is not in the transcript of CMA (CMA’s Query is called only during the setup phase). It also
implies that VHTVerify accepts, i.e. that the MAC verification succeeded, and that the forwarded forgery
was a valid unseen forgery.

If the forgery is such that v = ⊥, π can be parsed as (i, key−, v−, s−, key+, v+, s+). We know that π 6=
(ireal, keyreal− , vreal− , sreal− , keyreal+ , vreal+ , sreal+ ) where the real values are the one generated by VHTGet(T,VHT, key).
Let us separate two cases:
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• i 6= ireal: as VHTVerify accepts, we can suppose that (key−, v−, i, s−) and (key+, v+, i+ 1, s+) are
not both entries of VHT. If that were the case, it would mean that the condition key− < key < key+

is verified. But, by construction, we know that keyreal− and keyreal+ is the only pair of consecutive keys
verifying this condition, and it would contradicts i 6= ireal.
Hence, if (key−, v−, i, s−) is not an entry of VHT, then ((key−, v−, i), s−) does not appear in the
transcript of the CMA game and is a valid MAC forgery. The same applies if (key+, v+, i+ 1, s+) is
not an entry of VHT.

• i = ireal, suppose WLOG, that there is a difference on the − components of the proof. Then
(key−, v−, i, s−) is a valid unseen (because never computed in VHTSetup) MAC forgery.

From the previous study, we directly have

AdvVHTSOUND
A (λ) ≤ AdvCMA

B (λ).

D Proof of VSSE Lower Bounds

We give here the proof of Theorem 2 which is restated below.

Theorem 8. Let Π be a VSSE scheme with client memory of size s ≤ |W |1−ε for some ε > 0, where w is
the number of distinct stored keywords (keywords with at least one matching document). Then, either Search
queries have minimal computational complexity Ω(max( log |W |

log log |W | ,m)) or Update queries have minimal

computational complexity Ω( log |W |
log log |W |).

Proof. Search queries cannot be computed in less than O(m) operations, trivially. So in the following, we
will just show that they cannot either be executed in less than O( log |W |

log log |W |).
Let us first consider the memory checker C built over an SSE scheme Π as follows: to read index i, C

calls Π.Search(i) and returns the result, to write value v at index i, C first calls Π.Search(i) and gets a single
value v′, runs Π.Update(del, i, v′) and Π.Update(add, i, v).

In this execution, Π stores exactly one value (document) per index (keyword), so the Search calls will
only return a single entry. The size s of private memory C uses is s = s′ + c where s′ is the private memory
of Π and c a constant independent of n = |W |. Hence, if Π is a VSSE scheme with private memory of size
s′ ≤ n1−ε with ε > 0, C is using less than n1−ε′ private memory for some ε′ ≥ ε > 0.

If both Search and Update had an (amortized) complexity smaller thanO( log |W |
log log |W |), C would break the

lower bound of Theorem 1. Hence, one of Search or Update has complexity at least Ω( log |W |
log log |W |).

E Soundness proof of Verif-SPS

We give here the full proof of the soundness of the Verif-SPS scheme. We will use the following, two step,
strategy:

1. We create a reduction, using hybrids, to a derivative of the game SSESOUND were the values given
by the adversary are ‘sound’, i.e. are either correctly verified or fail verification. For example, a value
issued from a verifiable hash table will never be a successful forgery.

2. We show that this game cannot be won by any adversary.
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E.1 Reduction

We construct 4 games G0 to G3, G0 being (almost) the original SSESOUND security game. We will go
from G0 to G3 by successively assuming the soundness of the verifiable hash table Θ, the authenticity of
the encryption scheme AEnc, and finally the correctness of Verif-SPS.

Game G0 G0 is exactly the game SSESOUNDVerif-SPS
A , up to one difference: for every VHT or authenti-

cated encryption verification, if a forgery actually succeeded, G0 will immediately set the flag win to true.
More formally, each call to VHTVerify(σVHT` , hkey, entry, π) is followed by the pseudo-code

if T`[hkey] 6= entry
and VHTVerify(σVHT` , hkey, entry, π) = ACCEPT

win← true

and the decryptions tuple← ADec(esk, (`, r`), c2) by

if tuple 6= REJECT and c2 is not an encryption of tuple
win← true

The adversary A has more chances to win G0 than the original SSESOUND game and we have

P[SSESOUNDVerif-SPS
A (λ) = 1] ≤ P[G0 = 1]

Game G1 In game G1, all calls to VHTVerify(σVHT` , hkey, entry, π) (including the pseudo code added
in G0) are replaced by the following:

if T`[hkey] 6= entry
return REJECT

return entry

Said otherwise, we suppose that all the VHTVerify calls perform as expected, rejecting forgery tentatives.
It is important to notice that, at every update, exactly one level is rebuilt. So, let us consider sub-hybrids

G0
0, G

1
0, . . . , G

N
0 , such that for all i, in Gi0, all the tables rebuilt before the i-th update (included) use the

upper pseudo-code for verification, and all the other tables rebuilt after this update use the regular verification
procedure. We have that, for all 1 ≤ i ≤ N , there exists an adversary Bi such that

P[Gi0 = 1]− P[Gi0 = 1] ≤ AdvSndVHT,Θ
Bi

(λ).

Bi tries to attack the soundness of the table rebuild at the i-th update. Note that Bi does not make any call
to Update in the game VHTSOUND (the tables are static), and the number of calls toChallenge is upper
bounded by the number of tokens sent by A.

Summing the probabilities, as G0
0 = G0 and GN0 = G1, we have that there exists an adversary B such

that
P[G1 = 1]− P[G0 = 1] ≤ N ·AdvSndVHT,Θ

B (λ).

Game G2 In game G2, all the tentative forgeries of authenticated ciphertexts will fail: the adversary has
to give to the game valid ciphertext or these will be rejected.

Notice that, as we have from G1 that all the entries issued from the verifiable hash table are valid, in
particular, their field c2 has to be valid too, and hence decrypt correctly, without rejection. It implies that
the adversary can win G1 by providing forged ciphers is in the Rebuild protocol. As a consequence, in
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G2, we remove all the code added in G0 after calls to ADec in the Search protocol, without modifying the
adversary’s success probability. In the rest of the paragraph, we will focus only on the Rebuild protocol.

When running Rebuild, when decrypting a tuple, the game will always know what result he should
expect: the algorithms are deterministic, except for the encryption but it does not influence the order the
tuples are treated. So, we modify the game G1 the following way to give G2: in G2 all calls to ADec are
followed by:

if (w, `∗, ind, op, cnt) has not been encrypted with the same authenticated
data as the one used for decryption

return REJECT

We also do this in the o-sort protocol, which uses an authenticated encryption scheme (and associated data
too).

In G2, the game accepts to decrypt only ciphertexts that have been generated by the game itself with
the additional data that are used for the decryption. We are exactly in the case of the authentication security
game for encryption schemes and hence, there exists an adversary C such that

P[G2 = 1]− P[G1 = 1] ≤ AdvAuth,AEnc
C (λ)

C sees all the encryptions generated by the Rebuild algorithms (including the o-sort protocol), and tries to
forge at most once per Rebuild call (remember that the protocol halts as soon as it gets REJECT) i.e. at most
N times.

We also recall that, as we supposed o-sort to be secure against malicious adversaries, when enumerating
the entries of B̂, they come in sorted order, and are the same as the entries of the input table.

Game G3 In game G3, we will suppose that all the lookups behave normally, or said otherwise, that
when looking for keyword w, with operation op and counter cnt at level `, Lookup(token`, op, cnt) will
actually return an entry for keyword w. Still an other way to see it is to say that the schemes behave exactly
as expected on the conceptual data structure Γ. In particular, in implies that there is no collision when
computing token` or hkey. This is ensure by the correctness of the original SPS construction, and we have
that there exists an adversary D such that

P[G3 = 1]− P[G2 = 1] ≤ AdvCorSSE,SPSD (λ)

Finally, when we sum up the contribution of all the games, we infer that

P[SSESOUNDVerif-SPS
A (λ) = 1] ≤ P[G3 = 1]

+N ·AdvSndVHT,Θ
B (λ)

+ AdvAuth,AEnc
C (λ)

+ AdvCorSSE,SPSD (λ)

In the next section, we will show that P[G3 = 1] = 0.

E.2 Soundness of G3

Without loss of generality, we can suppose that the adversary never gives REJECT to the game G3: when it
the case, the current procedure would immediately halt and return REJECT, and the flag win will not be set
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to true. As a consequence, in this section, we will suppose that none of the procedures Search or Update
return REJECT. It implies that, in G3, the entries given by the server to the client are genuine, and that
ciphertexts decrypted by the client were previously encrypted with the same authenticated data.

The first thing we want to prove is that the adversary cannot corrupt the table T`: its content always
reflects the conceptual data structure Γ`.

Proposition 9. At anytime in the execution of the game, if (`∗, ind) = Γ`[w, op, cnt] then, inG3, Lookup(token`, op, cnt) =
(`∗, ind, ., .) with token` = F (k`, h(w))

Proof. Because of the timestamp r` and the flags used during the rebuilding, ciphertexts generated cannot be
replayed. More precisely, all the ciphertexts generated for level ` before the reconstruction cannot be reused
because of the new value of the timestamp r` that was incremented upon rebuild. Then, ciphertexts generated
before the first call to o-sort cannot be reused in place of the ciphertexts generated between the two calls to
o-sort which themselves cannot be reused later: the firsts are encrypted using (`, r`, 0) as associated data,
while the seconds use (`, r`, 1) and the lasts only (`, r`).

We conclude with the correctness of the oblivious sort algorithm: at the end of the protocol’s execution,
the entries are always correctly sorted in T`, unless it returned REJECT.

Now, we can focus on the Search protocol. We only treat the sublinear case, as the soundness of the
basic construction is immediate, and we will proceed level per level: the result set is the (disjoint) union of
the results produced by each level. For lemmas will be proven:

• AllHoles[`] forms a partition of the del entries in level `. Moreover, in each hole component, entries
are consecutive.

• At level `, all the add entries returned by the server in I` match no del entry in lower levels.

• At level `, every add entry in a hole defined by I` match a del entry in a lower level.

• At level `, every add entry has been returned by the server, either as a non-deleted entry, or an entry
belonging to a hole.

Lemma 10. Let ` be a level, and AllHoles the hole table sent by the server after a search request with
keyword w. Let ((cntix, entry

i
x, π

i
x), (cntiy, entry

i
y, π

i
y))

s
i=0 be the list AllHoles[`].

Then ({Γ`[w, del, cnt]}
cntiy
cnt=cntix

)si=0 is a partition of {Γ`[w, del, cnt]}cntlastcnt=0 where cntlast is the largest
integer such that Γ`[w, del, cntlast + 1] 6= ⊥
Proof. This lemma entirely relies on the procedure CheckAdjacency. It checks that the hole components
in AllHoles[`] are consecutive: if (`∗, cntx, cnty, indx, indy) and (`′∗, cnt′x, cnt

′
y, ind

′
x, ind

′
y) are successive

elements in AllHoles[`], then cntx ≤ cnty, cnt′x ≤ cnt′y and cnt′x = cnty+1. Hence, when CheckAdjacency

accepts, we know that the sets {Γ`[w, del, cnt]}
cntiy
cnt=cntix

are pairwise disjoint.
This is ensured for cntx starting at 0: if the first element of AllHoles[`] has not cntx = 0, the test fails.

Also, in VerifyHoles, we checked that, if cntlast is the value of cnty for the last element of AllHoles[`],
it has to be that Γ`[w, del, cntlast] 6= ⊥ while Γ`[w, del, cntlast + 1] 6= ⊥. The verification spanned all

the possible counter values for del entries at level `. Thus, ({Γ`[w, del, cnt]}
cntiy
cnt=cntix

)si=0 is a partition of

{Γ`[w, del, cnt]}cntlastcnt=0 .
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Lemma 11. Let ` be a level and I` the result list returned by the server for this level after a search request
with keyword w. Let (entry, π) be an add element of I`, with entry decrypting to (w, `, ind, add, cnt). If
Search did not return REJECT, there is no del entry matching (ind, `) in any level `′ < `: for all c, `′ < `,
Γ`′ [w, del, c] 6= (ind, `).

Proof. For this lemma, we use the guaranties offered by CheckResults, and in particular on the fact that the
inner variable indlast strictly increases when enumerating the elements of I`.

As a consequence, all the hole components (`′, `, cntx, cnty, indx, indy) in I` encountered before entry
are such that indy < ind (CheckResults would have failed otherwise), and all the hole components (`′, `, cntx, cnty, indx, indy)
in I` encountered after entry are such that indx > ind.

We conclude using Lemma 10: if there is cntdel and `′ < ` such that Γ`′ [w, del, c] = (ind, `), there is a
hole component (`′, `, cntx, cnty, indx, indy) with indx ≤ ind ≤ indy.

Lemma 12. Let ` be a level and I` the result list returned by the server for this level after a search request
with keyword w. Let Hole be a hole in I`, (entry, π) and (entry′, π′) the two add entries flanking Hole
in I`. entry (resp. entry′) decrypts to (w, `, ind, add, cnt) (resp. (w, `, ind′, add′, cnt′)). If Hole is the first
element of I`, we set cnt = 0, and if it is the last element of I`, we set cnt to the smallest integer such that
Γ`[w, add, cnt] = ⊥.

Then, for every cnt < c < cnt′, (indc, `) = Γ`[w, add, c], there exists `′ < ` and cdel such that
(indc, `) = Γ`′ [w, del, cdel]. There also is a hole component h ∈ Hole, h = (`′, `, cntx, cnty, indx, indy)
with cntx ≤ cdel ≤ cnty, indy < ind < indx.

Proof. Let us consider the set

∆ =
⋃

h∈Hole

{
Γ`′ [w, del, cnt]

∣∣∣∣∣h = (`′, `, cntx, cnty, indx, indy)

and cntx ≤ cnt ≤ cnty

}
Because we know that the elements of the union are pairwise disjoint, and because we checked the size of
the hole by summing the difference cnty − cntx + 1 for every component, we have that

|∆| = cnt′ − cnt− 1

which is the number of c such that cnt < c < cnt′.
Let h = (`′, `, cntx, cnty, indx, indy) be a hole component. As we saw earlier, we know that T`′ reflects

the conceptual table Γ`′ , for each cntx ≤ c ≤ cnty, Γ`′ [w, del, c] = (indc, `). We also know that every del
entry in Γ`′ [w, del, c] = (indc, `

∗) (no condition on c)has a matching entry Γ`∗ [w, add, cadd] = (indc, `
∗).

Given Lemma 10, as the hole components at level `′ form a partition of successive del entries at level `′, it
must be that for all cntx ≤ c ≤ cnty, ind < indx ≤ indc ≤ indy < ind′, where Γ`′ [w, del, c] = (indc, `).

This gives us that there are cnt′ − cnt − 1 distinct add entries at level ` whose indices are strictly
comprised between ind and ind′. From entry and entry′, we also know that there are exactly cnt′− cnt−1
distinct add entries at level `, Γ`[w, add, c] = (indc, `) with cnt < c < cnt′, and ind < indc < ind′. These
have to be the same ones, proving the lemma.

Lemma 13. Let ` be a level and I` the result list returned by the server for this level after a search request
with keyword w. For every cnt such that Γ`[w, add, cnt] = (ind, `), either there is an entry entry ∈ I` de-
crypting to (w, `, ind, add, cnt) or there is a hole Hole ∈ I` with a component h = (`′, `, cntx, cnty, indx, indy)
with indx ≤ ind, and ind ≤ indy.
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Proof. Let cntlast be the last counter value encountered when enumerating I`: if its last element is an add
entry decrypting to (w, `, ind, add, cnt), cntlast = cnt, if its last element is a hole (`′, `, cntx, cnty, indx, indy),
cntlast = cnt.

CheckResults ensured that Γ`[w, add, cntlast] 6= ⊥ and Γ`[w, add, cntlast + 1] = ⊥. It means that the
add entries’ count at level ` span the interval [0, cntlast].

Let c be in this interval. Suppose that, in I`, there is no entry decrypting to (w, `, indc, add, c). We also
know that in I`, the value of the counter of add entries strictly increases. Hence, there is two counters cnt <
c < cnt′ satisfying the following conditions: there is two add entries entry and entry′ in I` decrypting to
(w, `, ind, add, cnt) and (w, `, ind′, add, cnt′), entry′ is the add entry following entry in I`.

entry and entry′ cannot be immediately successive in I`: if that were the case, we would have cnt′ =
cnt+ 1 and one of entry or entry′ would decrypt to (w, `, indc, add, c). So, there is the hole Hole between
these in I`, and with Lemma 12, we conclude that there is a hole component h = (`′, `, cntx, cnty, indx, indy)
with indx ≤ indc ≤ indy.

With these lemmas, we can now easily show the perfect soundness of the hybrid of game G3.

Theorem 7. As before, we proceed level per level. So let ` be a level, and cnt such that Γ`[w, add, cnt] 6= ⊥.
Lemma 13 tells us that there is either a corresponding entry entry or a correspond hole. In case of an

add entry, Lemma 11 guaranties us that Γ`[w, add, cnt] has not been deleted in a lower level. In case of a
hole, Lemma 12 implies that Γ`[w, add, cnt] as a matching del entry in a lower level.

In the sublinear Search algorithm, the result set is constructed from the add entries of the I` lists, which
correspond to all the Γ`[w, add, cnt] that have not been deleted. If Search did not return REJECT in game
G3, it returned the correct result set DB(w).

P[G3 = 1] = 0.

Combined with the reduction of the previous section

P[SSESOUNDVerif-SPS
A (λ) = 1] ≤ +N ·AdvSndVHT,Θ

B (λ)

+ AdvAuth,AEnc
C (λ)

+ AdvCorSSE,SPSD (λ)

F Time Complexity of the Verifiable SPS Constructions

F.1 Complexity of the basic scheme

Let T build(n) be the complexity of VHTSetup for an input table of size n, T prf
∈ (n) (resp. T prf

⊥ (n)) the
complexity of VHTGet, i.e. the proving complexity, when queried on a key in the table (resp. a non-member
key), and T chk

∈ (n) (resp. T chk
⊥ (n)) the complexity of VHTVerify, i.e. the verification complexity, for a proof

of an element in the table (resp. an non member element).
The Rebuild (without the VHT) algorithm takes timeO(2``) when ` is the empty level to be filled, as the

bottleneck phase is the oblivious sorting algorithm [GM11]. Computing the VHT induces an extra T build(2`)
cost, as well as using authenticated encryption and the additional sanity checks. Hence, the worst case
complexity of Update is O(N logN) + T build(N) and O(log2N) +

∑L−1
`=0 T

build(2`)/N = O(log2N +
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logN
N T build(N)) amortized time, as each level ` is rebuilt every 2` updates, each rebuild being of O(` ·2`) +

T build(2`) computational complexity.
The basic Search algorithm took time O(α+ logN) in the passive adversary setting of [SPS14], where

α is the number of times the keyword was added to the database. In our case, it increases to O(α(T prf
∈ (n) +

T chk
∈ (n)) + logN(T prf

⊥ (n) + T chk
⊥ (n))). To be more precise, the server needs O(αT prf

∈ (n) + logN) to find
through all entries with keyword w and get the associated proof, and for each level, it needs to produce two
proofs for ⊥ (one for an add entry, the other for a del entry), which takes O(logN · T prf

⊥ (n)) time total.
Hence, using the instantiation of Section 4.2, we end up withO(α+log2N) search time andO(log2N)

amortized update time.

F.2 Complexity of the Sublinear Scheme

As stated in Section 6.4.1, we reuse the same Rebuild algorithm as before, and directly have that Update
takeO(log2N+ logN

N T build(N)) amortized time, andO(N logN)+T build(N) in the worst case, using the
conclusions of the previous section. We will focus here on the Search algorithm (Algorithms 6, 7, 8, and 9).

First, let us study ProcessLevel Namely, the server sends to the client L lists I` containing add entries
and holes. There are exactly m such add entries total, and we know that a hole entry must me immediately
be followed by an add entry, and there are at most m holes in the lists I`. To ensure an add entry has no
associated del entry, the server has to perform an unsuccessful binary search in every level, takingO(log2N)
time. To compute a hole, SkipHole performs a binary search on the add entries of the current level `, an hence
calls DeletedSumO(logN) times. Then, DeletedSum goes through all the lower levels and itself performs a
binary search, takingO(log2N). Finally, for each level, ProcessLevel produces a proof for a key not present
in the VHT, taking O(logN). If we sum all these contributions, ProcessLevel takes time O(m log3N).

ProveHoles enumerates the hole components. As there are at most m holes, there are at most m logN
hole components. For each of these components, ProveHoles generate a VHT proof in constant time (com-
ponents limits are real entries in the level). It also generates a “not found” proof for every level in O(logN).
ProveHoles takes time O(m logN · T prf

∈ (N) + logN · T prf
⊥ (N)).

On the verifier/client side, VerifyHoles verifies O(m logN) of these proofs and calls CheckAdjacency,
which itself goes through all the O(m logN) hole components. VerifyHoles also verifies the O(logN) non-
membership proofs in O(T chk

⊥ (N)) time. Finally, CheckResults also uses the hole components and I`’s add
entries sequentially, each of them being processed in constant time.

The total verification time is O(m logN · T chk
∈ (N) + logN · T chk

⊥ (N)), and the total time complexity
of the search algorithm is

O(m log3N

+m logN(T prf
∈ (N) + T chk

∈ (N))

+ logN(T prf
⊥ (N) + T chk

⊥ (N))).

Once instantiated with Section 4.2, it gives us a search complexity of O(m log3N).

G Practical Evaluation of Verifiable SSE

G.1 Minimal Practical Overhead of Search Queries

As we have seen in Section 3, and with constructions of Section 5, to verify the results of a search query, the
client will have to go through all the returned results and check against these a proof. Given the presented
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construction, we can legitimately claim that the work that has to be performed by the client is comparable
to the computation of a hash or a MAC over the result set.

To estimate the practical overhead, we suppose that a query generating 10 000 results has been processed
by the server. Each result’s index is represented over λ bits (here we take λ = 128), and the byte string
representing the result set spans over 16 · 104 bytes. Using PMAC [RBB03], this string can be processed
at around 1.6 cycle per byte [BLT14], i.e. 25.6 · 104 cycles in total. For a 2 GHz CPU, this will be done in
around 0.1 ms.

However, the GSV construction needs a set hashing function, which is more computationally expensive
than a MAC or a regular hash function. Recent implementations of set hashing gives that one can hash about
1.5 million elements per second on a modern 2 GHz CPU [Tib15], which would give us a verification time
of about 7 ms for a 10 000 results query.

G.2 Practical Evaluation of Verifiable SPS

In this section, we estimate the practical verification costs implied by the algorithms of Sections 6.3 and 6.4.
The Rebuild protocol (and the Update calls) remained almost unchanged, except that authenticated

encryption is used instead of regular randomized encryption. In practice, as the authenticated data is quite
small: authenticated data comprises at most three integers of size roughly logN , while the block cipher
used in the AEAD scheme takes usually blocks of 128 bits as input (e.g. for AES), making packing of these
three integers in a single block possible even for large data bases (up to 242 additions/deletions of keyword-
document pairs). The cost of this additional block cipher call will be negligible, and with most of the modern
AEAD schemes, and it can even be parallelized [RBB03].

For the search, let us focus first on the server side. When instantiated with the construction of Section 4.2,
proving the validity of a found entry is free as the proof for such entries is the MAC of the entry and its
position in the hash table, MAC which is stored with the entry itself. The proving cost comes only from
the binary search needed by the proof construction for non member keys. However, we claim that this cost
is negligible compared the search cost: the server has to construct 2L of those proofs (one per level and
per operation – add and del), performing (at most) logN comparisons for each of them giving 2 log2N
total comparisons, while the SkipHole function performs log3N comparisons per found result due to the
unparallelizable and interleaved binary searches.

On the verifier (client) side, Search has to verify at mostm ·L proofs for keys in the tables and 2L proofs
for keys not in the tables. The total number of MACs to compute and compare is at most (m+4)L (recall that
this is the worst case, when every search result is followed by a hole), each MAC being done over the tuple
of data (w, `, `∗, r`, ind, op, cnt), the position in the table and the IV used for the encryption, i.e. a string of
about 4 logN + 2 log logN + 2λ+ 1 bits. For λ = 128 and N < 240 (L = 40) as taken before, the string to
be MACed spreads over 429 bits, and will need 4 128-bits block cipher calls to be processed, and the total
number of additional block cipher calls due to verification is about 4 · L = 160 per matching document on
an very large data base. Suppose a search keyword matched 10 000 documents. Search would have to verify
around 400 000 authenticated encryptions of 54 bytes. A modern desktop class CPU running at 2GHz can
compute AES-OCB3 at around 1.6 cycle per byte [BLT14], and thus run all the verifications in around 17
ms. Finally, the CheckResults function enumerates all the results and hole components, performing at most
m logN comparisons and additions over logN bits, operations a lot less expensive than AES evaluation.

From this rough evaluation, we show that the verification cost of SPS is quite low: a matter of millisec-
onds of verification time on the client side and two additional binary searches per level, which are easily
parallelizable, and whose cost is significantly less than the search processing cost. Finally, to give a compar-
ison, the (unverified) SPS evaluation of [SPS14] gives a throughput of around 9000 per second for a 1000
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times smaller database than the one taken for our estimation, while our evaluation shows a limitation (on the
client side only) of 67 queries per second in the worst case. For databases with 230 entries (the size of the
largest database in [SPS14]), the verification time for 10 000 results lowers to 11 ms, at a throughput of 90
queries per second.
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