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1 Abstract

This paper shows how several ring-LWE based key exchange protocols can be
broken, under the assumption that the same key share is used for multiple
exchanges. This indicates that, if these key exchange protocols are used, then
it will be necessary for a fresh key share be generated for each exchange, and
that these key exchange protocols cannot be used as a drop in replacement for
designs which use Diffie-Hellman static key shares.

2 Introduction

Key agreement protocols are one of the oldest public key primitives known,
dating back to the Diffie-Hellman protocol[l]. In a key agreement protocol,
each side selects a private value, and exchange a public value (which is often
called a key share); in most such protocols, each side sends a single message.
Then, both side do computations based on their private value and the other
side’s public key shares, and derive the same secret value. The security goal
is that someone listening into the exchanged public key shares would find it
infeasible to derive that secret value.

Diffie-Hellman (and the similar Elliptic Curve Diffie-Hellman) protocols would
be vulnerable to a Quantum Computer; someone with a large Quantum Com-
puter could rederive the private values and thus obtain the common secret value.
One research topic is to find alternatives that would be secure in that environ-
ment. Several such proposed alternatives are based on the ring-LWE problem.
From a protocol standpoint, these proposals work largely like Diffie-Hellman,
each side selects private values, one side sends its public value, the other side
replies, and then they both compute a shared secret.

With Diffie-Hellman, it is perfectly safe to reuse the same public key share
for multiple exchanges. One such use is the ”ephemeral-static” mode; in this



case, Alice might select a private value, and publish the corresponding key share.
Then, when Bob, Carol, Dave and Eve want to communicate with Alice, they
can take Alice’s key share, select their own private values, and then send to
Alice their key shares, thus creating a secure connection. As long as Alice takes
some well-known precautions, the connections are independent; Eve gets no
advantage on deriving the secret used in the Alice to Bob connection.

This paper will show that ring-LWE based key agreement protocols are not
safe in this mode; if Alice uses the same private value repeatedly, then Eve (by
sending a series of messages, and seeing how Alice responds) is able to recover
Alice’s private value (and if Alice used that same static value to generate the
keys used to communicate to Bob, Eve can then listen into that conversation).

3 Ring-LWE Key Exchange

The Ring-LWE problem[4] works in the Ring Z[x]/(z¥ 41, p), for integers N and
p. A member of this ring can be viewed as consisting of N integers (coefficients)
each in [0, p). It has been proposed as the basis for a number of cryptographical
systems. These include a number of key agreement protocols, such as [3], [5],
[2], and [7].

While these protocols differ in the details, they all follow the same basic
paradigm.

e Alice and Bob agree on an element A; it may be a global parameter, or it
may be based on a seed provided by Alice

o Alice selects "small” elements S and E; the value S (Alice doesn’t actually
need to remember the value of E) is Alice’s private secret.

e Alice computes the value B = AS + E (where the multiplication and
addition are done using the ring primitives); this value is Alice’s public
key share, which she sends to Bob

e Bob also selects small elements S’ and E’; he computes the value U =
AS’ + E' and the value V' = BS'.

e Bob then uses V' to compute an error-reconcilation vector C; he sends
U, C to Alice

e Alice computes the value V =US

e Both sides then use the error-reconciliation vector C to convert their V, V'
into a shared secret, converting each coefficient of V, V'’ into one bit.

Some versions of the key agreement add additional error vectors at some
places; as the attack can be modified to account for this, we will ignore it for
now.

The idea behind this protocol is that Alice computes V = SS’A+SE’, while
Bob computes V' = SSA’ + S'E, they differ by SE' — S'E, as S, S, E, E' are



small elements, this is (with high probability) also small (in that each coefficient
is close to 0), and so each element of V is ”close” to the corresponding element
of V'.

Of course, while they are close, they aren’t identical. If we used any fixed
mapping of the coefficients of V,V’ to the shared secrets would mean that we
would have some probability that an element of V' would be on one side of the
boundary, while the same element of ¥V’ would be on the other.

That’s where the error-reconciliation vector comes in. We logically split
up the possible coefficient values into four quadrants; quadrant I ([0,p/4)),
quadrant II ([p/4,p/2)), quadrant III ([p/2,3p/4)), and quadrant IV ([3p/4,p —
1))

There is a bit within the error-reconciliation vector that corresponds to each
coefficient; it determines whether quadrants I and II are considered the same
(e.g. values there may map to a 0 bit, while values in quadrants III and IV
would map to a 1 bit); or whether quadrants I and IV are considered the same
(e.g. values there may map to a 0 bit, while values in quadrants IT and III would
map to a 1 bit).

The intention is that Bob would, for each coefficient value of V’, determine
the value of the error-reconcilation bit that would give the largest possible leeway
for errors. As long as the absolute value of any coefficient of SE’ — S'FE is no
more than p/8, it will always be possible for Alice and Bob to agree on the
shared secret. By choosing the size of the small values for S, 5, E, E’, we can
make this happen with extremely high probability.

4 The Attack

Here is the scenerio that we will assume for the attack:

e Alice uses a ring-LWE key exchange protocol to establish secure connec-
tions

e Alice uses the same key share to communicate with both Bob and the
attacker Eve

e Eve’s goal is to recover the value S the corresponds to Alice’s public key
share (and thus be able to decrypt Alice’s traffic)

e Eve can perform the ring-LWE exchange protocol with Alice multiple
times (with Eve providing a fresh key share each time)

e Each time after Alice and Eve has performed the key exchange protocol,
Alice will derive her shared secret; Eve when then be able to generate one
guess to Alice’s shared secret, and Alice will indicate whether that guess
matches what she has or not.

This last step can be implemented in practice if the ring-LWE key exchange is
used to generate symmetric keys that Alice and Eve would use to communicate.



What Eve can do is generate her symmetric keys based on her guess; if Alice is
able to decrypt (and respond) based on those keys, then (with high probability)
Eve’s guess of the shared secret was correct; if Alice rejects the exchange, then
Eve’s guess was not correct.

4.1 Basic Oracle Query

To make a query, Eve mostly follows the protocol; she selects small S’, £’ values
(albeit not randomly), she computes V', and generates the error-reconcilation
vector C honestly, except for one location.

She deliberately selects S’, E’ so that coefficient 0 of Alice’s computation of
US is near 0 (that is, near the boundary of quadrants I and IV; actually any of
the quadrant boundaries could be used). For coefficient 0, Eve sets that error-
reconcliation bit to indicate that the values in the range [0,p/2) are mapped
to one bit value, while values in [p/2,p — 1] are mapped to the other. As Eve
is able to compute correctly all the other bits of the shared secret (as she is
performing the rest of the protocol honestly), this gives her a way to test the
sign of the value of that intermediate coefficient.

In particular, if we select an ', and call § = (S5"A)[0] (where the notation
F[i] specifies coefficient i-th of the ring element F'), and we use E’ = (X)~¢ (for
some integer i, where (X) stands for the ring element with a 1 in coefficient 1,
and 0 elsewhere), then a key share of (5’ A+ kE’) (for small integer j, k) would
allow us to determine the sign of (jSS’A + kS - (X)™9)[0] = + k- S[i].

4.2 The actual attack

The first step in the attack for Eve is to find a lightweight value S’ where
(SS’A)[0] = £1. She can do this by searching for values S’ which consists of at
most three coefficents are [1, —1] and the rest 0, and for which S’B[0] is a small
value; as B is Alice’s key share (which Eve can learn by running one exchange),
this computation can be done off-line. As S’B = S"(AS+ E) = SS’A+ S'E
where E is known to be small, such a S’ has a nontrivial probability of meeting
the criteria.

We can further refine potential S’ values by probing how a S’ value works
with several i coefficients; by fixing an ¢ value, and trying several j values, and
for each such value, to a binary search for the k value such that jé + kS[i] is
one sign, and jé + (k + 1)S[i] is the other; this gives us the approximate value
of S[i]/d value, and we can use this to deduce whether 6 = £1. We can also
deduce the sign of §.

Once we have such an S’ value, then the attack is easy. We can set k = ¢,
and then for any 4, we can query the sign of j + S[i], or in other words, whether
j > S[i]. Binary search will quickly (with a handful of probes) give us the exact
value of S[i].

We query S[i] for each 4, that gives us the entire value of S, and the attack
has succeeded.



The above can be done with perhaps 4,000 queries (assuming a ring size
of N = 1024 and assuming that the value of S was generated using a discrete
Gaussian Distribution with a standard deviation of circa 3).

5 Attack variants

One issue is that the [3] variant of the protocol has Alice add a second error
vector to the computed V' vector before doing the reconciliation; this would
add in an error that Eve cannot control. Eve can compensate for this by either
running multiple probes (and averaging out the error), or by increasing the j, k
values (to attempt to magnify the signal over the fixed noise level).

In addition, the test (as written) assumes that Eve gets only a single bit per
probe (that is, she can test whether her guess of the shared secret was accurate
or not). If Alice sends the first encrypted message, then it is possible that Eve
might probe several bits per attempt. That is, she might arrange to have several
coefficients be near a Quadrant border, and she would be able to compute the
shared secrets for each setting of the bits under test, and see which version
matches the encrypted data she sees from Alice).

6 Conclusions and Recommendations

The above shows how ring-LWE based key exchange can be broken practically
if the same key share is reused. Ring-LWE is still believed to be safe when a
fresh key share is used every time; however one needs to be careful that is the
situation.

One place where this can potentially come up is in the current TLS 1.3
draft[6]. In this draft, they allow a server to declare a ’static keyshare’. A client
who wants to reestablish a connection with the server is able to send a message
which includes both the client’s key share and a message encrypted by a key
derived from the server’s static keyshare and the clients key share; this is called
0-RTT. The TLS 1.3 draft uses either DH or ECDH, which are both safe when
used in this manner. However, if one were to replace the DH or ECDH with a
ring-LWE based key exchange, this would become insecure.

These results have been specific to ring-LWE, however it would appear likely
that these results would also extend to similar LWE-based protocols.
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