
Scalable and Secure Logistic Regression via Homomorphic
Encryption

Yoshinori Aono Takuya Hayashi Le Trieu Phong? Lihua Wang

National Institute of Information and Communications Technology (NICT), Japan
{aono, takuya.hayashi, phong, wlh}@nict.go.jp

Abstract. Logistic regression is a powerful machine learning tool to classify data. When dealing with
sensitive data such as private or medical information, cares are necessary. In this paper, we propose
a secure system for protecting both the training and predicting data in logistic regression via homo-
morphic encryption. Perhaps surprisingly, despite the non-polynomial tasks of training and predicting
in logistic regression, we show that only additively homomorphic encryption is needed to build our
system. Indeed, we instantiate our system with Paillier, LWE-based, and ring-LWE-based encryption
schemes, highlighting the merits and demerits of each instance. Our system is very scalable in both
the dataset size and dimension, tolerating big size for example of hundreds of millions (108s) records.
Besides examining the costs of computation and communication, we carefully test our system over real
datasets to demonstrate its accuracies and other related measures such as F-score and AUC.

Keywords: Logistic regression, homomorphic encryption, Paillier, LWE, ring-LWE, outsourced com-
putation, accuracy, F-score, area under curve (AUC).

1 Introduction

1.1 Background

Logistic regression is a standard method in supervised machine learning to classify data. It is
widely applied in various fields of science and engineering. Specifically, it has been successfully used
in medical research to help deciding, for example, a patient has a disease or not.

In several tasks using logistic regression, data contributors (and the data analyst as well) are
geographically distributed, raising the need of a central server to receive, store, share, and process
the data as shown in Figure 1. However, the large data collection at the central server may easily
become a significant target for attacks. Even if the access to the server is properly controlled, the
server itself cannot be completely trusted due to the sensitive nature of the data.

Server
Client
(data

analyst)

trained
logistic

regression
model

processed

data

x

x

...

Fig. 1. Data flows.

This work is a continuation of the efforts, detailed in Section 1.3 of related works, of protecting
the data collection at the server via homomorphic encryption.

? Corresponding author

1.2 Our contributions

We build a system for secure logistic regression. Both training data and predicting data in our
system are protected under encryption, so data secrecy is ensured. In addition, the output of our
system can achieve differential privacy. Specifically, our secure system is constructed via following
technical steps and contributions:

(1) We turn the original logistic regression into what we call homomorphism-aware logistic regres-
sion via function approximations.

(2) We show how to use additively homomorphic encryption with the homomorphism-aware logistic
regression. We also point out how to add differential privacy into the system.

(3) We show how to instantiate our system with Paillier, LWE-based, and ring-LWE-based encryp-
tion, and highlight their merits and demerits.

(4) We conduct experiments with real datasets from the UCI repository to compare accuracies,
F-scores, and AUCs of both original logistic regression (over unencrypted data) and our system
(encrypted data, optionally with differential privacy).

The effect of our design is that the system is both secure and scalable, being able to handle very
large dataset size up to 108s. For example, with a synthetic dataset of 108 items each of 40 features,
our commodity server finishes in 20 minutes and its communication to the client transmits from 20
Kbytes to 1 Mbyte depending on the used encryption scheme.

1.3 Related works

The works [4, 17] consider private prediction in logistic regression, given that the regression coef-
ficients (i.e. θ∗ in Section 2.1) are publicly known. This work complements [4] by protecting the
training data in producing the regression coefficients.

The work [10] considers polynomial learning algorithms on encrypted data, assuming that mul-
tiplications over ciphertexts are supported by the underlying homomorphic encryption scheme. In
addition, [10] cites [17] for logistic regression and examines other classifiers such as Linear Means
and FLD. This work continues the efforts in [10] by showing that, via approximations and data
arrangements, the training phase of logistic regression can be done without any multiplications over
ciphertexts.

Approximate versions of logistic regression have appeared in other contexts such as large-scale
text categorization [24] and differential privacy [25]. This work complements [25] by showing the
secrecy of training data can be gained via encryption. In addition, this work combines well with
the functional mechanism for differential privacy in [25] to obtain both data secrecy and output
privacy. See Section 4.2.

Bost et al. [5] examines several classifiers in the setting of two-party computation, in which the
server has a secret θ (model) and the client has a secret x (data). Both interacts in a protocol with
many rounds so that at the end the client learns Circuit(θ, x) where Circuit is one of the classifiers.

The papers [6,7,18] are also in the setting of secure two-party computation in which each party
has a secret training set. Both wish to combine those sets in the training phase to obtain the trained
model, but do not want to reveal their private dataset to each other.

Zhu et al. [26] also consider outsourced logistic regression via an interactive protocol in which
their customer must be always active in communication in several rounds with the cloud server.

2

The communication cost in their protocol depends on both dataset size and dimension, and likewise
the customer’s computation cost. Differential privacy is not considered in [26].

Logistic regression with data privacy protection receives significant attentions from researchers
in biomedical informatics [11,22,23], considering different settings of integrating and sharing data.
Our work adds the setting of secure outsourced logistic regression to this line of research, showing
the task can be done securely at scale.

Khedr et al. [12] examine classifiers using Bayesian filter and decision trees on encrypted data
using homomorphic encryption supporting a few multiplications over ciphertexts.

2 Logistic regression and its approximation

2.1 Original logistic regression

Consider a (Ndata, d)-dataset of Ndata records and d dimension{
x(i), y(i)

}
1≤i≤Ndata

in which x(i) =
(

1, x
(i)
1 , . . . , x

(i)
d

)
∈ Rd+1, y(i) ∈ {0, 1}. Define the following cost function J :

Rd+1 → R, with variable θ = (θ0, θ1, . . . , θd) ∈ Rd+1,

J(θ) =

λ

2Ndata

d∑
j=1

θ2j +
1

Ndata

Ndata∑
i=1

[
− y(i) log(hθ(x

(i)))−

−(1− y(i)) log(1− hθ(x(i)))
]

(1)

in which 0 < hθ(x) < 1 is the value of the sigmoid function hθ : Rd+1 → R given by

hθ(x) =
1

1 + exp(−θTx)
=

1

1 + exp(−
∑d

j=0 θjxj)
.

The training phase of logistic regression aims at finding the minimizer which optimizes the cost
function

θ∗ = argminθJ(θ).

The predicting phase of logistic regression, given a new data xnew = (1, xnew1 , . . . , xnewd) ∈ Rd+1,
aims at guessing the binary value ynew ∈ {0, 1} by setting

ynew =

{
1 if hθ∗(xnew) ≥ thres
0 if hθ∗(xnew) < thres

(2)

in which 0 < thres < 1 is a variable threshold, and typically thres = 1/2.

3

2.2 Homomorphism-aware logistic regression via approximation

The cost function J(θ) in Section 2.1 includes logarithm functions, causing obstacles when all the
data are in encrypted form. In this section, via approximation of the logarithm functions, we derive
what we call homomorphism-aware logistic regression.

Note that,

log(hθ(x)) = log

(
1

1 + exp(−θTx)

)
log(1− hθ(x)) = log

(
1

1 + exp(θTx)

)
so if we approximate the following function of u ∈ R by a degree k (e.g., k = 2) polynomial

log

(
1

1 + exp(u)

)
≈

k∑
j=0

aju
j (3)

we obtain following approximations

log(1− hθ(x)) ≈
k∑
j=0

aj(θ
Tx)j (4)

log(hθ(x)) ≈
k∑
j=0

(−1)jaj(θ
Tx)j (5)

The approximate function of J(θ) is formed by using the polynomials at (4) and (5) to replace
the corresponding logarithm functions in (1). Namely, define the following cost function

Japprox(θ) =
λ

2Ndata

d∑
j=1

θ2j + J∗approx(θ) (6)

in which

J∗approx(θ)

=
1

Ndata

Ndata∑
i=1

[
− y(i)

k∑
j=0

(−1)jaj(θ
Tx(i))j

−(1− y(i))
k∑
j=0

aj(θ
Tx(i))j

]

=
1

Ndata

Ndata∑
i=1

k∑
j=0

(
y(i) − y(i)(−1)j − 1

)
aj(θ

Tx(i))j

=
1

Ndata

Ndata∑
i=1

k∑
j=1

(
y(i) − y(i)(−1)j − 1

)
aj(θ

Tx(i))j − a0.

4

Fig. 2. Approximate functions.

For our secure system, we further want to expand (θTx(i))j for all i. For that purpose, we have
with x = (x0, x1, . . . , xd) ∈ Rd+1,

(θTx)j =

(
d∑
r=0

θrxr

)j
=

∑
0≤r1,...,rj≤d

(θr1xr1) · · · (θrjxrj)

=

d∑
r1,...,rj=0

(θr1 · · · θrj)(xr1 · · ·xrj)

and denote

Aj,r1,...,rj =

Ndata∑
i=1

(
y(i) − y(i)(−1)j − 1

)(
x(i)r1 · · ·x

(i)
rj

)
(7)

we can finally express

J∗approx(θ) =

1

Ndata

k∑
j=1

d∑
r1,...,rj=0

aj(θr1 · · · θrj)Aj,r1,...,rj − a0 (8)

Since degree k = 2 is mainly used in later sections, we give the explicit formulas of (7) as

A1,r1 =

Ndata∑
i=1

(
2y(i) − 1

)(
x(i)r1

)
︸ ︷︷ ︸

owned by the ith data source

(9)

A2,r1,r2 =

Ndata∑
i=1

(−1)
(
x(i)r1 x

(i)
r2

)
︸ ︷︷ ︸

owned by the ith data source

(10)

5

for later references. Furthermore, the coefficients aj at (3) can be chosen via Taylor expansion,
namely

(Taylor) a0 = − log 2, a1 = −0.5, a2 = −0.125.

Another method is via minimizing the area between the original and the quadratic approximation,
yielding1

(Area min.) a0 = −0.714761, a1 = −0.5, a2 = −0.0976419.

Figure 2 depicts the original and the (two) approximate functions, showing that the method of area
minimization is apparently better. When d is relatively small such as d ≤ 8, both approximations
work equally well in our experiments. When d is bigger such as d = 44, the approximation using
the area tends to performs a little better (e.g., increasing the prediction accuracy by 2%).

3 Models for secure outsourced computation

3.1 Model 1: encryption only

We use the model of [20]. In the following we recap the details.

Outsourced
Server

Client(sk)

Compute
θ∗ from Θ

output

θ∗
Epk(Θ)

Epk(data(1))

Epk(data(Ndata))

...

Fig. 3. Model 1 with encryption only (for data secrecy). The protection goal is against the honest-but-curious server.

Model outline. The general picture of the protocol is in Figure 3. We use

Epk(data
(1)), . . . ,Epk(data

(Ndata))

to represent the encryption of the data under a public key pk from various geographically distributed
data contributors. After receiving the encrypted data, using homomorphic property of Epk, the
computing server does necessary computations and sends the output Epk(Θ) to the data analyst,
from which Θ is recovered by decryption, and the final result θ∗ is obtained (from Θ). Note that,
naively Θ = θ∗ but it is not a must2; indeed, what requires is that θ∗ can be efficiently derived
from Θ.

Key generation. The client generates the public and secret key pair (pk, sk) and publicly dis-
tributes pk.

Data encryption. Data from the client or many contributors is encrypted and sent to the out-
sourced server. We assume that these encryption and uploading processes are always correctly
executed.
1 found by using the function fit of gnuplot.
2 For example, in [14, 17], Θ = (θ∗1 , θ

∗
2) ∈ Z2 and θ∗ = θ∗1/θ

∗
2 ∈ R, as current homomorphic encryption schemes do

not support division directly.

6

Threat (semi-honest server) and protection goal. The outsourced server is assumed honest-
but-curious: it is curious on any information from the data, and yet is honest in instructed compu-
tations. This curious nature of the server is considered a threat. The protection goal of our protocol
in Figure 3 is to hide any information of the data from the server.

This honest-but-curious assumption is reasonable to model an economically motivated cloud
service provider: it wants to provide excellent service for a successful business, but would be in-
terested in any extra available information. On the order hand, a malicious cloud service provider
can mishandle calculations, delete data, refuse to return results, collude with other parties etc.
Nevertheless, it is likely to be caught in most of these malicious behaviors, and hence harms its
reputation in business. Therefore, we will stick to the assumption of honest-but-curious server.

Honest client with decryption key. The client can decrypt the encrypted data, and this is
always inherent in using homomorphic encryption for outsourced computation [9], as the client
holds the secret key. This makes sense, e.g., in medical research, as the client can be a research
institute having its own responsibility on handling the data by laws.

3.2 Model 2: encryption + differential privacy

Figure 4 extends Figure 3 by considering differential privacy, namely output privacy in the sense
that the output θ∗ reveals nothing meaningful from any specific input data(i). For that purpose, we
view the server and the client and their interactions as an interactive mechanism I = (Server,Client)
with inputs data(1), . . . , data(Ndata) and output θ∗.

Outsourced
Server

Client(sk)

Compute
θ∗ from Θ

θ∗
Epk(Θ)

Epk(data(1))

Epk(data(Ndata))

...

data(1)

data(Ndata)

...

Interactive mechanism I = (Server,Client)
Inputs: data(1), . . . , data(Ndata). Output: θ∗

Fig. 4. Model 2 of encryption plus differential privacy (for data secrecy and output privacy).

Let D and D∗ be two neighbor databases, namely

D = {data(1), . . . , data(Ndata−1), data(Ndata)}
D∗ = {data(1), . . . , data(Ndata−1), data

(Ndata)
∗ }

differing only at the final item, i.e., data(Ndata) 6= data
(Ndata)
∗ . Denote I(D)⇒ θ∗ as a shorthand for

saying that the interactive mechanism I in Figure 4 outputs θ∗ with input D, we have the following
definition.

Definition 1. (Differential privacy) The interactive mechanism I = (Server, Client) in Figure 4
has ε-differential privacy, if and only if

Pr[I(D)⇒ θ∗] ≤ exp(ε) · Pr[I(D∗)⇒ θ∗]

7

for any output θ∗.

The above definition naturally extends the definition in the literature [8] in which I is a randomized
algorithm. Intuitively, the definition ensures that the change in any single data item will not much
affect the final output.

4 Our system for secure logistic regression

4.1 Securing data via encryption

We present our secure system for logistic regression under the model outlined in Figure 3. Overall,
in the following, the workload of the parties characterized by dataset size Ndata and dimension
d (� Ndata presumably) is in Table 1. The server carries the heaviest computation and storage.
Remarkably, by our system design, the server computations can be easily parallelized, detailed
below.

Table 1. Costs in dataset size Ndata and dimension d.

Storage Computation

Server O(Ndatad
2) O(Ndatad

2)

Client N/A O(d2)

Data sources N/A O(d2)

Communication

Each data source → server O(d2)

Server → client O(d2)

Encryption at data sources. Each data source i computes real numbers a
(i)
1,r1

=
(
2y(i) − 1

)
x
(i)
r1 ∈

R and a
(i)
2,r1,r2

= (−1)
(
x
(i)
r1 x

(i)
r2

)
∈ R for all 0 ≤ r1, r2 ≤ d. Counting distinctly, these are d+ 1 and

(d+ 1)(d+ 2)/2 numbers respectively, so that the data source needs to prepare totally

nd =
(d+ 1)(d+ 4)

2
(11)

real numbers using its d-dimensional data. In later sections, for the convenience of indexing, we

denote these nd numbers from data source i as dat(i) = (dat
(i)
1 , . . . , dat

(i)
nd) ∈ Rnd .

Next, the data source encrypts the above O(d2) real numbers, using some additively homomor-
phic encryption scheme, to produce the ciphertext

CT (i) = Epk

(
{a(i)1,r1

}0≤r1≤d, {a
(i)
2,r1,r2

}0≤r1,r2≤d
)

or equivalently CT (i) = Epk(dat
(i)), in which concrete instantiations of the encryption Epk together

with real number encodings will be described in later section.

Cloud server computation. The server receives and stores CT (i) for 1 ≤ i ≤ Ndata from all data
sources. It then computes the following ciphertext additions

CT =

Ndata∑
i=1

CT (i) (12)

8

and sends CT to the client.

Client decryption. The client decrypts CT using its secret key. Due to the additive homomor-
phism of Epk, what the client obtains is

∑Ndata
i=1 dat(i) ∈ Rnd or equivalently,

Ndata∑
i=1

a
(i)
1,r1
∈ R,

Ndata∑
i=1

a
(i)
2,r1,r2

∈ R

for all indexes 0 ≤ r1, r2 ≤ d. These are exactly the coefficients given in (9) and (10) of the cost
function at (8). Using the coefficients, the client then finds the minimizer θ∗ = argminθJapprox(θ).

Theorem 1. The above system is secure against the semi-honest server in Figure 3 (and Section
3.1).

Proof. The proof is straightforward since the server only handles encrypted data, so the security is
reduced to the semantic security of the underlying encryption scheme (which is either Paillier’s or
LWE-based in the following section).

4.2 Adding differential privacy

Recall that, a noise x ∈ R has Lap(σ) distribution if its probability density function is 1
2σ exp(−|x|/σ).

To obtain ε-differential privacy, the only change we need is the computation of the server given at
(12). Namely, the server generates Laplace noises e = (e1, . . . , end

) ∈ Rnd in which all components
are from the Lap(Λd/ε) distribution where Λd = 2nd = (d + 1)(d + 4), and does the following
computation in the replacement of (12)

CT = Epk(e) +

Ndata∑
i=1

CT (i). (13)

Theorem 2. The system in Section 4.1 with the change at (13) satisfies ε-differential privacy
(Definition 1).

Proof. The effect of (13) is that the client obtains after decryption

e+

Ndata∑
i=1

dat(i) ∈ Rnd

or equivalently,

Lap(Λd/ε) +

Ndata∑
i=1

a
(i)
1,r1
∈ R

Lap(Λd/ε) +

Ndata∑
i=1

a
(i)
2,r1,r2

∈ R

for all indexes 0 ≤ r1, r2 ≤ d. These are exactly the Laplace-perturbed coefficients of the cost
function at (8), so that the claimed differential privacy follows via the functional mechanism [25].
More details are given below.

9

By Definition 1, it is necessary to show that, for any output θ∗,

Pr[I(D)⇒ θ∗] ≤ exp(ε) · Pr[I(D∗)⇒ θ∗].

As the final computation θ∗ = argminθJapprox(θ) at the client is deterministic, the above is equiv-
alent to proving

Pr[I(D)⇒ Japprox(θ)]

Pr[I(D∗)⇒ Japprox(θ)]
≤ exp(ε) (14)

in which function Japprox(θ) here is represented by its coefficients (A1,r1 , A2,r1,r2) in (9) and (10).
When a training set D is used, we make D explicit in those coefficients as follows

A1,r1,D =

Ndata∑
i=1

(
2y

(i)
D − 1

)(
x
(i)
r1,D

)
A2,r1,r2,D =

Ndata∑
i=1

(−1)
(
x
(i)
r1,D

x
(i)
r2,D

)
and likewise for those related to the training set D∗. As the interactive mechanism I(D) perturbs
the coefficients by noises Lap(Λd/ε), let

Adp1,r1,D = Lap(Λd/ε) +A1,r1,D

Adp2,r1,r2,D = Lap(Λd/ε) +A2,r1,r2,D,

then what requires at (14) becomes

Pr[(Adp1,r1,D, A
dp
2,r1,r2,D

) = (A1,r1 , A2,r1,r2)∀r1, r2]

Pr[(Adp1,r1,D∗
, Adp2,r1,r2,D∗

) = (A1,r1 , A2,r1,r2)∀r1, r2]
≤ exp(ε)

whose left hand side is δ1 · δ2 where

δ1 =

∏
r1

exp(− ε
Λd
|A1,r1,D −A1,r1 |)∏

r1
exp(− ε

Λd
|A1,r1,D∗ −A1,r1 |)

δ2 =

∏
r1,r2

exp(− ε
Λd
|A2,r1,r2,D −A2,r1,r2 |)∏

r1,r2
exp(− ε

Λd
|A2,r1,r2,D∗ −A2,r1,r2 |)

so that

δ1 ≤
∏

0≤r1≤d
exp

(
ε

Λd
|A1,r1,D∗ −A1,r1,D|

)
,

δ2 ≤
∏

0≤r1,r2≤d
exp

(
ε

Λd
|A2,r1,r2,D∗ −A2,r1,r2,D|

)
.

10

As D and D∗ differ only at the final (Ndata-th) item, we have

|A1,r1,D∗ −A1,r1,D|

=
∣∣∣(2y

(Ndata)
D∗

− 1
)
x
(Ndata)
r1,D∗

−
(

2y
(Ndata)
D − 1

)
x
(Ndata)
r1,D

∣∣∣
≤
∣∣∣(2y

(Ndata)
D∗

− 1
)
x
(Ndata)
r1,D∗

∣∣∣+
∣∣∣(2y

(Ndata)
D − 1

)
x
(Ndata)
r1,D

∣∣∣
≤ 1 + 1 = 2

assuming that |x(Ndata)
r1,D∗

|, |x(Ndata)
r1,D

| ≤ 1 (via data normalization) and y
(Ndata)
D , y

(Ndata)
D∗

∈ {0, 1}. Also,

|A2,r1,r2,D∗ −A2,r1,r2,D|

=
∣∣∣(−1)

(
x
(Ndata)
r1,D∗

x
(Ndata)
r2,D∗

)
− (−1)

(
x
(Ndata)
r1,D

x
(Ndata)
r2,D

)∣∣∣
=
∣∣∣x(Ndata)
r1,D

x
(Ndata)
r2,D

− x(Ndata)
r1,D∗

x
(Ndata)
r2,D∗

∣∣∣
≤ 2

again assuming that |x(Ndata)
r1,D∗

|, |x(Ndata)
r1,D

|, |x(Ndata)
r2,D

|, |x(Ndata)
r2,D∗

| ≤ 1 via data normalization. Therefore,

δ1 ≤
∏

0≤r1≤d
exp

(
2ε

Λd

)
= exp

(
2(d+ 1)ε

Λd

)

δ2 ≤
∏

0≤r1,r2≤d
exp

(
2ε

Λd

)
= exp

(
(d+ 1)(d+ 2)ε

Λd

)
so that

δ1 · δ2 ≤ exp

(
(d+ 1)(d+ 4)ε

Λd

)
= exp(ε)

since Λd = (d+ 1)(d+ 4), finishing the proof.

4.3 Securing data in prediction

The output θ∗ in Sections 4.1 (or 4.2) can be used for secure prediction in the sense that

– θ∗ = (θ∗0, . . . , θ
∗
d) can be made public, and

– data used in prediction x = (x1, . . . , xd) is encrypted,

and yet the output

hθ∗(x) =
1

1 + exp(−θ∗0 −
∑d

j=1 θ
∗
jxj)

can be computed.
To compute hθ∗(x), it suffices to know

∑d
j=1 θ

∗
jxj . If the data for prediction is encrypted, it is

necessary to compute
d∑
j=1

θ∗jEpk(xj)

which is discussed below:

11

– If Epk(·) supports only ciphertext addition, then it is necessary to multiply a greatest common
divisor to convert the (fixed precision) scalars θ∗j ∈ R into integers. Then ciphertext additions
are applied to obtain the encrypted result.

– If Epk(·) supports one multiplication such as in the (below) LWE and ring-LWE cases, it suffices

to compute the sum of ciphertext product
∑d

j=1 Epk(θ
∗
j)Epk(xj).

In both cases, the data holder with the secret key sk decrypts to obtain
∑d

j=1 θ
∗
jxj and finally

computes hθ∗(x).

5 Instantiations of our system

In this section we use additively homomorphic encryption schemes to instantiate our system in
Section 4. We employ three schemes: Paillier encryption, LWE-based encryption, and ring-LWE-
based encryption. The Paillier scheme is not quantum-safe, so LWE-based and ring-LWE-based
ones are the choices whenever quantum-resistant security is expected. Regarding the quantum-
safe schemes, the ring-LWE-based one has smaller public key size while the LWE-based yields
surprisingly smaller ciphertexts in communication, showed below. These features enable flexible
choices to employ our system in practice.

5.1 Using Paillier encryption

Paillier encryption. With public key pk = n, the encryption of an integer m ∈ {0, . . . , n − 1}
is PaiEncpk(m) = rn(1 + n)m mod n2 in which r is chosen randomly from {0, . . . , n − 1}. The
encryption is additively homomorphic because the ciphertext product PaiEncpk(m1)PaiEncpk(m2)
mod n2 becomes an encryption of m1 +m2 mod n.

Packing data in encryption. As the plaintext space has log2 n ≥ 2048 bits, we can pack many
integers dat1, . . . , datt each of prec bits into each Paillier plaintext as follows.

PaiEncpk

(blog2 nc bits︷ ︸︸ ︷
[dat10pad]︸ ︷︷ ︸
prec+pad bits

· · · [datt0pad]︸ ︷︷ ︸
prec+pad bits

)

in which 0pad is the zero padding of pad bits, which helps preventing overflows in ciphertext addi-
tions. Typically, pad ≈ log2Ndata as we need Ndata additions of ciphertexts. Moreover, as the number
of plaintext bits must be less than log2 n, it is necessary that t(prec + pad) ≤ log2 n. Therefore,

t =

⌊
blog2 nc

prec + pad

⌋
which is the upper-bound of packing prec-bit integers into one Paillier plaintext. As a real number
0 ≤ r < 1 can be represented as an integer of form br · 2precc, the above packing method can be
used to encrypt around blog2 nc/(prec + pad) real numbers in the range [0, 1) with precision prec,
tolerating around 2pad ciphertext additions.

12

Communication cost (data source to server). In our system in Section 4, each data source
needs to encrypt and send nd = O(d2) real numbers to the server. Therefore, with the above packing
method, the number of Paillier ciphertexts sent from each data source is

nd
t

=
nd(prec + pad)

blog2 nc

which is around

CommCostPaillier = 2nd(prec + pad) (bits) (15)

where nd is at (11), since each Paillier ciphertext is of 2blog2 nc bits.

Ciphertext additions (server). The ciphertext additions on the server can be seen as follows:

Ndata

rows



nd
t

columns of PaiEncpk︷ ︸︸ ︷
PaiEncpk

(blog2 nc bits︷ ︸︸ ︷
[dat

(1)
1 0pad]︸ ︷︷ ︸

prec+pad bits

· · · [dat(1)t 0pad]︸ ︷︷ ︸
prec+pad bits

)
, · · ·

...
...

+ +
...

...

PaiEncpk

(blog2 nc bits︷ ︸︸ ︷
[dat

(Ndata)
1 0pad]︸ ︷︷ ︸

prec+pad bits

· · · [dat(Ndata)
t 0pad]︸ ︷︷ ︸

prec+pad bits

)
, · · ·

whose computational cost is around

Ndata ·
nd
t
·TPaiAdd (16)

where TPaiAdd is the time of adding two Paillier ciphertexts. The resulted nd/t ciphertext sums in
columns are sent to the client, which also requires O(2d2(prec + pad)) bits.

Decryption (client). The client decrypts the nd/t sums to obtain the sums
∑Ndata

i=1 dat
(i)
1 ∈ Z,

. . . ,
∑Ndata

i=1 dat
(i)
t ∈ Z, . . . ,

∑Ndata
i=1 dat

(i)
nd ∈ Z. As pad = dlog2Ndatae, there will be no overflows in

the integer sums as required.

5.2 Using a LWE-based encryption

In this section, Zp are integers in (−p/2, p/2] and likewise for Zq.

LWE-based encryption. We use the scheme in [3] due to its flexibility in choosing the plaintext
length. Each plaintext is a vector in Zlp where p and l are almost independent with security param-

eters, so that it is possible to set p ≈ Ndata and l ≈ O(d2). Concretely, for a plaintext m ∈ Z1×l
p ,

lweEncpk(m) = e1[A|P] + p[e2|e3] + [0nlwe
|m] ∈ Z1×(nlwe+l)

q

13

in which e1 ∈ Z1×nlwe , e2 ∈ Z1×nlwe , e3 ∈ Z1×l are Gaussian noise vectors of deviation s; [A|P] is
the matrix concatenation of public matrices A ∈ Znlwe×nlwe

q and P ∈ Znlwe×l
q given in the public key

pk = (A,P, (p, l), (nlwe, s, q)).
The encryption is additively homomorphic because

lweEncpk(m) + lweEncpk(m
′)

= e1[A|P] + p[e2|e3] + [0nlwe
|m] +

e′1[A|P] + p[e′2|e′3] + [0nlwe
|m′]

= (e1 + e′1)[A|P] + p[e2 + e′2|e3 + e′3] + [0nlwe
|m+m′]

in Z1×(nlwe+l)
q , which is the encryption of m+m′ ∈ Z1×l

p .

Data encoding and encryption. Real numbers a ∈ R can be represented in prec = (L+ `+ 1)
signed bits as

a =
∑̀
k=−L

ak2
k

which is the inner product of following vectors

Pow(2, L, `) = [2−L, . . . , 20, . . . , 2`] ∈ Zprec

Bits(a) = [a−L, . . . , a0, . . . a`] ∈ {−1, 0, 1}prec.

in which all signed bits are in {0, 1} if a ≥ 0 and in {−1, 0} if a < 0.
Encryption from each data source corresponds to each row in (18). Namely, each data source i

having nd real numbers takes all signed bits of these numbers, concatenating them to form a vector
in {−1, 0, 1}nd·prec and encrypts that vector using lweEnc. Note that {−1, 0, 1} ⊂ Zp it is sufficient
to set the plaintext length l = nd · prec.
Communication cost (data source to server). Each data source sends to the server a row in
(18), whose size is

(nlwe + nd · prec) log2 q (bits) (17)

which is O(d2prec) as nlwe and q are fixed as parameters of the scheme.

Ciphertext additions (server). The Ndata ciphertext additions on the server can be seen the
row additions as follows, where each row comes from each data source.

Ndata

rows



1 column of lweEncpk ∈ Z1×(nlwe+nd·prec)
q︷ ︸︸ ︷

lweEncpk

(
Bits(dat

(1)
1)︸ ︷︷ ︸

∈{−1,0,1}prec

· · ·Bits(dat(1)nd
)︸ ︷︷ ︸

∈{−1,0,1}prec

)
...
+
...

lweEncpk

(
Bits(dat

(Ndata)
1)︸ ︷︷ ︸

∈{−1,0,1}prec

· · ·Bits(dat(Ndata)
nd

)︸ ︷︷ ︸
∈{−1,0,1}prec

)
(18)

14

whose computational cost is around

Ndata ·TlweAdd = Ndata · (nlwe + nd · prec) · taddZq (19)

where TlweAdd is the adding time of two vectors in the set Znlwe+nd·prec
q and taddZq is the time for

adding two elements in Zq. The resulted sum is sent to the client and its length is the same as in
(17).

Decryption (client). The client decrypts the sum to obtain following sums of vectors (over Z)

Bits(dat
(1)
1) + · · ·+ Bits(dat

(Ndata)
1) ∈ [−Ndata, Ndata]

prec

...

Bits(dat(1)nd
) + · · ·+ Bits(dat(Ndata)

nd
) ∈ [−Ndata, Ndata]

prec

and then takes the inner products with Pow(2, L, `) to get following nd = O(d2) real numbers

dat
(1)
1 + · · ·+ dat

(Ndata)
1 ∈ R

...

dat(1)nd
+ · · ·+ dat(Ndata)

nd
∈ R

as required. The condition for not overflowing here is that [−Ndata, Ndata] ⊆ Zp, meaning the plain-
text of the resulted ciphertext after additions must be in Znd·prec

p . Therefore Ndata < p/2 is necessary.

5.3 Using a ring-LWE-based encryption

Ring-LWE-based encryption. We use the ring-LWE-based scheme described in [10]. Define ring
R = Z[x]/f(x), f(x) = xnrlwe +1, and quotient rings Rq = R/q, Rp = R/p. The notion R(0,s) stands
for polynomials in R with small Gaussian coefficients of mean 0 and deviation s.

The encryption of m ∈ Rp under public key pk = (a,p) ∈ R2
q is as follows

rlweEncpk(m) = (e1a + e2, e1p + e3 + bq/pcm) ∈ R2
q

in which e1, e2, e3 ∈ R(0,s) are noises.
The addition of ciphertexts can be done naturally as

rlweEncpk(m) + rlweEncpk(m
′) ∈ R2

q

in which m,m′ ∈ Rp can also be seen as vectors of length nrlwe over Zp = (−p/2, p/2] ∩ Z.

Data encoding and encryption. Data encoding is identical to Section 5.2. Encryption of the
encoding is different since the plaintext length is fixed with nrlwe. Namely each data source needs
to pack their data items into the ring-LWE encryption. Referring to the rows of (21), let t be the

number of data items packed into one rlweEnc, we have t · prec = nrlwe so that t =
⌊
nrlwe
prec

⌋
.

Communication cost (data source to server). Each data source sends to the server a row in
(21), whose size is

nd
t

(2nrlwe log2 q) ≈ 2nd · prec · log2 q (bits) (20)

15

since each ring-LWE ciphertext is of 2nrlwe log2 q (bits). It is worth noting that the cost at (20) in
ring-LWE case is bigger than (17) in LWE case if nlwe < nd · prec.

Ciphertext additions (server). The Ndata ciphertext additions on the server can be seen the
row additions as follows, where each row comes from each data source.

Ndata

rows



nd
t

columns of rlweEncpk ∈ R2
q︷ ︸︸ ︷

rlweEncpk

(
Bits(dat

(1)
1)︸ ︷︷ ︸

∈{−1,0,1}prec

· · ·Bits(dat(1)t)︸ ︷︷ ︸
∈{−1,0,1}prec

)
, . . .

...
+
...

rlweEncpk

(
Bits(dat

(Ndata)
1)︸ ︷︷ ︸

∈{−1,0,1}prec

· · ·Bits(dat(Ndata)
t)︸ ︷︷ ︸

∈{−1,0,1}prec

)
, . . .

(21)

whose computational cost is around

Ndata ·
nd
t
·TrlweAdd ≈ Ndata ·

nd · prec
nrlwe

·TrlweAdd (22)

in which TrlweAdd is the time of adding two rlweEnc ciphertexts (seen as polynomials) in R2
q .

Decryption (client). This is the same as Section 5.2 and the condition Ndata < p/2 is again
necessary to prevent overflows in adding the columns.

5.4 Costs of computation and communication

The computation and communication costs are depicted in Figure 5, in which the size Ndata is
intentionally set as large as 108s to demonstrate the scaling feasibility of our system. Therefore,
for real datasets with Ndata < 108 (as in Section 6 below), our system is very efficient in both
communication and computation.

Below are details on the parameters to produce that figure. Timings are based on a commodity
server of 2.60 GHz x 2 CPU, 128 GB RAM. It is worth noting that the computation cost of
O(Ndatad

2) can be further reduced to

O(Ndatad
2/nthreads)

if nthreads parallelized threads can be used. With our server, nthreads = 20. Also, we exclude the time
for memory access in comparing computation costs of the instantiations.

Using Paillier’s scheme. We take the Paillier modulus n of 3072 bits, which is standard to gain
128-bit security, so that log2 n ≈ 3072. The communication cost (each data source to server; server
to client) is computed using (15) with precision prec = 64 and padding number pad = dlog2(Ndata)e.
The computation cost is computed via (16) divided by nthreads = 20, with TPaiAdd = 10·10−6 seconds
our commodity server.

Using the LWE-based scheme. The communication cost (each data source to server; server to
client) is computed using (17) in which nlwe = 3530, prec = 64, log2 q = 114. The parameters of

16

Fig. 5. Simulated costs of communication and computation for very large datasets of size 108s.

(nlwe, q) and Gaussian deviation s = 8.0 are set to gain around 128-bit security with respect to
current attacks [2,15,16]. The computation cost is gained via (19) divided by nthreads = 20, in which
the time taddZq of adding to element over Zq is taddZq = 1.146 · 10−9 seconds on our server, using
our own implementation for the dedicated q.

Using the Ring-LWE-based scheme. We use the same parameters as in the LWE case for
128-bit security. In particular, nrlwe ≈ 3530. The communication cost (20) is depicted using these
parameters in Figure 5. As expected, the ring-LWE-based communication cost is larger than the
LWE-based one when the data dimension d increases (e.g. ≥ 10).

It is also worth noting that the computation cost of using the ring-LWE-based scheme in our
system is larger than that of the LWE-based one when d ≥ 9, argued as follows. Looking (19) and
(22), it suffices to show that

Ndata ·TlweAdd ≤ Ndata ·
nd · prec
nrlwe

·TrlweAdd

or equivalently

TlweAdd ≤
nd · prec
nrlwe

·TrlweAdd.

17

Let taddZq
be the time of adding two elements in Zq, then we can estimate TlweAdd = (nlwe +

ndprec)t
add
Zq

and TrlweAdd = 2nrlwet
add
Zq

. The reason is that TlweAdd is the time for adding two elements

in Znlwe+ndprec
q and TrlweAdd is for adding two polynomials of degree nrlwe in Zq. Therefore, it is

sufficient to show

(nlwe + ndprec)t
add
Zq
≤ nd · prec

nrlwe
· 2nrlwetaddZq

which holds true as long as nlwe ≤ ndprec. Since nlwe = 3530, prec = 64 in our parameters, the
condition becomes 55 < nd (= (d + 1)(d + 4)/2), which is true if d ≥ 9 as claimed. Therefore, we
omit the ring-LWE-based computation cost and only depict the LWE-based one in Figure 5.

6 Experiments with real datasets

This section aims at showing the utility of our secure system regarding the accuracies, F-scores,
and AUCs of logistic regression in real datasets.

We first remind the confusion matrix in Table 2 and its derivations for evaluating a classifier.
We then conducts experiments with real UCI datasets [1] to compare the logistic regression over
unencrypted data, encrypted data, and encrypted data with differential privacy, and reports the
results in Table 3 and Figure 6.

Table 2. Comparing actual/predicted class.

Actual class y(i)

1 0
predicted 1 True Positive (TP) False Positive (FP)

class y(i) 0 False Negative (FN) True Negative (TN)

Derivations from the confusion matrix. Referring to Table 2, the accuracy, the precision P
and recall R, true positive rate TPR and false positive rate FPR are as follows

Accuracy =
#TP + #TN

#TP + #FP + #FN + #TN

(Precision) P =
#TP

#TP + #FP
(23)

(Recall) R = TPR =
#TP

#TP + #FN
(24)

FPR =
#FP

#FP + #TN

in which #TP reads as the number of true positives (TP) and likewise for the others.

F-score. The score (aka, F1-score) is define as

Fscore =
2PR

P +R

where P and R are at (23) and (24).

18

Table 3. Experiments with real datasets to compare accuracies, F-scores, and AUCs.

Dataset Logistic Regression over Cost Function Accuracy F-score AUC

Unencrypted (data) Original at (1) 80.2% 0.688525 0.873653
Pima [1,21] Encrypted (data) Approximate at (8) 80.7% 0.694215 0.876347

Encrypted + ε-DiffPriv Approximate at (8) 73.4% 0.523364 0.805328

Unencrypted (data) Original at (1) 79.1% 0.876972 0.783333
SPECTF [1,13] Encrypted (data) Approximate at (8) 75.4% 0.851613 0.761628

Encrypted + ε-DiffPriv Approximate at (8) 72.1% 0.831169 0.673256

(As Ndata is small here, computation and communication costs are negligible of only a few seconds and kilobytes.)

ROC curve and AUC. By varying the threshold 0 ≤ thres ≤ 1 at (2), we obtain multiple pair of
(FPR, TPR) which can be plotted in a curve, called the ROC curve. Note if thres = 0 then in (2), the
prediction ynew will be always 1, so that #FN = #TN = 0, meaning FPR = TPR = 1. On the other
hand, if thres = 1 ,then ynew will be always 0, namely #TP = #FP = 0, so that FPR = TPR = 0.
These extremes correspond to points (0, 0) and (1, 1) in the ROC curve. The “ideal” point is
(FPR,TPR) = (0, 1), specifying that the trained model correctly classifies all testing data.

The AUC is the area under the ROC curve. Together with accuracy and F-score, it is a measure
of how well a classifier works. Having the ROC curve, the AUC can be computed via the built-in
trapz function of Octave.

6.1 Using the Pima diabetes dataset

Fig. 6. ROC curves of unencrypted/encrypted/encrypted + differential-private logistic regression.

The Pima Indians diabetes dataset [1,21] consists of 768 instances and 8 features, or equivalently
in our notation (Ndata, d) = (768, 8). Following [21], we split the dataset into two parts: a training set
of 576 instances and a testing set of 192 instances. The model gaining by the training set is used in
the testing set to compute the accuracy (when thres = 0.5), the F-score (when thres = 0.5), and the

19

area under the curve (AUC) which are reported in Table 3. Note also that [21] reports a crossover
of sensitivity (= TPR) and specificity (= 1 − FPR) at 0.76 when thres = 0.448; our corresponding
crossover over unencrypted data is 0.78 using the threshold for classification thres = 0.35. The
datasets in this and following sections are all normalized by their means and deviations.

For the logistic regression over unencrypted data, we implement the gradient descent algorithm
(aka, steepest descent [19]) with initial model θinit (Table 4 in Appendix A) and learning rate 0.1
with 200 steps of iterations. Also we choose λ = 1 in the cost function (1) to penalize big coefficients
in the model. These choices are due to a few trials and errors, and are presented here since with the
parameters we gain a little better accuracy (and F-score, AUC) than using the built-in fminunc

function of Octave 3.2.4 (yielding about 79% accuracy). The gradient descent algorithm with our
parameters outputs the minimizer θ∗unenc (Table 4, Appendix A), reaching 80.2% accuracy and
corresponding F-score, AUC as in Table 3.

For the logistic regression over encrypted data, after obtaining the coefficients of the approximate
cost function, the client runs the gradient descent algorithm with the same parameters as above.
Perhaps surprisingly, gradient descent with our approximate cost function at (6) performs a bit
better than with the original cost function at (1), yielding 80.7% accuracy and relatively higher
F-score, AUC correspondingly as in Table 3. Finally, the client obtains the minimizer θ∗enc (Table
4, Appendix A).

To add differential privacy, we use distribution Lap(30) for Laplace noises at (13). This means

Λd
ε

=
(d+ 1)(d+ 4)

ε
= 30

where d = 8 so that ε = 3.6 in Table 3. At the end, the client obtains the minimizer of the perturbed
cost function θ∗enc+dp (Table 4, Appendix A). Table 3 confirms the intuition that differential privacy
may decrease the performance (accuracy, F-score, AUC) of the classifier.

6.2 Using the SPECTF heart dataset

The SPECTF heart dataset [1,13] consists of 267 instances and 44 features, or equivalently in our
notation (Ndata, d) = (267, 44). The dataset has already existed in two parts: a training set of 80
instances and a testing set of 187 instances. The paper [13] reported a range of accuracy from 72%
to 84% using a dedicated algorithm for Single Proton Emission Computed Tomography (SPECT)
images called CLIP3.

Using gradient descent with the cost functions at (1) and (8), we obtain the accuracies of 79.1%
(unencrypted), 73.7% (encrypted), 72.1% (encrypted + differential private) with corresponding F-
scores, AUCs reported in Table 3. The ROC curves are in Figure 6. As the dimension d is relatively
big, the parameter of differential privacy ε becomes quite big as well. Specifically, we use distribution
Lap(15) for Laplace noises at (13). This means

Λd
ε

=
(d+ 1)(d+ 4)

ε
= 15

where d = 44 so that ε = 144 as depicted. The initial θ and final outputs are in Table 5 (Appendix
A), all of which are produced via gradient descent with learning rate 0.012, regulation λ = 1, and
450 steps of iterations.

20

7 Conclusion

We show that secure logistic regression is efficiently possible at scale. This is a step towards helping
to protect sensitive data while accelerating research which requires large datasets, collected without
borders. As future works, we plan to test our system with more datasets, and deploy them into
cloud servers instead of our current commodity one.

References

1. UCI Machine Learning Repository, http://archive.ics.uci.edu/ml.
2. Y. Aono, X. Boyen, L. T. Phong, and L. Wang. Key-private proxy re-encryption under LWE. In G. Paul and

S. Vaudenay, editors, INDOCRYPT, volume 8250 of Lecture Notes in Computer Science, pages 1–18. Springer,
2013.

3. Y. Aono, T. Hayashi, L. T. Phong, and L. Wang. Fast and secure linear regression and biometric authentication
with security update. Cryptology ePrint Archive, Report 2015/692, 2015. http://eprint.iacr.org/.

4. J. W. Bos, K. E. Lauter, and M. Naehrig. Private predictive analysis on encrypted medical data. Journal of
Biomedical Informatics, 50:234–243, 2014.

5. R. Bost, R. A. Popa, S. Tu, and S. Goldwasser. Machine learning classification over encrypted data. In 22nd
Annual Network and Distributed System Security Symposium, NDSS 2015. The Internet Society, 2015.

6. W. Du, S. Chen, and Y. S. Han. Privacy-preserving multivariate statistical analysis: Linear regression and
classification. In In Proceedings of the 4th SIAM International Conference on Data Mining, pages 222–233, 2004.

7. D. A. duVerle, S. Kawasaki, Y. Yamada, J. Sakuma, and K. Tsuda. Privacy-preserving statistical analysis by
exact logistic regression. In 2015 IEEE Symposium on Security and Privacy Workshops, SPW 2015, San Jose,
CA, USA, May 21-22, 2015, pages 7–16. IEEE Computer Society, 2015.

8. C. Dwork and A. Roth. The algorithmic foundations of differential privacy. Foundations and Trends in Theoretical
Computer Science, 9(3-4):211–407, 2014.

9. C. Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University, 2009. crypto.stanford.

edu/craig.
10. T. Graepel, K. E. Lauter, and M. Naehrig. ML confidential: Machine learning on encrypted data. In T. Kwon,

M. Lee, and D. Kwon, editors, Information Security and Cryptology - ICISC 2012, volume 7839 of Lecture Notes
in Computer Science, pages 1–21. Springer, 2012.

11. W. Jiang, P. Li, S. Wang, Y. Wu, M. Xue, L. Ohno-Machado, and X. Jiang. WebGLORE: a web service for grid
logistic regression. Bioinformatics, 29(24):3238–3240, 2013.

12. A. Khedr, P. G. Gulak, and V. Vaikuntanathan. SHIELD: scalable homomorphic implementation of encrypted
data-classifiers. IACR Cryptology ePrint Archive, 2014:838, 2014.

13. L. Kurgan, K. Cios, R. Tadeusiewicz, M. Ogiela, and L. Goodenday. Knowledge discovery approach to automated
cardiac spect diagnosis. Artificial Intelligence in Medicine, 23:2:149–169, 2001.

14. K. E. Lauter, A. López-Alt, and M. Naehrig. Private computation on encrypted genomic data. In D. F. Aranha
and A. Menezes, editors, Progress in Cryptology - LATINCRYPT 2014, volume 8895 of Lecture Notes in Computer
Science, pages 3–27. Springer, 2014.

15. R. Lindner and C. Peikert. Better key sizes (and attacks) for LWE-based encryption. In A. Kiayias, editor,
CT-RSA, volume 6558 of Lecture Notes in Computer Science, pages 319–339. Springer, 2011.

16. M. Liu and P. Q. Nguyen. Solving BDD by enumeration: An update. In E. Dawson, editor, CT-RSA, volume
7779 of Lecture Notes in Computer Science, pages 293–309. Springer, 2013.

17. M. Naehrig, K. E. Lauter, and V. Vaikuntanathan. Can homomorphic encryption be practical? In C. Cachin and
T. Ristenpart, editors, Proceedings of the 3rd ACM Cloud Computing Security Workshop, CCSW 2011, Chicago,
IL, USA, October 21, 2011, pages 113–124. ACM, 2011.

18. Y. Nardi, S. E. Fienberg, and R. J. Hall. Achieving both valid and secure logistic regression analysis on aggregated
data from different private sources. Journal of Privacy and Confidentiality, 4:1:189–220, 2012.

19. J. Nocedal and S. J. Wright. Numerical Optimization. Springer, New York, 2nd edition, 2006.
20. R. L. Rivest, L. Adleman, and M. L. Dertouzos. On data banks and privacy homomorphisms. Foundations of

secure computation, 4(11):169–180, 1978.
21. J. W. Smith, J. E. Everhart, W. C. Dickson, W. C. Knowler, and R. S. Johannes. Using the ADAP learning

algorithm to forecast the onset of diabetes mellitus. In Proceedings of the Annual Symposium on Computer
Application in Medical Care, pages 261–265. American Medical Informatics Association, 1988.

21

22. S. Wang, X. Jiang, Y. Wu, L. Cui, S. Cheng, and L. Ohno-Machado. Expectation propagation logistic regres-
sion (EXPLORER): distributed privacy-preserving online model learning. Journal of Biomedical Informatics,
46(3):480–496, 2013.

23. Y. Wu, X. Jiang, S. Wang, W. Jiang, P. Li, and L. Ohno-Machado. Grid multi-category response logistic models.
BMC Med. Inf. & Decision Making, 15:10, 2015.

24. J. Zhang, R. Jin, Y. Yang, and A. G. Hauptmann. Modified logistic regression: An approximation to SVM and its
applications in large-scale text categorization. In Machine Learning, Proceedings of the Twentieth International
Conference (ICML 2003), August 21-24, 2003, Washington, DC, USA, pages 888–895, 2003.

25. J. Zhang, Z. Zhang, X. Xiao, Y. Yang, and M. Winslett. Functional mechanism: Regression analysis under
differential privacy. PVLDB, 5(11):1364–1375, 2012.

26. X. Zhu, H. Li, and F. Li. Privacy-preserving logistic regression outsourcing in cloud computing. IJGUC,
4(2/3):144–150, 2013.

22

A Initial and trained models in our system using reals datasets

The following tables contain the initial and trained models for Section 6.

Table 4. The initial θ and outputs of our system using the Pima diabetes dataset.

θinit = [0.334781, −0.633628, 0.225721, −0.648192, 0.406207, 0.044424, −0.426648, 0.877499,
−0.426819]

θ∗unenc = [−0.802939, 0.354881, 0.932210, −0.192500, 0.051789, −0.103428, 0.613109, 0.337208,
0.141407]

θ∗enc = [−0.618931, 0.272079, 0.687556, −0.164313, 0.023873, −0.078103, 0.426285, 0.215544,
0.085846]

θ∗enc+dp = [−0.938223, 0.467118, 0.570093, 0.014058, −0.361076, −0.215517, 0.603078, 0.295487,
−0.207777]

Table 5. The initial θ and outputs of our system using the SPECTF heart dataset.

θinit =
[0.921455, −0.377080, −0.313317, 0.796285, 0.992807, −0.650099, 0.865773, 0.484040, 0.021763, 0.809766,
0.222401, 0.309993, 0.375320, 0.674654, −0.961690, −0.950472, −0.753475, −0.353844, 0.717381,
−0.319103, −0.664294, −0.573008, −0.401116, 0.216010, −0.810675, 0.961971, −0.412459, −0.507446,
0.585540, −0.273261, 0.899775, −0.611130, −0.223748, 0.008219, −0.758307, 0.907636, −0.547704,
−0.464145, 0.677729, 0.426712, −0.862759, 0.090766, −0.421597, −0.429986, 0.410418]

θ∗unenc =
[0.809215, −0.140885, −0.606209, 0.203335, 0.203389, −0.531782, 0.575154, 0.064924, −0.366572, 0.835623,
−0.159378, 0.043608, 0.011024, 0.613679, −0.893973, −0.742481, −0.690140, −0.333246, 0.604501,
−0.054810, −0.624138, −0.443354, −0.540109, 0.172282, −0.722847, 0.703295, −0.626644, −0.508781,
0.092141, −0.585776, 0.137703, −0.685467, −0.392665, −0.072641, −0.585242, 1.029491, −0.491748,
−0.274508, 0.484444, 0.171330, −1.250592, −0.016082, −0.445400, −0.551420, 0.339719]

θ∗enc =
[0.449506, −0.179168, −0.561430, 0.184955, 0.187654, −0.609835, 0.585331, −0.016184, −0.331420,
0.963836, 0.026561, 0.026819, 0.055403, 0.749877, −0.726896, −0.593111, −0.482201, −0.265006, 0.715793,
−0.028347, −0.514324, −0.488422, −0.433774, 0.243350, −0.626253, 0.750072, −0.525558, −0.512443,
0.119176, −0.595018, 0.130557, −0.540884, −0.226714, −0.004119, −0.451977, 1.024436, −0.445246,
−0.194982, 0.608593, 0.329321, −1.123225, −0.036603, −0.394657, −0.485166, 0.421146]

θ∗enc+dp =
[0.541275, −1.109162, −2.202257, 0.068316, 1.813504, −0.894523, 0.724268, 0.473433, −0.308237, 0.822734,
0.367747, 0.325026, −1.615040, 0.713774, −1.156806, −2.089627, 0.715980, 1.178304, 1.528983, −0.064491,
−1.101812, −2.231109, −0.979761, 0.420572, −0.987508, 2.029521, −1.792476, −0.400331, 0.082781,
−1.527067, 2.203595, −1.116681, 0.311569, 0.731576, −0.404809, 0.526873, −0.166109, 0.550493, 0.675732,
−0.416966, −1.672484, 0.904692, −0.071968, −1.876075, −0.319403]

23

