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Abstract. Let f and g be polynomials of a bounded Euclidean norm in
the ring Z[X]/⟨Xn+1⟩. Given the polynomial [f/g]q ∈ Zq[X]/⟨Xn+1⟩,
the NTRU problem is to find a, b ∈ Z[X]/⟨Xn + 1⟩ with a small Eu-
clidean norm such that [a/b]q = [f/g]q. We propose an algorithm to

solve the NTRU problem, which runs in 2O(log2 λ) time when ∥g∥, ∥f∥,
and ∥g−1∥ are within some range. The main technique of our algorithm
is the reduction of a problem on a field to one in a subfield. Recently, the
GGH scheme, the first candidate of a (approximate) multilinear map,
was found to be insecure by the Hu–Jia attack using low-level encod-
ings of zero, but no polynomial-time attack was known without them.
In the GGH scheme without low-level encodings of zero, our algorithm
can be directly applied to attack this scheme if we have some top-level
encodings of zero and a known pair of plaintext and ciphertext. Using
our algorithm, we can construct a level-0 encoding of zero and utilize it
to attack a security ground of this scheme in the quasi-polynomial time
of its security parameter using the parameters suggested by [GGH13].

Keywords: NTRU, GGH Multilinear Maps, Ideal Lattice, Shortest Vec-
tor Problem

1 Introduction

The NTRU problem is to find a pair of small polynomials whose ratio matches
a given ratio of two small polynomials [HPS98]. After the introduction of the se-
curity of the public-key encryption scheme NTRU, it has been assumed that
this NTRU problem is difficult to solve—the so-called NTRU assumption—
and has been used for the security grounding of various cryptographic schemes
such as signature schemes [HHGP+03,DDLL13], fully homomorphic encryp-
tion scheme [LATV12,BLLN13], and candidates for cryptographic multilinear
maps [GGH13,LSS14,ACLL14]. As it has not been broken until now, the NTRU
assumption has received more attention as a candidate for post-quantum public-
key cryptosystems. A variant of NTRU problem can be stated as follows:

Problem 1 (A variant of the NTRU problem)
Let ϕn(X) ∈ Z[X] be a polynomial of degree n, q ∈ Z be an integer, and D,
N , and B be real numbers. The NTRU problem NTRUϕn,q,D,N,B is to find
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a, b ∈R := Z[X]/⟨ϕn(X)⟩ with a Euclidean norm smaller than B such that
[b/a]q = h for given a polynomial h = [f/g]q, where f and g are sampled from
R and have Euclidean norms bounded by D and N , respectively.

In the original NTRU problem, f and g are sampled from some distribution of
R [HPS98, Section 1]. 1 We consider this variant version to attack multilinear
maps [GGH13].

In this paper, we propose a polynomial-time reduction fromNTRUϕn,q,D,N,B

into NTRUϕn/2,q,D1,N1,B1 , where ϕn = Xn + 1, B = min{ q
2D

√
n
, q
2N

√
n
}, D1 =

D2
√
n/2, N1 = 2ND

√
n/2, and B1 = min{ q

2Dt
√
n
, q
2Nt

√
n
, q
2nN2∥g−1∥

√
n
} for

a power n of 2. Our algorithm is to reduce the problem defined over a ring
Z[X]/⟨Xn + 1⟩ to one over a subring Z[X]/⟨Xn/2 + 1⟩. After repeated appli-
cations, we then use lattice reduction algorithms to find a short element. Since
the latter has a smaller dimension, lattice reduction algorithms require a lower
running time to produce a short element, which results in an algorithm for the
NTRU problem. The algorithm runs in 2O(log2 λ) time when ∥g∥, ∥f∥ and ∥g−1∥
are within some range. For example, when n = λ2 and log q = λ, the running
time is quasi-polynomial in λ. However, when n = λ3 and log q = λ, the running
time is still an exponential time in λ. As an application of our work, we propose
an attack of GGH multilinear maps [GGH13] without any low-level encodings of
zero. GGH maps were proposed by Garg et al. and broken by a so-called zeroiz-
ing attack by Hu and Jia [HJ15]. Since their attack extensively utilizes low-level
encodings of zero, it does not work without them, and no polynomial-time attack
was known without them until recently (refer to the “Related work” subsection
for the concurrent and independent works on this problem). Our algorithm can
be directly applied to construct a level-0 encoding of zero, even when we are
not given any low-level encodings of zero. We can then utilize them to attack
the GGH scheme without low-level encodings of zero in the polynomial time of
its security parameter. Our GGH attack requires a known pair of plaintext and
ciphertext, some top-level encodings of zero, and the public parameters.

Technical overview. A natural approach for the NTRU problem is to convert
it into a shortest vector problem (SVP) on an ideal lattice. Let ϕn(X) = Xn+1

when n is a power of 2. For any polynomial h = [f/g]q =
n−1∑
i=0

hiX
i ∈ R :=

Z[X]/⟨Xn + 1⟩, one may consider it as a vector (h0, · · · , hn−1)
T . Then, the

product gh =
n−1∑
i=0

giX
ih of the two polynomials h and g in R is contained

in the lattice Mh generated by {h, Xh, · · · , Xn−1h}. We aim to obtain an
element g̃ ∈ Z[X]/⟨ϕ(X)⟩ satisfying ∥g̃∥ and ∥[g̃h]q∥ are small. To obtain such
a g̃ ∈ Z[X]/⟨ϕ(X)⟩, one can naturally contemplate the following column lattice:

Λh =

(
I 0

Mh qI

)
,

1 f and g are sampled to satisfy that f = pf ′ and g − 1 = pg′ for a small integer p
and the polynomials f ′ and g′ in R with the coefficients in {−1, 0, 1}.
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where I is the identity matrix of size n, and Mh is a basis matrix of Mh jux-
taposed by {h, Xh, · · · , Xn−1h}. Given a lattice vector u = (u0, · · · , u2n−1)

T

of Λf satisfying |ui| < q/2 for n ≤ i ≤ 2n − 1, we take g′ =
n−1∑
i=0

uiX
i and

f ′ =
n−1∑
i=0

un+iX
i so that f ′ = [g′h]q and h = [f ′/g′]q. Therefore, if one can find

a small lattice point u such that

√
n−1∑
i=0

ui ≤
q

2∥f∥
√
n

and

√
2n−1∑
i=n

ui ≤
q

2∥g∥
√
n
,

it becomes a solution of NTRUϕ,q,D,N,B . However, the dimension 2n of the lat-
tice is too large for most applications, which is the origin of the difficulty of
the NTRU problem. To overcome this obstacle, we consider a subfield Km of
K0 := Q[X]/⟨Xn+1⟩ with the extension degree m and the trace of f ∈ K0 over
Km:

Tr(h) =

[
m∑
i=1

σi(h)

]
q

=

 m∑
i=1

(σi(f)
∏
j ̸=i

σj(g))/

m∏
i=1

σi(g)


q

.

Since the numerator and denominator are elements in Km bounded by m∥f∥·
∥g∥m−1nm and ∥g∥mnm, respectively, if they are smaller than q, we can con-
struct another instance of the NTRU problem on Km where the dimension of
ΛTr(h) is that of Λh divided by m. By optimizing m such that finding a small
vector on the reduced lattice is possible with BKZ algorithm, one can reach our
results.

Multilinear maps. After Boneh and Silverberg [BS02] suggested the con-
cept of cryptographic multilinear maps and their applications such as multipar-
tite Diffie–Hellman and efficient broadcast encryption in 2002, the construction
of cryptographic multilinear maps has been a longstanding open question. In
2013, approximate cryptographic multilinear maps were first proposed by Garg,
Gentry, and Halevi (GGH) [GGH13]. Not much later, second and third cryp-
tographic multilinear maps were suggested by Coron, Lepoint, and Tibouchi
(CLT) [CLT13], and Gentry, Gorbunov, and Halevi [GGH15], respectively. How-
ever, none of these maps have a reduction to a standard difficultly problem such
as the subset sum problem. In fact, the first two schemes with low-level encod-
ings of zero are known to be insecure [CHL+15,HJ15] via the so-called zeroizing
attack. The last candidate is also broken [Cor15]. Although the fixed scheme of
[CLT13] was proposed by the same authors of [CLT15] to resist the zeroizing
attack against the CLT scheme, it was also shown to be insecure [CLR15]. On
the other hand, both the [GGH13] and [CLT13] schemes without any encod-
ings of zero, which are used as basic tools for constructing applications such as
indistinguishable obfuscations, have still not been analyzed.

Related work. In 2002, a technique was suggested to reduce the dimension of
an ideal lattice by Gentry and Szydlo [GS02]. They consider a subring of a given
ring Z[X]/⟨Xn − 1⟩ consisting of the fixed elements by the ring automorphism
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σ : X 7→ Xn−1. This techique, however, has no guarantee that one can apply it
repeatedly to reduce the dimension more efficiently.

Recently, for GGH multilinear maps without encodings of zero, two more
concurrent and independent cryptanalytic works have been announced simul-
taneously, which can overcome the previous flaw: one by Albrecht, Bai, and
Ducas [MA16] and the other by Miles, Sahai, and Zhandry [MSZ16]. The first in-
troduces a very similar reduction fromNTRUϕn,q,D,N,B toNTRUϕn/2,q,D1,N1,B1 .
They provided a rich analysis of the NTRU-like homomorphic encryptions LTV [LATV12]
and YASHE [BLLN13] and GGH multilinear maps with some implementations.
Using the norm function instead of the trace function in our algorithm, they
proposed a quantum-polynomial-time or subexponential-time attack on GGH
without low-level encodings of zero. In our work, we can achieve the same, but
slightly better, results using the trace function. Moreover, through our new ap-
proach, we can obtain an algorithm to attack GGH scheme without low-level
encodings of zero in quasi-polynomial time.

The second introduced a polynomial-time attack algorithm against the GGH
multilinear maps, the so-called annihilation attack. Using nonlinear polynomials,
it also leads to a polynomial-time break of the GGH scheme without low-level
encodings of zero.

Organization. In Section 2, we introduce some notation and preliminary infor-
mation related to ideal theory and Galois theory. In Section 3, we state some
useful properties and their proofs used to solve the NTRU problem. In Section 4,
we briefly explain the GGH scheme and present our algorithm for attacking the
GGH scheme using our theorem.

2 Preliminaries

Notation. For an integer q, we use the notation Zq := Z/(qZ) and [R]q :=
Zq[X]/⟨Xn+1⟩ = R/qR. We denote the number in Zq within the range

(
− q

2 ,
q
2

]
by (x mod q) or [x]q, which is congruent to x modulo q. For u =

n−1∑
i=0

uiX
i ∈ R,

[u]q =
n−1∑
i=0

[ui]qX
i and ∥u∥ denote the Euclidean norm of u.

We define ι : Zq −→ Z by [x]q ∈ Zq 7→ x ∈ Z for − q
2 < x ≤ q

2 . We extend
this map to [R]q by applying it to each coefficient. By abuse of notation, we omit
ι unless it will be confused when identifying [x]q ∈ Zq with an integer x when
− q

2 < x ≤ q
2 .

Throughout this paper, we assume that an integer n is a power of 2. Then,
K := Q[X]/⟨Xn+1⟩ is a number field with the ring of integers R := Z[X]/⟨Xn+
1⟩. In particular, K is a Galois extension of Q, and we denote the Galois group
of K over Q by Gal(K/Q). As in the technical overview, for any polynomial

h =
n−1∑
i=0

hiX
i ∈ K, we consider it to be a column vector (h0, · · · , hn−1)

T . When

we need an inverse of an element a ∈ R, we usually consider the inverse in K
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with the notation a−1. If we want to consider it in [R]q and not in K, then we
denote it by

[
a−1

]
q
. We use bold letters to denote vectors or ring elements in

Zn or R.

Ideal lattice. An n-dimension full-rank lattice M ⊂ Rn is the set of all Z-
linear combinations of n linearly independent vectors. Let det(M) denote the
determinant of the lattice M. For an element g ∈ R, we denote the principal
ideal in R generated by g by ⟨g⟩, whose basis consists of {g, Xg, . . . , Xn−1g}. By
identifying a polynomial g =

∑
giX

i ∈ R with a vector (gn−1, gn−2, . . . , g0)
T in

Zn, we can apply lattice theory to the algebraic ring R and algebraic ring theory
to the ideal lattice ⟨g⟩. For a polynomial u ∈ R and a basis B := {b1, b2, . . . , bn},
we denote the reduction of u modulo the fundamental region of lattice B by
u mod B; that is, u mod B is the unique representation of u ∈ R such that

u − (u mod B) ∈ B and u mod B =
n−1∑
i=0

αibi for αi ∈ (−1/2, 1/2]. For the

polynomials u,v ∈ R, we use the notation u mod v as u mod V, where V is
a basis {v, Xv, . . . , Xn−1v}. By the definition of u mod v, it is of the form
n−1∑
i=0

αiX
iv for αi ∈ (−1/2, 1/2]. Hence, the size of its Euclidean norm is bounded

by
n−1∑
i=0

∥Xiv∥/2 =
n−1∑
i=0

∥v∥/2 =
n

2
∥v∥. Next, we introduce some useful lemmas

related to ideal lattices.

Lemma 1 For any a, b ∈ R = Z[X]/⟨Xn + 1⟩, ∥ab∥ ≤ ∥a∥ · ∥b∥ ·
√
n.

Proof. The k-th coefficient of ab is of the form
∑

i+j=k

aibj −
∑

i+j=n+k

aibj. By the

Cauchy–Schwartz inequality, it is smaller than ∥a∥ · ∥b∥. Since each coefficient
is smaller than ∥a∥ · ∥b∥, ∥ab∥ ≤ ∥a∥ · ∥b∥ ·

√
n.

Lemma 2 Let g be an element of Z[X]/⟨Xn + 1⟩ and f ∈ Z[X]/⟨Xn + 1⟩ be
a relative prime to g. If c ∈ Z[X]/⟨Xn + 1⟩ satisfies ∥c∥ < q/(2∥f∥

√
n) and

∥[c · f · g−1]q∥ < q/(2∥g∥
√
n), then c is contained in the ideal ⟨g⟩.

Proof. Let w := [c ·f ·g−1]q. Then, [gw]q = [cf ]q. Since ∥w∥ < q/(2∥g∥
√
n), we

have ∥gw∥ ≤ ∥g∥ · ∥w∥ ·
√
n ≤ q/2 and ∥cf∥ ≤ ∥c∥ · ∥f∥ ·

√
n ≤ q/2. Therefore,

gw = cf in Z[X]/⟨Xn + 1⟩. Because cf ∈ ⟨g⟩ and f is a relative prime to g,
we can conclude c ∈ ⟨g⟩.

Using Lemma 2, if one can find c that satisfies Lemma 2, c is of the form c = dg
for some small d ∈ Z[X]/⟨Xn +1⟩. Then, by multiplying it by [fg−1]q, one can
obtain a small multiple of f , df . Hence, df and dg become a solution of the
NTRU problem.

Gaussian distribution. Given σ > 0, the discrete Gaussian distribution over
the set L with zero mean is defined as DL,σ(x) = ρσ(x)/ρσ(L) for any x ∈ L,
where ρσ(x) = exp(−π∥x∥2/σ2) and ρσ(L) =

∑
x∈L

ρσ(x). We use the notation
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a← D to denote the choice of an element a according to the distribution of D.

Norm and trace of a field For a finite extension K of a field F , the trace
TrK/F (α) and norm NK/F (α) of α ∈ K over F are defined as the trace and
determinant of the linear transformation Mα that maps x ∈ K to αx ∈ K,
respectively, i.e., TrK/F (α) =

∑
ai,i and NK/F (α) = det(ai,j), where ai,j is the

matrix for Mα with respect to any basis of K over F . The map TrK/F and NK/F

satisfy the following properties:

(1) TrK/F (α) =
∑

σ∈Gal(K/F )

σ(α) and NK/F (α) =
∏

σ∈Gal(K/F )

σ(α)

if K is a Galois extension of F
(2) TrK/F (α+ β) = TrK/F (α) + TrK/F (β), NK/F (αβ) = NK/F (α)NK/F (β)

(3) TrK/F (a · α) = a · TrK/F (α), NK/F (a · α) = a[K:F ] ·NK/F (α)

(4) TrK/F (a) = [K : F ] · a, NK/F (a) = a[K:F ]

for α, β ∈ K and a ∈ F .

3 Main Theorem

In this section, we discuss how the NTRU problem with a given input [f/g]q is
reduced to the NTRU problem with an input whose denominator and numerator
have half of the degree of f and g. Throughout this section, let n = 2s and denote
Q[X2t ]/⟨Xn+1⟩ and Z[X2t ]/⟨Xn+1⟩ byKt and Rt, respectively, with 0 ≤ t ≤ s.
Note that Ks := Q ≤ Ks−1 ≤ · · · ≤ K0 = Q[X]/⟨Xn+1⟩, where A ≤ B denotes
that A is a subfield of B. Since K0 is a Galois extension field of K1 with a
degree of 2, Gal(K0/K1) is a group of order 2. That is, Gal(K0/K1) = {id, σ},
satisfying σ(X) = −X; therefore, σ2 = id, where id is the identity map. For an
element h, g ∈ R ⊂ K0, the following elements are contained in R1 ⊂ K1:

TrK0/K1
(h) = h+ σ(h),

NK0/K1
(h) = h · σ(h),

T rK0/Kt
(hσ(g)) = hσ(g) + σ(h)g,

since they are fixed by Gal(K0/K1). Note that these elements have only n/2
terms, and the last one lies in 2 ·R1. Generally, for 0 < t ≤ s, K0 is a Galois ex-
tension field of Kt with a degree of 2t and the Galois group Gt := Gal(K0/Kt) =
{σ0 = id, σ1, . . . , σ2t−1}. For an element h, g ∈ R ⊂ K0, the following elements
are contained in Rt ⊂ Kt:

2t−1∑
i=0

σi(h) = h+ σ1(h) + · · ·+ σ2t−1(h),

2t−1∏
i=0

σi(h) = h · σ1(h) · · · · · σ2t−1(h),

T rK0/Kt
(hσ1(g)σ2(g) · · ·σ2t−1(g)),
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since they are fixed by Gal(K0/Kt). Moreover, these elements have only n/2t

terms, and the last one lies in 2t · Rt. Using this property, we can obtain the
following theorem, which is the main theorem of this paper.

Theorem 1 Let q and m ∈ Z be integers and let D and N be positive real
numbers. Set B = min{ q

2D
√
n
, q
2N

√
n
}. Then, for ϕn(X) = Xn + 1 with n =

2s and 0 < t ≤ s, we can reduce NTRUϕn,q,D,N,B to NTRUϕn/2t ,q,Dt,Nt,Bt ,

where Bt = min{ q
2Dt

√
n
, q
2Nt

√
n
, q
2nN2∥g−1∥

√
n
}, Dt = D2t

t∏
j=1

√
n/2j, and Nt =

ND2t−1
t∏

j=1

√
n/2j.

Proof. Suppose we are given [f/g]q, where g and f are sampled from the set
{(g,f) ∈ R2 = (Z[X]/⟨ϕn(X)⟩)2 : ∥f∥ < N, ∥g∥ < D}. We consider the useful
element

TrK0/Kt

(
f

g

)
=

f

g
+σ1

(
f

g

)
+· · ·+σ2t−1

(
f

g

)
=

TrK0/Kt
(fσ1(g)σ2(g) · · ·σ2t−1(g))∏2t−1

i=0 σi(g)

in Kt that satisfies

–
2t−1∏
i=0

σi(g) ∈ Rt, and TrK0/Kt
(fσ1(g)σ2(g) · · ·σ2t−1(g)) ∈ 2t ·Rt,

–

∥∥∥∥TrK0/Kt
(fσ1(g)σ2(g) · · ·σ2t−1(g))

2t

∥∥∥∥ ≤ ND2t−1
t∏

j=1

√
n/2j ,

–

∥∥∥∥∥∥
2t−1∏
i=0

σi(g)

∥∥∥∥∥∥ ≤ D2t
t∏

j=1

√
n/2j .

Therefore, we can see that

[
TrK0/Kt

(fσ1(g)σ2(g) · · ·σ2t−1(g))/2
t∏2t−1

i=0 σi(g)

]
q

is a new in-

stance forNTRUϕn/2t ,q,Dt,Nt,Bt , whereDt = D2t
t∏

j=1

√
n/2j ,Nt = ND2t−1

t∏
j=1

√
n/2j ,

andBt = min{ q
2Dt

√
n
, q
2Nt

√
n
, q
2nN2∥g−1∥

√
n
}. Now, suppose that a solution (at, bt) ∈

Rt ofNTRUϕn/2t ,q,Dt,Nt,Bt is known such that [bt/at]q =

[
TrK0/Kt

(fσ1(g)σ2(g) · · ·σ2t−1(g))/2
t∏2t−1

i=0 σi(g)

]
q

.

Moreover, since g and f are relative primes with a high probability [MA16],
we assume the coprimality of g and f . Then, by Lemma 2, at is of the form

at = d
∏2t−1

i=0 σi(g). After computing [at · h]q =
[
d
∏2t−1

i=0 σi(g) · [f/g]q
]
q
=[

df
∏2t−1

i=1 σi(g)
]
q
, set a = at and b =

[
df
∏2t−1

i=1 σi(g)
]
q
. Then, we can con-

clude that the pair (a, b) is a solution of NTRUϕn,q,D,N,B with following prop-



8

erties:

[b/a]q = [f/g]q,

∥a∥ ≤ q

2Nt
√
n
≤ q

2N
√
n
,

∥∥∥∥∥∥df
2t−1∏
i=1

σi(g)

∥∥∥∥∥∥ =

∥∥∥∥∥∥dg−1f

2t−1∏
i=0

σi(g)

∥∥∥∥∥∥ ≤ ∥at∥ · ∥g−1∥ · ∥f∥ · n

<
q

2nN2∥g−1∥
√
n
· ∥g−1∥ ·N · n

=
q

2N
√
n
.

The last inequality implies that b =
[
df
∏2t−1

i=1 σi(g)
]
q
is actually b = df

∏2t−1
i=1 σi(g)

in R. Thus, we obtain the desired result.

Comparing with [MA16], our result works better when N ≥ D because the
value of our N1 is smaller than that of [MA16] while the values of D1 are same.

Theorem 2 Let q be an integer, n a power of 2, and λ the security parame-
ter. Let h = [f/g]q be an instance of the NTRUϕn,q,D,N,B problem with the
parameters log q = c1 · λℓ, n ≤ c2 · λ2ℓ, N = qa, 0 < a < 1/2, D = λk < N ,
ϕn(X) = Xn + 1, and B = min{ q

2D
√
n
, q
2N

√
n
}. For β > 0 and t ∈ Z, if

2β
nt

2(β−1)
+ 3

2
√
q ≤ Bt,

where Dt = D2t
t∏

j=1

√
n/2j, Nt = ND2t−1

t∏
j=1

√
n/2j , Bt = min{ q

2Dt
√
n
, q
2Nt

√
n
, q
2nN2∥g−1∥

√
n
},

and nt =
n

2t
, then the problem is solved in 2O(β) time.

In particular, if ∥g−1∥ ≤ D2t−1

N
·
√
n
t−2 · 2

t(t+1)
4 and β = log2 λ, the problem

is solved in 2O(log2 λ) time. 2

For example, when n = λ2, D = λ2, N = q1/8, and log q = λ, one can solve
NTRUϕn,q,D,N,B in quasi-polynomial time in λ.

Proof. By Theorem 1, one can obtain a new instance [TrK/Kt
([f/g]q)/2

t]q ∈
[R]q ∩Rt for NTRUϕnt ,q,Nt,Dt,Bt . Now, we consider the following column lattice
Mt:

Mt =

(
Int 0
Λt qInt

)
,

where Int is the identity matrix with a size nt = n/2t, and Λt ∈ Znt×nt is a

matrix whose i-th column is ι(Xi2t [TrK/Kt
([f/g]q/2

t]q)) for 0 ≤ i < n/2t. In

2 If h and g are sampled from continuous spherical Gaussian distributions, we can
obtain a bound of ∥g−1∥ with a high probability. [MA16, Lemma 3]
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other words, for [TrK/Kt
([f/g]q)/2

t]q =
nt−1∑
j=0

hjX
j2t , the i-th column of Λt is of

the form (−hnt−i, · · · ,−hnt−1, h0, · · ·hnt−i−1)
T . Using the BKZ algorithm with

a block size β, one can obtain an element inMt,

ut = (u0, · · · , unt−1, unt , · · · , u2nt−1)
T ,

with ∥ut∥ ≤ 2β
nt−1

2(β−1)
+ 3

2 det(Mt)
1

2nt = 2β
nt−1

2(β−1)
+ 3

2
√
q [HPS11]. Taking c =

nt−1∑
i=0

uiX
i2t ∈ Z[X2t ]/⟨Xn + 1⟩, we then have [c · [TrK/Kt

([f/g]q)/2
t]q]q =

nt−1∑
i=0

unt+iX
i2t ∈ Z[X2t ]/⟨Xn + 1⟩. Moreover, if we choose t such that

2β
nt

2(β−1)
+ 3

2
√
q ≤ Bt, (1)

then ∥c∥ and ∥[c · TrK/Kt
([f/g]q)]q∥ satisfy

∥c∥ < ∥ut∥ ≤ 2β
nt−1

2(β−1)
+ 3

2
√
q ≤ Bt ≤

q

2Nt
√
n
,

∥[c · TrK/Kt
([f/g]q)]q∥ < ∥ut∥ ≤ 2β

nt−1
2(β−1)

+ 3
2
√
q ≤ Bt ≤

q

2Dt
√
n
.

In other words, c satisfies the conditions of Lemma 2. Therefore, c is in ⟨NK/Kt
(g)⟩

⊂ ⟨g⟩. Note that c is of the form c = d·NK/Kt
(g) = d′g ∈ Rt for some d, d′ ∈ R.

Hence, by Theorem 1, a pair (c, [c · h]q) is a solution of NTRUϕn,q,N,D,B . The
running time of this procedure is dominated by that of the BKZ algorithm with
a block size β, which is poly(n, log q) · CHKZ(β) time, where CHKZ(β) = 2O(β)

is the cost of the HKZ reduction in the dimension β [ADRSD14,HPS11]. When

∥g−1∥ ≤ D2t−1

N
·
√
n
t−2 ·2

t(t+1)
4 , we obtain Bt =

q
2Nt

√
n
. To check that the above

condition for β and t is satisfied, we have the following equivalence equation:

2β
nt

2(β−1)
+ 3

2
√
q ≤ q

2Nt
√
n

(2)

⇔
(

nt

2(β − 1)
+

3

2

)
log β + logDt − logD +

log n

2
+ 2 <

log q

2
− logN. (3)

To optimize the left-hand side of the inequality, we choose t such that

t =

⌈
log

√
n log β

2k(β − 1) log λ

⌋
.

Then, the left-hand side is asymptotic to the following:(
nt

2(β − 1)
+

3

2

)
log β + logDt − logD +

logn

2
+ 2

≈ n

2t · 2(β − 1)
log β + 2t log λk +O(1)

≈ 2

√
n log β log λk

2(β − 1)
+O(1),
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where the last approximation originates from the arithmetic–geometric mean.
This implies that if one chooses β = log2 λ, then the last value is asymptotically
smaller than (1/2− a)log q. Hence, one can obtain the results.

4 Application to GGH

In this section, we explain an attack algorithm, which is a different approach from
[MA16], to solve the graded computational Diffie–Hellman (GCDH) problem of
the GGH scheme without low-level encodings of zero when we are given some
top-level encodings of zero and a known pair of plaintext and ciphertext.

4.1 GGH Scheme

First, we briefly recall the Garg et al. construction. We refer to the original
paper [GGH13] for a complete description. The scheme relies on the following
parameters.

λ: the security parameter
κ: the multilinearity parameter
q: the modulus of a ciphertext
n: the dimension of a base ring
m: the number of level-κ encodings of zero in the public parameters
σ: the basic Gaussian parameter for drawing the ideal generator g
σ′: the Gaussian parameter for sampling level-zero elements
σ∗: the Gaussian parameter for constructing nonzero level elements

Instance generation: (params,pzt) ← InstGen(1λ, 1κ). For a given λ and κ,
the parameters (σ, σ′, q, n) that satisfy the above conditions are determined, and
(params, pzt) is output.

Sample g ← DR,σ until ∥g∥, ∥g−1∥ ≤ n2 and, I = ⟨g⟩ is a prime ideal in R.

Sample z ← [R]q.

Sample X = {big} ← DI,σ′ and set a level-κ encoding of zero, xi =

[
big

zκ

]
q

for each i ≤ m.

Sample f ← DR,
√
q and set a zero-testing parameter pzt =

[
f

g
zκ

]
q

.

Publish params = (n, q, κ, {xi}) and pzt.

Sampling level-zero encodings: a← samp(params).
Sample a← DI,σ′ .
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Encodings at higher levels: ci ← enc(params, i, c).

Given a level-j encoding c for j < i, compute ci =

[
c′

zi−j

]
q

, where c′ − c ∈ ⟨g⟩,

and ∥c′∥ < σ∗.

Adding and multiplying encodings:
Given two encodings c1 and c2 of the same level, the sum of c1 and c2 is com-
puted by Add(c1, c2)=[c1 + c2]q. Given two encodings c1 and c2, we multiply
c1 and c2 by Mul(c1, c2)=[c1 · c2]q.

Zero testing: isZero(params, pzt, c)
?
= 0/1.

Given a level-κ encoding c, return 1 if ∥[pzt · c]q∥∞ < q3/4; otherwise, return 0.

Extraction: sk ← ext(params, pzt, c).
Given a level-κ encoding c, compute MSBlog q/4−λ([pzt · c]q).

4.2 Difficulty Assumptions

We recall the definitions of the graded decisional Diffie–Hellman problem (GDDH)
and GCDH problems on which the security of the GGH scheme relies [GGH13].
They do not seem to be reducible to more classical assumptions in generic ways.

GDDH, ext-GCDH, GCDH.
For an adversary A and the parameters λ and κ, we consider the following

process in the GGH scheme.
1. Choose (q, {xi}, pzt) ← InstGen(1λ, 1κ).
2. Sample mj ← samp(params) for each 0 ≤ j ≤ κ.

3. Set uj =
aj

z
← enc(params, 1, mj) for all 0 ≤ j ≤ κ.

4. Choose r ← DR,σ′ .
5. Sample ρj ← {0, 1} for 1 ≤ j ≤ m.

6. Set û=

[
a0 ×

∏κ
i=1 ui +

∑
j

ρjxj

]
q

.

7. Set u=

[
r ×

∏κ
i=1 ui +

∑
j

ρjxj

]
q

.

The GCDH problem is to output a level-κ encoding of
κ∏

i=0

mi + I given the

inputs

{q, {xi},pzt,u0, . . . ,uκ}.

The ext-GCDH problem is to output v ∈ Rq such that ∥[v − pzt · û]q∥ < q3/4

given the inputs

{q, {xi},pzt,u0, . . . ,uκ}.



12

The GDDH problem is to distinguish between two distributions, DDDH and DR,
where

DDDH = {q, {xi},pzt,u0, . . . ,uκ, û} and DR = {q, {xi},pzt,u0, . . . ,uκ,u}.

4.3 Attack on GGH

Considering GGH13, one can notice that the previous theorem in Section 3 can
be applied to solve the GCDH problem, which is a security problem of the GGH
scheme. More precisely, suppose we have

{q, {xi}, pzt, u0, · · · ,uκ}.

Additionally, we assume that we have a pair of level-0 encodings m̄ /∈ ⟨g⟩ and its

level-1 encoding b =

[
m̄+ ag

z

]
q

. Our attack algorithm consists of the following

three steps:

– First, find a small element cg ∈ ⟨g⟩.
– Next, compute a small level-1 encoding of m̄−1 using m̄, cg
– Last, recover an elementm′

0 in R = Z[X]/⟨Xn+1⟩ such thatm′
0−m0 ∈ ⟨g⟩.

Finally, we can compute m′, which is a level-κ encoding of
κ∏

i=0

mi + ⟨g⟩ using

m′
0, ui, and x1. Then, it becomes a solution of the GCDH problem. In this

paper, we assume σ′ = n2.5 and σ∗ = n3.

4.3.1 Step 1: Finding a small element of ⟨g⟩
Note that ∥m̄ + αg∥, ∥big∥, ∥ai∥ ≤ σ∗√n ≤ n3.5 and ∥m̄∥ ≤ σ′√n ≤ n3 with
overwhelming probability. For convenience, we use the notation Gt to denote
Gal(K/Kt). Considering [uκ

1/x1]q = [aκ
1/b1g]q, the sizes of the denominator

and numerator are bounded by n3.5κ
√
n
κ−1

< n4κ and n3.5, respectively. Us-
ing the algorithm in Theorem 2 for several [aI/big]q := [ai1 · · ·aiκ/bjg]q for
I = [i1, · · · , iκ], i1, · · · , iκ ∈ {0, · · · , κ}, and j ∈ {1, · · · ,m}, one can recover
several multiples cIb

′
jg

′bjg of NK/Kt
(g), where b′j =

∏
σ∈Gt\{id}

σ(bj) and g′ =∏
σ∈Gt\{id}

σ(g). Multiplying it by [aI/bjg]q, one can obtain AI,j = aIcIb
′
jg

′.

We remark that AI,j is in R \ Rt because AI,j is not fixed for any subgroup
of Gt, except the trivial group. Moreover, although AI,j is not in ⟨g⟩, we have
δ(AI,j) = δ(aIcIb

′
jg

′) = δ(aIcI) ·
∏

σ∈Gt\{δ}
σ(bg) ∈ ⟨g⟩ for δ ∈ Gt \ {id}. One

can easily see that {δ(AI,j)}δ∈Gt\{id} only have a common factor g. Therefore,
using {δ(AI,j)}δ∈Gt\{id}, we recover a basis matrix of the ideal lattice of ⟨g⟩.
Using NK/Kt

(a) for a ∈ ⟨g⟩, which is a multiple of NK/Kt
(g), one can also re-

cover a basis matrix of the ideal lattice of ⟨NK/Kt
(g)⟩. Now, using the β block-

BKZ algorithm [HPS11], one can obtain an element cg ∈ ⟨NK/Kt
(g)⟩ such that

∥cg∥ ≤ 2β
nt−1

2(β−1)
+ 3

2 · n2t+1

.



13

4.3.2 Step 2: Computing a small level-1 encoding of m̄−1

Using a pair

(
m̄, b =

[
m̄+ ag

z

]
q

)
, one can recover a level-1 encoding of 1

as follows. Since we know a basis matrix of ⟨g⟩, one can compute ê such that
êm̄ + ê′g = 1 for some ê′ ∈ R. Then, e := (ê mod cg) is the inverse of m̄ in
R/⟨g⟩. Moreover, its size is smaller than ∥cg∥ · n/2.

4.3.3 Step 3: Computing m′

We refer to Section 6.3.3 in [GGH13] to solve the GCDH problem with the short
vector cg ∈ ⟨g⟩. We explain how to use cg in order to solve the GCDH problem
in the GGH scheme. First, by applying Theorem 2 to bκ/x1 = (m̄+ ag)κ/b1g,
one can obtain d(m̄+ag)κ and db1g for some d ∈ R. Now, compute G ∈ R such
that eκ · d(m̄+ ag)κ −Gdb1g = eκ · d(m̄+ ag)κ mod db1g and also compute
b′ = eκbκ−Gx1. Similarly, computeG′ ∈ R such that b′′ = eκ−1·bκ−1u0−G′x1.
Then, they have the following forms:

b′ =

[
eκ · (m̄+ ag)κ mod b1g

zκ

]
q

=

[
a′g + 1

zκ

]
q

,

b′′ =

[
eκ−1 · (m̄+ ag)κ−1m0 mod b1g

zκ

]
q

=

[
a′′g +m0

zκ

]
q

for some small a′ and a′′ ∈ R. The sizes of the numerators of b′ and b′′ are
bounded by ∥b1g∥ · n/2 ≤ n4.5/2. By using cg, b′, b′′, and pzt, one can obtain
the following zero-testing values h and h0:

h := ι
(
[b′ · pzt · cg]q

)
= ι
(
[(a′g + 1) · f · c]q

)
,

h0 := ι
(
[b′′ · pzt · cg]q

)
= ι
(
[(a′′g +m0) · f · c]q

)
.

If ∥h∥ is smaller than q/2, h is actually (a′g+1) · f · c in R. Since the size of h

is smaller than ∥cg∥∥g−1∥ · ∥f∥ · ∥a′g + 1∥ · n ≤ β
nt−1

2(β−1)
+ 3

2 · n2t+1

n8√q, we use
the following equation to check the condition:

β
nt−1

2(β−1)
+ 3

2 · n2t+1

n8√q ≤ q

2
(4)

⇔
(

nt

2(β − 1)
+

3

2

)
log β + log n2t+1

+ 8 log n+ 1 <
log q

2
. (5)

This inequality is asymptotically the same as equation (3). Hence, when β =
log2 λ, the size of h is smaller than q/2. For the same condition, h0 has the
same bound and is of the form (a′′g + m0) · f · c. Assuming that h has an
inverse in R/⟨g⟩, we can compute m′

0 := h0/h = m0 mod ⟨g⟩. Then, m′
0 is

a level-0 encoding of m0. Note that we are given a top-level encoding of zero,

x1 =

[
b1g

zκ

]
q

. Multiplying db1g with

[
κ∏

i=1

ui/x1

]
q

, we can recover d
κ∏

i=1

ai.
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Now, we compute (m′
0 · d

κ∏
i=1

ai) mod db1g, which is of the form m′
0 · d

κ∏
i=1

ai−

G′′db1g for some G′′ ∈ R. Since d is the common factor, it is the same as

d · ((m′
0 ·

κ∏
i=1

ui) mod b1g)= d · (m′
0 ·

κ∏
i=1

ai −G′′b1g). We remark that the size

of (m′
0 ·

κ∏
i=1

ai) mod b1g is bounded by ∥b1g∥n < n5, and it is an element of the

coset
κ∏

i=0

mi+⟨g⟩. Now, we compute m′
0 ·

κ∏
i=1

ui−G′′x1, which has the following

form:  (m
′
0 ·

κ∏
i=1

ai) mod b1g

zκ


q

.

By the above mention, its numerator is in the coset
κ∏

i=0

mi + ⟨g⟩, and its size is

bounded by n5. Hence, it is a valid level-κ encoding of
κ∏

i=0

mi, and the GCDH

problem is solved. In summary, we can obtain the following corollary.

Corollary 3 Given {n, q, {xi}, m, b, pzt, u0, · · · ,uκ} of the GGH scheme
parameters, where n is Θ(λ2), log q = Θ(λ), xi is a level-κ encoding of zero, m
is a level-0 nonzero encoding, b is a level-1 encoding of m, and ui is a level-1

encoding of mi, one can compute encκ(
κ∏

i=0

mi), which is a solution of the GCDH

problem in the GGH scheme in 2O(log2 λ).

According to this Corollary, using the parameters suggested by [GGH13]
leads to attack a security ground of this scheme in the quasi-polynomial time of
its security parameter. Thus, n must be at least Ω(λ3) when log q = Θ(λ) with
the security parameter λ to avoid our attack.

5 Conclusion

After the GGH scheme that provides an encoding of zero was found to be inse-
cure, a variant of the NTRU problem has received considerable attention because
of the security grounding of the GGH scheme without an encoding of zero. In
this work, we described how to find a small solution of the variant of the NTRU
problem using a reduction technique. By applying our proposed algorithm to the
GGH scheme, we could attack the GCDH problem in the GGH scheme. There-
fore, our results imply that there is no guarantee for the security of the GGH
scheme when we are given a small encoding of zero and also when we are not
given.
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