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On upper bounds for algebraic degrees of APN
functions

Lilya Budaghyan, Claude Carlet, Tor Helleseth, Nian Li, Bo Sun

Abstract—We study the problem of existence of APN functions
of algebraic degree n over F2n . We characterize such functions by
means of derivatives and power moments of the Walsh transform.
We deduce some non-existence results which mean, in particular,
that for most of the known APN functions F over F2n the
function x2n−1 + F (x) is not APN, and changing a value of F
in a single point results in non-APN functions.

Index Terms—almost perfect nonlinear, almost bent, Boolean
function, differential uniformity, nonlinearity

I. INTRODUCTION

A substitution box (S-box) in a block cipher is a mapping
that takes n binary inputs and whose image is a binary m-
tuple, for some positive integers n and m. The security of
most modern block ciphers importantly relies on cryptographic
properties of their S-boxes, since these are the only nonlinear
elements of these cryptosystems. It is therefore significant
to employ S-boxes with good cryptographic properties such
as high nonlinearity, low differential uniformity and high
algebraic degree, in order to resist linear, differential and
higher order differential attacks.

Differential attacks introduced by Biham and Shamir in
[1] are one of the most efficient cryptanalyst tools for block
ciphers. The differential attack is based on the study of how
differences in an input can affect the resulting difference at
the output. Thus, in order to resist differential attacks, for
each S-box in the cipher, the difference between two outputs
corresponding to inputs whose nonzero difference is arbitrarily
fixed should be as uniformly distributed as possible. Among S-
boxes, the so-called almost perfect nonlinear (APN) functions
contribute to a best possible resistance to differential attacks
[27]. Due to this reason, much work has been dedicated to
the notion of APN functions. Constructing APN functions is a
difficult problem. Up to now, there are, up to CCZ-equivalence,
only six known infinite classes of APN monomials and a few
known infinite classes of quadratic APN multinomials (see [5],
[12]).

Another powerful attack on block ciphers is linear crypt-
analysis by Matsui [25] which is based on finding affine
approximations to the action of a cipher. Almost bent (AB)
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functions are S-boxes providing optimal resistance to this
attack [15]. Moreover every AB function is APN and therefore
is optimal against differential attacks as well. However, AB
functions exist only over binary fields of odd dimensions while
APN functions exist for even dimensions too.

When choosing S-boxes, functions with higher algebraic
degrees are preferable in order to resist higher order differen-
tial cryptanalysis [23]. This leads to the question of finding
upper bounds for the algebraic degrees of APN functions
and constructing such functions reaching these upper bounds.
On the other hand, finding restrictions on algebraic degrees
naturally reduces the set of functions when searching for new
APN or AB functions, and, therefore, facilitates the problem of
constructing these functions. The problem of an upper bound
for algebraic degree is completely settled for AB functions
and open for APN functions. Algebraic degree of any AB
function over the finite field of dimension n is upper bounded
by (n + 1)/2 and the inverses of Gold power AB functions
have this algebraic degree [14], [27]. There is no known upper
bounds for algebraic degrees of APN functions. For n odd, the
known APN function over the finite field F2n with the highest
algebraic degree is the inverse APN function [27] which has
algebraic degree n− 1. For n even the known APN functions
with high algebraic degrees are Dobbertin function [18] with
algebraic degree n/5 + 3 (n must be divisible by 5 then)
and Kasami functions [22] with algebraic degree i + 1 for
i ≤ (n − 1)/2, gcd(n, i) = 1. Hence, among the known
functions, Dobbertin function has the highest algebraic degree
5 when n = 10, Kasami functions with i = n/2 − 1 have
the highest algebraic degree n/2 when gcd(n, 4) = 4 and
n ≥ 8, Kasami functions with i = n/2 − 2 have the highest
algebraic degree n/2 − 1 when gcd(n, 4) = 2 and n ≥ 12.
For n even and n ≤ 6 APN polynomials from [11] have the
highest degree n/2 + 1. Denoting by deghighest(n) the highest
algebraic degree for the known APN functions over F2n , we
get

deghighest(n) =


n− 1 if gcd(n, 2) = 1
n
2 if gcd(n, 4) = 4, n ≥ 8,

or n = 10
n
2 − 1 if gcd(n, 4) = 2, n ≥ 12
n
2 + 1 if n ≤ 6

This paper is dedicated to the problem of existence of APN
functions over F2n with maximal algebraic degree n. Solving
this problem would provide complete answer to the upper
bound problem for n odd case. Besides, this would indicate
whether it is possible to preserve APN property by changing
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one point in a given APN function. This natural question has
not been addressed in publications, even if it has been present
in the minds of many researchers on APN functions. For this
goal, throughout this paper, let F be any function from F2n

to itself of algebraic degree strictly less than n; we define a
function G over F2n as follows:

G(x) = x2n−1 + F (x). (1)

Then, the objective of this paper is to characterize the APNness
of the function G in order to find new APN functions with the
maximal degree or to prove the non-existence of such func-
tions. We provide such characterizations using derivatives and
Walsh transform values of the function F . As a consequence,
non-existence results for APN functions with maximal degree
are obtained for some special cases of F which include all
power functions, almost bent functions, quadratic functions
and plateaued functions in general. This covers almost all
known cases of APN functions F and supports the following
conjecture.

Conjecture 1. There exists no APN function over F2n of
algebraic degree n for n ≥ 3.

This conjecture is true for n ∈ {3, 4, 5} (see [4]), and,
clearly, it would provide a tight upper bound on algebraic
degree of APN functions over F2n when n is odd. For n even
we do not have sufficient data for a conjecture. At the moment
the only natural guess for a tight upper bound for n even can
be n/2 + 1.

Problem 1. Construct an APN function over F2n of algebraic
degree greater than n/2 + 1 (or prove that it does not exist)
for n ≥ 6 even.

If Conjecture 1 is proven to be true then the following
conjecture would be true too.

Conjecture 2. Let F be an APN function over F2n with n ≥ 3
and F ′ a function obtained from F by changing the values of
F in one point. Then F ′ is not APN.

Note that, similar to Conjecture 1, Conjecture 2 is obvious
when reformulated for AB functions. That is, if F is AB and
F ′ is obtained from F by changing a single point then F ′ is
not AB.

The remainder of this paper is organized as follows. Sec-
tion II introduces the preliminaries. Section III characterizes
the APN functions of the form (1) by means of the derivatives
of F and of the power moments of its Walsh transform,
and then some non-existence results on APN functions of the
form (1) are obtained in Section IV. In Section V we study
equivalence classes of maximum degree functions. Section VI
concludes the paper.

An extended abstract [7] with most of the results (without
proofs) of this paper will be presented at ISIT 2016.

II. PRELIMINARIES

For positive integers n and m, an S-box is a vectorial
function F : Fn

2 7→ Fm
2 , also called an (n,m)-function.

When n = m it has a unique representation as a univariate
polynomial over F2n of the form

F (x) =
2n−1∑
i=0

aix
i, ai ∈ F2n .

Let w2(i) =
∑n−1

s=0 is denote the 2-weight of i, where 0 ≤
i ≤ 2n − 1 has binary expansion i =

∑n−1
s=0 2sis. Then, the

algebraic degree of F is equal to

deg(F ) = max{w2(i) : ai ̸= 0, 0 ≤ i ≤ 2n − 1}.

Clearly deg(F ) ≤ n.
For an (n, n)-function F and any a, b ∈ F2n , define

∆F (a, b) = |{x ∈ F2n : F (x + a) + F (x) = b}|. Then,
the differential uniformity of F is defined as

∆F = max{∆F (a, b) : a, b ∈ F2n , a ̸= 0}.

F is called differentially δ-uniform if ∆F ≤ δ. If δ = 2, then
F is called almost perfect nonlinear (APN).

APN functions over F2n can be characterized in several
different ways. In this paper, we focus, in particular, on the
characterization by means of power moments of the Walsh
transform. For a Boolean function f in n variables (that is, an
(n, 1)-function) the Walsh transform is defined by

Wf (a) =
∑

x∈F2n

(−1)f(x)+Trn1 (ax), a ∈ F2n ,

where Trn1 (x) =
∑n−1

i=0 x2i is the absolute trace function of
F2n . For an (n,m)-function F , its Walsh transform WF (a, b)
at the point (a, b) ∈ F2n × F∗

2m is the Walsh transform of its
component function Trm1 (bF (x)) at the point a. That is,

WF (a, b) =
∑

x∈F2n

(−1)Tr
m
1 (bF (x))+Trn1 (ax).

Lemma 1 ([15]). Let F be an (n, n)-function. Then F is APN
if and only if∑

a∈F2n

∑
b∈F∗

2n

W 4
F (a, b) = 23n+1(2n − 1).

Lemma 2 (see e.g. [12]). Let F be an APN function over
F2n satisfying F (0) = 0. Then∑

a,b∈F2n

W 3
F (a, b) = 3 · 23n − 22n+1.

APN functions have also a natural characterization by means
of its derivatives. The derivatives of a given (n, n)-function
F are functions

DaF (x) = F (x+ a) + F (x), a ∈ F∗
2n .

Then F is APN if and only if all its derivatives are 2-to-1
mappings.

A Boolean function f in n variables is called bent if
Wf (a) ∈ {±2n/2} for all a ∈ F2n . An (n,m)-function
F is called bent if all its component functions are bent,
that is, WF (a, b) ∈ {±2n/2} for all a ∈ F2n and b ∈
F∗
2m . Bent functions have optimum resistance against lin-

ear attacks because their nonlinearity has optimal value
2n−1 − 2n/2−1. The nonlinearity NF of an (n, n)-function
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F is the minimum Hamming distance between its component
functions and affine functions. It equals NF = 2n−1 −
1
2 maxa∈F2n ,b∈F∗

2n
|WF (a, b)|. Nyberg in [26] proved that

(n,m)-bent functions exist if and only if n is even and
m ≤ n/2. When n is odd, there exists no (n,m)-bent function.
When n is odd and n = m, the optimal functions from
the viewpoint of nonlinearity are almost bent functions. An
(n, n)-function F is called almost bent (AB) if WF (a, b) ∈
{0,±2(n+1)/2} for all a ∈ F2n and b ∈ F∗

2n . Any AB
function is APN, but not vice versa. However, for n odd, every
quadratic APN function is also AB, and, more generally, every
plateaued APN function is also AB (see [12]).

A plateaued Boolean function is a function from F2n

to F2 whose Walsh transform takes values from {0,±µ}
for some positive integer µ (µ is called the amplitude of
the plateaued Boolean function). Plateaued Boolean functions
were introduced by Zheng and Zhang and were shown to
possess various desirable cryptographic characteristics [28].
More generally, for an (n,m)-function, Carlet introduced the
following two notions in [12], [13].

Definition 1. An (n,m)-function F is called plateaued if all
its component functions Trm1 (uF (x)), u ̸= 0, are plateaued,
with possibly different amplitudes.

Definition 2. An (n,m)-function F is called plateaued with
single amplitude if all its component functions are plateaued
with the same amplitude.

Notice that the amplitude for a plateaued Boolean function
f should be a power of two whose exponent is at least n

2 ,
due to the well-known Parseval’s identity

∑
a∈F2n

W 2
f (a) =

22n. Moreover, the distribution of its Walsh transform can be
determined as follows.

Lemma 3. Let f be a plateaued Boolean function over F2n

with amplitude 2λ. Then the distribution of its Walsh transform
values is given by

Walsh Transform Value Frequency
0 2n − 22n−2λ

2λ 22n−2λ−1 + (−1)f(0) 2n−λ−1

−2λ 22n−2λ−1 − (−1)f(0) 2n−λ−1

and we have
∑

a∈F2n
W 3

f (a) = (−1)f(0) 2n+2λ and∑
a∈F2n

W 4
f (a) = 22n+2λ.

Proof. Let us denote by N+ (resp. N−) the number of
occurences of 2λ (resp. −2λ), we have according to the
Parseval identity that 22λ(N+ + N−) = 22n, and according
to the inverse Walsh transform formula

∑
a∈F2n

Wf (a) =

2n(−1)f(0), that 2λ(N+ − N−) = 2n(−1)f(0). This
directly gives the table above. The two other relations can
be deduced either from this table, or from (again) the
inverse Walsh transform formula and the Parseval identity,
since we have

∑
a∈F2n

W 3
f (a) = 22λ

∑
a∈F2n

Wf (a) and∑
a∈F2n

W 4
f (a) = 22λ

∑
a∈F2n

W 2
f (a). �

Since the algebraic degree of a plateaued Boolean function
in n variables with amplitude 2λ is upper bounded by n−λ+1
[24] then algebraic degree of a plateaued (n, n)-function F is

upper bounded by maxb∈F∗
2n
(n − λb + 1) where 2λb is the

amplitude of Trn1 (bF (x)), b ̸= 0. Since the minimum value
for the amplitude of a plateaued Boolean function is 2n/2 then
this maximum is less or equal to n − n/2 + 1 = n/2 + 1.
Hence a plateaued function can have algebraic degree n only
if n ≤ 2.

A. Equivalence Relations of Functions

There are several equivalence relations of functions for
which differential uniformity and nonlinearity are invariant.
Due to these equivalence relations, having only one APN
(respectively, AB) function, one can generate a huge class of
APN (respectively, AB) functions.

Two functions F and F ′ from F2n to F2m are called
• affine equivalent (or linear equivalent) if F ′ = A1 ◦

F ◦A2, where the mappings A1 and A2 are affine (resp.
linear) permutations of F2m and F2n , respectively;

• extended affine equivalent (EA-equivalent) if F ′ = A1 ◦
F ◦ A2 + A, where the mappings A : F2n → F2m , A1 :
F2m → F2m , A2 : F2n → F2n are affine, and where
A1, A2 are permutations;

• Carlet-Charpin-Zinoviev equivalent (CCZ-equivalent) if
for some affine permutation L of F2n × F2m the image
of the graph of F is the graph of F ′, that is, L(GF ) =
GF ′ where GF = {(x, F (x)) | x ∈ F2n} and GF ′ =
{(x, F ′(x)) | x ∈ F2n}.

Although different, these equivalence relations are con-
nected to each other. It is obvious that linear equivalence is
a particular case of affine equivalence, and that affine equiv-
alence is a particular case of EA-equivalence. As shown in
[14], EA-equivalence is a particular case of CCZ-equivalence
and every permutation is CCZ-equivalent to its inverse. The
algebraic degree of a function (if it is not affine) is invariant
under EA-equivalence but, in general, it is not preserved by
CCZ-equivalence. Let us recall why the structure of CCZ-
equivalence implies this: for a function F from F2n to F2m

and an affine permutation L(x, y) =
(
L1(x, y), L2(x, y)

)
of

F2n × F2m , where L1 : F2n × F2m → F2n and L2 : F2n ×
F2m → F2m , we have L(GF ) = {

(
F1(x), F2(x)

)
: x ∈ F2n}

where F1(x) = L1(x, F (x)), F2(x) = L2(x, F (x)). Hence,
L(GF ) is the graph of a function if and only if the function
F1 is a permutation. The function CCZ-equivalent to F whose
graph equals L(GF ) is then F ′ = F2 ◦F−1

1 . The composition
by the inverse of F1 modifies in general the algebraic degree,
except, for instance, when L1(x, y) depends only on x, which
corresponds to EA-equivalence of F and F ′ [11].

Proposition 1. [11] Let F and F ′ be functions from Fn
2 to

itself. The function F ′ is EA-equivalent to the function F or
to the inverse of F (if it exists) if and only if there exists an
affine permutation L = (L1, L2) on F2n

2 such that L(GF ) =
GF ′ and the function L1 depends only on one variable, i.e.
L1(x, y) = L(x) or L1(x, y) = L(y).

Let functions F and F ′ be CCZ-equivalent. Then (see
e.g. [5])
• {∆F (a, b) : a, b ∈ F2n , a ̸= 0} = {∆F ′(a, b) : a, b ∈

F2n , a ̸= 0};
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• {|WF (a, b)| : a ∈ F2n , b ∈ F∗
2n} = {|WF ′(a, b)| : a ∈

F2n , b ∈ F∗
2n};

• if F is APN (or AB) then F ′ is APN (respectively, AB)
too;

• if F is plateaued with single amplitude λ then F ′ is
plateaued with the same single amplitude λ;

• if F is plateaued with different amplitudes then F ′ is
not necessarily plateaued, it can happen that F ′ has no
plateaued components at all. However if F and F ′ are
EA-equivalent then F ′ is plateaued with the same set of
amplitudes.

III. CHARACTERIZATIONS OF THE APNNESS OF
MAXIMUM DEGREE FUNCTION G

Let n be a positive integer and G be a function over F2n

of algebraic degree n. Then G(x) = ux2n−1+F (x) for some
u ∈ F∗

2n and some function F of algebraic degree strictly
less than n. Obviously, G is APN if and only if the function
G∗(x) = x2n−1+u−1F (x) = x2n−1+F ∗(x) (with F ∗(x) =
u−1F (x)) is APN since G and G∗ are EA-equivalent. Hence,
when studying the problem of existence of APN functions of
maximum degree it is sufficient to consider functions G of the
form (1) where F is any (n, n)-function of algebraic degree
strictly less than n.

Considering the problem of preserving APN property when
changing a single point in an APN function also leads to
functions of the form (1). Indeed, if an (n, n)-function G is
obtained from a function F by changing its value at a point
v ∈ F2n to u ∈ F2n \ {F (v)}, then

G(x) =

{
F (x) if x ∈ F2n \ {v}
u if x = v

= F ′(x)+u′(x+v)2
n−1,

where F ′(x) = F (x) + u + F (v) and u′ = u + F (v) ̸= 0.
Clearly, G is EA-equivalent to

G′(x) = F ′′(x) + x2n−1

which has the form (1) and where F ′′(x) = 1/u′F ′(x + v).
When F and F ′′ share the same considered properties then
without loss of generality we can assume that G has the form
(1). For instance, APN property and plateauedness are pre-
served by EA-equivalence and we can consider only functions
of the form (1). However, if F (x) = xd is a power function
then the corresponding function F ′′ is not a power function,
and, therefore, we must consider more general form than (1)
which is

G(x) = xd + u(x+ v)2
n−1, u, v ∈ F2n , u ̸= 0, (2)

or

G(x) = u(x+ v)d + x2n−1, u, v ∈ F2n , u ̸= 0, (3)

since adding a constant does not change APN property.
Below we present necessary and sufficient conditions on

derivatives and Walsh coefficients of an (n, n)-function F so
that the function G defined by (1) is APN.

A. Characterization by means of derivatives

For any a ∈ F∗
2n

DaG(x) = G(x+ a) +G(x) = DaF (x) + 1{0,a}(x),

where 1{0,a}(x) denotes the indicator of the pair {0, a} (that
is, 1{0,a}(x) = 1 if x ∈ {0, a} and 1{0,a}(x) = 0 otherwise).
Hence, ∆G ≤ ∆F + 2, and, in particular, ∆G ≤ 4 when F is
APN.

Obviously, G is APN if and only if, for every a ∈ F∗
2n and

every b ∈ F2n , the equation DaF (x) + 1{0,a}(x) = b has 0
or 2 solutions. This implies that G can be APN only if F
is either APN or differentially 4-uniform. Another necessary
condition is that DaF (x)+DaF (0) never takes value 1 (since
otherwise, the equation DaF (x) + 1{0,a}(x) = DaF (0) + 1
would have 4 solutions). When F is APN, this condition is
also sufficient for G to be APN.

Proposition 2. Let F be a function over F2n and G be defined
by (1). Then G is APN if and only if the following two
conditions are satisfied:

1) for any a ∈ F∗
2n , the function DaF (x) is 2-to-1 on

F2n \ {0, a},
2) for any a ∈ F∗

2n , the equation DaF (x) = DaF (0) + 1
has no solutions.

Corollary 1. Let F be an APN function over F2n and G be
defined by (1). Then G is APN if and only if DaF (x) =
DaF (0) + 1 has no solutions for any a ∈ F∗

2n .

B. Characterization by means of the Walsh transform

For any a ∈ F2n and b ∈ F∗
2n we calculate the values of

the Walsh transform of G

WG(a, b) =
∑

x∈F2n

(−1)Tr
n
1 (bx

2n−1+bF (x)+ax) (4)

= 1− (−1)Tr
n
1 (b) + (−1)Tr

n
1 (b)WF (a, b).

Hence, WG(a, b) ∈ { WF (a, b), 2 − WF (a, b) } and NF −
1 ≤ NG ≤ NF + 1. Since AB functions have highest
possible nonlinearity and since there exists no AB functions
of algebraic degree n then for an AB function F the function
G is not AB and NG = 2n−1 − 2

n−1
2 − 1. This fact together

with other straightforward observations are summarized in the
proposition below. The last claim there follows from restriction
on algebraic degree of plateaued functions.

Proposition 3. Let F be a function over F2n and G be defined
by (1). Then

1) G is not a permutation when deg(F ) ̸= n;
2) ∆G ≤ ∆F + 2, in particular, ∆G ≤ 4 when F is APN;
3) WG(a, b) ∈ { WF (a, b), 2 −WF (a, b) } for any a, b ∈

F2n , b ̸= 0, and NF − 1 ≤ NG ≤ NF + 1;
4) for n ≥ 3 if F is plateaued or deg(F ) ̸= n then G is

not plateaued, in particular, if F is AB then G is not
AB and NG = 2n−1 − 2

n−1
2 − 1.

For characterization of G by means of the Walsh trans-
form we shall use Lemma 1. For this reason first we
calculate the fourth power of WG(a, b). Observe that
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(−1)Tr
n
1 (b)WF (a, b) = WF+1(a, b). Then, by (4) one obtains

that∑
a∈F2n

b∈F∗
2n

W 4
G(a, b) =

∑
a∈F2n

b∈F∗
2n

(
1− (−1)Tr

n
1 (b) +WF+1(a, b)

)4
=

∑
a∈F2n

b∈F∗
2n

(
ϵ4b + 4ϵ3bWF+1(a, b)

+ 6ϵ2bW
2
F+1(a, b) + 4ϵbW

3
F+1(a, b) +W 4

F+1(a, b)
)
,

where

ϵb = 1− (−1)Tr
n
1 (b) =

{
0 if Trn1 (b) = 0
2 otherwise . (5)

This leads to ∑
a∈F2n

b∈F∗
2n

ϵ4b =
∑

a,b∈F2n

Trn1 (b)=1

24 = 22n+3

since the trace function is balanced and

|b ∈ F∗
2n : Trn1 (b) = 1| = 2n−1.

Similarly, by the inverse Walsh transform formula and Parse-
val’s identity, both recalled above, and using that ϵ3b = 4ϵb,
one has: ∑

a∈F2n

b∈F∗
2n

4ϵ3bWF+1(a, b)

=
∑

a∈F2n

b∈F∗
2n

24(1− (−1)Tr
n
1 (b))WF+1(a, b)

=
∑

b∈F∗
2n

2n+4((−1)Tr
n
1 (b) − 1) = −22n+4

since ∑
a∈F2n

WF+1(a, b) = 2n(−1)Tr
n
1 (b),

and ∑
a∈F2n

b∈F∗
2n

6ϵ2bW
2
F+1(a, b) = 3 · 23n+2.

Then, by a simple calculation, we arrive at∑
a∈F2n

b∈F∗
2n

W 4
G(a, b) =

∑
a∈F2n

b∈F∗
2n

(W 4
F+1(a, b) + 4ϵbW

3
F+1(a, b))

+22n+3(3 · 2n−1 − 1).

Again by the fact that WF+1(a, b) = (−1)Tr
n
1 (b)WF (a, b), we

have W 4
F+1(a, b) = W 4

F (a, b) and

4ϵbW
3
F+1(a, b) =

{
0 if Trn1 (b) = 0

−8WF (a, b)
3 if Trn1 (b) = 1

.

Thus, the above equality can be written as∑
a∈F2n

b∈F∗
2n

W 4
G(a, b) =

∑
a∈F2n

b∈F∗
2n

W 4
F (a, b)− 8

∑
a,b∈F2n

Trn1 (b)=1

W 3
F (a, b)

+22n+3(3 · 2n−1 − 1).

Therefore, we can obtain the following result about the APN-
ness of G according to Lemma 1.

Theorem 1. Let F be any function over F2n with F (0) = 0,
and G be defined by (1). Then G is APN if and only if∑

a∈F2n

b∈F∗
2n

W 4
F (a, b)− 8

∑
a,b∈F2n

Trn1 (b)=1

W 3
F (a, b)

=
(
23n+1 − 22n+3

)
(2n − 1)− 23n+2. (6)

When F is APN the characterizations of APN functions
G defined by (1) can be further simplified, and some non-
existence results about APN functions with maximal algebraic
degree can be obtained. Indeed, if F is APN, then by Theo-
rem 1 and Lemmas 1 and 2 we have:

Corollary 2. Let F be an APN function over F2n with
F (0) = 0 and G be defined by (1). Then

1. G is APN if and only if∑
a,b∈F2n

Trn1 (b)=1

W 3
F (a, b) = 22n(3 · 2n−1 − 1);

2. if G is APN then∑
a,b∈F2n

Trn1 (b)=0

W 3
F (a, b) = 22n(3 · 2n−1 − 1).

Applying Lemma 2 we can also get the following proposi-
tion.

Proposition 4. Let F be any function over F2n with F (0) = 0,
and G be defined by (1). Then the following holds

1. If G is APN then∑
a,b∈F2n

W 3
F (a, b) = 2

∑
a,b∈F2n

Trn1 (b)=1

W 3
F (a, b). (7)

2. If F is APN then∑
a,b∈F2n

W 3
G(a, b) = 2

∑
a,b∈F2n

Trn1 (b)=0

W 3
F (a, b). (8)

Proof. Defining ϵb by (5) we get∑
a,b∈F2n

W 3
G(a, b) =

∑
a,b∈F2n

(
1− (−1)Tr

n
1 (b)

+WF+1(a, b)
)3

=
∑

a,b∈F2n

(
ϵ3b +W 3

F+1(a, b)

+3 ϵ2bWF+1(a, b) + 3 ϵbW
2
F+1(a, b)

)
= 23 · 22n−1 +

∑
a,b∈F2n

Trn1 (b)=0

W 3
F (a, b)

−
∑

a,b∈F2n

Trn1 (b)=1

W 3
F (a, b) + 6 · 22n · 2n−1

−12
∑

a,b∈F2n

Trn1 (b)=1

WF (a, b)
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=
∑

a,b∈F2n

W 3
F (a, b)− 2

∑
a,b∈F2n

Trn1 (b)=1

W 3
F (a, b) (9)

+3 · 23n − 22n+1

= −
∑

a,b∈F2n

W 3
F (a, b) + 2

∑
a,b∈F2n

Trn1 (b)=0

W 3
F (a, b) (10)

+3 · 23n − 22n+1

If G is APN then using (9) and Lemma 2 we get (7). If F is
APN then using (10) and Lemma 2 we get (8). �

Proposition 4 (1) and Theorem 1 lead to

Corollary 3. Let F be any function over F2n with F (0) = 0
and G be defined by (1). If G is APN then∑

a∈F2n

b∈F∗
2n

W 4
F (a, b)− 4

∑
a,b∈F2n

W 3
F (a, b)

=
(
23n+1 − 22n+3

)
(2n − 1)− 23n+2. (11)

Theorem 1 characterizes the APNness of the function G
defined by (1) in terms of the power sums of the Walsh
transform values of F . Sometimes it is more convenient to
express the power sums of Walsh transform values by the
numbers of solutions to certain equations over finite fields.

According to the definition, one can obtain that∑
a,b∈F2n

W 4
F (a, b)

=
∑

a,b∈F2n

x,y∈F2n

z,w∈F2n

(−1)Tr
n
1 (b(F (x)+F (y)+F (z)+F (w))+a(x+y+z+w))

= 2n
∑

b,x,y,z∈F2n

(−1)Tr
n
1 (b(F (x)+F (y)+F (z)+F (x+y+z)))

= 22nM0, (12)

where

M0 = |{(x, y, z) ∈ F3
2n : F (x) + F (y)

+F (z) + F (x+ y + z) = 0}|. (13)

Similarly to above, one also has:∑
a,b∈F2n

Trn1 (b)=1

W 3
F (a, b)

=
∑

a,b,x,y,z∈F2n

Trn1 (b)=1

(−1)Tr
n
1 (b(F (x)+F (y)+F (z))+a(x+y+z))

= 2n
∑

b,x,y∈F2n

Trn1 (b)=1

(−1)Tr
n
1 (b(F (x)+F (y)+F (x+y)))

= 22n−1(N0 −N1), (14)

where

Ni = |{(x, y) ∈ F2
2n : F (x) + F (y) + F (x+ y) = i}|. (15)

Indeed, for any fixed (x, y) ∈ F2
2n we have∑

Trn1 (b)=1

(−1)Tr
n
1 (b(F (x)+F (y)+F (x+y))) = 0

if F (x) + F (y) + F (x + y) ̸∈ {0, 1} due to the two-tuple-
balance property of the trace function (i.e., (Trn1 (x),Tr

n
1 (δx))

for δ ̸= 0, 1 takes each pair (0, 0), (0, 1), (1, 0), (1, 1) exactly
2n−2 times when x runs through F2n).

Then, the APNness of the function G defined by (1) can be
characterized in terms of the values of M0, N0, N1 defined by
(13) and (15) as follows.

Theorem 2. Let F be any function over F2n with F (0) = 0,
and G be defined by (1). Then G is APN if and only if

M0 − 4(N0 −N1) = (3 · 2n − 2)(2n − 4), (16)

where M0, N0, N1 are defined by (13) and (15) respectively.

Proof. From the above discussion, using (12) and (14) and
Theorem 1 we get (16). �

Note that when G is APN then N1 = 0 by condition 2 of
Proposition 2 and, then, condition (16) gets a simpler form

M0 − 4N0 = (3 · 2n − 2)(2n − 4). (17)

For an APN function F , the values of M0 and N0 defined
by (13) and (15) respectively are well-known (see [13], for
example):

M0 = 2n(3 · 2n − 2),

N0 = 3 · 2n − 2.

Then, by Theorem 2, we have:

Corollary 4. Let F be APN with F (0) = 0 and G be defined
by (1). Then G is APN if and only if N1 = 0, i.e.,

|{(x, y) ∈ F2
2n : F (x) + F (y) + F (x+ y) = 1}| = 0.

However, Corollary 4 gives just another formulation for
Corollary 1.

IV. SOME NON-EXISTENCE RESULTS

A. When F is a Power Function

Let F (x) = xd and G be defined by (1). According to
Proposition 2, if G is APN, then the equation DaF (x) +
DaF (0) = 1, that is,

xd + (x+ a)d + ad = 1 (18)

has no solution for any a ∈ F∗
2n . In particular, taking a = 1

we get that the equation (1/x + 1)d = 1 (with x ̸= 0) has
no solution. Hence gcd(d, 2n − 1) = 1 and F must be a
permutation. Denoting y = x/a, we rewrite equation (18) as

yd + (y + 1)d = 1/ad + 1.

Note now that the right side of this equation ranges over F2n \
{1} when a ranges over F∗

2n . Hence, a necessary condition for
G being APN is that yd+(y+1)d equals the constant function
1 and xd + (x + a)d equals the constant function ad, which
contradicts G being APN when n ≥ 3.

We deduce:

Proposition 5. Let n ≥ 3, 1 ≤ d ≤ 2n − 2, and F (x) = xd

be a power function over F2n . Then the function G defined
by (1) is not APN.
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Remark 1. (1) As mentioned in Section III in case of power
functions we have to consider functions of more general
form (2). If v ̸= 0 then there exists some w ∈ F∗

2n such that
u(x + v)2

n−1 + xd is EA-equivalent to w(x + 1)2
n−1 + xd.

Indeed, u(x+v)2
n−1+xd = u(x/v+1)2

n−1+vd(x/v)d and
replacing y = x/v we get w(y+1)2

n−1+yd where w = u/vd.
Hence when considering a function u(x+v)2

n−1+xd we can
restrict the study to the cases v ∈ F2.
(2) In general, for a function G(x) = u(x+1)2

n−1+xd with
u ∈ F∗

2n there does not necessarily exist u′ ∈ F∗
2n such that G

is CCZ-equivalent to G′(x) = u′x2n−1 + xd. For example,
if n ∈ {5, 6} and d is the inverse exponent then for any
u, u′ ∈ F∗

2n functions G and G′ are CCZ-inequivalent. �
Consider the general case when F (x) = u(x+v)d for some

1 ≤ d ≤ 2n − 2 and u ∈ F∗
2n , v ∈ F2, and G(x) = F (x) +

x2n−1. According to the second condition in Proposition 2, if
G is APN, then the equation DaF (x) +DaF (0) = 1, that is,
u(x + v)d + u(x + v + a)d = uvd + u(v + a)d + 1 has no
solution for any a ∈ F∗

2n . Denoting y = (x + v)/a we can
rewrite the latter equation

yd + (y + 1)d =
(v
a

)d

+
(v
a
+ 1

)d

+
1

uad
.

In the particular case of gcd(d, 2n − 1) = 1 and v = 0 the
right hand side of this equation ranges over F2n \ {1} when
a ranges over F∗

2n , and, if it has no solutions for all a ̸=
0 then uxd + u(x + 1)d cannot be 2-to-1 on F2n \ {0, 1}.
Hence G cannot be APN according to the first condition of
Proposition 2.

Corollary 5. Let n ≥ 3 and F (x) = uxd be a function over
F2n with u ∈ F∗

2n , 1 ≤ d ≤ 2n − 2 and gcd(d, 2n − 1) = 1.
Then the function G(x) = F (x)+x2n−1 over F2n is not APN.

We checked with a computer that for 3 ≤ n ≤ 13 there
are no APN functions of the form x2n−1 + u(x+ v)d where
1 ≤ d ≤ 2n − 2, u, v ∈ F2n , u ̸= 0. For particular case of the
inverse function we get the following proposition.

Proposition 6. Let n ≥ 3 and F (x) = u(x + v)2
n−2 be a

function over F2n with u ∈ F∗
2n , v ∈ F2n . Then the function

G defined by (1) is not APN.

Proof. The equation DaF (x) = DaF (0) + 1, a ∈ F∗
2n , can

be written as

u(x+ v)d + u(x+ a+ v)d = uvd + u(a+ v)d + 1

for d = 2n−2. If we find a solution for DaF (x) = DaF (0)+1
for some a ∈ F∗

2n then the function G is not APN by
Proposition 2. According to Remark 1 (1) we can restrict to
the cases v ∈ F2, and due to Corollary 5 further restrict to
v = 1. Besides, we can consider only n ≥ 4 since n = 3 is
easy to check with a computer.

By a simple calculation of DaF (x) = DaF (0) + 1 we can
obtain that

x2 + ax+ a+ 1 +
a

1 + (a+ 1)d + ud
= 0. (19)

Then, (19) has solutions in F2n if and only if

Trn1

(a+ 1

a2
+

1

a(1 + (a+ 1)d + ud)

)
= 0

i.e.,

Trn1

( 1

a(1 + (a+ 1)d + ud)

)
= 0, (20)

where a /∈ {0, 1, (u+ 1)d}. For simplicity, define

ϕ(a) =
1

a(1 + (a+ 1)d + ud)
=

u(a+ 1)

(u+ 1)a2 + a
.

In what follows, we prove that there exists at least one
a ∈ F∗

2n \ {1, (u + 1)d} such that Trn1 (ϕ(a)) = 0. First,
we show that ϕ(a) ̸= h(a)2 + h(a) for any rational function
h(a) ∈ F2n [a], where F2n denotes the algebraic closure of
F2n . Assume that

ϕ(a) =
ν(a)2

µ(a)2
+

ν(a)

µ(a)

for some µ(a), ν(a) ∈ F2n [a] with gcd(µ(a), ν(a)) = 1, then
one gets

u(a+ 1)µ(a)2 = ((u+ 1)a2 + a)(ν(a)2 + µ(a)ν(a))

which implies that a|µ(a) and then a2|µ(a)2. However,

a2 - ((u+ 1)a2 + a)(ν(a)2 + µ(a)ν(a))

since gcd(µ(a), ν(a)) = 1 and a|µ(a). This leads to a
contradiction. Therefore, ϕ(a) ̸= h(a)2+h(a) for any rational
function h(a) ∈ F2n [a]. By Lemma 4 presented below, we
have∣∣∣ ∑
a∈F∗

2n
\{1,(u+1)d}

(−1)Tr
n
1 (ϕ(a))

∣∣∣ ≤ (2 + 2− 2)
√
2n + 1.

Thus, if Trn1 (ϕ(a)) = 1 for any a ∈ F∗
2n \ {1, (u + 1)d},

then we have 2n − 3 ≤ (2 + 2 − 2)
√
2n + 1, which leads to

2n ≤ (1 +
√
5)2 < 16. This shows that there exists at least

one a ∈ F∗
2n \{1, (u+1)d} such that Trn1 (ϕ(a)) = 0 if n ≥ 4.

�
Lemma 4. ([21, Lemma 2]) Let F2n denote the algebraic
closure of F2n . Let f(z), g(z) ∈ F2n [z], where deg f < r =
deg g and g(z) is a polynomial with t distinct zeros in F2n . If
f(z)
g(z) ̸= h(z)2 + h(z) for any rational function h(z) ∈ F2n [z],
then ∣∣∣∑

a∈L

(−1)Tr
n
1

(
f(z)
g(z)

)∣∣∣ ≤ (t+ r − 2)
√
2n + 1,

where L consists of all elements of F2n except the zeros of
g(z).

B. When F is a Plateaued Function

Majority of the known APN functions are plateaued. We
prove nonexistence of APN functions of the form (1) for
plateaued F by applying Theorem 1.

Theorem 3. Let F be a plateaued function over F2n with
n ≥ 3 and G be defined by (1). Then G is not APN.

Proof. Let n be odd and 2λb be the amplitude of
the component function Trn1 (bF (x)) for b ∈ F∗

2n .
We have λb ≥ n+1

2 . According to Lemma 3, we
have

∑
a∈F2n

W 3
F (a, b) = (−1)Tr

n
1 (bF (0)) 2n+2λb and
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∑
a∈F2n

W 4
F (a, b) = 22n+2λb . Hence,

∑
a∈F2n

W 3
F (a, b) is

divisible by 22n+1 and
∑

a∈F2n
W 4

F (a, b) is divisible by
23n+1, and therefore by 22n+4 since n ≥ 3. Then relation
(6) cannot be satisfied since the term on the left hand side is
divisible by 22n+4 and the term on the right hand side is not.

Let now n be even. This case is more technical. Without
loss of generality we can assume that F (0) = 0. Suppose that
G is APN. Then, by Proposition 2, we get for any a ̸= 0:∑

b∈F2n

∆F (a, b)
2 = (2n−1 − 2) · 22 + 42

if DaF (x) = DaF (0) has 4 solutions and∑
b∈F2n

∆F (a, b)
2 = (2n−1 − 2) · 22 + 2 · 22

otherwise. That is,∑
b∈F2n

∆F (a, b)
2 = 2n+1 + 8ta,

where ta = 1 if DaF (x) = DaF (0) has 4 solutions and
ta = 0 otherwise. Indeed, we know that DaF is 2-to-1 on
F2n\{0, a}; we deduce that DaF (F2n\{0, a}) has size 2n−1−
1 and includes the element DaF (0) in the first case and does
not include it in the second case.

Because ∆F (0, b) = 0 for any b ̸= 0 then∑
(a,b) ̸=(0,0)

∆F (a, b)
2 = (2n − 1)2n+1 + 8

∑
a∈F∗

2n

ta

= (2n − 1)2n+1 + 8T, (21)

where 0 ≤ T ≤ 2n − 1.
Since ∆F (0, 0) = 2n, WF (0, 0) = 2n and WF (a, 0) = 0

for a ̸= 0 then the equality from [15]∑
a,b∈F2n

∆F (a, b)
2 =

1

22n

∑
a,b∈F2n

WF (a, b)
4

leads to∑
(a,b)̸=(0,0)

∆F (a, b)
2 =

1

22n

∑
(a,b) ̸=(0,0)

WF (a, b)
4. (22)

Let 2λb be again the amplitude of Trn1 (bF (x)) for b ∈ F∗
2n .

Then λb =
n+sb

2 for 0 ≤ sb ≤ n and by Lemma 3

1

22n

∑
(a,b) ̸=(0,0)

WF (a, b)
4 = 2n

∑
b∈F∗

2n

2sb . (23)

The values sb are even for all b ̸= 0, and 2sb − 1 and 2n − 1
are divisible by 3. Hence using (21)-(23) we get∑

b∈F∗
2n

2sb = 2(2n − 1) + T ′ (24)

where T ′ = T/2n−3, 0 ≤ T ′ ≤ 7. Then∑
b∈F∗

2n

(2sb − 1) = 2n − 1 + T ′

and T ′ is divisible by 3. Hence T ′ ∈ {0, 3, 6}.

Using (23) and (24) we get∑
a∈F2n

b∈F∗
2n

WF (a, b)
4 = 23n

∑
b∈F∗

2n

2sb = 23n
(
2n+1 + v

)
= 24n+1 + 23nv, (25)

where v = −2 if T ′ = 0 and v = 1 if T ′ = 3 and v = 4 if
T ′ = 6.

Since G is APN then (6) holds by Theorem 1 and using (25):∑
a,b∈F2n

Trn1 (b)=1

W 3
F (a, b) =

1

8

∑
a∈F2n

∑
b∈F∗

2n

W 4
F (a, b)

−(23n−2 − 22n)(2n − 1) + 23n−1

= 22n(7 · 2n−2 + 2n−3v − 1)

=

 22n(3 · 2n−1 − 1) if v = −2
22n(15 · 2n−3 − 1) if v = 1
22n(9 · 2n−2 − 1) if v = 4.

(26)

By Lemma 3 and using (24), we get:∑
a∈F2n

b∈F∗
2n

W 3
F (a, b) = 22n

∑
b∈F∗

2n

2sb = 22n(2n+1 + v). (27)

Besides, ∑
a∈F2n ,b∈F∗

2n

Trn1 (b)=0

W 3
F (a, b) = 22n

∑
b∈F∗

2n

Trn1 (b)=0

2sb

≥ 22n(2n−1 − 1). (28)

Hence by (26)-(28):

22n(2n+1 + v) =
∑

a∈F2n

∑
b∈F∗

2n

W 3
F (a, b) ≥ 22n(2n−1 − 1)

+

 22n(3 · 2n−1 − 1) if v = −2
22n(15 · 2n−3 − 1) if v = 1
22n(9 · 2n−2 − 1) if v = 4

.

Clearly, this inequality does not hold when n ≥ 4 and
v ∈ {1, 4}. When v = −2 this corresponds to the case of F
an APN function and the last inequality becomes an equality.
That is, we get that Trn1 (bF (x)) is bent for all b ∈ F∗

2n

satisfying Trn1 (b) = 0. However, this is impossible if n > 2,
since otherwise we would have an (n, n − 1)-vectorial bent
function. Indeed, take a basis (b1, .., bn−1) of the hyperplane
of equation Trn1 (b) = 0 and define the vectorial (n, n − 1)-
function whose coordinates are fi(x) = Trn1 (biF (x)) for
i = 1, .., n − 1. Then all its component functions are bent
and, by definition, the function is then bent. This contradicts
the fact recalled above that (n,m)-vectorial bent functions
exist only for 2m ≤ n [26]. �

Note that Theorem 3 does not hold when n ≤ 2. For
example, the function F (x) = x is plateaued and G(x) =
x2n−1+F (x) = x3+x is a plateaued APN function over F22

of algebraic degree 2.
Theorem 3 leads to a nonexistence result for APN functions

G with F quadratic or AB.
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Corollary 6. Let F be a quadratic function and G be defined
by (1). Then G is not APN.

Corollary 7. Let F be an AB function and G be defined by
(1). Then G is not APN.

V. CHARACTERIZATIONS OF EQUIVALENCE CLASSES OF
MAXIMUM DEGREE FUNCTIONS

In this section we study the connection between EA- and
CCZ-equivalence classes of a function F over F2n and the
respective classes of the function G given by (1). We also
deduce some non-existence results for functions of the form
(1) where F is CCZ-equivalent to known APN functions.

Next proposition describes EA-equivalence classes of G via
EA-equivalence classes of F .

Proposition 7. Let F be a function over F2n and G(x) =
x2n−1 + F (x). If a function G′ is EA-equivalent to G then
there exist some u, v ∈ F2n , u ̸= 0, and a function F ′ EA-
equivalent to F such that G′(x) = u(x+ v)2

n−1 + F ′(x).

Proof. For EA-equivalent functions G and G′ there exist affine
permutations A1, A2 and affine A such that G′(x) = A1 ◦G◦
A2(x) +A(x). Note that

A1 ◦G ◦A2(x) = A1 ◦ F ◦A2(x) +A1((A2(x))
2n−1)

and denoting F ′(x) = A1 ◦ F ◦ A2(x) + A(x) + A1(0) and
A′

1(x) = A1(x) +A1(0) we get

G′(x) = F ′(x) +A′
1(1)(x+A−1

2 (0))2
n−1

since A′
1((A2(x))

2n−1) takes value A′
1(1) if x ̸= A−1

2 (0)
(that is, A2(x) ̸= 0) and 0 otherwise, and we can rewrite it
as A′

1(1)(x + A−1
2 (0))2

n−1) (which takes the same values).
Hence G′(x) = F ′(x) + u(x + v)2

n−1 for u = A′
1(1) ̸= 0

and v = A−1
2 (0) and the function F ′ is EA-equivalent to F . �

Note that if F and F ′ are EA-equivalent then it does not
necessarily mean that functions G(x) = x2n−1 + F (x) and
G′(x) = u(x + v)2

n−1 + F ′(x) are EA-equivalent for any
u, v ∈ F2n , u ̸= 0. However, there exist some u, v ∈ F2n ,
u ̸= 0 (in some cases these elements are unique) giving
EA-equivalent functions G and G′ according to the following
proposition.

Proposition 8. If F and F ′ are EA-equivalent functions over
F2n then the function G′(x) = x2n−1+F ′(x) is EA-equivalent
to u(x+ v)2

n−1 + F (x) for some u, v ∈ F2n , u ̸= 0.

Proof. For EA-equivalent functions F and F ′ there
exist affine permutations A1, A2 and affine A such
that F ′(x) = A1 ◦ F ◦ A2(x) + A(x). Without
loss of generality we can assume A1(0) = 0. Then
G′(x) = x2n−1 + A1 ◦ F ◦ A2(x) + A(x) and it
is EA-equivalent to A−1

1 ((A−1
2 (x))2

n−1) + F (x) =
A−1

1 (1)(x + A2(0))
2n−1 + F (x) = u(x + v)2

n−1 + F (x)
with u = A−1

1 (1) ̸= 0 and v = A2(0). �

Using Proposition 8 we can deduce an important non-
existence result on APN functions of the form (1).

Corollary 8. Let F and F ′ be EA-equivalent functions over
F2n . If for any v ∈ F2n and any nonzero u ∈ F2n the function
x2n−1 + uF (x + v) is not APN then for any v′ ∈ F2n and
any nonzero u′ ∈ F2n the function x2n−1 + u′F ′(x + v′) is
not APN either.

Further we describe CCZ-equivalence classes of G via CCZ-
equivalence classes of F .

Proposition 9. Let F be a function over F2n and G be defined
by (1). If a function G′ is CCZ-equivalent to G then there exist
some u, v ∈ F2n , u ̸= 0, and a function F ′ CCZ-equivalent
to F such that G′(x) = u(x+ v)2

n−1 + F ′(x).

Proof. Since G and G′ are CCZ-equivalent then for some
affine permutation

L(x, y) =
(
L1(x, y), L2(x, y)

)
=

(
A1(x) +A2(y) + a,A3(x) +A4(y) + b

)
,

where A1, A2, A3, A4 are linear and a, b ∈ F2n , we have
G′(x) = G2 ◦G−1

1 (x) with

G1(x) = L1(x,G(x)) = A1(x) +A2 ◦G(x) + a

a permutation and

G2(x) = L2(x,G(x)) = A3(x) +A4 ◦G(x) + b.

Note that G1(x) = A1(x) + A2 ◦ F (x) + A2(x
2n−1) + a

and since it is a permutation then A2(0) = A2(1) = 0 and
G1(x) = A1(x) + A2 ◦ F (x) + a. Take F1(x) = G1(x) and
F2(x) = A3(x) + A4 ◦ F (x) + b. Then, obviously, F ′(x) =
F2 ◦ F−1

1 (x) is CCZ-equivalent to F and

G′(x) = F ′(x) +A4((F
−1
1 (x))2

n−1)

= F ′(x) +A4(1)(x+ F1(0))

= F ′(x) + u(x+ v)2
n−1

with u = A4(1) and v = F1(0). Note that u ̸= 0 since
otherwise the system

A1(x) +A2(y) + a = a

A3(x) +A4(y) + b = b

would have two solutions (0, 0) and (0, 1) and L would not
be a permutation. �
Proposition 10. Let F and F ′ be CCZ-equivalent functions
over F2n , that is, L(GF ) = GF ′ for some affine permutation
L(x, y) = (L1(x, y), L2(x, y)) of F2

2n . If L1(0, y) is not a per-
mutation of F2n then there exist some u, v, w ∈ F2n , u,w ̸= 0,
such that functions wx2n−1+F (x) and u(x+v)2

n−1+F ′(x)
are CCZ-equivalent.

Proof. When the affine function L1(0, y) is not a permutation
of F2n there exists w ∈ F∗

2n such that L1(0, 0) = L1(0, w).
Clearly a linear function L◦(x, y) = (x,wy) is a permutation
of F2

2n and

L ◦ L◦(x, y) = (L1(x,wy), L2(x,wy))

maps the graph of the function w−1F (x) to the graph of the
function F ′(x). Moreover, L ◦ L◦ maps the graph of G(x) =
x2n−1 + w−1F (x) to the graph of G′(x) = u(x + v)2

n−1 +
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F ′(x) for u = L2(0, w) + L2(0, 0) and v = L1(0, F (0)).
Indeed, note that u ̸= 0 since otherwise L would not be a
permutation and we have

G1(x) = L1(x,wG(x)) = L1

(
x, F (x) + wx2n−1

)
= L1(x, F (x)) +

(
L1(0, w) + L1(0, 0)

)
x2n−1

= F1(x),

G2(x) = L2(x,wG(x)) = L2

(
x, F (x) + wx2n−1

)
= L2(x, F (x)) + ux2n−1 = F2(x) + ux2n−1,

G′(x) = G2 ◦G−1
1 (x) = F2 ◦ F−1

1 (x) + u
(
F−1
1 (x)

)2n−1

= F ′(x) + u(x+ v)2
n−1.

Hence, G and G′ are CCZ-equivalent, and, therefore,
wx2n−1 + F (x) and G′ are CCZ-equivalent. �

In Proposition 10 the condition on L1(0, y) being a per-
mutation is essential. Indeed, take F (x) = x3 and F ′(x) =
F−1(x) = x21 and n = 5, then F and F ′ are CCZ-
equivalent with L(x, y) = (L1(x, y), L2(x, y)) = (y, x) where
L1(0, y) = y is a permutation. It can be easily checked
with a computer that for all u, u′ ∈ F∗

25 , v, v′ ∈ F25 ,
the functions G(x) = u(x + v)2

n−1 + F (x) and G′(x) =
u′(x+ v′)2

n−1 + F ′(x) are CCZ-inequivalent.
For n odd all known APN functions except inverse and

Dobbertin functions are AB. Hence, by Corollary 7 a function
u(x + v)2

n−1 + F (x), u, v ∈ F2n , u ̸= 0, is not APN for
any of these functions F and any F CCZ-equivalent to them
(since CCZ-equivalence preserves AB property). For n even all
known APN functions except Dobbertin functions and func-
tions constructed in [10], [11] (and a sporadic example with
n = 6 [19]) are plateaued and plateauedness is preserved by
EA-equivalence. Therefore, u(x+v)2

n−1+F (x), u, v ∈ F2n ,
u ̸= 0, is not APN for any of these functions F and any F
EA-equivalent to them. When n is even and F is plateaued
the following corollary of Proposition 10 is useful for CCZ-
equivalence.

Corollary 9. Let F and F ′ be CCZ-equivalent APN functions
over F2n where F is plateaued and n is even. Then for
an affine permutation L(x, y) = (L1(x, y), L2(x, y)) of F2

2n

satisfying L(GF ) = GF ′ there exists w ∈ F∗
2n such that

L1(0, w) = L1(0, 0) and u(x + v)2
n−1 + F ′(x) is not APN

for u = L2(0, w) + L2(0, 0) and v = L1(0, F (0)).

Proof. If L1(0, w) ̸= L1(0, 0) for any w ∈ F∗
2n then L1(0, y)

is a permutation of F2n and F1(x) = L1(x, F (x)) is a
plateaued APN permutation which leads to a contradiction
since all plateaued APN functions have bent components
when n is even. Hence, there exists w ∈ F∗

2n such that
L1(0, w) = L1(0, 0). Since w−1F (x) is plateaued APN then
G(x) = wx2n−1+F (x) is not APN by Theorem 3. It follows
from the proof of Corollary 10 that for u = L2(0, w)+L2(0, 0)
and v = L1(0, F (0)) the function G′(x) = u(x + v)2

n−1 +
F ′(x) is CCZ-equivalent to G, and, therefore, it is not APN.
�

All APN functions with n even constructed in [10] and [11]
satisfy the conditions in Corollary 9 with v = 0 and u = w
satisfying

1) Trn1 (u) = 0 for functions

x2i+1 + (x2i + x+ 1)Trn1 (x
2i+1)

and
x3 +Trn1 (x

9) + (x2 + x+ 1)Trn1 (x
3)

where gcd(n, i) = 1;
2) Trn3 (u+ u2) = 0 for functions(

x+Trn3 (x
2(2i+1) + x4(2i+1))

+Trn1 (x)Tr
n
3 (x

2i+1 + x22i(2i+1))
)2i+1

and(
x+Trn3 (x

6 + x12) + Trn1 (x)Tr
n
3 (x

3 + x12)
)3

+Trn1

( (
x+Trn3 (x

6 + x12) + Trn1 (x)Tr
n
3 (x

3 + x12)
)9 )

where n divisible by 6 and gcd(n, i) = 1.
Hence it is not possible to get APN function by adding
ux2n−1 to any of these functions. Besides, using Proposition 2,
Corollary 8 and computer search we confirmed that for n ≤ 10
there are no APN functions of the form (1) for any F EA-
equivalent to the functions above.

When F is EA-equivalent to the inverse function then
u(x + v)2

n−1 + F (x), u, v ∈ F2n , v ̸= 0, is not APN by
Proposition 6 and Corollary 8. For F a Dobbertin function,
the function ux2n−1 + F (x), u ∈ F∗

2n , is not APN for n
odd by Proposition 5, and for n even x2n−1 + F (x) is not
APN by Proposition 5. However, these results do not give
complete information about u(x+v)2

n−1+F (x), u, v ∈ F2n ,
u ̸= 0, when F is EA-equivalent to Dobbertin functions. Using
Proposition 2, Corollary 8 and computer search we confirmed
that for n ≤ 15 there are no APN functions of the form (1)
for any F EA-equivalent to Dobbertin functions. Regarding
to CCZ-equivalence, it is not known whether for inverse and
Dobbertin functions it coincides with EA-equivalence (in case
of Dobbertin functions together with EA-equivalence of their
inverses when they exist).

VI. CONCLUSION

The major objective of this paper was to characterize APN
functions over the finite field F2n having algebraic degree
n, or equivalently, of the form G(x) = x2n−1 + F (x),
where F is any function from F2n to itself having algebraic
degree less than n, in order to find new APN functions with
maximal algebraic degree or to prove the non-existence of
such APN functions. We obtained some characterizations of
those APN functions by means of the derivatives and of the
power moments of their Walsh transform, and then some non-
existence results on APN functions with maximal algebraic
degree were proved. This includes all power functions and all
plateaued functions and covers most of the known cases of
APN functions F . These results also imply that for most of
the known APN functions changing their value in a single
point results in non-APN functions.
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